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Abstract

The standard time-varying VAR workhorse suffers from overparameterization, which is a serious

problem as it limits the number of variables and lags that can be incorporated in the model. As a

solution for the overparameterization problem, we propose a new, more parsimonious time-varying VAR

model setup with which we can reliably estimate larger models including more variables and/or more

lags than was possible until now. The new model setup implies cross-equation restrictions on the time

variation that are empirically supported, theoretically appealing, and make the Bayesian estimation

procedure much faster.

1 Introduction

Thanks to the pioneer work of Sims (1980), vector autoregressions (VARs) have a long tradition in

applied macroeconomics, and are widely used in policy analysis and forecasting. They are flexible time-

series models that can capture complex dynamic interrelationships among macroeconomic variables—by

allowing for responses of all variables to all variables at all lags. Nevertheless, in standard VARs these

complex dynamic interrelationships are not allowed to change over time, which seriously limits policy

analysis regarding economies that are subject to changes in the underlying structure.
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A natural evolution of the literature was the development of time-varying VARs, in which the dynamic

interrelationships among variables are—in contrast—allowed to change over time. Cogley and Sargent

(2001) have developed a VAR with coefficients that are random walks with reflecting barriers that keep

the VAR stable. Cogley and Sargent (2005) have extended their earlier work with stochastic volatility.

Primiceri (2005) has developed a similar model to Cogley and Sargent (2005) but without the reflecting

barriers and with a setup for stochastic volatility that suits better with structural analysis. The model

setup of Primiceri (2005) can be considered as today’s standard time-varying VAR workhorse.

Currently, time-varying VARs are only used for small models—including only few variables and few

lags. The aforementioned papers include, for instance, only three variables (inflation, nominal interest,

and unemployment) and two lags. There are also papers that include more variables or more lags, albeit

only marginally. Canova and Gambetti (2009, 2010) and Hofmann, Peersman, and Straub (2012) include,

for example, four variables instead of three. There are, to the best of our knowledge, no papers in the

literature with larger time-varying VARs without compromises made elsewhere in the model setup. For

example, Gambetti, Pappa, and Canova (2008), in their model with five variables and two lags, assume

that the covariance matrix of the innovations to the time-varying parameters is diagonal, while Baumeister

and Peersman (2013), in their model with four variables and four lags, employ an unusual long training

sample for determining their prior and their prior is also more informative than usual.

It is questionable whether we can obtain reliable inference for larger time-varying VARs, as the

generality of the VAR model brings along a large number of parameters even for systems of moderate

size. The number of parameters in a system with n variables and p lags is equal to k = n+pn2, including

an n × 1 vector of constants and for each lag an n × n matrix of autoregressive coefficients. Note that

with standard VARs inference is (just) about k fixed coefficients, but with time-varying VARs inference

is about k time paths of coefficients. In addition, the covariance matrix of the innovations to the time-

varying parameters, a k × k matrix, also needs to be estimated. It should be clear that the number of

objects to be estimated quickly gets large when more variables and/or more lags are added to the system.

Nevertheless, for many applications a large set of variables is vital, for example, to avoid omitted

variable bias such as the so-called price puzzle or when using disaggregate information. Moreover, when

using quarterly data it seems natural to include at least four lags, which is, for example, advocated by

Blanchard and Perotti (2002) for the literature on the dynamic effects of fiscal policy. Altogether, we

would like to be able to estimate larger systems including more variables and/or more lags than is possible

with the standard time-varying VAR model setup of Primiceri (2005).
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In this paper, we propose a new, more parsimonious time-varying VAR model setup with which we

can estimate larger systems than is currently possible. The key distinctive feature of the new model setup

is the covariance matrix of the innovations to the time-varying parameters which is now assumed to be

of reduced rank instead of full rank. The implied cross-equation restrictions amount to a reduction in

the number of underlying factors driving the time-varying parameters. In fact, in the new model setup

(from now onwards “reduced-rank model”) there are q ≤ k underlying factors driving the k time-varying

parameters, while in the standard model setup (from now onwards “full-rank model”) there are as many

underlying factors as time-varying parameters.

It turns out that the number of underlying factors included in the reduced-rank model can be chosen

to be much smaller than the number of time-varying parameters, at least for the typical monetary VAR

we have analyzed. Using the same data as Cogley and Sargent (2001, 2005), we find that the reduced-

rank model with only a few factors is enough to capture the bulk of time variation that is present in

the full-rank model. This was also to be expected given that results for the full-rank model already had

suggested that the time variation in the parameters is highly structured. In particular, the first three

principal components account together already for more than 95% of the variance of the innovations to

the time-varying parameters, which is consistent with Cogley and Sargent (2005) who have presented a

similar number.

In addition to the just-mentioned empirical support, the cross-equation restrictions in the time vari-

ation are also theoretically appealing. The learning model of Sargent (1999) predicts, for example, that

reduced-form parameters should move in a highly structured way, because of the cross-equation restric-

tions associated with optimization and foresight. This was already mentioned by Cogley and Sargent

(2005) who had suggested that a formal treatment of cross-equation restrictions in the time variation

would be a priority for future research. Also Primiceri (2005) had mentioned this as clear direction for

future research arguing that imposing an underlying factor structure would be essential for estimating

larger systems.

Furthermore, the reduced-rank model also has practical advantages over the full-rank model. In

particular, the computing time needed for the Bayesian estimation is much shorter as there are less pa-

rameters and underlying trajectories to be estimated in the reduced-rank model. The gain in terms of

computing speed is, for example, about a factor four for the application of Cogley and Sargent (2001),

and for applications with more variables and/or more lags the gains are potentially even larger. Moreover,

(much) shorter Markov chains are sufficient to achieve convergence of the Gibbs sampler used for the
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Bayesian estimation, and this can be exploited to speed up the Bayesian estimation even further. Note

that running an out-of-sample forecasting exercise, such as the one by D’Agostino, Gambetti, and Gian-

none (2013), becomes much more practical as less computing time is needed for the recursive Bayesian

estimation.

Altogether, the reduced-rank model proposed in this paper seems to be a useful new tool for studying

macroeconomic questions. With the reduced-rank model we can estimate larger systems than is currently

possible, which opens up the world of potential applications. For a follow-up paper we are working on

an application about financial innovation regarding consumer loans, and include home mortgages and

consumer credit as extra variables in an otherwise standard monetary VAR. The application is similar

to Den Haan and Sterk (2011), who compare a time-invariant VAR estimated on an early sub-sample

with a time-invariant VAR estimated on a later sub-sample. Herewith, they are simply imposing the

timing and number of sub-samples rather than estimating a model (such as the reduced-rank model)

in which this is endogenously determined. Another interesting application, which pushes the number

of variables even further, is the transmission of shocks between G-7 countries, as analyzed by Canova

and Ciccarelli (2009). They have developed a multi-country VAR model with time-varying coefficients

and cross-equation restrictions, yet they are imposing particular cross-equation restrictions instead of

estimating them, which is a crucial difference with the reduced-rank model. Furthermore, De Wind

(2014) applies the reduced-rank model to analyze to what extent the dynamic effects of unanticipated

changes in US tax policy have changed structurally over the post World War II period.

Besides, there are also papers that model time variation as discrete breaks, i.e. regime-switching

models. For a general overview, see, for instance, Hamilton (1989) and Kim and Nelson (1999), and for

an application regarding monetary policy, see, for instance, Sims and Zha (2006). As argued by Primiceri

(2005), discrete breaks may well describe some rapid shifts in policy but are less suitable to capture

changes in private sector behavior, where changes are smoothed out due to learning and aggregation.

Moreover, given that VARs consist of reduced-form parameters that are a mixture of underlying policy

and private sector behavior, even rapid shifts in policy might lead to gradually changing coefficients

rather than discrete breaks. From a different angle, regime-switching models are not capable of capturing

gradually changing coefficients, but time-varying VARs are, as demonstrated in a Monte Carlo study by

Baumeister and Peersman (2013), capable of capturing discrete breaks.

Finally, we have no formal procedure for determining how many factors to include in the reduced-rank

model. We have simply estimated the reduced-rank model for various ranks and examined whether the
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results remain the same as more factors are added to the system. By all means, a formal procedure

based on the marginal likelihood or a reversible jump Markov chain Monte Carlo procedure (a procedure

previously used in the context of time-varying VARs by Primiceri (2005) for prior selection) is preferred,

which remains for future research.

The organization of the rest of this paper is as follows. In section 2, we first review the time-varying

VAR model of Primiceri (2005), i.e. the full-rank model, and then we introduce the reduced-rank model.

In section 3, we outline the Bayesian estimation procedure for the reduced-rank model. In section 4,

we show how many factors are actually needed to capture the bulk of time variation in the small macro

model that was earlier analyzed by Cogley and Sargent (2001). Finally, section 5 concludes.

2 Model

2.1 Full-rank model

The full-rank model is basically identical to the time-varying VAR model of Primiceri (2005), and includes

both time-varying parameters and stochastic volatility.1 Consider the model with n variables and p lags

yt = ct +

p∑
i=1

Bi,tyt−i + ut (1)

where yt is an n × 1 vector of observed endogenous variables, ct is an n × 1 vector of time-varying

constants, {Bi,t}pi=1 are n × n matrices of time-varying autoregressive parameters, and ut is an n ×

1 vector of shocks. Shocks are assumed to be distributed according to the normal distribution ut ∼

N (0,Σt). The time-varying parameters and the stochastic volatility are discussed in turn.

Let θt ≡ vec([ct, {Bi,t}pi=1]′) denote the vector of time-varying parameters, where vec is the column

stacking operator. The dimension of θt is k by 1 with k = n+ pn2. The law of motion for θt is assumed

to be equal to

θt = θt−1 + νθ,t (2)

where νθ,t is a k × 1 vector of shocks. Shocks are assumed to be distributed according to the normal

distribution νθ,t ∼ N (0, Qθ).

Introducing stochastic volatility is a bit more involved, since this requires extra restrictions to make

1There is one minor difference between the full-rank model discussed here and the model of Primiceri (2005). For details,

see footnote 2.
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sure that the covariance matrix is always positive definite. Cholesky decompose the covariance matrix

Σt =
(
A−1t Ωt

) (
A−1t Ωt

)′
where A−1t is a lower triangular matrix with ones on the main diagonal and Ωt

is a diagonal matrix. Let αt be the vector of elements below the main diagonal of the matrix At stacked

by rows. The dimension of αt is r by 1 with r = n(n−1)
2 . The law of motion for αt is assumed to be equal

to

αt = αt−1 + να,t (3)

where να,t is an r × 1 vector of shocks. Shocks are assumed to be distributed according to the normal

distribution να,t ∼ N (0, Qα). Here, Qα is a dense matrix, in contrast to Primiceri (2005).2 Let σt denote

the vector of diagonal elements of the matrix Ωt. The dimension of σt is n by 1. The law of motion for

σt is assumed to be equal to

log (σt) = log (σt−1) + νσ,t (4)

where νσ,t is an n × 1 vector of shocks. Shocks are assumed to be distributed according to the normal

distribution νσ,t ∼ N (0, Qσ). Adding to this, the four vectors of shocks discussed so far are assumed to

be mutually uncorrelated.

Finally, define the matrix of regressors X ′t ≡ In ⊗ [1,
{
y′t−i

}p
i=1

], where ⊗ denotes the Kronecker

product, and rewrite the VAR equation in concise matrix form

yt = X ′tθt +A−1t Ωtεt (5)

where Xt is a k × n matrix of regressors and εt is an n × 1 vector of standard normally distributed

shocks. All the above can now be represented by the following non-linear state-space representation

yt = X ′tθt +A−1t Ωtεt (6a)

θt = θt−1 + νθ,t (6b)

αt = αt−1 + να,t (6c)

log (σt) = log (σt−1) + νσ,t (6d)

The first equation is the measurement equation and the other ones are the state equations. The dimensions

2Primiceri (2005) imposes a block-diagonal structure on Qα in order to simplify the sampling procedure and to increase

efficiency, but by doing a bit more algebra than Primiceri (2005) the sampling procedure can be made as simple and as

efficient even if Qα is dense. This will be explained in section 3 about Bayesian estimation.
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of the measurement and state equations are summarized in tables 1 and 2, respectively. The time index

t runs from 1 to τ . Initial values of the observations are assumed to be given and starting values of the

time-varying parameters are assumed to be distributed according to normal prior distributions, to be

discussed in section 3 about the Bayesian estimation procedure.

Vector Matrix

Data yt n × 1 Xt k × n

Parameter θt k × 1 At n × n Ωt n × n

Shock εt n × 1

Table 1: Dimensions of measurement equation (with k = n+ pn2)

Parameter Shock Covariance

Regression θt k × 1 νθ,t k × 1 Qθ k × k

Off-diagonal αt r × 1 να,t r × 1 Qα r × r

Diagonal σt n × 1 νσ,t n × 1 Qσ n × n

Table 2: Dimensions of state equations (with k = n+ pn2 and r = n(n−1)
2 )

2.2 Reduced-rank model

2.2.1 Motivation

The full-rank model is likely to be overparameterized. As pointed out in the introduction, common sense

and estimated spectral concentrations suggest that only a few factors are important in driving the time-

varying parameters and stochastic volatility. This idea is implemented in the reduced-rank model via

the underlying structure put on the covariance matrices. The covariance matrix driving the time-varying

parameters (Qθ) and the covariance matrices driving the stochastic volatility (Qα and Qσ) are now of

reduced rank instead of full rank. This corresponds to a reduction in the number of underlying factors

driving the time-varying parameters and stochastic volatility.

Although the rank is the only dimension in which the two models differ, the modification requires

substantial changes in the Bayesian estimation procedure used for estimation. The Bayesian estimation

procedure will be outlined in section 3, but the state-space representation will be discussed already in

the next subsection.
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2.2.2 State-space representation

Starting with the time-varying parameters, there are assumed to be qθ ≤ k common factors driving the k

time-varying parameters. This means that the covariance matrix Qθ has less than full rank. Decompose

the covariance matrix Qθ = ΛθΛ
′
θ where Λθ is a k × qθ matrix of factor loadings implying rank (Qθ) = qθ.

The law of motion for the time-varying parameters can now be written as

θt = θt−1 + Λθυθ,t (7)

where υθ,t is a qθ × 1 vector of standard normally distributed shocks. This law of motion implies that

(i) ∆θt is in the column space of Λθ and (ii) θt is not necessarily in the column space of Λθ. Hence,

the changes in the parameters are driven by the common factors, but that is not necessarily the case

for the levels of the parameters. This makes sense since there are (much) more forces determining the

macroeconomy than there are forces changing the macroeconomy.

The time-varying part of the parameters is in the column space of Λθ and the time-invariant part of

the parameters is in the left null space of Λθ. A natural decomposition for the time-varying parameters

is therefore

θt = Pθθt +Mθθt (8)

where Pθ = Λθ(Λ
′

θΛθ)
−1Λ

′

θ is the projection matrix onto the column space of Λθ and Mθ = Ik − Pθ

is the projection matrix onto the left null space of Λθ. The first term on the right-hand side is in the

column space of Λθ and can thus be expressed in terms of the underlying factors. The second term on

the right-hand side is in the left null space of Λθ and is thus time-invariant. Hence, the qθ × 1 vector of

underlying factors θ̃t can be defined implicitly by

θt ≡ Λθ θ̃t +Mθθ0 (9)

Substitute the implicit definition of the factors in expression (7) and premultiply with (Λ
′

θΛθ)
−1Λ

′

θ. The

law of motion is now expressed in terms of the underlying factors

θ̃t = θ̃t−1 + υθ,t (10)

The stochastic volatility is based on similar decompositions. The state-space representation can
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therefore be given directly. The measurement equation is the same as in the full-rank model. Since the

state equations are now expressed in terms of the underlying factors, the dimensions of the state equations

are smaller than in the full-rank model. This speeds up the Bayesian estimation procedure, which is now

based on the following non-linear state-space representation

yt = X ′tθt +A−1t Ωtεt (11a)

θ̃t = θ̃t−1 + υθ,t θt ≡ Λθ θ̃t +Mθθ0 (11b)

α̃t = α̃t−1 + υα,t αt ≡ Λαα̃t +Mαα0 (11c)

σ̃t = σ̃t−1 + υσ,t log σt ≡ Λσσ̃t +Mσ log (σ0) (11d)

The first equation is the measurement equation and the other ones are the state equations together with

the mappings between the underlying factors and the time-varying parameters. The dimensions of the

measurement and state equations are summarized in tables 1 and 3, respectively. The time index t runs

from 1 to τ . Initial values of the observations are assumed to be given and starting values of the time-

varying parameters are assumed to be distributed according to normal prior distributions, to be discussed

in section 3 about the Bayesian estimation procedure.

Factor Shock Loading

Regression θ̃t qθ × 1 υθ,t qθ × 1 Λθ k × qθ

Off-diagonal α̃t qα × 1 υα,t qα × 1 Λα r × qα

Diagonal σ̃t qσ × 1 υσ,t qσ × 1 Λσ n × qσ

Table 3: Dimensions of state equations (with k = n+ pn2 and r = n(n−1)
2 )

3 Bayesian estimation procedure for reduced-rank model

The reduced-rank time-varying VAR model is estimated using Bayesian methods. Inference is based on

the joint posterior distribution of the time-varying parameters3 and the reduced-rank covariance matrices

p(θτ , Qθ, α
τ , Qα, σ

τ , Qσ|yτ , Xτ ),4 where the notation xτ is used to denote the complete history of x up

3In this subsection, the notion of time-varying parameters also refers to stochastic volatility.

4The marginal posterior distributions of the underlying factors and factor loadings are not informative since they are only

separately identified up to an orthogonal transformation, see footnote 6 for a discussion. The marginal posterior distributions



3 BAYESIAN ESTIMATION PROCEDURE FOR REDUCED-RANK MODEL 10

to and including time τ . The posterior distribution can be decomposed as

p(θτ , Qθ, α
τ , Qα, σ

τ , Qσ|yτ , Xτ ) ∝ p(yτ , Xτ |θτ , Qθ, ατ , Qα, στ , Qσ)p(θτ , Qθ, α
τ , Qα, σ

τ , Qσ) (12)

where the first term on the right-hand side is the likelihood function and the second term on the right-

hand side is the joint prior distribution. The joint prior distribution used in this paper is constructed

from

p (θ0) p (Qθ) p (α0) p (Qα) p (σ0) p (Qσ) (13)

where the priors for the reduced-rank covariance matrices are independent singular inverse-Wishart

distributions—to be defined in section 3.2—and the priors for the starting values of the time-varying

parameters are independent normal distributions. Note that the normal priors in (13) are only for the

starting values and not for the entire sequences. But conditional on the reduced-rank covariance matrices,

the normal priors for the starting values imply—via the random walk processes—normal priors for the

entire sequences. Hence, the implied joint prior distribution is

p(θτ , Qθ, α
τ , Qα, σ

τ , Qσ) =

p (θ0) p (Qθ) p (α0) p (Qα) p (σ0) p (Qσ)
τ∏
t=1

p (θt|θt−1, Qθ)
τ∏
t=1

p (αt|αt−1, Qα)

τ∏
t=1

p (σt|σt−1, Qσ)
(14)

Analytical evaluation of the joint posterior distribution is not possible. Gibbs sampling is therefore

used for numerical evaluation. For a general treatment of the Gibbs sampler, see, for example, Casella

and George (1992). Here, only the implementation for the model under consideration is given:

0. Initialize the Gibbs sampler with θτ,0, Q0
θ, ατ,0, Q0

α, στ,0, Q0
σ, and set i to 1.

1. Draw a history of regression parameters θτ,i from p(θτ |Qi−1θ , ατ,i−1, Qi−1α , στ,i−1, Qi−1σ ; yτ , Xτ ).

2. Draw a reduced-rank covariance matrix Qiθ from p(Qθ|θτ,i, ατ,i−1, Qi−1α , στ,i−1, Qi−1σ ; yτ , Xτ ).

3. Draw a history of off-diagonal elements ατ,i from p(ατ |θτ,i, Qiθ, Qi−1α , στ,i−1, Qi−1σ ; yτ , Xτ ).

4. Draw a reduced-rank covariance matrix Qiα from p(Qα|θτ,i, Qiθ, ατ,i, στ,i−1, Qi−1σ ; yτ , Xτ ).

5. Draw a history of diagonal elements στ,i from p(στ |θτ,i, Qiθ, ατ,i, Qiα, Qi−1σ ; yτ , Xτ ).

6. Draw a reduced-rank covariance matrix Qiσ from p(Qσ|θτ,i, Qiθ, ατ,i, Qiα, στ,i; yτ , Xτ ).

7. Increment i by 1, and go back to step 1 until i > g.

of the time-varying parameters and reduced-rank covariance matrices are, on the contrary, separately identified, and hence

it makes sense to work with their joint posterior distribution, i.e. p(θτ , Qθ, α
τ , Qα, σ

τ , Qσ |yτ , Xτ ).
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8. Throw away the first b draws as burn-in and keep the remaining g − b draws for inference.

Note that at each step one of the conditioning variables is updated. Subject to regularity condi-

tions (see, for example, Roberts and Smith, 1994), the Gibbs sampler generates a Markov chain with

p(θτ , Qθ, α
τ , Qα, σ

τ , Qσ|yτ , Xτ ) as stationary distribution. It is important to check convergence of the

Markov chain, to be discussed concurrently with the applications. The various drawing steps are outlined

in the remainder of this section.5

Also note that the full-rank model is nested within the more general reduced-rank model and can

thus be estimated by the same procedure. Yet, some of the steps needed for the reduced-rank model are

not deemed necessary for the full-rank model, and hence it is easier to estimate the full-rank model by

the procedure outlined in Primiceri (2005).

3.1 Draw a history of regression parameters θτ

Recall that θt is the k × 1 vector of time-varying parameters including both the constants and the

autoregressive parameters. In this step, a history of θτ is sampled from the conditional distribution

p(θτ |Qi−1θ , ατ,i−1, Qi−1α , στ,i−1, Qi−1σ ; yτ , Xτ ). This conditional distribution does depend on ατ,i−1 and

στ,i−1 only via Στ,i−1 and does not depend on Qi−1α and Qi−1σ , which implies that the conditional

distribution simplifies to p(θτ |Qi−1θ ,Στ,i−1; yτ , Xτ ). In the rest of the discussion, dependence on i is

suppressed for notational convenience. Sampling is based on the following state-space representation

yt = X ′tθt + ut (15a)

θ̃t = θ̃t−1 + υθ,t θt ≡ Λθ θ̃t +Mθθ0 (15b)

where ut ∼ N (0,Σt) and υθ,t ∼ N (0, Iqθ ). Note that the sampling procedure is conditional on Qθ while

the state-space representation is based on Λθ. The conditional distribution of θτ does not depend on

the particular decomposition of Qθ used which is crucial because the decomposition ΛθΛ
′
θ = Qθ is not

5The Bayesian estimation procedure simplifies considerably when the stochastic volatility feature is left out. In partic-

ular, steps 3–6 of the Gibbs sampling procedure are replaced by one single step to draw the covariance matrix of the VAR

forecast errors (Σ), which is now time-invariant. The sampling procedure is similar to the procedure as outlined in section

3.2, yet with full-rank residual sum-of-squares and prior scale matrices. To be precise, when the prior distribution for the co-

variance matrix of the VAR forecast errors is specified as IW
(
Σ̄, τΣ,0

)
, the sampling distribution is IW

(
Su + Σ̄, τ + τΣ,0

)
,

where Su is the residual sum-of-squares matrix of the VAR forecast errors.
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unique.6 Here, the eigenvalue decomposition is used, that is

Λθ = VθDθ (16)

where Dθ is a qθ × qθ diagonal matrix with the square roots of the non-zero eigenvalues of Λθ on the

diagonal and Vθ is a k × qθ matrix with the corresponding eigenvectors (normalized to unit length). A

history of regression parameters θτ is sampled indirectly by combining (i) a draw for the time-varying part

of the regression parameters Λθ θ̃
τ with (ii) a draw for the time-invariant part of the regression parameters

Mθθ0. These two steps—actually two separate Gibbs steps, as explained below—are discussed in turn.

3.1.1 Draw a history of the regression parameters’ time-varying part Λθ θ̃
τ

The procedure is to first draw a history of underlying factors θ̃τ from the conditional distribution

p(θ̃τ |M i−1
θ θi−10 ,Λi−1θ ,Στ,i−1; yτ , Xτ ), and then to premultiply this history by Λi−1θ . Note that the afore-

mentioned distribution is also conditional on the previous draw for the regression parameters’ time-

invariant part M i−1
θ θi−10 , which implies that the two steps (to draw a history of regression parameters)

are, in fact, two separate Gibbs steps. The conditioning is on the regression parameters’ time-invariant

part M i−1
θ θi−10 rather than on the starting values θi−10 because otherwise there would have been unnec-

essary autocorrelation in the Gibbs sampler, which would have been fatal for its convergence.7 Again, in

the rest of the discussion, dependence on i is suppressed for notational convenience.

First, to sample the underlying factors, substitute the implicit definition of the underlying factors in

the measurement equation and rewrite. This gives

y∗t = X∗t θ̃t + ut (17a)

θ̃t = θ̃t−1 + υθ,t (17b)

where y∗t = yt −X ′tMθθ0 and X∗t = X ′tΛθ. This state-space representation is linear and Gaussian. The

6Indeed, any orthogonal transformation Λ̃θ = ΛθZ, where Z is an orthogonal matrix, gives an alternative decomposition

Λ̃θΛ̃′θ = Qθ. Yet, the column space of Λ̃θ is identical to the column space of Λθ, since the projection matrix onto the column

space of Λ̃θ is equal to the projection matrix onto the column space of Λθ. The column space is thus invariant to the particular

orthogonal transformation used, which is the only requisite for uniquely determining the conditional distribution of θτ .

7If the conditioning had instead been on θi−1
0 , the distribution of θ̃0 would have been degenerate. Then, in the next

step of the Gibbs sampler, the distribution of θ0 would have been degenerate with respect to the left null space of Λθ. This

circle would have been fatal for the convergence of the Gibbs sampler.
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underlying factors can therefore be sampled via the Kalman filter and a backward recursion as described

in Carter and Kohn (1994). The Kalman filter is given by

Pt|t−1 = Pt−1|t−1 + Iqθ (18a)

Kt = Pt|t−1X
∗′
t (X∗t Pt|t−1X

∗′
t + Σt)

−1 (18b)

Pt|t = Pt|t−1 −KtX
∗
t Pt|t−1 (18c)

θ̃t|t = θ̃t−1|t−1 +Kt(y
∗
t −X∗t θ̃t−1|t−1) (18d)

where the notation x·|t is used to condition on the information set up to and including time t. The

initialization of the recursions follows from the normal prior distribution on the starting values of the

time-varying parameters θ0 ∼ N(θ̄, P̄θ). Via the implicit definition of the underlying factors it follows

that θ̃0|0 = Rθθ and P0|0 = RθP̄θR
′
θ where Rθ = (Λ

′

θΛθ)
−1Λ

′

θ. Draws for θ̃T can be obtained by drawing

from N(θ̃T |T , PT |T ), and successive draws for θ̃t can be obtained by drawing from N(θ̃t|t+1, Pt|t+1) with

θ̃t|t+1 = θ̃t|t + Pt|tP
−1
t+1|t(θ̃t+1 − θ̃t|t) (19a)

Pt|t+1 = Pt|t − Pt|tP−1t+1|tPt|t (19b)

Finally, premultiply the history of underlying factors θ̃τ by Λi−1θ to obtain a history of the regression

parameters’ time-varying part.

3.1.2 Draw a vector with the regression parameters’ time-invariant part Mθθ0

To draw a vector with the regression parameters’ time-invariant part Mθθ0 from the conditional dis-

tribution p(Mθθ0|θ̃τ,i,Λ
i−1
θ ,Στ,i−1; yτ , Xτ )—the underlying factors were just updated—, substitute the

implicit definition of the underlying factors in the measurement equation and reorganize. This gives

y∗t = X ′tMθθ0 + ut (20)

where y∗t = yt −X ′tΛθ θ̃t, and again dependence on i is suppressed for notational convenience. Stack the

regressands in y∗, the regressors in X∗, and the shocks in u∗. Define Σ∗ ≡ diag ({Σt}τt=1) and rewrite

the above as

y∗ = X∗Mθθ0 + u∗ u∗ ∼ N (0,Σ∗) (21)
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This equation can be interpreted as restricted linear regression, where y∗ is projected on X∗ under

the restriction that the regression parameters are in the left null space of Pθ (column space of Mθ). A

draw for the regression parameters, from now on denoted by ϑ instead of Mθθ0, should thus satisfy

0 = Pθϑ (22)

This formulation amounts to k equations with only qθ = rank(Pθ) underlying restrictions. The restricted

linear regression model can be written more compactly as

y∗ = X∗ϑ+ u∗ u∗ ∼ N (0,Σ∗) (23a)

0 = Rθϑ (23b)

where, again, Rθ = (Λ
′

θΛθ)
−1Λ

′

θ. Formulae for the Bayesian estimation of the restricted linear regression

model are developed in appendix A. Given the normal prior distribution on the starting values of the

time-varying parameters θ0 ∼ N(θ̄, P̄θ), the sampling distribution is normal

ϑ ∼ N (ϑµ, ϑσ) (24a)

ϑµ = (Ik − θσR′θ (RθθσR
′
θ)
−1
Rθ)θµ (24b)

ϑσ = (Ik − θσR′θ (RθθσR
′
θ)
−1
Rθ)θσ (24c)

where the mean ϑµ and variance ϑσ of the restricted sampling distribution are functions of the mean θµ

and variance θσ of the unrestricted (standard Bayesian regression) sampling distribution

θµ = (X∗′Σ∗−1X∗ + P̄−1θ )−1(X∗′Σ∗−1y∗ + P̄−1θ θ̄) (25a)

θσ = (X∗′Σ∗−1X∗ + P̄−1θ )−1 (25b)

3.1.3 Draw a history of regression parameters θτ

Finally, combine the draw with the regression parameters’ time-varying part and the draw with the regres-

sion parameters’ time-invariant part using θt ≡ Λθ θ̃t +Mθθ0, yielding a history of regression parameters

θτ . This completes the sampling from the conditional distribution p(θτ |Qi−1θ ,Στ,i−1; yτ , Xτ ), which—as

explained above—is, in fact, based on two separate Gibbs steps.
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3.2 Draw a reduced-rank covariance matrix Qθ

Recall that Qθ is the reduced-rank covariance matrix driving the time-varying parameters. In

this step, a reduced-rank covariance matrix Qθ is sampled from the conditional distribution

p(Qθ|θτ,i, ατ,i−1, Qi−1α , στ,i−1, Qi−1σ ; yτ , Xτ ). The conditional distribution of Qθ does depend only on

θτ,i−1, which implies that the conditional distribution simplifies to p(Qθ|θτ,i). Again, in the rest of the

discussion, dependence on i is suppressed for notational convenience. Sampling is based on the following

state equation

θt = θt−1 + νθ,t νθ,t ∼ N (0, Qθ) (26)

The complete history of residuals ντθ is observed conditional on θτ . Stack the residuals columnwise in a k

× τ matrix ν∗θ . The residual sum-of-squares matrix is Sθ = ν∗θν
∗′
θ . Note that rank (Sθ) = qθ implying that

Sθ is a reduced-rank matrix. The prior on the covariance matrix Qθ is assumed to be an inverse-Wishart

distribution with k × k scale matrix Q̄θ with singular rank
(
Q̄θ
)

= qθ and τθ,0 degrees of freedom

SIW
(
Q̄θ, τθ,0, k, qθ

)
(27)

The singular inverse-Wishart prior distribution is conjugate and the sampling distribution of Qθ is the

singular inverse-Wishart distribution with k × k scale matrix Sθ + Q̄θ with rank
(
Q̄θ
)

= qθ and τ + τθ,0

degrees of freedom

SIW
(
Sθ + Q̄θ, τ + τθ,0, k, qθ

)
(28)

The procedure to draw from a singular inverse-Wishart distribution is explained in appendix B.

3.3 Draw a history of off-diagonal elements ατ

Recall that αt is the r × 1 vector of elements below the main diagonal of the matrix At stacked by rows,

i.e. the off-diagonal elements. In this step, a history ατ is sampled from the conditional distribution

p(ατ |θτ,i, Qiθ, Qi−1α , στ,i−1, Qi−1σ ; yτ , Xτ ). The conditional distribution of ατ does not depend on Qiθ and

Qi−1σ , which implies that the conditional distribution simplifies to p(ατ |θτ,i, Qi−1α , στ,i−1; yτ , Xτ ). Again,

in the rest of the discussion, dependence on i is suppressed for notational convenience. Sampling is based
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on the following state-space representation

yt = X ′tθt +A−1t Ωtεt (29a)

α̃t = α̃t−1 + υα,t αt ≡ Λαα̃t +Mαα0 (29b)

where εt ∼ N (0, In) and υα,t ∼ N (0, Iqα). The above state-space representation is non-linear, yet a

linear state-space representation can be uncovered with several steps of algebra. Rewrite the measurement

equation as

Atŷt = Ωtεt (30)

where ŷt = yt − X ′tθt. Since At is a lower triangular matrix with ones on the main diagonal, it can be

decomposed as At = In + A∗t where A∗t is a lower triangular matrix with non-zero elements only below

the main diagonal (equal to the corresponding elements in At). The measurement equation can now be

written as

ŷt = −A∗t ŷt + Ωtεt (31)

Rewrite this expression using the vec operator and the rule A = BCD ⇒ vec (A) = (B ⊗D′) vec (C ′)

with B = In. The measurement equation then becomes

ŷt = − (In ⊗ ŷ′t) vec (A∗′t ) + Ωtεt (32)

The vector vec (A∗′t ) consists of many zero elements, namely the elements {(i− 1)n+ j}nj=i for i =

1, 2, ..., n. These elements can be deleted from vec (A∗′t ) leaving behind exactly αt. But then also the cor-

responding columns must be deleted from − (In ⊗ ŷ′t) defining Zt. The state space can now be represented

as

ŷt = Ztαt + Ωtεt (33a)

α̃t = α̃t−1 + υα,t αt ≡ Λαα̃t +Mαα0 (33b)

This state-space representation is linear and Gaussian. Note that Zt is not predetermined at time t,

which suggests that conditional distributions cannot be computed using the standard Kalman filter. Yet,

conditional distributions can still be computed as usual using the standard Kalman filter, because of the

special nature of Zt, i.e. the ith element of ŷt does not depend on the jth element of ŷt for i = 1, 2, ..., n
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and j > i.8 A history of off-diagonal elements ατ can thus be sampled via the same procedure as outlined

in section 3.1.

3.4 Draw a reduced-rank covariance matrix Qα

Recall that Qα is the reduced-rank covariance matrix driving the off-diagonal elements. The procedure

to draw a reduced-rank covariance matrix Qα from p(Qα|θτ,i, Qiθ, ατ,i, στ,i−1, Qi−1σ ; yτ , Xτ ) = p(Qα|ατ,i)

is identical to the procedure as outlined in section 3.2.

3.5 Draw a history of diagonal elements στ

Recall that σt is the n × 1 vector of diagonal elements of the matrix Ωt, i.e. the diagonal elements. In

this step, a history στ is sampled from the conditional distribution p(στ |θτ,i, Qiθ, ατ,i, Qiα, Qi−1σ ; yτ , Xτ ).

The conditional distribution of στ does not depend on Qiθ and Qiα, which implies that the conditional

distribution simplifies to p(στ |θτ,i, ατ,i, Qi−1σ ; yτ , Xτ ). Again, in the rest of the discussion, dependence on

i is suppressed for notational convenience. Sampling is based on the following state-space representation

yt = X ′tθt +A−1t Ωtεt (34a)

σ̃t = σ̃t−1 + υσ,t log (σt) ≡ Λσσ̃t +Mσ log (σ0) (34b)

where εt ∼ N (0, In) and υσ,t ∼ N (0, Iqσ ). The above state-space representation is non-linear, yet an

approximate linear Gaussian state-space representation can be uncovered with several steps of algebra.

Rewrite the measurement equation as

y∗t = Ωtεt (35)

where y∗t = At (yt −X ′tθt). The measurement equation can be converted into a linear measurement

equation by squaring and taking logs. The state space can now be represented as

y∗∗t = 2 log (σt) + log
(
ε2t
)

(36a)

σ̃t = σ̃t−1 + υσ,t log (σt) ≡ Λσσ̃t +Mσ log (σ0) (36b)

8Primiceri (2005)—with the same measurement equation—argues that conditional distributions can be computed by

running the Kalman filter equation by equation, but not by running the standard Kalman filter. This is not true, i.e.

conditional distributions can still be computed as usual using the standard Kalman filter. This can be checked numerically

by running both recursions and observing that the generated numbers are the same.
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where y∗∗t = log
(
y∗2t + c̄

)
.9 This state-space representation is linear but non-Gaussian.

All the shocks in the measurement equation are distributed according to independent logχ2(1) dis-

tributions. The logχ2(1) distribution can be approximated by a mixture of seven normal distributions

as proposed by Kim, Shephard, and Chib (1998) and as implemented by Primiceri (2005). The mixture

probabilities mp
j , the means mµ

j , and the variances mv
j are given in table 4. These numbers are chosen

in order to match a number of moments of the logχ2(1) distribution (after accounting for the offset as

indicated in the note under the table). The hierarchical nature of the mixture is exploited to sample

a history of diagonal elements στ in two steps. The two steps—actually two separate Gibbs steps—are

discussed in turn.10

First, let S be the matrix indicating which of the seven normal distributions is used for which shock.

All the elements of the matrix S have a value from {1, 2, ..., 7}. The dimension of S is n by τ since there are

n shocks in the measurement equation and there are τ time periods. Conditional on a history of diagonal

elements στ , the shocks in the measurement equations are observed. The shocks are independent across

equations and time periods. All the elements of the matrix S can therefore be sampled independently.

The conditional distribution of an element Si,t is discrete with point mass at {1, 2, ..., 7}. The probability

mass function is proportional to

Pr
(
Si,t = j|y∗∗i,t, σi−1,t

)
∝ fN

(
y∗∗i,t − 2 log (σi−1,t) |mµ

j − 1.2704,mv
j

)
mp
j j = 1, 2, ..., 7 (37)

where the mixture probabilities mp
j are updated with the (Gaussian) likelihoods of observing a particular

realization of the shock log
(
ε2i,t
)

= y∗∗i,t − 2 log (σi−1,t). The normalizing constant is the reciprocal of the

sum of the right-hand sides over j = 1, 2, ..., 7.

Second, conditional on a matrix Si, the state-space representation is linear and Gaussian, and a

history of diagonal elements στ can now simply be sampled via the same procedure as outlined in section

3.1.

9The procedure is numerically more robust by adding an offset constant c̄ after taking squares and before taking logs.

The offset constant was introduced into the stochastic volatility literature by Fuller (1996) with the intention to avoid

taking logs of very small numbers, at the expense of creating a small upward bias. In practice, an offset constant of 0.001

works alright for standard macroeconomic series such as inflation, nominal interest, and unemployment when scaled as

percentages.

10Del Negro and Primiceri (2013) have pointed out that the ordering of the two Gibbs steps is important and, in

particular, that the ordering that was used by Primiceri (2005) is incorrect. The ordering presented in this paper is the

correct one.
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Component (j) Probability (mp
j ) Mean (mµ

j ) Variance (mv
j )

1 0.00730 −10.12999 5.79596

2 0.10556 −3.97281 2.61369

3 0.00002 −8.56686 5.17950

4 0.04395 2.77786 0.16735

5 0.34001 0.61942 0.64009

6 0.24566 1.79518 0.34023

7 0.25750 −1.08819 1.26261

Table 4: Mixture of seven normals, from Kim, Shephard, and Chib (1998)

Note: The above numbers imply a mean of zero and must still be offset by adding the mean of the logχ2(1)

distribution, which is −1.2704.

3.6 Draw a reduced-rank covariance matrix Qσ

Recall that Qσ is the reduced-rank covariance matrix driving the diagonal elements. The procedure

to draw a reduced-rank covariance matrix Qσ from p(Qσ|θτ,i, Qiθ, ατ,i, Qiα, στ,i; yτ , Xτ ) = p(Qσ|στ,i) is

identical to the procedure as outlined in section 3.2.

4 Number of factors needed in a small macro model

The techniques just described are applied to the estimation of a small macro model. In particular, this

section first estimates the full-rank model on the same data as used in Cogley and Sargent (2001) and

then estimates the reduced-rank model for the purpose of analyzing how many factors are actually needed

to capture the time variation in the full-rank model. The main finding is that the reduced-rank model

with only a few factors is enough to capture the bulk of time variation that is present in the full-rank

model, which includes the full set of 21 factors. This suggests that the model of Cogley and Sargent

(2001) could have been parameterized more efficiently.

4.1 Model description

The model of Cogley and Sargent (2001) is designed for describing time variation in the inflation-

unemployment dynamics in the US after World War II, and includes a short-term interest rate, un-
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employment, and inflation. There are two lags included in the VAR. The sample period is from 1948Q1

up to and including 2000Q4. Details on the application and the data can be found in Cogley and Sargent

(2001). Here, we only discuss details on the model setup.

The model setup used here is different from Cogley and Sargent (2001) in two dimensions. First, they

include a covariance term between the VAR forecast errors (ut) and the parameter innovations (νθ,t).

Second, they use a prior that rules out trajectories of time-varying parameters (θτ ) that imply explosive

dynamics. Both features are left out in this paper since they are non-standard in the literature.11 There

is also a difference between the model setup used here and the full-rank model as described in section

2.1, i.e. the stochastic volatility feature is left out, as in Cogley and Sargent (2001).12

4.2 Prior

The strategy for choosing the prior is similar to Cogley and Sargent (2001)—similar but not identical

since the model setup used here is slightly different and besides, additional steps have to be taken for the

reduced-rank model. The period from 1948Q1 up to and including 1958Q4 is used as training sample,

which is a period of eleven years. The first quarter is used to construct the inflation series and the next

two quarters are used to initialize the VAR with two lags. In the end, 41 quarters are used to estimate a

time-invariant VAR from which the prior is constructed. There are 34 degrees of freedom in the training

sample since there are seven parameters per equation in the trivariate VAR with two lags and constant.

The various prior components are discussed in turn.

First, the marginal prior on the covariance matrix of the VAR forecast errors (Σ) is assumed to be an

inverse-Wishart distribution with n × n scale matrix R̄ and n+ 1 degrees of freedom. The scale matrix

R̄ is chosen to be equal to n + 1 times the time-invariant estimate of the covariance matrix of the VAR

forecast errors in the training sample. Note that the multiplication with the degrees of freedom is because

the scale matrix has a sum-of-squares interpretation in the inverse-Wishart distribution.

Second, the marginal prior on the starting values of the time-varying parameters (θ0) is assumed to

11Apart from the differences regarding the model setup, Cogley and Sargent (2001) use filtered estimates for their

reporting rather than smoothed estimates, which is the standard in the literature. This was met with criticism from Sims

(2001), who argued that filtered estimates also contain a component of variation that is learning rather than actual time

variation in the behavior of the economy. In fact, by using filtered estimates rather than smoothed estimates, Cogley and

Sargent (2001) may have overreported the amount of actual time variation. In later work, Cogley and Sargent (2005) have

changed their reporting to smoothed estimates.

12The Bayesian estimation procedure for the model setup without stochastic volatility is explained in footnote 5.
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be a normal distribution with mean θ̄ and covariance matrix P̄θ. The mean θ̄ is chosen to be equal to

the time-invariant estimate of the vector of VAR parameters in the training sample and the covariance

matrix P̄θ is chosen to be equal to four times the asymptotic covariance matrix of the time-invariant

estimate of the vector of VAR parameters in the training sample.

Finally, the marginal prior on the covariance matrix of the shocks driving the time-varying parameters

(Qθ) needs a bit more explanation since it depends on the chosen rank. For the full-rank model, the prior

is identical to the prior of Cogley and Sargent (2001). The prior is assumed to be an inverse-Wishart

distribution with k × k scale matrix Q̄full
θ —with full rank—and τ fullθ,0 degrees of freedom. The scale matrix

Q̄full
θ is chosen to be proportional to the asymptotic covariance matrix of the time-invariant estimate of

the vector of VAR parameters in the training sample, and the constant-of-proportionality is chosen to be

equal to 1E-4 multiplied with the degrees of freedom τ fullθ,0 . The degrees of freedom τ fullθ,0 are chosen to be

equal to the degrees of freedom in the training sample, which is 34.

For the reduced-rank model, the prior is likewise assumed to be an inverse-Wishart distribution with

k × k scale matrix Q̄red
θ but now with singular rank(Q̄red

θ ) = qθ. The singular scale matrix Q̄red
θ is

constructed from the non-singular scale matrix Q̄full
θ by selecting the qθ most important eigenvalues, i.e.

by replacing the k − qθ smallest eigenvalues by zeros in the eigenvalue decomposition. The prior for the

reduced-rank model is supposed to imply the same amount of time variation as the prior for the full-rank

model. This requires an upscaling since the sum of the eigenvalues—which measures the amount of time

variation—has decreased by the rank reduction. This is exactly offset by multiplying the scale matrix

with the sum of all the eigenvalues divided by the sum of the qθ largest eigenvalues. Moreover, the degrees

of freedom are chosen to be equal to τ redθ,0 = τ fullθ,0 − k + qθ in order to match exactly the expected sum of

the eigenvalues in the reduced-rank model with the full-rank model.13

4.3 Results

We want to determine how many factors are needed in the (typical) small macro model given above. For

this purpose, we have generated results for all possible ranks in the reduced-rank model as well as for

the full-rank model. First, we present results for the full-rank model and show how structured the time

variation is, which suggests that the reduced-rank model is a useful new tool for studying macroeconomic

13Note that the reduced-rank scale matrix Q̄red
θ is constructed from the full-rank scale matrix Q̄full

θ , which is based on

the degrees of freedom in the full-rank model τ full
θ,0 . The way in which the prior for the reduced-rank model is constructed

implies the same amount of time variation as the prior for the full-rank model.
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questions. Next, we present results for the reduced-rank model and show that the reduced-rank model

with only a few factors is indeed enough to capture the bulk of time variation that is present in the

full-rank model.

The full-rank model is estimated using four Markov chains of 100, 000 draws each of which every

fourth draw is kept for posterior inference and the first 50% is thrown away as burn-in period. For our

application, this is more than enough for the Markov chains to converge to the posterior distribution,

which we have confirmed by comparing the results of various Markov chains that have started from

different initial conditions.

The posterior medians of the trajectories of time-varying parameters are presented in figure 1, together

with the posterior distribution of the trace of the covariance matrix driving the time-varying parameters.

It is evident from the figure that most of the time variation is concentrated in particular elements of

the vector of time-varying parameters. Figure 2 zooms in on the selection of parameters that display

most of the time variation. The comovement between the various trajectories stands out in the figure,

which suggests that the time variation is highly structured. The comovement is especially strong between

parameters with the same regressand and the same regressor but with different lag.

The principal components of the posterior median of the covariance matrix driving the time-varying

parameters confirm that the time variation is indeed highly structured—the contributions of the seven

most important principal components (out of 21) are presented in table 5. The first principal component

already accounts for about 70% of the variance of the shocks driving the time-varying parameters. The

first two principal components account together for more than 90% and the first three principal compo-

nents account together for even more than 95%. These numbers suggest that the reduced-rank model

is a useful new tool for studying macroeconomic questions. Besides, Cogley and Sargent (2005) as well

as Primiceri (2005) have already suggested that a formal treatment of cross-equation restrictions in the

time variation would be a priority for future research. The reduced-rank model developed in this paper

is, to the best of our knowledge, the first tool in this direction.
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Principal component Variance Cumulative percentage of total variance

1 0.00168 70.2%

2 0.00050 91.0%

3 0.00011 95.8%

4 0.00003 97.0%

5 0.00003 98.2%

6 0.00002 98.9%

7 0.00001 99.2%

Table 5: Principal components of the covariance matrix driving the time-varying parameters

We have estimated the reduced-rank model for all possible ranks (using the same settings regarding

the Markov chains as for the full-rank model). As mentioned above, the prior for the reduced-rank model

is supposed to imply the same amount of time variation as the prior for the full-rank model, no matter

the rank. The results are first compared on the basis of the key object for determining the amount of

time variation in the parameters, which is the covariance matrix of the shocks driving the time-varying

parameters.14 The total amount of time variation can be measured by the trace of this matrix—this is the

sum of the variances driving the time-varying parameters—and the contribution of the most important

driving force can be measured by the largest eigenvalue. The posterior medians of these two statistics are

presented in table 6 for the reduced-rank model for all possible ranks as well as for the full-rank model.

We did not only generate results for the VAR with two lags but also for a version with only one lag.15

There are twelve parameters in the VAR with one lag, yet it is evident from table 6 that we need much

14The comparison based on the covariance matrix of the shocks driving the time-varying parameters can nicely be

represented in one single table with the results for all possible ranks, which is not generally possible for comparisons based

on other objects. Below we also present several figures in which we compare the results for the full-rank model with the

results for the reduced-rank model for some particular ranks.

15The prior for the version with one lag is constructed in the same way as the prior for the version with two lags. Again,

the degrees of freedom are chosen to be equal to the degrees of freedom in the training sample, which is now 38 since there

are less parameters to be estimated. Moreover, the constant-of-proportionality is now based on 1E-3 rather than 1E-4, which

more or less offsets the fact that the parameters are more precisely estimated in the version with one lag. Furthermore, the

results for the version with one lag are generated with shorter Markov chains than the results for the version with two lags,

as indicated below table 6.
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less underlying factors to capture the bulk of time variation that is present in the full-rank model. With

only five factors, the trace and largest eigenvalue are already the same as in the full-rank model (for the

reported decimals). And with less than five factors, the differences are actually quite small—and besides,

note that the deviations from the full-rank model are not necessarily a bad thing. There is no clear

reason why we should belief that the full-rank numbers are the true numbers. In fact, the reduced-rank

numbers with only a few factors could be more accurate as these numbers are less prone to overfitting.

It would make sense to only include the most important and robust driving forces for the time-varying

parameters and to leave out the other ones.

Apart from the argument about overfitting, there are also other arguments in favor of including only a

few factors. The first one is about the computing time needed for the Bayesian estimation. The computing

time is about one third less for the reduced-rank model with a few factors than for the full-rank model.

For the VAR with two lags, the gain in terms of computing speed is even a factor four. In general, the

larger the model, the larger the potential gain in computing speed. The second argument is also related

to the computing time needed for the Bayesian estimation, yet in an indirect manner. Since there are

less parameters and underlying trajectories to be estimated in the reduced-rank model, (much) shorter

Markov chains are sufficient to achieve convergence.16 This makes the reduced-rank model much more

practical than the full-rank model, especially when one needs to include more variables and/or more lags.

A similar picture emerges for the main version with two lags. There are 21 parameters in this case,

yet again it is evident from table 6 that we need much less underlying factors to capture the bulk of time

variation that is present in the full-rank model. With only three factors, the trace and largest eigenvalue

are already the same as in the full-rank model (for the reported decimals), which is even less than in

the version with only one lag. This is good news as this means that including an additional lag in the

VAR does not require many extra factors, if any. The results confirm—without any doubt—the principal

component analysis that was presented in table 5 for the full-rank model. Again, this suggests that the

model of Cogley and Sargent (2001) could have been parameterized more efficiently.

Of course, the comparison should not only rely on the covariance matrix driving the time-varying

parameters, since other objects might give a different picture. However, this turns out not to be the case.

In figure 3, we present, for various ranks, the posterior medians of the trajectories of the selection of

parameters that display most of the time variation. For the parameters in the inflation equation, three

factors are indeed enough to capture almost all of the time variation. But for the parameters in the

16This is not exploited for generating the table. The gains in computing speed are thus potentially much larger.
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unemployment equation, three factors turn out not to be sufficient to capture the time variation present

in the full-rank model. Yet, with four factors the pattern is already quite close, with six factors also the

magnitude is getting closer, and with twelve factors the trajectories are almost indistinguishable.

Furthermore, only a few factors are needed to capture most of the time variation in the spectrum of

inflation. Figures 4 and 5 present the evolution of the spectrum of inflation for the full-rank model and

the reduced-rank model with three factors, respectively. With only three factors, the evolution is already

quite close to the full-rank model, not only in terms of pattern but also in terms of magnitude. The

remaining deviation in terms of magnitude disappears slowly when more and more factors are added to

the reduced-rank model. Yet, note again that the deviations from the full-rank model are not necessarily

a bad thing, as the reduced-rank results are less prone to overfitting.

5 Concluding remarks

Altogether, the main finding is that the time variation present in the full-rank model is highly structured

and that the reduced-rank model with only a few factors is enough to capture the bulk of time variation.

This is very good news since this allows us to use the new tool developed in this paper, which in comparison

with the full-rank model (i) suffers much less from overparameterization, (ii) achieves convergence with

much shorter Markov chains, and (iii) runs much faster on the computer. Moreover, the results make us

feel confident that the reduced-rank model is also well-suited for larger models including more variables

and/or more lags. If the time variation had, on the contrary, not been highly structured, it would have

been difficult to estimate larger models as the number of parameters and underlying trajectories to be

estimated would quickly have become large. But given that we can confine on the number of factors, we

can potentially estimate larger models since the number of parameters and underlying trajectories to be

estimated are kept under control.
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p = 1 p = 2

qθ tr (Qθ) max (eig (Qθ)) comp. time tr (Qθ) max (eig (Qθ)) comp. time

1 0.0031 0.0031 361s 0.0021 0.0021 808s

2 0.0029 0.0026 365s 0.0022 0.0018 800s

3 0.0027 0.0024 366s 0.0025 0.0019 806s

4 0.0031 0.0028 376s 0.0025 0.0019 834s

5 0.0032 0.0029 387s 0.0025 0.0019 846s

6 0.0032 0.0029 403s 0.0025 0.0019 883s

7 0.0032 0.0029 423s 0.0025 0.0019 936s

8 0.0032 0.0029 451s 0.0025 0.0019 964s

9 0.0032 0.0029 481s 0.0025 0.0019 1079s

10 0.0032 0.0029 516s 0.0025 0.0019 1163s

11 0.0032 0.0029 569s 0.0025 0.0019 1276s

12 0.0032 0.0029 623s 0.0025 0.0018 1377s

13 0.0025 0.0018 1462s

14 0.0025 0.0018 1720s

15 0.0025 0.0018 1893s

16 0.0025 0.0018 1905s

17 0.0025 0.0018 2391s

18 0.0025 0.0019 2629s

19 0.0025 0.0019 2939s

20 0.0025 0.0019 3254s

21 0.0025 0.0019 3590s

full 0.0032 0.0029 542s 0.0025 0.0019 3323s

Table 6: The posterior median of the trace and largest eigenvalue of the covariance matrix

driving the time-varying parameters (Qθ) for various number of factors (qθ), for the version

with one lags and the version with two lags—how many factors are needed?

Note: The results for the version with one lag are based on four Markov chains of 50,000 draws each of which

every second draw is kept for posterior inference and the results for the version with two lags are based on four

Markov chains of 100,000 draws each of which every fourth draw is kept for posterior inference. Moreover, 50%

is thrown away as burn-in period. The results are generated with an Intel(R) Core(TM) i7-860 processor running

(slightly overclocked) at 3.5GHz and with 12GB of internal memory. The Matlab version used is R2008b 64-bit

with Parallel Computing Toolbox and the operating system used is Windows 7 64-bit.
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A Bayesian estimation of restricted linear regression model

In this appendix, the sampling distribution of the restricted linear regression model is developed. To

simplify the discussion, the least-squares estimator of the univariate restricted linear regression model is

derived as preliminary result.

Least-squares estimator restricted univariate linear regression model

Consider the univariate linear regression model

y = Xθ + u (38)

where y is the n × 1 vector of regressands, X is the n × k matrix of regressors, θ is the k × 1 vector

of parameters, and u is the n × 1 vector of shocks. Shocks are distributed according to the normal

distribution u ∼ N
(
0, σ2In

)
. The ordinary least-squares estimator for θ is given by

θ̂ols = (X ′X)
−1
X ′y (39)

Now consider the linear restriction

0 = Rθ (40)

where R is a q × k matrix with rank (R) = q ≤ k. The restricted least-squares estimator for θ can be

derived by pooling the linear regression model together with the linear restriction

y = Xθ + u (41a)

0 = Rθ + υ (41b)

Here, υ is a q × 1 vector of shocks to the linear restriction. These shocks are distributed according to

the normal distribution υ ∼ N
(

0, σ
2

λ Iq

)
. Of course, υ should be equal to the zero vector. The idea is

to use generalized least-squares on the pooled regression model for given λ and then let λ → ∞. The

generalized least-squares estimator for θ for given λ is given by

θ̂gls (λ) = (X ′X + λR′R)
−1
X ′y (42)

Before letting λ→∞, rewrite this expression using the matrix inversion lemma.
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Lemma 1 matrix inversion lemma. (A+BCD)
−1

= A−1 −A−1B
(
C−1 +DA−1B

)−1
DA−1.17

Choose A = X ′X, B = R′, C = λIq, and D = R. Applying the matrix inversion lemma results in

θ̂gls (λ) =

(
(X ′X)

−1 − (X ′X)
−1
R′
(
Iqλ
−1 +R (X ′X)

−1
R′
)−1

R (X ′X)
−1
)
X ′y (43)

The generalized least-squares estimator can be expressed in terms of the ordinary least-squares estimator

θ̂ (λ) =

(
Ik − (X ′X)

−1
R′
(
Iqλ
−1 +R (X ′X)

−1
R′
)−1

R

)
θ̂ols (44)

Now let λ→∞. The term Iqλ
−1 simply drops out, because the matrix R (X ′X)

−1
R′ has full rank. This

results in the well-known restricted least-squares estimator

θ̂res =

(
Ik − (X ′X)

−1
R′
(
R (X ′X)

−1
R′
)−1

R

)
θ̂ols (45)

Sampling distribution restricted linear regression model

Consider the multivariate linear regression model

y = Xθ + u (46)

where y is the nT × 1 vector of regressands, X is the nT × k matrix of regressors, θ is the k × 1 vector

of parameters, and u is the nT × 1 vector of shocks. Shocks are distributed according to the normal

distribution u ∼ N (0,Ω) with Ω = IT ⊗ Σ. Consider the normal conjugate prior distribution

θ ∼ N
(
θ̄, P̄θ

)
(47)

where θ̄ is the k × 1 vector with prior means and P̄θ is the k × k matrix with prior covariances. The

17The matrix inversion lemma, also known as Woodbury formula, can be proved directly by checking that A + BCD

times the right-hand side gives the identity matrix.
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posterior distribution of θ is given by

θ ∼ N (θµ, θσ) (48a)

θµ = (X ′Ω−1X + P̄−1θ )−1(X ′Ω−1y + P̄−1θ θ̄) (48b)

θσ = (X ′Ω−1X + P̄−1θ )−1 (48c)

Now consider the linear restriction

0 = Rθ (49)

where R is a q×k matrix with rank (R) = q ≤ k. The posterior distribution of θ can be derived by pooling

the multivariate linear regression model together with the prior information and the linear restriction

y = Xθ + u (50a)

θ̄ = Ikθ + ζ (50b)

0 = Rθ + υ (50c)

Here, υ is a q × 1 vector of shocks to the linear restriction. These shocks are distributed according to

the normal distribution υ ∼ N
(
0, 1

λIq
)
. Of course, υ should be equal to the zero vector. The idea is to

derive the posterior distribution of θ for given λ and then let λ→∞. The posterior distribution of θ for

given λ is given by

θ (λ) ∼ N (θµ (λ) , θσ (λ)) (51a)

θµ (λ) =
(
X ′Ω−1X + P̄−1θ + λR′R

)−1
(X ′Ω−1y + P̄−1θ θ̄) (51b)

θσ (λ) =
(
X ′Ω−1X + P̄−1θ + λR′R

)−1
(51c)

Before letting λ→∞, rewrite θσ (λ) using the matrix inversion lemma given above. In particular, choose

A = X ′Ω−1X + P̄−1θ , B = R′, C = λIq, and D = R. Applying the matrix inversion lemma results in

θσ (λ) =

(
X ′Ω−1X + P̄−1θ

)−1−(
X ′Ω−1X + P̄−1θ

)−1
R′
(
Iqλ
−1 +R

(
X ′Ω−1X + P̄−1θ

)−1
R′
)−1

R
(
X ′Ω−1X + P̄−1θ

)−1 (52)

The posterior distribution of θ for given λ can be expressed in terms of the unrestricted (standard Bayesian
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regression) posterior distribution of θ

θ (λ) ∼ N (θµ (λ) , θσ (λ)) (53a)

θµ (λ) =
(
θσ − θσR′

(
Iqλ
−1 +RθσR

′)−1Rθσ) (X ′Ω−1y + P̄−1θ θ̄)

=
(
Ik − θσR′

(
Iqλ
−1 +RθσR

′)−1R) θµ (53b)

θσ (λ) =
(
Ik − θσR′

(
Iqλ
−1 +RθσR

′)−1R) θσ (53c)

Now let λ→∞. The term Iqλ
−1 simply drops out, because the matrix RθσR

′ has full rank. This results

in the posterior distribution of θ

θres ∼ N (θres,µ, θres,σ) (54a)

θres,µ =
(
Ik − θσR′ (RθσR′)

−1
R
)
θµ (54b)

θres,σ =
(
Ik − θσR′ (RθσR′)

−1
R
)
θσ (54c)

B Procedure to draw from singular inverse-Wishart distribu-

tion

The procedure to draw from a singular inverse-Wishart distribution is explained in this appendix. Con-

sider an m × m scale matrix S with rank (S) = q and d degrees of freedom.

1. Draw a m × q matrix X from the standard normal distribution. QR factorize X = QR where Q is

an orthogonal matrix and R is an upper triangular matrix.

2. Eigenvalue decompose S = (V D) (V D)
′

where D is a diagonal matrix with the square roots of the

q non-zero eigenvalues of S on the diagonal and V is a matrix with the corresponding eigenvectors.

3. Now
(
V R−1

) (
V R−1

)′
is a draw from the singular inverse-Wishart distribution.
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Figure 1: Posterior results for the full-rank model

Note: In the legends, i refers to interest, u refers to unemployment, p refers to inflation, and c refers to constant.
The first letter in the abbreviations refers to the regressand, the second letter refers to the regressor, and a 2
indicates whether it concerns the second lag of the regressor.
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Figure 2: Median trajectories for selection of time-varying parameters in full-rank model

Note: In the titles, i refers to interest, u refers to unemployment, p refers to inflation, and c refers to constant.
The first letter in the abbreviations refers to the regressand, the second letter refers to the regressor, and a 2
indicates whether it concerns the second lag of the regressor.
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Figure 3: Median trajectories for selection of time-varying parameters for various ranks

Note: In the titles, i refers to interest, u refers to unemployment, p refers to inflation, and c refers to constant.
The first letter in the abbreviations refers to the regressand, the second letter refers to the regressor, and a 2
indicates whether it concerns the second lag of the regressor.
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Figure 4: Spectrum of inflation in the full-rank model
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Figure 5: Spectrum of inflation in the reduced-rank model with three factors
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