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Abstract

We estimate measures of macroeconomic uncertainty and compute the effects of un-

certainty shocks by means of a new simple procedure based on standard VARs. Un-

certainty and its effects are estimated using a single model so to ensure internal con-

sistency. Under suitable assumptions, our procedure is equivalent to using the square

of the VAR forecast error as an external instrument in a proxy SVAR. Our procedure

allows to add orthogonality constraints to the standard proxy SVAR identification

scheme. We apply our method to a US data set; we find that macroeconomic uncer-

tainty is responsible of a large fraction of business-cycle fluctuations while financial

uncertainty plays a modest role.

JEL classification: C32, E32.

Keywords: Uncertainty, Uncertainty shocks, VAR models, Business Cycle, Stochastic volatility

I00, and the Barcelona Graduate School Research Network.
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1 Introduction

Uncertainty shocks have been in recent years at the heart of the business cycle debate. Since

Bloom (2009), a vast literature studying the link between uncertainty and economic fluc-

tuations has been growing. In particular, the focus has been paid in studying the effects

on macroeconomic and financial variables of exogenous changes in uncertainty. 1 There

are several theoretical channel through which increases in uncertainty can depress economic

activity. A notable one is the real option channel. Higher uncertainty induces agents to

postpone private expenditures and investment, thus producing a downturn in economic ac-

tivity.

Two main econometric approaches have been used in the literature to measure the effects

of uncertainty shocks. On the one side, Structural Vector Autoregressive (SVAR) models.

Within this approach, the practice is to include in a VAR a measure of uncertainty, derived

outside the model, as an additional endogenous variable and to identify the uncertainty

shock in a standard way by means of some restrictions. Since Bloom (2009), it has become

quite common to use a recursive ordering to identify the uncertainty shock, but, in principle,

1A partial list of contributions includes few contributions are Fernandez-Villaverde et al. (2011), Bach-

mann et al. (2013), Bekaert et al. (2013), Caggiano et al. (2014), Rossi and Sekhposyan (2015), Jurado

et al. (2015), Scotti (2016), Baker et al. (2016), Caldara et al. (2016), Leduc and Liu (2016), Basu and

Bundik (2017), Fajgelbaum et al. (2017), Piffer and Podstawsky (2017), Nakamura et al. (2017), Bloom

et al. (2018), Shin and Zhong (2018), Jo and Sekkel (2019), Ludvigson et al. (2019), Angelini and Fanelli

(2019), Dew-Baker and Giglio (2020). For more references, see the survey articles in Cascaldi-Garcia et al.

(2020) and Fernandez-Villaverde and Guerron-Quintana (2020)
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other restrictions can be used.2

On the other one side, researchers have relied on Stochastic Volatility VAR (SV-VAR)

models, see for instance Carriero et al. (2018a, 2018b). In these models, an explicit dynamic

process for uncertainty is specified, and uncertainty and its effects on economic variables

are jointly estimated. The advantage of this second approach relative to the first, is that

the estimates of uncertainty and its effects are internally consistent since they are obtained

within a single framework. On the contrary, the first approach opens the door to a potential

problem of inconsistency between the estimates of uncertainty and its effects. The cost of

using SV-VAR is represented by a more complicated estimation procedure.

In this paper, we propose a new econometric procedure to estimate uncertainty and its

effect based on a single standard homoschedastic VAR model. Throughout the paper, we fo-

cus on the definition of uncertainty adopted in JLN: uncertainty is the forecast error variance

or, equivalently, the conditional expectation of the forecast error squared. The procedure

unfolds in four steps: (i) estimating a VAR and the associated reduced form impulse response

functions; (ii) computing the implied squared forecast error for the variable and horizon of

interest; (iii) regressing the squared forecast error onto the current and past values of the

2Several papers have proposed proxies of uncertainty which are not model-based but exploit different

sources of information, such as stock market volatility (Bloom, 2009, Bekaert et al., 2013, Caldara et al.,

2016), forecast disagreement in survey data (Bachmann et al., 2013), the frequency of selected keywords in

journal articles (Baker et al., 2016), the unconditional distribution of forecast errors (Jo and Sekkel, 2019).

Other papers (e.g. Jurado et al. 2015, JLN henceforth, Ludvigson et al. 2019, LMN henceforth) start from

a rigorous statistical definition of uncertainty as the conditional volatility of a forecast error and specify and

estimate a stochastic volatility model by using sophisticated time series techniques.
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VAR variables, the fitted values represent an estimate of uncertainty; (iv) using the coeffi-

cients of the regression in (ii) to combine the VAR impulse response functions obtained in

(i), together with the desired restrictions to identify the uncertainty shock. This procedure,

similarly to SV-VAR models, ensures consistency between the estimate of uncertainty and

the estimate of effects of uncertainty shocks. Our method can be considered as an alternative

to SV-VAR with advantages and disadvantages. The disadvantage advantage is that is much

simpler.

Under suitable conditions, steps (iii-iv) are equivalent to using the squared forecast error

as the instrument within a proxy SVAR (Mertens and Ravn (2013), Stock and Watson

(2018), Plagborg-Møller and Wolf (forthcoming)). Hence, our method can be thought of

as a proxy SVAR, where the proxy, instead of being an external variable, is a function of

the estimated forecast error. The relevance condition of the instrument is clearly satisfied:

the squared forecast error is correlated with the uncertainty shock by the very definition of

uncertainty. However, in order for the exogeneity condition to hold, we need the additional

assumption that uncertainty (or, more precisely, the squared prediction error) is not affected

on impact by other structural shocks. This assumption is questionable.3 To relax it, we

impose orthogonality constraints with respect to other structural shocks within the standard

proxy SVAR procedure. This represents a methodological innovation in the literature on

Proxy SVAR where the effects are typically estimated without relying on any other additional

restriction.

3Notice however that most papers in the uncertainty literature make precisely the same assumption, by

adopting a Cholesky identification scheme with the external uncertainty measure ordered first.
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Our method has a few noticeable advantages. First, it is extremely simple to implement.

Second, there is a clear and rigorous definition of uncertainty for each variable and horizon in

the VAR. Third, it avoids the problematic choice of an external uncertainty measure. Fourth,

internal consistency between the estimate of uncertainty and its effects is ensured, as in SV-

VAR, since they are both obtained with a single model. Fourth, making assumptions on the

form of the conditional distribution of the shocks is not necessary.

We apply our procedure to a US macroeconomic data set and find that (a) our esti-

mates of uncertainty are reliable, in that (a.1) the squared prediction errors are significantly

predicted by a linear combination of the VAR variables, with sizable explained variances;

(a.2) uncertainty estimates obtained with our linear approximation are strongly correlated

with comparable estimates in the literature (notably, JLN and LMN measures); (a.3) price

uncertainty and interest-rate uncertainty are related to recognizable economic events. As

for the impulse response functions and variance decomposition, we find that (b) exogenous

macroeconomic uncertainty shocks explain a large fraction of business-cycle fluctuations

while financial uncertainty plays a modest role; (c) results are robust with respect to the

choice of the uncertainty horizon and variable, the number of lags and the choice of the

variables included in the VAR.

The remainder of the paper is organized as follows. Section 2 discusses the econometric

approach. Section 3 presents the results. Section 4 concludes.

4



2 Econometric approach

This section discusses the econometric approach to estimate uncertainty and identify the

effects of the uncertainty shock in a simple VAR model.

2.1 The VAR model

Our starting point is the assumption that the macroeconomic variables in the n-dimensional

vector yt follow the VAR model4

A(L)yt = µ+ εt, (1)

where εt is orthogonal to yt−k, k > 0, and A(L) = I −
∑p

k=1AkL
k is a matrix of degree-p

polynomials in the lag operator L. By inverting the VAR, we get the VMA representation

yt = δ +B(L)εt, (2)

where B(L) =
∑∞

k=0 BkL
k = A(L)−1, with B0 = In, is the matrix of reduced form impulse

response functions and δ = B(1)µ. The implied h-step ahead prediction error is

et+h =
h−1∑
k=0

Bkεt+h−k. (3)

2.2 VAR-based uncertainty

Following JLN, uncertainty is defined as the conditional volatility of the forecast error. We

focus on a single. For variable i and horizon h we uncertainty is

U i
ht = Ete

2
i,t+h. (4)

4Notice that our procedure could be easily extended to Factor Models or FAVARs.

5



The conditional expectation cannot be computed without introducing additional assump-

tions about the conditional distribution of the VAR residuals, for instance a stochastic

volatility model. However, it can be approximated by means of linear projections. More

precisely, we approximate the logarithm of uncertainty by taking the orthogonal projection

of the log of the squared prediction error onto the linear space spanned by the constant and

the present and past values of the y’s:5

log(U i
ht) ≈ P i

t = Proj
(
log(e2

i,t+h)|yi,t−k, i = 1, . . . , n; k = 0, . . . , q
)

(5)

(6)

where

Proj
(
log(e2

i,t+h)|yi,t−k, i = 1, . . . , n; k = 0, . . . , q
)

= θ + c(L)′yt

= θ + c′0yt + · · ·+ c′qyt−q

where cj is an n-dimensional column vector of coefficients and θ the constant term. Notice

that, if the VAR residuals were serially independent (and therefore independent of lagged

y’s), then log(e2
i,t+h) would be orthogonal to the predictors, implying c(L) = 0. CHANGE

THIS Hence our procedure requires that the VAR residuals, while being serially uncorrelated,

are not serially independent.

Using the estimated (in-sample) forecast errors, the parameters of the projection above

can be estimated from the regression

log(e2
i,t+h) = θ + c(L)′yt + νt = θ + c′0yt + · · ·+ c′qyt−q + νt, (7)

5We approximate the log uncertainty rather than uncertainty itself to avoid negative estimates of uncer-

tainty. However by approximating directly uncertainty very similar results are obtained.
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where the error νt is orthogonal to yt and its past history. In the empirical section we

document that the estimated coefficients are significantly different from zero thus rejecting

serial independence. Uncertainty can then be estimated as the exponential of the fitted

values P̂ i
t = θ̂ + ĉ(L)′yt.

2.3 Identifying uncertainty shocks

Here we discuss the identification of uncertainty shocks. The standard VAR approach at

this point would be to include the measure of uncertainty derived in the previous subsection

as an additional endogenous variable in a VAR, re-estimate the model and impose some

restrictions, like a recursive ordering, to identify the exogenous uncertainty shock. It is

important to stress that we do not pursue this route here. Instead, we directly combine

equations (2) and (7) as discussed next.

To understand shock identification in this context, notice, first of all, that log uncertainty

is a linear combination of the VAR variables, see equation (7), and therefore a combination

of VAR residuals. Precisely,

P i
t = θ + c(L)′yt

= θ + c(L)′B(L)εt

= θ + g(L)′εt. (8)

where g(L) =
∑∞

j=0 gjL
j. Given that uncertainty is just a combination of the vector yt, and
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therefore of the VAR residuals εt, we can write the full model asP i
t

yt

 =

θ
δ

+

g(L)′

B(L)

 εt. (9)

In other words, uncertainty becomes an additional variable in the VAR driven by the same

VAR shocks driving yt. The goal is to identify the uncertainty shock as a combination of the

VAR residuals εt and study its impulse response functions. We use two identification schemes.

The first identification simply postulates that the uncertainty shock is the innovation in

uncertainty. In the second, we use zero short-run and zero long-run restrictions to account

for potential endogeneity of uncertainty.

Model (8) makes clear why, when uncertainty is proxied by the forecast error variance,

there is no need of relying on external measures. Uncertainty is directly derived from the

forecast errors obtained from the data generating process for yt. This, in turn, ensures the

internal consistency between the model generating the economic time series and the implied

estimates of uncertainty.

2.3.1 Innovation

To begin with, we consider the simple case in which the uncertainty shock is simply the

innovation of log uncertainty, normalized to have unit variance. Although quite common,

this is a strong assumption and will be relaxed later on. From equation (8) the innovation is

g′0εt = c′0B0εt = c′0εt

8



(recall that B0 = In). Then the normalized innovation u∗t is

u∗t =
c′0√
c′0Σεc0

εt = v′εt, (10)

where Σε is the variance-covariance matrix of εt. The corresponding vector of impulse re-

sponse functions for the variables included in the VAR to an innovation in uncertainty is

d∗(L) = B(L)Σεv, (11)

with contemporaneous effects equal to d∗(0) = Σεv, being B(0) = In (see Appendix A for

details on the derivation of the impulse response functions). So the model can be written in

terms of the uncertainty innovation asP i
t

yt

 =

θ
δ

+

c(L)′B(L)Σεv

B(L)Σεv

u∗t + Ψ(L)wt. (12)

where Ψ(L)wt is the term containing the n − 1 remaining unidentified shocks times their

impulse response functions.

2.3.2 Short-run and long-run zero restrictions

The identification procedure in the previous section imposes that on impact only the uncer-

tainty shock affects uncertainty since the shock is just the innovation. While quite common

in the literature, this assumption is questionable, see for instance Bachmann et al. (2013)

since there could be other shocks which might affect uncertainty contemporaneously. Here

we show how to relax this assumption and impose other restrictions. More specifically in

this subsection we discuss, from a theoretical point of view, how to impose both short-run
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and long-run restrictions to zero. We postpone to section 3.3, after having discussed model

specification, the discussion of the specific restrictions used to identify the uncertainty shock.

Suppose we want to impose that the uncertainty shock has a zero impact effect on variable

y1t. To impose the restriction it suffices to impose orthogonality of the uncertainty shock

with respect to ε1t = D1εt, where D1 = [1 0 · · · 0], i.e. the innovation in the first variable.

This amounts at considering the shock as the residual in the projection of the uncertainty

innovation onto D1εt. The non-normalized uncertainty shock orthogonal to the shock D1εt,

is ut = [c′0− c′0ΣεD
′
1D1]εt. To impose that the shock has no long run effect on some variable,

for instance GDP, fist a long run shock, D1εt, has to be identify assuming that is the only one

shock affecting GDP in the long run. The vector D1 is the identifying vector ensuring that

the long run restriction is satisfied. Second, the orthogonality of the uncertainty innovation

with respect to the long-run shock D1εt has to be imposed. This ensures that the uncertainty

shock has zero long run effect. As before the non-normalized uncertainty shock orthogonal

to the shock D1εt, is ut = [c′0 − c′0ΣεD
′
1D1]εt.

More generally, let D be the m × n matrix having on the rows the vectors D1, D2,. . .,

Dm, with m < n. To impose orthogonality with respect to the corresponding m shocks

D1εt, D2εt . . . , Dmεt, we have to take the residual of the orthogonal projection of the un-

certainty innovation u∗t onto Dεt, normalized to have unit variance. The corresponding

uncertainty shock, call it ut, can be computed from the VAR coefficients by applying the

10



formulas

ut = γεt (13)

γ =
β√
β′Σεβ

β = c′0 − c′0ΣεD
′(DΣεD

′)−1D.

The impulse-response functions for the variables included in the VAR corresponding to

the shock ut = γεt are

d(L) = B(L)Σεγ. (14)

The full model becomesP i
t

yt

 =

θ
δ

+

c(L)′B(L)Σεγ

B(L)Σεγ

ut + Ψ(L)wt. (15)

where Ψ(L)wt is again the term containing the n − 1 remaining unidentified shocks times

their impulse response functions.

Notice that the term du(L) = c(L)d(L)′ identifies the effect of the uncertainty shock on

uncertainty as du(L)ut = du(L)γεt, let us call it the exogenous component. The part of

uncertainty not driven by the uncertainty shock, i.e. the endogenous component, is therefore

c(L)yt−du(L)ut = [c(L)B(L)−du(L)γ]εt. Since the two components are orthogonal, we can

compute a variance decomposition both for the total variance and for the prediction errors

at all horizons.
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2.4 Equivalence with proxy SVAR

Our procedure is equivalent in population to estimating a proxy SVAR using zt = log(e2
i,t+h)

as the external instrument for the uncertainty shock.6 When the number of lags in equation

(7) is the same as the number of lags in the VAR, the results of the two procedures are

identical even in sample.

For the instrument to be valid, the standard assumptions of relevance and exogeneity

have to hold. The intuition of why the squared forecast error is a good candidate is the

following. Consider the orthogonal decomposition

e2
i,t+h = Ete

2
i,t+h + vit = U i

ht + vit.

Since vit is independent of uncertainty, e2
i,t+h must be correlated with the uncertainty shock

and so will be the log, which is the instrument we use. Hence relevance is ensured by the

very definition of uncertainty. If the other shocks have zero impact effect on uncertainty, as

assumed in Section 2.3, then the exogeneity assumption is also fulfilled, so that log(e2
i,t+h) is

a valid proxy to identify the uncertainty shock.

Let us come now to the equivalence. The proxy SVAR approach consists in projecting

the VAR residuals εt onto the proxy zt. The population parameters are φ = Eztεt/Ez
2
t (see

Mertens and Ravn, 2013). The impact effects φ are therefore proportional to Eztεt. It is

easily seen that our population impact effects are also proportional to Eztεt, so that they

are equal to those of the proxy SVAR when the same normalization is imposed. If the proxy

6On the proxy SVAR approach see Mertens and Ravn (2013), Stock and Watson (2018) and Plagborg-

Møller and Wolf (forthcoming).

12



zt is log(e2
i,t+h), from equations (7) and (2) we get

zt = ω + c(L)′B(L)εt + νt, (16)

where ω = θ + c′0δ and νt is orthogonal to yt−k, k ≥ 0 and therefore to εt−k, k ≥ 0. Post-

multiplying by ε′t and taking expected values we get Eztε
′
t = c′0Σε, since B(0) = I. But we

have already seen that our impact effects are Σεv = Σεc0/α with α =
√
c′0Σεc0 (see equations

(10) and (11)). Hence our impact effects are Eztεt/α.

In Appedix B we also show that the OLS estimates are equal to those of Mertens and

Ravn (2013) if q = p, i.e. when the number of lags of yt included in the regression of zt is

equal to the number of lags of the VAR. Hence, as far as the estimation of the effects of

uncertainty are concerned, our approach and the standard proxy SVAR approach produce

the same results.

Te advantage of our method is that it allows us to get an estimate of uncertainty itself,

besides the uncertainty shock and its impulse-response functions. On the other hand, the

above discussion clarifies that, for the identification of the uncertainty shock, the linear

approximation of uncertainty in equation (7) is not needed: we just need the standard

assumptions of relevance and exogeneity.

2.5 Summary of the procedure

Summing up, our procedure is the following.

1. Estimate by OLS the VAR in equation (1) to get B̂(L) = Â(L)−1, the vector of resid-

uals ε̂t and its sample variance-covariance matrix Σ̂ε. Compute êt+h according to equation

13



(3).

2. Compute ẑt = log(ê2
i,t+h). Estimate by OLS equation (7) to get θ̂ and ĉ(L) and

compute Û i
ht according to equation (7) as Û i

ht = exp(θ̂ + ĉ(L)′yt).

3. Compute û∗t and d̂∗(L) according to equations (10) and (11) by replacing c0 and Σε

with the corresponding estimates. Alternatively:

3′. Specify the relevant orthogonality restrictions by choosing the matrix D. Compute

the estimates ût and d̂(L) according to equations (13) and (14) by replacing c0 and Σε with

the corresponding estimates.

4. Get the estimate of the IRFs of uncertainty, either d∗u(L) or du(L), according to (??).

In Appendix C we describe in detail our bootstrap procedure to construct confidence

bands.

If the goal is to exclusively estimate the effects of uncertainty shocks, an alternative and

equivalent procedure is the following.

a. Estimate by OLS the VAR in equation (1) to get B̂(L) = Â(L)−1, the vector of resid-

uals ε̂t and its sample variance-covariance matrix Σ̂ε. Compute êt+h according to equation

(3).

b. Compute ẑt = log(ê2
i,t+h) and use it as the external instrument in a proxy SVAR to

obtain the effects of the uncertainty shock.

3 Empirics

In this section, we present the main results of our empirical analysis.
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3.1 Specification

We use US quarterly data spanning the period from 1960:Q1 to 2019:Q3. Our benchmark

VAR includes seven variables: the log of real per-capita GDP, the unemployment rate, CPI

inflation, the federal funds rate, the log of the S&P500 stock price index, a component of

the Michigan Consumer Confidence Index, i.e. expected business conditions for the next 12

months (E1Y), and the spread between BAA corporate bond yield and GS10 (BAA-GS10).7

The last four variables are included essentially because they are supposed to quickly react to

shocks and therefore are hopefully able to better capture the information necessary to reveal

uncertainty. In the robustness section, we replace stock prices and the spread BAA-GS10

with a different set of forward-looking variables.

We include just one lag in the VAR, as suggested by the BIC criterion. In the robustness

section we show results for 2 and 4 lags.

We estimate equation (7) for all the variables included in the model and considering 1, 4

and 8 quarters ahead forecast horizons. In all cases, following the BIC criterion, we include

yt without further lags on the right-hand side (i.e. q = 0 and c(L) = c0). In the robustness

section we include also yt−1, so that p = q and our method produce exactly the same result

as the proxy-SVAR method discussed above.

7GDP and stock prices are taken in log levels to take into account potential cointegration relations.
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3.2 Estimated uncertainty

We start documenting the overall significance of the regressors in equation (7). Table 1

shows the R2 statistic along with the F -test for the overall significance of the regression, for

all variables and horizons, when using just the contemporaneous VAR variables as regressors

(q = 0). All regressions but the one for stock price uncertainty at horizon 8 are significant

at the 5% level, and 16 regressions out of 21 are significant at the 1% level. The VAR

variables predict the squared prediction errors implied by the VAR itself. This result, to our

knowledge, was not found before and, as already observed, implies that the VAR residuals

are not serially independent. This preliminary step lends support to the validity of our

approximation procedure and the idea that shocks, although white noise, are far from being

independent. The finding call into question the normality assumption typically made in

Stcchastic volatility models and in Bayesian settings in general.8

Figure 1 plots the estimated uncertainty indexes for 1- and 4-quarter ahead. Real eco-

nomic activity uncertainty, GDP and unemployment uncertainty, behave as already largely

documented in the literature. The indexes tend to lead recessions, they begin to increase

right before the onset of the recessions and to reduce right before the end of the recessions.

The results are quite similar across horizons except that the 4-quarter ahead uncertainty is

much more volatile.

Inflation uncertainty, 4-quarters, and federal funds rate uncertainty, 1-quarter, present

8The R2 might appear small for several equations; notice however that R2 = 0.15, corresponding to

unemployment uncertainty at the one-year horizon (which is the uncertainty used in our baseline VAR

below) roughly corresponds to the R2 of a univariate AR(1) model with the sizable coefficient 0.4.
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some differences compared to real economic activity uncertainty. Interestingly they do not

exhibit a peak corresponding to the Great Recession. Inflation uncertainty is large during

periods of high inflation, with peaks corresponding roughly to oil shocks. Federal funds rate

uncertainty is high when the federal funds rate is high, i.e. during the so-called “stop and

go” monetary policy period and during the Volcker era; it is very low at the end of the

sample, when interest rates are close to zero.

Stock prices uncertainty, 1-quarter, behaves very similarly to real economic activity un-

certainty, with correlations around 0.7, see Table 2 . The 4-quarter uncertainty display an

opposite behavior, especially since the early 80s. Uncertainty steadily increases during ex-

pansionary periods and suddenly drops right before the recession remaining relatively low

during recession. Stock prices become hard to forecast at long horizon compared to short

horizons in periods of booms while in recession the forecast error variances are very similar

at both horizons. The result seems to suggest that the longer is the period of economic ex-

pansion, the larger is the probability assigned to a fall in prices. As prices drop, uncertainty

suddenly reduces because good outcomes are no longer expected. The result show that pro-

tracted period of increasing uncertainty are followed by economic downturns. It would be

interesting to understand whether long-run stock prices uncertainty is able to predict in real

time economic recessions. We leave this issue for future research.

Table 2 shows the correlation coefficients between four selected uncertainty indexes, com-

puted according to equation (7), namely the unemployment rate uncertainty index, 1-quarter

ad 4-quarter ahead (ÛUN
1,t and ÛUN

4,t ) and the stock price uncertainty index, 1-quarter ahead

and 4-quarter ahead (ÛS&P
1,t ÛS&P

4,t ), and (a) the VXO index, extended as in Bloom (2009),
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(b) the LMN (2020) financial uncertainty index 3-months (LMN fin), (c) the JLN (2015)

macroeconomic uncertainty index 12 months (JLN), (d) the LMN (2020) real uncertainty

index 12-months (LMN real), (e) the Becker et al. (2016) US Economic Policy Uncertainty

index (EPU) and (f) the Rossi and Sekhposyan (2015) 4-quarters ahead uncertainty index

(RS).

The indexes, except ÛS&P
4,t , are highly positively correlated with each other and with JLN

and LMN indexes, which are consistent with ours as for the definition of uncertainty. In

particular, ÛUN
1,t and ÛUN

4,t exhibit correlation coefficients with JLN uncertainty 12-months

as high as 0.66 and 0.79, respectively. On the contrary, and in line with the above discussion

ÛS&P
4,t , displays substantially smaller correlations, even negative with US Economic Policy

Uncertainty index.

3.3 Uncertainy shocks: Idenification I

To begin, we have to choose the relevant uncertainty. We choose unemployment uncertainty

as a proxy for macroeconomic, or real economic activity uncertainty, and stock prices uncer-

tainty as a proxy for financial uncertainty. We choose unemployment rather than GDP as a

benchmark mainly because the R2 reported in Table 1 are larger and more significant than

those for GDP. In the robustness section we show results for GDP uncertainty. As for the

horizon, we choose 1 quarter. In subsection we also show the results for h = 4.

The literature does not provide a widespread consensus about a set of identification

restrictions for the exogenous uncertainty shock. In this section we identify the uncertainty
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shock (Identification I) as the VAR innovation of uncertainty u∗t , see Section (2.3). Therefore,

the only shock affecting uncertainty on impact is the uncertainty shock. As already observed,

this scheme is questionable. On the other hand, it is quite common in the literature, hence

results may be useful for comparison.

Figure 3 shows results obtained for macroeconomic uncertainty under for Identification

I. The uncertainty shock is contractionary for real economic activity, significantly reducing

output and increasing unemployment. The effects are very large, as in JLN (2015), but not

that much persistent, since they vanish after about 4 years. This result is different from

those in JLN and Carriero et al. (2018b). Inflation is not affected significantly. The federal

funds rate reduces, reacting to the slowdown of real activity and prices. Stock prices reduce

on impact. The confidence index goes down on impact, reflecting consumers’ expectations.

The BAA-GS10 spread increases, reflecting the increased risk premium of Baa Corporate

bonds.

Figure 4 plots the results for the financial uncertainty shock. The shock is again con-

tractionary although the effects are much smaller in magnitude than those obtained for

macroeconomic uncertainty and barely significant. Table 4 shows variance decomposition.

The macroeconomic uncertainty shock accounts for a very high fraction of GDP and es-

pecially the unemployment rate. The shock explains more than half of the fluctuations in

unemployment at the one-year horizon. The effect on the risk premium is also large: ac-

cording to this identification, the uncertainty shock explains about three quarters of the

spread variance at the one-year horizon. On the contrary the financial uncertainty shock

generates very small effects. It essentially plays no role for fluctuations in real economic
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activity variables and stock prices. The only variable which seems to be driven by the shock

is the spread, the explained variance being around 30%.

3.4 Uncertainy shocks: Idenification II

In this section we repeat the nalysis using a different identification strategy, Identification

II. We impose that the uncertainty shock is orthogonal to the long-run shock above and, in

addition, to the VAR innovations of GDP, unemployment, CPI and the federal funds rate

(hence, we add four rows to the matrix D). In this way we impose that (i) the uncertainty

shock has transitory effects on output; (ii) the slow-moving variables (output, unemployment

and prices) do not react to uncertainty on impact, as is assumed for the monetary policy

shock à la Christiano et al. (1999); in addition, (iii) the federal funds rate does not react to

uncertainty on impact. The last constraint is imposed because, given (ii), (iii) entails that

the uncertainty shock is orthogonal to a monetary policy shock which moves on impact the

federal funds rate and therefore cannot be confused with it. On the other hand, the mone-

tary policy shock, as well as the long-run shock and, possibly, other unidentified transitory

shocks, may affect uncertainty on impact. Again we focus on 1-quarter ahead uncertainty of

unemployment and stock prices.

Figure 5 shows results for macroeconomic uncertainty. Results are very similar to those

of Identification I: the uncertainty shock significantly depresses real economic activity but

without any significant effect on the inflation rate. The variance explained by the uncertainty

shock (see Table 4) is slightly reduced but still very high. As for the stock market, the effects
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are smaller, consistently with Carriero et al. (2018b): the uncertainty shock explains about

20% of volatility at the one year horizon. Finally, the shock explains more than 90% of

uncertainty itself on impact, leaving a very limited role for the long-term shock.

Figure 6 shows results for financial uncertainty. The effects are negligible and not sig-

nificant for all of the variables except the spread. By imposing the additional restrictions

the conclusion for the financial uncertainty shock are reinforced: the shock plays a negligible

role for economic fluctuations.

Overall the variance explained by the macroeconomic uncertainty shock (see Table 4) is

now much smaller. Still, at the one-year and the 4-year horizons, uncertainty shocks explains

about 10% of output volatility and about 30% of unemployment volatility. Exogenous un-

certainty considerably reduces at all horizons; however, it is still close to 80% on impact and

about 50% at medium- and long-term horizons. On the contrary, the financial uncertainty

shock explains nothing of the variance of real economic activity variables,

3.5 Uncertainy shocks: 4-quarter ahead

We now repeat the analysis using Identification I but focusing on the 4-quarter ahead un-

certainty. Figure 7 and Figure 8 plot the impulse response functions for the macroeconomic

uncertainty shock and financial uncertainty shock respectively. Macroeconomic uncertainty

generates effects which are very similar to those obtained for the 1-quarter ahead: a sig-

nificant and protracted downturn of economic activity and stock prices which triggers and

expansionary response of monetary policy authorities. As far as financial uncertainty is
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concerned, the results are different from before. The shock generates a significant but very

delayed contraction. Indeed the trough of the downturn occurs four years after the shock.

Going back to the discussion in section 3.2, the result seems to suggest that there is, at least

to some extent, a casual link between the protracted increase of 4-quarter ahead stock prices

uncertainty and economic recessions.

3.6 Robustness checks

We make several robustness checks. In the first exercise, reported in Figure 9, we change the

number of lags and use 2 lags (blue dotted lines) and 4 lags (magenta dotted-dashed lines)

instead of 1 lag (benchmark case, black solid lines). Results are somewhat different from

those obtained in the baseline model, particularly because the effects on GDP and stock

prices are more persistent. However, both the sign and the size of the responses are similar

to those of the baseline specification.

In the second exercise we change the VAR specification, by removing stock prices and

the spread BAA-GS10, and including two different forward-looking variables: the ISM New

Order Index and another component of the Michigan Consumer Confidence Index, the ex-

pected business conditions for the next five years (E5Y).9 We remove the spread mainly to

avoid a possible contamination of uncertainty shocks with credit market shocks (Gilchrist

and Zakrajsek, 2012, Caldara et al., 2016). Results are reported in Figure 10. The effects of

uncertainty shocks on the variables which are included in both specifications are similar.

In the last two exercises we retain the baseline specification for the VAR, but change the

9The latter variable is studied in depth in Barsky and Sims, 2012.

22



way we estimate uncertainty. First, we use the squares of the prediction error in place of

their logs, i.e. we do not use equation (7), but simply replace the conditional expectation

appearing in equation (4) with the linear projection. The effects of the implied uncertainty

shock are very similar to those of the baseline model (Figure 11). Second, we specify q = 1

instead of q = 0 in equation (7), so that we have q = p and the results are identical to

those obtained with the proxy SVAR approach. The results are reported in Figure ??. The

effects on GDP and stock prices are larger and more persistent than in the benchmark model,

whereas those on unemployment are smaller. However, the main results are confirmed: a

positive uncertainty shock has large negative effects on economic activity.

All in all the results appear to be robust to changes in several features of the model

specification.

4 Conclusions

We have shown that it is possible to produce reliable uncertainty estimates with a standard

VAR model, without modeling time-varying volatility and using only OLS. The basic idea

is to compute the squares of the prediction errors implied by the VAR model and replace

expected values with linear projections.

Our estimate of uncertainty is a linear combination of the VAR variables. Therefore,

the uncertainty shock is a linear combination of the VAR residuals and its effects can be

computed by applying simple formulas to the reduced form impulse response functions. In

this way, the same VAR model is used to estimate both uncertainty and its effects on the
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macro economy.

We have also provided simple formulas that can be used to impose suitable orthogonality

constraints on the uncertainty shock.

The advantage of our procedure is twofold: on the one hand, we avoid the problematic

choice of an external uncertainty measure; on the other hand, we avoid imposing restrictive

assumption about the structure of conditional volatility.

Our procedure can be regarded as a variant of a proxy SVAR with the log of the squared

prediction error taken as the relevant proxy. Under suitable conditions, the two methods

yield the same results.

The procedure described here can easily be adapted to a factor model or a factor-

augmented VAR. Moreover, it can be applied to survey-based forecast errors associated

with local projection impulse-response functions estimation.

We have applied our procedure to a US macroeconomic quarterly data set. Our main con-

clusion is that macroeconomic uncertainty explains a large part of business cycle fluctuations

while financial uncertainty plays a minor role.
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Appendix A: A useful formula

If the unit-variance structural shock is v′εt, its impact effects are d = Σεv. To see this,

consider first the Cholesky representation with orthonormal shocks: yt = B(L)CC−1εt,

where C is such that CC ′ = Σε. Any other fundamental representation with orthogonal,

unit-variance shocks will be given by

yt = B(L)CUU ′C−1εt,

where U is a unitary matrix (i.e. UU ′ = I). Assuming, without loss of generality, that the

structural shock of interest is the first one, the impact effects are d = CU1, where U1 is the

first column of U , and the vector identifying the structural shock is v′ = U ′1C
−1. Hence

U1 = C ′v and d = CC ′v = Σεv.
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Appendix B: The relation with standard proxy SVAR

In the main text we have shown that in population our procedure is equivalent to the proxy-

SVAR methodology.

Here we show that the OLS estimates are identical to those of Mertens and Ravn (2013)

if the number of lags of yt included in the regression of zt is equal to the number of lags of

the VAR for yt (see equation (16)).

Let us begin with OLS estimation of the VAR in equation (1), which we report here for

convenience:

yt = µ− A1yt−1 − · · · − Apyt−p + εt. (17)

We need some additional notation. Let

Yk =



y′p+1−k

y′p+2−k

...

y′T−k


, ı =



1

1

...

1


, X =

(
ı Y1 · · · Yp

)
, E =



ε′p+1−k

ε′p+2−k

...

ε′T−k


.

Moreover, let Y = Y0. Hence the VAR equation can be written as

Y = XA+ E ,

where A =

(
µ −A1 · · · −Ap

)′
. The OLS estimates of A and E are

Â = (X ′X)−1X ′Y, Ê = Y −X(X ′X)−1X ′Y.

Of course we have X ′Ê = 0.
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Mertens and Ravn (2013) focuses on the effects of the structural shock. Such effects

are estimated by performing the OLS regression of ε̂t onto the proxy zt, which for ease

of exposition and without loss of generality we assume to be zero-mean. Precisely, let

z =

(
z′p+1 z′p+2 · · · z′T

)′
, and consider the regression equation

Ê = zφ′ + V.

The vector of the impact effects is obtained as the OLS estimator of φ, suitably normalized

(for instance to get unit variance for the corresponding structural shock). The OLS estimator

of φ is

φ̂ = Ê ′z/z′z. (18)

The vector of the impact effects is then obtained by normalizing the above vector in the

desired way.

Our proposed procedure focuses on the estimation of the structural shock, rather than the

estimation of the corresponding impulse-response functions. We compute the OLS regression

of z onto the columns of Y and X:

z = Y c0 +Xb+ ν,

where b = (θ′ c′1 · · · c′p)′ (see equation 7). Letting W =

(
Y X

)
, the fitted value of z

(which in our case is the estimate of uncertainty) is W (W ′W )−1W ′z and the residual is

ν̂ = z −W (W ′W )−1W ′z. Clearly, W ′ν̂ = 0, so that Y ′ν̂ = 0 and X ′ν̂ = 0. Hence Ê ′ν̂ = 0.

Pre-multiplying the above equation by Ê ′ we get

ĉ0 = (Ê ′Y )−1Ê ′z = (Ê ′Ê)−1Ê ′z,
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where the last equality is obtained by observing that Ê ′Y = Ê ′
(
X(X ′X)−1X ′Y + Ê

)
= Ê ′Ê .

Hence ĉ0 could be obtained equivalently by OLS regression of zt onto εt. This makes sense:

the estimated structural shock is nothing else than the OLS projection of the proxy zt onto

the VAR residuals. The reason why we do not follow this way is that it would not enable us

to get an estimate of uncertainty.

We have shown above that the impact effects of c′0εt are proportional to Σεc0. Hence we

estimate such impact effects as Ê ′Ê ĉ0 = Ê ′z, up to a multiplicative constant which is fixed

by the unit variance normalization. These effects are proportional to the ones in equation

(18) and are equal once we impose the same normalization.
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Appendix C: The bootstrap procedure

To construct confidence bands we draw randomly T − p times (with replacement) from the

uniform discrete distribution with possible values p + 1, . . . , T , to get the sequence t(τ),

τ = p + 1, . . . , T and the corresponding sequences ετ = ε̂t(τ), rτ = r̂t(τ), τ = p + 1, . . . , T .

Then we set yτ = yt for τ = 1, . . . , p. Moreover, according to (17), we set yτ = µ̂− Â1yτ−1−

· · · ,−Apyτ−p+ετ , and, according to (7), zτ = θ̂+ ĉ′0yτ + · · ·+ ĉ′pyτ−p+rτ , for τ = p+1, . . . , T .

Having the artificial series yτ , τ = 1, . . . , T , and zτ , τ = p + 1, . . . , T , we re-estimate the

relevant impulse-response functions. We repeat the procedure N times to get a distribution

of IRFs and take the desired point-wise percentiles to form the confidence bands.

The above procedure takes into account the parameter estimate uncertainty of both the

VAR and the proxy equation (7). On the other hand, we treat zt as an observed variable,

whereas in our case it is estimated. This cannot be avoided since we do not have a fully

specified stochastic volatility model enabling us to reproduce the correct covariances between

the squared prediction errors and the lagged variables.
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Tables

R2 p-value (F-test)

h = 1 h = 4 h = 8 h = 1 h = 4 h = 8

Per Capita GDP 0.15 0.08 0.06 0.00 0.01 0.04

Unemployment rate 0.19 0.15 0.13 0.00 0.00 0.00

CPI inflation 0.09 0.08 0.07 0.00 0.01 0.02

Federal Funds Rate 0.43 0.25 0.27 0.00 0.00 0.00

S&P500 0.10 0.09 0.05 0.00 0.00 0.08

E1Y 0.08 0.08 0.06 0.01 0.01 0.04

spread BAA-GS10 0.21 0.09 0.07 0.00 0.00 0.02

Table 1: R2 of regression (7) and p-values of the F-test of the significance of the regression

using the forecast error squared for the variables listed in the first column.
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ÛUN
1,t ÛS&P

1,t ÛUN
4,t ÛS&P

4,t VXO LMN F3m JLN 12m LMN R12m EPU RS 4Q

ÛUN
1,t 1.00 - - - - - - - - -

ÛS&P
1,t 0.63 1.00 - - - - - - - -

ÛUN
4,t 0.80 0.69 1.00 - - - - - - -

ÛS&P
4,t 0.25 0.27 0.37 1.00 - - - - - -

VXO 0.34 0.43 0.56 0.12 1.00 - - - - -

LMN F12m 0.39 0.50 0.60 0.32 0.78 1.00 - - - -

JLN 12m 0.66 0.48 0.79 0.58 0.47 0.52 1.00 - - -

LMN R12m 0.68 0.49 0.76 0.57 0.28 0.44 0.82 1.00 - -

EPU 0.71 0.33 0.48 -0.41 0.35 0.38 0.29 0.25 1.00 -

RS 4q -0.02 0.16 0.13 0.36 0.28 0.31 0.14 0.12 -0.14 1.00

Table 2: Correlation of unemployment uncertainty 1-quarter (ÛUN
1,t ) and 4-quarter ahead

(ÛUN
4,t ) and S&P uncertainty 1-quarter (ÛS&P

1,t ) and 4-quarter ahead (ÛS&P
4,t ) with existing

measures: VXO, LMN financial 12-month ahead (LMN F12m), JLN 12-month ahead (JLN

12m), LMN real 12-month ahead (LMN R12m), economic policy uncertainty (EPU), and

Rossi and Sekhposyan 4-quarter ahead (RS 4q).
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Identification I

ÛUN
1,t ÛS&P

1,t

h = 0 h = 4 h = 16 h = 40 h = 0 h = 4 h = 16 h = 40

Per Capita GDP 20.1 44.5 30.7 16.9 0.9 3.3 2.7 1.5

Unemployment rate 30.9 66.4 61.6 48.8 0.5 2.9 4.1 3.1

CPI inflation 8.2 7.0 13.5 13.2 21.7 16.1 12.8 12.0

Federal Funds Rate 3.3 11.6 29.7 26.2 0.8 1.7 3.2 2.8

S&P500 6.0 9.5 4.7 5.1 3.5 5.9 3.6 2.2

E1Y 64.3 56.3 44.2 42.1 0.3 1.5 1.2 1.3

spread BAA-GS10 34.7 49.2 46.7 48.6 28.8 29.5 24.8 23.5

Uncertainty 100.0 94.2 71.7 69.0 100.0 79.1 65.1 61.0

Identification II

ÛUN
4,t ÛS&P

4,t

h = 0 h = 4 h = 16 h = 40 h = 0 h = 4 h = 16 h = 40

Per Capita GDP 0.0 12.8 12.5 7.0 0.0 0.1 1.1 1.2

Unemployment rate 0.0 29.7 40.9 30.5 0.0 1.8 1.1 1.6

CPI inflation 0.0 0.6 2.4 2.7 0.0 0.5 0.8 1.9

Federal Funds Rate 0.0 3.1 10.4 9.2 0.0 0.7 0.9 2.3

S&P500 24.1 27.0 15.9 8.6 15.3 12.6 6.4 5.2

E1Y 61.3 50.6 38.8 36.1 1.1 1.7 2.1 3.1

spread BAA-GS10 41.3 54.3 50.0 48.8 52.1 44.9 35.2 32.8

Uncertainty 43.0 51.8 41.7 39.4 67.2 71.2 59.3 55.3

Table 3: Variance decomposition. Identification I: uncertainty innovation. Identification

II: orthogonal to long run shock. Identification III: zero contemporaneous effects on GDO,

unemployment rate, CPI and federal funds rate.
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Identification I

h = 0 h = 4 h = 16 h = 40

Per Capita GDP 12.7 38.6 27.4 14.7

Unemployment rate 9.9 54.3 55.4 42.2

CPI inflation 1.1 1.3 6.4 6.4

Federal Funds Rate 1.2 8.9 22.6 19.2

S&P500 21.4 24.4 12.2 6.5

E1Y 62.2 50.6 38.8 36.4

spread BAA-GS10 61.3 75.9 68.2 67.6

Uncertainty 100.0 89.4 68.7 67.8

Identification II

h = 0 h = 4 h = 16 h = 40

Per Capita GDP 10.8 35.0 23.8 13.3

Unemployment rate 11.4 56.0 54.9 42.2

CPI inflation 0.7 0.9 6.8 6.7

Federal Funds Rate 1.4 9.8 24.4 20.7

S&P500 18.5 21.0 10.0 5.7

E1Y 60.7 48.5 37.4 35.1

spread BAA-GS10 63.3 77.7 69.5 68.8

Uncertainty 99.6 88.2 68.2 67.5

Identification III

h = 0 h = 4 h = 16 h = 40

Per Capita GDP 0.0 11.0 9.8 5.7

Unemployment rate 0.0 27.4 35.9 26.7

CPI inflation 0.0 0.4 1.9 2.4

Federal Funds Rate 0.0 3.2 9.4 8.5

S&P500 27.9 29.9 17.2 9.6

E1Y 47.7 38.6 29.4 27.6

spread BAA-GS10 54.0 65.2 58.1 55.9

Uncertainty 80.1 72.9 53.8 52.1

Table 4: Variance decomposition. Identification I: uncertainty innovation. Identification

II: orthogonal to long run shock. Identification III: zero contemporaneous effects on GDO,

unemployment rate, CPI and federal funds rate.
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Figures

Figure 1: Estimated uncertainties. Black line 1-quarter ahead. Red line 4-quarter ahead.

Gray vertical bands NBER recessions dares.
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Figure 2: Impulse response functions of the unemployment rate uncertainty shock, 1-quarter

ahead. The shock is identified as the innovation in uncertainty (Identification I). Solid line:

point estimate. Light grey area: 90% confidence bands. Dark grey area: 68% confidence

bands.
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Figure 3: Impulse response functions of the S&P500 uncertainty shock, 1-quarter ahead.

The shock is identified as the innovation in uncertainty (Identification I). Solid line: point

estimate. Light grey area: 90% confidence bands. Dark grey area: 68% confidence bands.
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Figure 4: Impulse response functions of the unemployment rate uncertainty shock, 1-quarter

ahead. The shock is identified as the residual of the projection of the uncertainty innovation

onto the long-run shock, the GDP innovation, the unemployment rate innovation, the CPI

innovation and the federal funds rate innovation (Identification II). Solid line: point estimate.

Light grey area: 90% confidence bands. Dark grey area: 68% confidence bands.
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Figure 5: Impulse response functions of the S&P500 uncertainty shock, 1-quarter ahead. The

shock is identified as the residual of the projection of the uncertainty innovation onto the

long-run shock, the GDP innovation, the unemployment rate innovation, the CPI innovation

and the federal funds rate innovation (Identification II). Solid line: point estimate. Light

grey area: 90% confidence bands. Dark grey area: 68% confidence bands.
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Figure 6: Impulse response functions of the unemployment rate uncertainty shock, 4-quarter

ahead. The shock is identified as the innovation in uncertainty (Identification I). Solid line:

point estimate. Light grey area: 90% confidence bands. Dark grey area: 68% confidence

bands.
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Figure 7: Impulse response functions of the S&P500 uncertainty shock, 4-quarter ahead.

The shock is identified as the innovation in uncertainty (Identification I). Solid line: point

estimate. Light grey area: 90% confidence bands. Dark grey area: 68% confidence bands.
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Figure 8: Comparison between the benchmark impulse response functions of Identification I

(solid black lines), obtained with 1 lag in the VAR and the corresponding impulse response

functions obtained with 2 lags (dotted blue lines) and 4 lags (dashed-dotted magenta lines).
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Figure 9: Comparison between the benchmark VAR impulse response functions, Identifica-

tion I (solid black lines), and the impulse response function obtained with a different VAR

specification, including E5Y (a component of the Michigan University Consumer Confidence

Index) and the ISM New Order Index in place of S&P500 and the spread BAA-GS10 (dotted

blue lines).
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Figure 10: Comparison between the benchmark VAR impulse response functions, Identifica-

tion I (solid black lines), and the impulse response function obtained when using the squared

predictions error in place of the log of the squared prediction error to compute uncertainty

(dotted blue lines).
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Figure 11: Comparison between the benchmark VAR impulse response functions, Identifi-

cation I (solid black lines), and the impulse response function obtained when using 1 lag of

the variables, in addition to the current values, to compute uncertainty (dotted blue lines).
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