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Abstract
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ative and large. Otherwise, their role is quite modest. Financial shocks have

become more important for economic fluctuations after the 2000 and have
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1 Introduction

The 2008 recession has sparked a renewed interest in understanding how finan-

cial crises propagate to the real economy. There is a long-standing literature

on the interactions and linkages between the two sectors. Early works in-

clude Bernanke and Gertler (1989), Carlstrom and Fuerst (1997), Bernanke,

Gertler, and Gilchrist (1999) and Kiyotaki and Moore (1997). More recent con-

tributions focusing on the role of the financial sector in economic fluctuations

include Christiano, Motto and Rostagno (2003, 2007), Curdia and Woodford

(2010), Gertler and Karadi (2011), and Gertler and Kiyotaki (2011). Most of

these papers rely on log-linear approximations that imply a linear propagation

of economic shocks, including the financial shock.

Nevertheless, a few recent contributions have emphasized the importance

of the nonlinear amplification of financial shocks on the real economy, see

Mendoza (2010), He and Krishnamurthy (2013), Brunnermeier and Sannikov

(2014) and the survey in Brunnermeier, Eisenbach, and Sannikov (2013). In

Brunnermeier and Sannikov (2014), there are several nonlinearities at work.

First, while small shocks tend to be easily absorbed without important con-

sequences, large shocks may bring the economy far from the steady state, in

regions where the amplification mechanisms are much stronger and the conse-

quences for real economic activity much more severe. Second, financial disrup-

tions tend to have larger real effects than financial expansions. Third, when

the economy moves away from the steady state, for instance in a downturn,

even small shocks can have large effects.1

On the empirical side, several studies have investigated and measured the
1Several studies have pointed out that business cycle fluctuations tend to be asymmetric

since recessionary episodes have larger effects on growth than booms, see for instance Neftci
(1984), Sichel (1993) and Morley and Piger (2012).
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effects of financial shocks on the real economy. In the seminal contribution by

Gilchrist and Zakrajšek (2012) (GZ henceforth), the financial shock is iden-

tified in a VAR under a recursive ordering as the shock to the excess bond

premium. The shock is found to have significant effects on macroeconomic

indicators. Similar findings are obtained in other works using alternative iden-

tification schemes, for instance sign restrictions (see Gambetti and Musso,

2017, Furlanetto et al., 2019, Meeks, 2012, Peersman, 2011, and Peersman

and Wagner, 2015) and penalty functions (see Brianti, 2021, and Caldara et

al., 2016). All in all, the empirical evidence supports the conclusion that fi-

nancial shocks have significant effects on real activity, although the magnitude

of the effects varies across studies. In most of the works based on SVAR mod-

els, the variance of macroeconomic variables attributable to financial shocks is

around 15%-20%, while studies using FAVAR models find higher percentages

(Gilchrist et al., 2009 and Boivin, Giannoni and Stevanovic, 2020).

In the vast majority of empirical works, the effects of the financial shock

are estimated using linear models. A notable exception is Barnichon, Matthes

and Ziegenbein (2020), which provides evidence supporting the existence of a

sign asymmetry in the transmission of financial shocks. More specifically, bad

financial shocks have larger effects than good shocks on industrial production.

Another contribution is Hubrich and Tetlow (2015), which finds that financial

shocks affect the economy differently depending on whether financial stress is

high or low. When financial stress is high, the effects are much larger. Apart

from these contributions, the literature is quite silent about the empirical

support of the nonlinear amplification effects embedded in theoretical models.

This paper contributes empirically to shed new light on the nonlinearity of

the transmission mechanisms of financial shocks. We extend the GZ identifi-

cation to a nonlinear setting where the economy has a Vector Moving Average

2



representation augmented with a nonlinear function of the financial shock.

The effects of the financial shock on economic variables are a combination

of the coefficients associated with the shock and its nonlinear function. This

makes the impulse response functions potentially nonlinear and asymmetric.

The identification and estimation procedure consists of two steps within a sin-

gle model. In the first step, we identify the financial shocks as in GZ. In the

second step, we use the shock and its nonlinear function to estimate the non-

linear transmission mechanisms. In the baseline model we use the square of

the shock as the nonlinear function.2 In an extended version we also allow for

state-dependent effects.3

All in all, our evidence points to the existence of significant nonlinearities

in the transmission mechanisms of financial shocks. The main results are as

follows:

(i) The effects of big shocks, two standard deviations or more, are highly

asymmetric: big financial disruptions generate a sizable and protracted down-

turn in real economic activity and the stock market, while big financial booms

have modest effects. Big negative shocks also turn out to be a major driver of

economic slowdowns in the last two decades. We find two such shocks in the

sample considered, in early 2000 and in 2008 respectively. In both episodes, the

nonlinear term plays a major role and contributes substantially to deepening

the recessions that followed.

(ii) One-standard deviation shocks, or smaller, have symmetric effects, i.e.

equal in absolute value for positive and negative shocks. Although their ef-
2The choice is motivated by the fact that, when using both the absolute value and

the square of the shock simultaneously, the coefficients of the former are not statistically
significant.

3The approach is similar in spirit to the local projection approach for instance used in
Tenreyro and Thwaites (2016) and Alpanda, Granziera and Zubairy (2019) to study the
asymmetric and state-dependent effects of monetary policy shocks.
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fects are significant, from a quantitative point of view their role for economic

fluctuations is quite modest.

(iii) The effects of financial shocks are further amplified in periods of high

uncertainty. No other state variables appear to matter for the transmission of

financial shocks.

(iv) Overall, financial shocks have become much more important for eco-

nomic fluctuations in the last two decades.

Our findings confirm the existence of the type of asymmetries found in Bar-

nichon, Matthes and Ziegenbein (2020), but only for unusually large shocks,

since for standard shocks, or smaller, the effects are symmetric. All in all, our

results lend empirical support to the nonlinear transmission mechanisms of

financial shocks embedded in recent theoretical models such as Brunnermeier

and Sannikov (2014) where big negative shocks matter, while small shocks ap-

pear to be quickly and easily absorbed without important real consequences.

From a methodological point of view, the approach employed here repre-

sents an alternative to that of Barnichon and Matthes (2018), which consists of

the estimation, via maximum likelihood, of a nonlinear Vector Moving Average.

Both methodologies are flexible enough to handle various types of nonlinear-

ities but have different strengths. The approach of Barnichon and Matthes

(2018) can accommodate various types of identification of the economic shock

beyond the recursive scheme. Our method does not require any assumption

about the probability distribution of economic shocks; moreover, the linear

VAR is nested in our model, so that we can test for the significance of various

kinds of nonlinearities by using standard techniques. Both methods are valid

alternatives that can be used to study nonlinear transmission mechanisms.

The remainder of the paper is organized as follows. Section 2 discusses

the econometric approach. Section 3 presents the results and some robustness
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checks. Section 4 concludes.

2 Econometric approach

In this section, we present our econometric approach and show how to esti-

mate the nonlinear effects of financial shocks on macroeconomic and financial

variables.

2.1 The nonlinear model

We assume that the macroeconomic and financial variables in the n-dimensional

vector xt have the following structural representation

xt = ν + β(L)g(uft) +B(L)ut (1)

where ut is a serially independent n-dimensional vector of structural shocks

with zero mean and covariance equal to the identity matrix, uft is the financial

shock and is the f -th element of the vector ut, g(uft) is a contemporaneous

nonlinear function of the financial shock, ν is a vector of constants, B(L) =

(I+B1B
−1
0 L+B2B

−1
0 L2+...)B0 is a n×n matrix of impulse response functions

and β(L) = β0 +β1L+β2L
2 + ... is a n-dimensional vector of impulse response

functions. One can think of (1) as a generalization of the standard Vector

Moving Average (VMA) representation underlying Structural VARs, which, as

discussed below, gives origin to nonlinear dynamics for the shock uft. Model

(1) can also be seen as a restricted version of the Volterra representation of

yt.4 Of course there could be other shocks having nonlinear dynamics but they

are not modeled here. Nonetheless, in the simulation section, we assess the
4See Priestley (1988).
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performance of our econometric procedure in a more general context where

also other shocks have a nonlinear transmission.

We further develop the model and derive an equivalent representation,

which is the one we will estimate. Assuming invertibility of the linear term

B(L)ut, we obtain the representation

D(L)xt = µ+D(L)β(L)g(uft) +B0ut (2)

where D(L) = (I +B1B
−1
0 L+B2B

−1
0 L2 + ...)−1 = I − D̃(L), and µ = D(1)ν.

For simplicity, we also assume that no lags of g(uft) enter equation (2), i.e.

D(L)β(L) = β0. We will relax this assumption as a robustness check. The

model can therefore be rewritten as

xt = µ+ D̃(L)xt + β0g(uft) +B0ut

= µ+ D̃(L)xt + β0g(uft) + α0uft +B−f0u−ft (3)

where α0 is the column of B0 corresponding to the financial shock, B−f0 is

the matrix formed by the n − 1 columns of B0 excluding α0 and u−ft is the

(n − 1)-dimensional vector containing the remaining structural shocks other

than uft. Notice that the linear SVAR is nested in our model, so that we can

test for the significance of the nonlinear term by using standard methods.

From equations (2) and (3) it is seen that the impulse response functions

to uft and g(uft) are α(L) = D(L)−1α0 and β(L) = D(L)−1β0 respectively.

The total effect is nonlinear and can be found by combining the two terms as

IRF(g(uft), uft = u∗) = α(L)u∗ + β(L)g(u∗). (4)
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So, if nonlinearity is unimportant, i.e. β(L) = 0, then the impulse response

functions will be identical to those of a linear SVAR. On the contrary, if

nonlinearity is actually important, then the propagation mechanisms of the

financial shock will differ.

Now, suppose g(uft) = u2ft, which, as discussed below, is our baseline

specification. The effect of the financial shock will then be

IRF(u2ft, uft = u∗) = α(L)u∗ + β(L)(u∗)2. (5)

A few remarks are in order. First, in equation (5) the coefficients β(L) generate

an asymmetry between positive and negative shocks. In particular, when

u∗ = 1, the effect is α(L) + β(L). When u∗ = −1, the effect is −α(L) + β(L).

Second, a nonlinearity in terms of magnitude also arises. For u∗ = 1, the

effect is α(L) + β(L); for u∗ = 2, the effect is α(L)2 + β(L)4. Hence a shock

of double magnitude will not have twice the effects.

Notice that other types of nonlinearity can be considered. For instance, one

can consider state dependence. Suppose we are interested in understanding

whether the financial shock has different effects in different regimes. Let dt be

the state variable of interest, and let dt = 1 if regime one is in place and dt = 0

if regime two is. Defining g(uft) = dtuft, the impulse response functions are

IRF(dtuft, uft = u∗) = α(L)u∗ + β(L)dtu
∗

so that α(L)u∗ + β(L)u∗ is the response in regime one and α(L)u∗ is the

response in regime two.

The framework can also be extended to consider more than one nonlinear

function. For instance, one can include both state dependence and the square
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term

IRF(dtuft, u
2
ft, uft = u∗) = α(L)u∗ + β(L)(u∗)2 + γ(L)dtu

∗ (6)

where γ(L) is another column vector of impulse response functions. In this

specification, the nonlinearity depends on the sign and the size of the shock as

well as the regime in place. We explore this extension in the empirical section.

2.2 Identification and estimation

The estimation of the effects of the financial shock is based on a two-step

procedure. In the first step, an estimate of the financial shock is obtained.

In the second step, the nonlinear effects of the shock are obtained using the

estimated shock and its nonlinear function as regressors in equation (3).

Step 1

The financial shock is estimated using GZ’s strategy.5 Let us briefly recall their

approach. They estimate a VAR with a set of slow-moving variables ordered

before the excess bond premium (EBP), and a set of fast-moving variables

ordered after. They then impose a Cholesky scheme where the financial shock

is the f -th element of the Cholesky representation, where f corresponds to the

position of the excess bond premium in the vector xt.

We adapt their identification strategy to our framework by imposing:

(A) B0 is lower triangular, as in GZ. This entails that the financial shock

has no contemporaneous effect on the slow-moving variables through the linear

term, i.e. α0,j = 0, j = 1, ..., f − 1;
5Note that more recently other identification procedures have been proposed. For in-

stance Caldara et al. (2016) employs a penalty function approach. While acknowledging
that other schemes can be successful in identifying financial shocks, we believe the seminal
GZ procedure is the best starting point for our analysis.
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(B) the financial shock does not affect the slow-moving variables on impact

through the nonlinear term, i.e. β0,j = 0, j = 1, ..., f − 1, consistently with

assumption (A);

(C) the financial shock does not affect the EBP on impact through the

nonlinear term, i.e. β0,f = 0.6

Under restrictions A, B and C, it is seen that the financial shock is identified

and estimated consistently as in GZ, simply by imposing a Cholesky scheme

in a standard linear VAR, despite the fact that the standard VAR is misspec-

ified since the true model is the VARX in equation (3). This is shown in the

Appendix. The intuition of this result is that restrictions A, B and C imply

that the nonlinear term enters only the equations of the fast-moving variables.

Therefore the first f shocks, including the financial shock, are simply combi-

nations of the current and past values of the variables as in the linear VAR.

Note that while assumption A is necessary to identify the shock, assump-

tions B and C could be already satisfied in the data and therefore not imposed

ex-ante. Indeed, in the robustness section we estimate the model without im-

posing restrictions B and C and find almost identical results, suggesting that

they hold in the data. This shows that the truly important assumption is A,

which in turn implies that identification in the nonlinear model is, de facto,

the same as in the linear model.

Step 2

We use the estimates of the shock and its nonlinear functions, ûft and g(ûft),

as regressors in model (3). We estimate (3) equation by equation with OLS

imposing B and C, obtaining an estimate of α0, β0, D̃(L) andD(L) = I−D̃(L).
6Note that the model even under A, B and C is still more general than a linear SVAR

under A, i.e. the linear SVAR is nested in our model. The reason is that there is the
nonlinear term which enters the equations of the fast-moving variables.
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An estimate of the impulse response functions is obtained as α̂(L) = D̂(L)−1α̂0

and β̂(L) = D̂(L)−1β̂0, and the total effects are obtained from equation (4).

It should be noted that, unlike other approaches in the literature, ours does

not require any distributional assumptions on the shocks, in addition to serial

independence and orthogonality of structural shocks.

Note also that, having a narrative measure of the financial shocks, one could

skip step 1 and go directly to estimation of the VARX (3), without imposing

identification restrictions. However, if the narrative measure is affected by an

error, direct estimation of the VARX would produce biased estimates. An

adaptation of the model to allow for proxy SVAR identification is presented

in Debortoli et al. (2022).

2.3 Variance decomposition and inference

Let us now consider the variance decomposition. Standard formulas are not

appropriate in the present context, since ûft and g(ûft) are not orthogonal

in general. A simple way to overcome this problem is to compute, for each

horizon, the prediction error due to uft, including the nonlinear term, and

divide its sample variance by the sample variance of the total prediction error.

Precisely, the h-step ahead prediction error implied by equation (1) is

et+h =
h−1∑
k=0

βkg(uft) +
h−1∑
k=0

Bkut+h−k

and, according to equation (4), the component of the prediction error driven

by the financial shock is given by

ef,t+h =
h−1∑
k=0

αkuft +
h−1∑
k=0

βkg(uft).

10



We use the estimated coefficients and shocks to estimate ef,t+h and et+h ac-

cording to the equations above. The variance contribution is then computed

as the ratio of the sample variances.

Finally, the confidence bands of the impulse responses are constructed using

a nonparametric bootstrap procedure which accounts for the generated regres-

sors problem in the second step. The approach relies on the following steps: (i)

we bootstrap the estimated shock uft obtained from step 1 and the estimated

VARX residuals obtained by estimating (3); (ii) using the bootstrapped shock

and residuals and the estimated coefficients of equation (3), we create a new

sample; (iii) we re-estimate the financial shock as in step 1 and model (3) as

in step 2 with the new sample and compute the impulse response functions.

We repeat steps (i)-(iii) 1000 times to construct the confidence bands of the

impulse responses.

2.4 Simulations

We have shown in the previous Section that the financial shock is identified

and estimated consistently under assumptions A, B and C. We now use a

simulation exercise to assess our econometric procedure in small samples.

We consider a three-variables VARX(1) where x1t is the slow moving vari-

able, x2t is the excess bond premium, and x3t is the fast moving variable. The

financial shock, uft, is the second shock in ut. We assume ut ∼ N(0, I) and

g(uft) = u2ft. The shock uft has zero impact effects on x1t and non-zero effects

on x2t and x3t. The coefficients are

D̃1 =


0.2 0.4 0.2

0.3 0.7 −0.1

0.3 −0.2 0.6
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and the impact effects are

B0 =


0.6 0 0

−0.3 0.5 0

−0.4 −0.1 0.5


Moreover, we assume that β0 = [0 0 0.5]′ so that the restriction β0,j = 0, j =

1, 2, holds and µ = 0. The parametrization is of course arbitrary. This however

does not affect the results as long as assumptions A, B and C are satisfied.

With other parametrizations, the same conclusions about the performance

of our procedure are reached. The restriction implies that the nonlinear term

does not enter the first and second structural equation. We generate N = 1000

datasets of length T = 518 (as in the dataset used in the empirical section).

For each dataset, we apply our two-step procedure and estimate α(L) and

β(L). Panel (a) of Figure 1 displays the results. The left column plots α(L),

while the right column reports β(L). The solid black lines are the mean (across

dataset) point estimates, the gray area is the region included in the 16th and

84th percentile of the point estimates distribution and the dash-dotted line is

the theoretical response. The mean responses and the theoretical ones exactly

overlap, suggesting that our procedure is successful in estimating the effects

of the financial shock.

In a second simulation, we use the same value of the parameters but we

assume that the nonlinear function does not have any effect on any of the three

variables. The simulation is performed as before with the only difference that

now β0 = [0 0 0]′. Panel (b) of Figure 1 displays the results. Our procedure

is able to detect that the nonlinear term does not have any impact (second

column).
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In the third simulation, we repeat the first simulation assuming a different

distribution for uft. More specifically we assume a Pearson type IV distribution

with zero mean, standard deviation equal to 1, skewness equal to 0.5 and

kurtosis equal to 4. Panel (c) reports the results of the simulation. As before,

the procedure is able to estimate the true effects. The procedure, as discussed

earlier, works independently of the type of distribution of the shock.

In the fourth simulation we extend the model assuming that also u3t has

nonlinear effects. The model therefore becomes

xt = D̃1xt−1 + β0u
2
ft + δ0u

2
3t +B0ut (7)

where δ0 = [0 0 − 0.2]′. Notice that the conditions for identification are

satisfied. Panel (d) reports the results. Again, the estimated effects and the

true effects overlap, suggesting that the procedure is robust even when other

shocks have a nonlinear transmission.

Finally, we perform a simulation to assess the validity of our bootstrap

procedure. We generate N = 1000 datasets identical to the first simulation

exercise. For each dataset, we estimate the impulse responses α(L) and β(L)

using our two-step approach and apply our bootstrap procedure. We con-

struct bootstrap confidence bands by taking the 16th and 84th percentiles of

the estimated impulse responses for each sample and then average both per-

centiles across the different samples. We then compare these with the correct

confidence bands, obtained by taking the 16th and 84th percentiles of the dis-

tribution of impulse response point estimates across each dataset. Figure 2

shows the results. The left column plots the bands corresponding to α(L),

while the right column reports those corresponding to β(L). The gray area

is the confidence region obtained using the bootstrap procedure, while the
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dash-dotted lines correspond to the correct confidence bands. Overall, the

bootstrap procedure has the correct coverage, properly capturing the uncer-

tainty surrounding the estimated impulse responses.

3 Results

In our empirical application we use monthly US data spanning the period

1973:M1 - 2016:M8. In our baseline specification, the vector xt in equation (3)

includes the following variables (in parenthesis, the abbreviation used through-

out the paper), in the following order: the log of industrial production (IND-

PRO), CPI Inflation (CPI), the unemployment rate (UNRATE), the GZ excess

bond premium index (EBP), the Chicago Fed’s National Financial Conditions

Index (NFCI),7 the S&P Composite Stock Price Index (SP500) and the federal

funds rate (FFR).8 We use five lags in D̃(L). We set g(uft) = u2ft since the

quadratic function can accommodate both sign and size asymmetries.

3.1 The financial shock

Figure 3 plots the financial shock (top panel) estimated in the first step and its

square (bottom panel). We observe two major positive spikes in August 2002

and November 2008, of about 4 and 6 standard deviations respectively, which
7The Chicago Fed’s National Financial Conditions Index (NFCI) provides a weekly es-

timate on U.S. financial conditions in money markets, debt and equity markets and the
traditional and shadow banking systems. The index is a weighted average of 105 mea-
sures of financial activity. When the NFCI is positive, financial conditions are tighter than
average. The methodology used to compute the NFCI is described in Brave and Butters
(2012).

8Data on industrial production, the CPI deflator, the unemployment rate and the NFCI
index is retrieved from the Federal Reserve Economic Data (FRED). The federal funds rate
is the effective federal funds rate until 2008:M8. From 2008:M9 - 2016:M8, it corresponds to
the shadow rate of Wu and Xia (2016). The S&P Composite Stock Price Index is retrieved
from Robert Shiller’s webpage.
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correspond to the stock market downturn of 2002 and the global financial crisis.

We also observe two major negative spikes, of about 5 standard deviations, in

November 1987 and December 2001, which reflect the rebound from the stock

market crash of 1987 and 9/11 respectively. In general, we observe a number

of large financial shocks in connection with three key events of turbulence

in the history of US financial markets: the stock market crash of 1987, the

Dot-com bubble of the early 2000s and the 2008 financial crisis. In contrast,

the period between 1990 and 2000 is characterized by low volatility of the

shock. The financial shock exhibits high kurtosis (equal to 9), meaning that

the distribution of the shock is characterized by substantially fatter tails with

respect to a normal.

Overall, the shock seems to effectively capture key developments in US

financial markets. In the following subsections, we evaluate the effects of the

financial shock and its square on macroeconomic and financial variables.

3.2 Is nonlinearity significant?

Figure 4 reports the results of our two-step procedure using the squared shock.

The black solid lines are the point estimates, while the gray areas are the 68%

and 90% confidence bands. The first column shows the linear response to the

financial shock, while the second column reports the responses of the square

term estimated in the second step. The horizontal axis measures time in

months from impact to 48 months after innovations have occurred.

The responses to the linear term (first column) are very much in line with

previous findings in the literature (see GZ). The financial shock significantly

reduces output and inflation and increases the unemployment rate, thus be-

having like a typical demand shock. The effects on industrial production and
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unemployment are persistent and sizable. Additionally, the shock leads to a

short-run increase in the NFCI index, highlighting a worsening of overall fi-

nancial conditions, and to a marked and persistent decline in stock prices. The

federal funds rate declines with a few months of delay, suggesting an endoge-

nous monetary easing in response to the adverse economic developments.

Focusing on the responses to the nonlinear function of the financial shock

(second column), the square has significant effects on real activity and finan-

cial variables. We observe a persistent decline in industrial production and

a persistent increase in the unemployment rate. This result implies that the

reduction in industrial production and the increase in unemployment following

a bad financial shock are significantly amplified by the nonlinear term. Hav-

ing a closer look at financial variables, the nonlinear effects are particularly

relevant for stock prices, both in terms of magnitude and persistence. Overall,

the results point towards significant nonlinear effects of financial shocks.

3.3 Nonlinear effects of financial shocks

Let us now focus on the total effects of financial shocks by summing the two

components whose separate effects have been discussed above.

The square term introduces two potential asymmetries, one in terms of the

sign of the shock, and one in terms of the size of the shock. In the following,

we assess their role for the overall response of macroeconomic variables to

financial shocks. Figure 5 shows the overall effects of positive (solid black line)

and negative (dotted red line) financial shocks for different magnitudes of the

shock: one, two and four standard deviations. Negative shocks are normalized

to have the same sign as positive shocks, for the sake of comparison.

When considering a shock of one standard deviation, negative and positive

16



shocks have very similar effects. The responses basically overlap for inflation,

the excess bond premium, the NFCI index and the federal funds rate, while

the effects on industrial production and the unemployment rate appear slightly

larger for positive shocks. In this case, stock prices are the only variable

displaying a significantly different response to positive and negative shocks.

The picture changes substantially when we consider shocks of larger mag-

nitudes: bad financial shocks have markedly larger effects. The asymmetry

between positive and negative shocks is clear in the case of a shock of two

standard deviations and becomes very large in the case of a four standard de-

viations shock (third column). To give some figures, a four standard deviations

positive shock leads to a decline in industrial production of about 2.8 percent

after one year, while a negative shock of the same magnitude increases indus-

trial production by 1.6 percent. For the unemployment rate, a negative shock

produces a decrease of 0.3 percentage points, while a positive shock implies a

rise of 0.7 percentage points. For stock prices, positive shocks have more than

twice the effect of negative shocks.

The results seem to be very much in line with the theoretical predictions

in Brunnermeier and Sannikov (2014). Relatively small shocks are easily ab-

sorbed by economic agents and the effects, although significant, are modest

and symmetric. However, the size of the effects increases more than linearly

with the size of the shock. Big financial disruptions have very large effects,

while large financial expansions do not.

At this point, a natural question is how relevant financial shocks and their

nonlinearities are in explaining fluctuations in the macroeconomic and financial

variables we include in the analysis. To address this question we compute

for each variable a historical decomposition, which allows us to evaluate the

relative importance of the different disturbances at each point in time. Figure
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6 reports the results. The black solid line represents, for each variable, the

sum of the contributions of each shock in the system, that is the variable in

deviation from its deterministic components. The colored areas represent the

contributions of the financial shock, its square and the remaining shocks in

the system, which we label as “residual” for simplicity. The residual shocks

include any macroeconomic shock other than the financial one.

Until the late 90s, fluctuations in industrial production, with the exception

of a few years at the end of the 80s, are essentially explained by the residual

shocks. The role of financial shocks was very modest in the pre-2000 sample.

However, after 2000, financial shocks become a major driver of fluctuations

in industrial production. In particular the shock substantially contributed to

deepening the economic recessions of 2001 and 2008. Notably, the square of

the financial shock plays a marked amplification role in both crises, magnifying

the contribution of financial shocks to the decline in industrial production. In

the aftermath of the Great Recession, the role of financial shocks essentially

doubles due to the nonlinear component. A very similar pattern is present for

stock prices and the unemployment rate. In linear SVAR models, the nonlinear

component remains uncovered and this can explain why financial shocks have

been found in previous contributions to account for a relatively small part of

real economic activity fluctuations. When the nonlinear part is taken into

account, the effects of financial shocks are substantially magnified, at least in

the post-2000 period.

By comparing the time series of the square of financial shocks (see Fig-

ure 3) with the historical decomposition, a clear-cut result emerges. When

large shocks occur, the nonlinear term significantly amplifies the transmission

of financial shocks to industrial production, unemployment and stock prices,

confirming that only big bad financial shocks generate quantitatively impor-
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tant effects on the real economy. Notice, however, that the square of the shock

does not seem relevant in explaining fluctuations in inflation, the excess bond

premium and the federal funds rate. This is not too surprising, given that

the relevance of the nonlinear term is small for those variables, see Figure 4.

Overall, the results are consistent with the impulse responses presented above,

which point towards the size and the sign of the shock as the key sources of

nonlinearity of financial shocks.

Table 1, lower panel, reports the variance decomposition computed as ex-

plained in Section 2.3. At the two-year horizon, the financial shock, including

both the linear and nonlinear term, explains around 32%, 33% and 43% of

the variance in industrial production, unemployment rate and stock prices,

respectively. These numbers point to a more important role of the financial

shock for real economic activity relative to that typically found in linear VARs.

Indeed these numbers are substantially larger than those of the upper panel of

the table, obtained by considering only the component of the prediction error

driven by the linear term.9 In conclusion, the variance decomposition confirms

an important role for the nonlinear term and the relevance of nonlinearities

for the transmission of the financial shock.

3.4 Adding state dependence

Another potential source of nonlinearity might be represented by the state of

the economy. When the economy is going through a downturn, the effects of

financial shocks are amplified than in periods of expansion. Here we assess this

prediction by estimating the model augmented with a term which captures the
9Note however that the two components of the prediction error, the one driven by the

linear term and the one driven by the nonlinear term, are correlated to some extent, so that
the variance explained by the two terms is not equal to the sum of the two variances.
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state of the economy. The model is now

xt = ν + β(L)u2ft + γ(L)dtut +B(L)ut (8)

where dt is a dummy variable indicating which of the two possible states is in

place. The VARX representation is

xt = µ+ D̃(L)xt−1 + β0u
2
ft + γ0dtuft + α0uft +B−f0(L)u−ft

As before, we assume α0,i = 0 for i = 1, 2, 3, β0,i = 0 for i = 1, 2, 3, 4. We also

impose γ0,i = 0 for i = 1, 2, 3, 4, so to make sure that the interaction term does

not appear in the slow moving variables’ equations. The impulse responses in

this model are as in equation (6).

We consider several state variables: tightness of financial conditions, as

reflected by the NFCI being above its average; monetary policy tightening

cycle, as reflected by the 10-year government bond being higher than its 5

years moving average as in Alpanda, Granziera and Zubairy (2020); recessions

and booms, as reflected by the unemployment rate being higher or lower than

its average; high-low macroeconomic uncertainty, as reflected by the Ludvig-

son, Ma and Ng (2021) measure of uncertainty being higher or lower than its

average.

For each of these variables we estimate the model and compute the impulse

response functions. The only state-dependence that matters is the one asso-

ciated to macroeconomic uncertainty, see Figure 7. The first column reports

α(L), the second column reports β(L), while the third column shows γ(L).

The shock is assumed to be u∗ = 1. In this case, the effects of financial shocks

are significantly amplified in a regime of high uncertainty for all the variables
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but inflation and the federal funds rate. The effects of the square term are

quantitatively very similar to those obtained in the baseline model and signif-

icant. The same nonlinear amplification mechanisms obtained in the baseline

model are at work even in this specification, but are enhanced in periods of

high macroeconomic uncertainty.

Figures 8 reports γ(L) for the the other three state variables. In none of

the three cases does state-dependence generate significant effects on any of the

variables. On the contrary, the square term remains significant at all times

(not reported in the figure but available upon request).

3.5 Sign and size asymmetries

Here we compare our baseline results with a version of the model which uses

the absolute value of the shock, instead of the square. The impulse response

functions are now

IRF(|uft|, uft = u∗) = α(L)u∗ + β(L)|u∗| (9)

Figure 9 reports the results. The nonlinear term has significant effect on

industrial production, unemployment and stock prices. Again, for these three

variables the signs are the same as those of the linear term: the nonlinear term

reinforces the effects of an exogenous increase in the excess bond premium.

The third column shows the effects of positive (solid black line) and negative

(dotted red line) financial shocks using the nonlinear function (9). As before,

the negative financial shock is normalized to have the responses of the same

sign of a positive shock. In line with the findings of Barnichon, Matthes

and Ziegenbein (2020), the evidence points to a significantly more important

role of financial disruptions than expansions: the effects of an increase in the

21



excess bond premium are larger than the effects of a decrease, especially for

industrial production, unemployment and stock prices. Note that, with the

absolute value, the size of the shock is no longer a source of nonlinearity. Thus,

in the light of the empirical evidence discussed in the previous subsection, the

asymmetry obtained here using the absolute value can be thought of as a sort

of average of big shocks with large asymmetric effects and small shocks which

are essentially symmetric.

At this point, a natural question is which nonlinear term, either the square

or the absolute value, is more appropriate to capture the nonlinear transmis-

sion of the financial shock. To this end, we estimate a version of our model

that includes both the square and the absolute value of the financial shock as

sources of nonlinearity. We conduct, first, two simulation exercises to assess

whether our model with both the square and absolute value of the shock is

able to properly recover the impulse responses if the true nonlinearity is either

the square or the absolute value. The simulation exercises are identical to the

first simulation exercise of Section 2.4, with the difference that both the square

and the absolute value of the second shock are included in the second step.

Figure 10 shows the results when the true nonlinearity is the square (Panel

(a)) or the absolute value (Panel (b)). The mean responses and the theoretical

ones overlap, suggesting that model is successfully estimating the effects of the

financial shock in both cases.

Figure 11 shows the results when we estimate the model using actual data.

The first column shows the effects of the linear term of the shock, while the

second and third columns show, respectively, the absolute value and the square.

A clear result emerges. Once both nonlinearities are considered, only the

square of the financial shock matters, highlighting the importance of both size

and sign asymmetries for the transmission of financial shocks.
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Table 2 presents the results of a likelihood ratio test where we compare the

model estimated using both the square and the absolute value of the financial

shock with the models that only use either the square or the absolute value.

The first row presents the statistic and p-value of the test when the null is

that the coefficients associated to the absolute value are all equal to zero. The

second row presents the statistic and p-value of the test when the null is that

the coefficients associated to the square are all equal to zero. We reject the null

only in the second case, suggesting the relevance of the square of the financial

shock.

3.6 Robustness

In what follows, we assess the robustness of our baseline results to two different

specifications of the model.

First, we relax the restriction D(L)β(L) = β0 and include also the lags of

the nonlinear term, i.e. D(L)β(L) = β̃(L) = β0 + β̃1L+ .... Figure 12 reports

the impulse response functions. The estimated responses are very similar,

almost identical, to those obtained in the baseline model.

Second, we estimate the second step by relaxing the assumption that the

nonlinear term has no contemporaneous impact on industrial production, infla-

tion, the unemployment rate and the excess bond premium. Figures 13 and 14

report the results. All in all, the main conclusions regarding both the impulse

response analysis and the historical decomposition are essentially unchanged.

If anything, the confidence bands of the nonlinear term are slightly wider when

no restriction on impact is imposed on the first three variables in the system.

The fact that the results are very similar depends on the fact that none of

the impact effects of the nonlinear term on the slow-moving variables and the
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excess bond premium is significantly different from zero. In other words, the

assumption β0,j = 0 appears to hold in the data and constitutes a validation

of the restrictions discussed in Section 2.2.

4 Concluding remarks

Financial shocks play an important role for the real economy and the financial

markets only when they are negative and big (two standard deviations or

more). One standard deviation (or smaller) shocks and large positive shocks

play a modest role. Two large negative shocks are found in early 2000 and

2008, both contributing significantly to the economic downturn that followed.

This marked nonlinearity is obtained using a new econometric procedure

based on the estimation of a VMA representation which includes a nonlinear

function of the financial shock, with the financial shock identified along the

lines of Gilchrist and Zakrajšek (2012).

Barnichon, Matthes and Ziegenbein (2020) show that bad financial shocks

have larger effects than good shocks. Here, complementing their analysis, we

show that this sign asymmetry exclusively originates from big shocks, since

small shocks (either positive or negative) are largely symmetric. Our find-

ings are in line with the theoretical predictions in Brunnermeier and Sannikov

(2014), where both sign and size asymmetries in the amplification of financial

shocks emerge.
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Appendix

In this Appendix we show that if the true model is the VARX (3), with B0

lower triangular and β0j = 0 for j = 1, . . . , f , then the financial shock uft is

identical to the financial shock of a misspecified (linear) VAR model where

we impose a Cholesky identification scheme. As a result, we can consistently

estimate the financial shock following GZ’s strategy as explained in Section

2.2, Step 1.

Consider the misspecified VAR model

xt = α + C(L)xt−1 + ηt,

where ηt is orthogonal to xt−k, k > 0. Under the recursive identification

scheme the VAR innovations are linked to the (misspecified) structural shocks

ũt by the relation Γũt = ηt, where Γ is the lower triangular matrix such that

ΓΓ′ = E(ηtη
′
t).

Now, let Af be the submatrix of A including only the first f rows of A.

Then, by imposing our restrictions β0j = 0, j = 1, . . . , f , the first f equations

in (3) can be written as

xft = µf +
D̃(L)f

L
xt−1 +Bf

0ut.

By comparing the VAR and the VARX (and observing that both ηt and ut are

orthogonal to past x’s) it is seen that the first f equations are the same, so

that

µf = αf ,
D̃(L)f

L
= C(L)f , Bf

0ut = ηft = Γf ũt.

Since both B0 and Γ are lower triangular, all entries of the last n−f columns of
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both Bf
0 and Γf are zero, so that, denoting by Bff

0 and Γff the f ×f matrices

obtained by eliminating these columns from Bf
0 and Γf , respectively, we get

Bff
0 uft = Γff ũft . Since E(uft u

f ′

t ) = E(ũft ũ
f ′

t ) = If and both Bff
0 and Γff are

lower triangular, uniqueness of the Cholesky factorization implies Bff
0 = Γff

and uft = ũft .

In conclusion, under our assumptions, the first f equations of the VARX

model are identical to the corresponding equations of the VAR model where

the nonlinear term is omitted, and the first f Cholesky shocks are the same.10

If follows that GZ’s financial shock is estimated consistently even if the VAR is

misspecified. Of course, the remaining n− f Cholesky shocks and all impulse-

response functions are not.

The above result is still valid under more general conditions. In particular,

the assumption that the lags of the nonlinear term do not appear in equation

(3), D(L)β(L) = β0, can be relaxed and we can allow g(uft−k), k > 0, to affect

the slow-moving variables (but not the EBP).

10It is well-known that the shocks obtained with the Cholesky identification scheme are
equal, up to a normalization, to the residuals of a recursive VAR. By observing this, it is
seen that these shocks can be obtained without resorting to the fast moving variables and
the related equations.
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Tables

Linear
h = 0 h = 12 h = 24 h = 48

INDPRO 0.0 15.0 17.7 11.9
CPI 0.0 2.4 2.5 2.6

UNRATE 0.0 14.0 19.2 14.5
EBP 97.6 81.2 78.8 67.7
NFCI 3.6 6.7 6.9 6.9
SP500 8.8 19.0 16.0 13.3
FFR 0.7 2.5 6.2 8.0

Total
h = 0 h = 12 h = 24 h = 48

INDPRO 0.0 20.5 32.2 28.4
CPI 0.0 2.5 2.6 3.2

UNRATE 0.0 19.4 33.4 31.2
EBP 97.6 86.0 83.4 75.6
NSCI 6.3 11.9 10.8 9.0
SP500 14.9 38.0 43.4 41.8
FFR 0.7 2.9 8.1 11.0

Table 1: Variance Decomposition.
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Likelihood-ratio test
Statistic P-value

Baseline model 2.98 0.89
Model with absolute value 20.91 0.00

Table 2: Likelihood-ratio test.
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Figures

Panel (a) Simulation 1 Panel (b) Simulation 2

Panel (c) Simulation 3 Panel (d) Simulation 4

Figure 1: Monte Carlo Simulations. Black solid lines are the average of the point es-
timates, the gray areas are the interval between the 16th and the 84th percentile and
the 10th and 90th percentile respectively of the distribution of the point estimates.
The dash-dotted blue lines are the theoretical responses.

33



Figure 2: Monte Carlo Simulations. The gray areas are bootstrap confidence bands.
The dash-dotted blue lines are the correct confidence bands.
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Figure 3: Financial shock (light gray line) and its square (dark gray line) obtained
from the first step.
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Figure 4: Impulse response functions of the VARX using g(uft) = u2ft. Black solid
lines are the point estimates, the gray areas the 68% and 90% confidence bands of
the financial shock.
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Figure 5: Impulse response functions of the VARX using g(uft) = u2ft. Black solid
lines are the point estimates, the gray areas the 68% and 90% confidence bands of the
bad financial shock. Red dotted lines are the point estimates of the good financial
shock.
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Figure 7: Impulse response functions of the VARX using g(uft) = u2ft and dt = 1
if macroeconomic uncertainty is high. Black solid lines are the point estimates, the
gray areas the 68% and 90% confidence bands of the financial shock.
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Figure 8: Impulse response functions of the VARX using g(uft) = u2ft and dt = 1 if
financial conditions are tight (first column), interest rates are high (second column)
or the economy is in a recession (third column). Black solid lines are the point
estimates, the gray areas the 68% and 90% confidence bands of the financial shock.
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Figure 9: Impulse response functions of the VARX using g(uft) = |uft|. Black solid
lines are the point estimates, the gray areas the 68% and 90% confidence bands of
the financial shock.
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Panel (a) Simulation 1 Panel (b) Simulation 2

Figure 10: Monte Carlo Simulations. Black solid lines are the average of the point
estimates, the gray areas are the interval between the 16th and the 84th percentile
and the 10th and 90th percentile respectively of the distribution of the point esti-
mates. The dash-dotted blue lines are the theoretical responses.
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Figure 11: Impulse response functions of the VARX using g(uft) = |uft| and
g(uft) = u2ft. Black solid lines are the point estimates, the gray areas the 68%
and 90% confidence bands of the financial shock.
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Financial Shock - 1 standard deviation
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Financial Shock - 2 standard deviations
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Figure 12: Impulse response functions of the VARX using g(uft) = u2ft and 5 lags
of the nonlinear term. Black solid lines are the point estimates, the gray areas the
68% and 90% confidence bands of the bad financial shock. Red dotted lines are the
point estimates of the good financial shock.
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Financial Shock - 1 standard deviation
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Financial Shock - 2 standard deviations
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Figure 13: Impulse response functions of the VARX using g(uft) = u2ft and leaving
the impact response of INDPRO, CPI, UNRATE and EBP to the nonlinear term
unrestricted. Black solid lines are the point estimates, the gray areas the 68% and
90% confidence bands of the bad financial shock. Red dotted lines are the point
estimates of the good financial shock.
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Figure 14: Historical decomposition using g(uft) = u2ft and leaving the impact
response of INDPRO, CPI and UNRATE to the nonlinear term unrestricted.
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