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Abstract

We introduce noisy information into a standard present value stock price model. Agents

receive a noisy signal about the structural shock driving future dividend variations. The

resulting equilibrium stock price includes a transitory component —the “noise bubble”—

which can be responsible for boom and bust episodes unrelated to economic fundamen-

tals. We propose a non-standard VAR procedure to estimate the structural shock and

the “noise” shock, their impulse response functions and the bubble component of stock

prices. We apply such procedure to US data and find that noise explains a large fraction

of stock price volatility. In particular the dot-com bubble is entirely explained by noise.

On the contrary the stock price boom peaking in 2007 is not a bubble, whereas the

following stock market crisis is largely due to negative noise shocks.
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1 Introduction

Stock markets react to news about events whose actual consequences on economic fun-

damentals are often highly uncertain. An international crisis may be resolved peacefully

or escalate into war; inventions may take a lot of time, or even fail, to produce impor-

tant technological improvements; a sovereign debt crisis may be solved by sound policy

measures or end up with a ruinous default. Thus, on the one hand, there are news which

anticipate major changes of future dividends; on the other hand, there are news whose

potential effects never materialize. Typically, when a piece of news arrives, investors do

not know which of the two types the news belongs to, but they have to take a decision

immediately. Since such decisions affect prices, part of stock prices fluctuations can be

driven by news unrelated to economic fundamentals.

In this paper we introduce noisy information into a standard present value stock price

model.1 Dividends are driven by a structural economic shock, let us say the “dividend”

shock. The effects of such shock are delayed, so that traders cannot see it by looking at

current dividends. Agents have some information about the current shock, in that they

see a signal, given by the sum of the dividend shock and a “noise” shock, not affecting

fundamentals.2 On impact, investors react to both the dividend shock and the noise

shock in just the same way, being unable to distinguish between them. As times goes

on, however, agents learn about the true nature of past dividend shocks by looking at

realized dividends, and adjust their initial response. Thus a noise shock announcing

good news leads to a kind of “rational exuberance”: dividends are expected to rise and

stock prices go up. But in the end agents realize that the shock was in fact noise and

the bubble bursts.

Thus, the noise shock can generate transitory boom and bust episodes unrelated to

the intrinsic value of equities, the “noise bubbles”. The key difference with the standard

theory of rational bubbles is that here bubbles are a component of what is usually referred

to as the “fundamental” value of securities, i.e. the present value of expected dividends.

Hence, unlike standard bubbles3 noise bubbles have nothing to do with multiple equilibria

and self-fulfilling expectations and are not ruled out by the transversality condition (see,

e.g. Santos and Woodford, 1997). Our theory is different from that presented in Adam,

Marcet and Nicolini (2007) because there agents are assumed to have limited information

about model’s parameters and form their expectations through a learning mechanism.

Here on the contrary agents know the model and information is limited only in that the

shocks are not observable.

1Campbell and Shiller, 1988.
2We follow here suggestions coming from the recent news-noise business cycle literature (Beaudry and

Portier, 2004, 2006, Christiano et al., 2008, Lorenzoni, 2009, Angeletos and La’ O, 2010).
3See e.g. Samuelson (1985), Tirole (1985), and more recently Martin and Ventura, (2012).
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The ideas presented here are not necessarily in contrast with other explanations of

bubbles. In particular, Abreu and Brunnermaier, 2003, show that, once a bubble has

started, it can survive despite the presence of rational arbitrageurs, who are aware that

the market will eventually collapse, but are willing to ride the bubble until it can generate

profits. This theory of bubble persistence does not explain why a bubble arises in the

first place. The authors ascribe the responsibility to irrational traders; while not denying

the role of irrational behavior, which is well documented in the literature,4 we show here

that rational bubbles may arise from imperfect information about the structural shocks

affecting fundamentals.

Noisy information has dramatic implications for empirical analysis: if agents do

not see the structural shocks, standard structural VAR methods fail. This is because

economic data reflect agents’ behavior, which in turn depends on their information.

If agents observe current shocks, the econometrician can in principle infer them from

existing data; but if agents do not distinguish the shocks, present and past values of

observable variables cannot embed the relevant information (Blanchard, Lorenzoni and

L’Huillier, 2010).

Despite this, in our theoretical setting, structural VAR methods can still be used suc-

cessfully, provided that identification is generalized to include dynamic transformations

of the VAR residuals. The reason is that, as times goes by, realized dividends reveal

whether past signals were true dividend shocks or noise. Hence, current dividend and

noise shocks, while not being combinations of current VAR residuals, are combinations

of future values of such residuals.5 A general treatment of dynamic structural VAR iden-

tification is found in Lippi and Reichlin, 1994. Here we propose a specific identification

scheme to recover the structural shocks along with the related impulse response functions

within a noisy information framework.6

In the empirical section we apply our structural VAR identification technique to

US stock market and dividend data. We find that noise shocks, while not affecting

fundamentals, explain a large fraction of stock price volatility at short and medium-run

horizons. On the other hand, the dividend shock has a limited impact in the short run,

but have permanent effects and explain a good deal of stock market fluctuations in the

long run. The component of log stock prices driven by noise measures the percentage

deviation of prices form the intrinsic value of stocks. Hence the historical decomposition

estimated with the VAR enables us to identify the duration and the size of past relevant

bubble episodes. The largest noise bubble of the last half century was the dot-com

4See e.g. Shiller, 2000.
5This feature is not shared by the business cycle models of Blanchard, Lorenzoni and L’Huillier, 2010

and Barski and Sims, 2012, where agents never learn completely the true nature of past structural shocks.
6See also the companion paper Forni, Gambetti, Lippi and Sala, 2013, where a similar news-noise

setting is applied to business cycle issues.
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episode starting in 1997:Q3 and ending in 2002:Q1; the peak was reached in the second

quarter of 2000, when prices deviated from the intrinsic value by 56%. The boom peaking

in 2007 was not a bubble, whereas the stock market crisis of 2008 was partially due to

negative noise shocks.

The reminder of the paper is organized as follows. In Section 2 we present the model.

Section 3 discusses the econometric implications and presents our dynamic, structural

VAR identification scheme. Section 4 presents our empirical results. Section 5 concludes.

2 Economics

The idea that stock prices are affected by news about economic and political happenings

is largely accepted. Figure 1 depicts the growth rate of the S&P 500 index as well

as vertical lines in coincidence of news about major economic and political events. In

many of these episodes, the index displays large drops and peaks. For instance the index

dropped by about 20% in coincidence of the Franklin National Bank collapse and the

Worldcom bankruptcy and increased by around 10% the quarter before the official end

of the Vietnam war.

The interpretation of the above findings, from a rational expectations perspective,

is that stock prices change because agents expect future dividends to change in conse-

quence of the event agents have become aware of. Figure 2 plots the quarterly series of

log-dividends and log-prices after four major episodes: the Watergate scandal and the

Franklin National Bank collapse, the end of the Vietnam War, the Worldcom bankruptcy,

and the Lehman Brothers bankruptcy. The series are normalized to zero in period 0

which is the period before the event occurs. The vertical line coincides with the event.

The drop in stock prices following the Lehman Brothers bankruptcy clearly anticipates

a decline of future dividends. This happens, but to a much lesser extent and with a

longer delay, also in other two episodes, namely the Vietnam War (with a reversed sign)

and the Watergate scandal. The fall in prices associated to the Worldcom bankruptcy,

however, are associated with a mild increase in future dividends. This last fact is hard to

reconcile with the rational expectation paradigm unless one admits the possibility that,

at the time the news arrives, agents are unable to predict its effects on future dividends.

The rational of this could be that agents are simply uncertain about the nature of the

shock behind the news. In other words, agents could be uncertain about whether the

shock leading Worldcom to bankruptcy is a bad financial shock with disastrous conse-

quences on the financial system or simply a temporary and isolated episode with no

further consequences on the economy. Below we develop formally a model based on this

idea.
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2.1 Noisy news in the present value model

We adopt here the log-linear version of the present value model proposed by Campbell

and Shiller, 1988. The log of price is determined by the expected discounted sum of

future log dividends. For the sake of simplicity we assume that the rate of return on

equities is fixed over time, so that the “discount rate” component of prices is constant.

Formally, the log of prices, pt, is given by

pt =
k

1− ρ
+

1− ρ
ρ

∞∑
j=1

ρjEtdt+j , (1)

where dt are dividends, expressed in logs, Et denotes expected value, conditional to

information available at time t, ρ = 1/(1 + eµ), where µ = E(dt− pt), and k = − log(1 +

r)− log ρ+ (1− ρ) log(1/ρ− 1), r being the constant rate of return on equities. Observe

that, in the above equation, speculative bubbles, as defined in standard textbook models,

are ruled out and stock prices are simply given by what is usually referred to as the

“fundamental” value.7

We assume that dividends are driven by a structural shock whose effects are slow and

delayed. This is essential to the model, since otherwise agents could infer the shock by

looking at current and past dividends. Precisely, we assume that dt follows the stochastic

equation

dt = dt−1 +

∞∑
j=1

cjat−j , (2)

were at is the structural economic shock, a gaussian white noise with variance σ2
a. The

corresponding impulse response function is the absolutely-summable sequence cj , j =

1, . . . ,∞. Notice that at does not affect dt on impact.

The basic novelty of our model is that agents have incomplete information. Precisely,

agents do not see the current dividend shock, but observe only the noisy signal

st = at + et, (3)

where et (the “noise”) is a gaussian white noise orthogonal to at at all leads and lags.

The signal sometimes conveys relevant information about the future (when et is small),

sometimes is essentially misleading (when et is large).

Finally, we assume that economic agents observe dt at time t, so that agents’ infor-

mation set at time t, say Ωt, is given by the linear space spanned by present and past

values of dividends and the signal st. Below we shall compare results for Ωt with what

obtained with complete information, i.e. the information set Φt, spanned by present and

past values of at and et.

7Equation (1) is derived in the Appendix.
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2.2 An illustrative example: The “noise bubble”

Let us begin by studying a simplified version of the model, which will be sufficient to

illustrate most of the economic implications of the general model, i.e.

dt = dt−1 + cat−1. (4)

Hence

Etdt+1 = Etdt + cEtat = dt + cEtat.

Moreover, Etdt+2 = Etdt+1 + cEtat+1. Since at+1 is unpredictable, we have Etdt+2 =

Etdt+1. Proceeding recursively we get

Etdt+j = Etdt+1 = dt + cEtat for j ≥ 1.

Applying equation (1) we get

pt =
k

1− ρ
+ dt + cEtat. (5)

Now let us consider the expectation of at. For the sake of comparison, we begin by

deriving the stock price equation under the assumption that at is observable, i.e. the

information set is Φt. Denoting by EΦ
t expectation conditional to Φt, we have EΦ

t at = at.

Using (4) and (5) we get

pΦ
t = pΦ

t−1 + cat. (6)

When a positive shock arrive, the market reacts immediately by rising prices by the

amount cat.

Coming to the present setting, at is not observed. The information set of the agents

is given by Ωt. By equation (4), dt reveals the past of at, but is completely uninformative

about the present. Similarly, past values of st do not tell anything about at. Hence, EΩ
t at

is simply the projection of at on st, i.e. (σ2
a/σ

2
s)st = (σ2

a/σ
2
s)at + (σ2

a/σ
2
s)et. Replacing

in (5), taking the first difference and rearranging terms gives

∆pt = c
σ2
a

σ2
s

(
at +

σ2
e

σ2
a

at−1

)
+ c

σ2
a

σ2
s

(et − et−1) . (7)

To interpret the above equation, let us assume that, at time t, the signal is perfectly

correct, i.e. the noise is zero and st = at. Agents do not see this, so that they are too

much cautious and under-react on impact, the coefficient being cσ2
a/σ

2
s , which is less than

the perfect information response c. After one period, however, by observing dt, agents

realize that the signal was indeed correct and adjust their behavior to get a cumulated

response equal to cσ2
a/σ

2
s + cσ2

e/σ
2
s = c.

At the opposite extreme, when the signal is completely false, i.e. the structural

economic shock is zero in t and st = et, agents are too much optimistic, if et is positive,
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or pessimistic, if et is negative, and over-react on impact, with coefficient cσ2
a/σ

2
s , which

of course is greater that the “correct” response zero. Notice that the impact response to

et is the same of at, since people cannot distinguish false news from true news on impact.

Again, after one period this kind of “rational exuberance” disappears and prices go back

to the previous level.

According to (7), the noise shock affects stock prices, though dividends are noise free.

Price changes are driven by two components, let us say the “structural component” or

the “intrinsic value” and the “noise component”. The latter is similar to a bubble, in

that it is not related to fundamentals. Noticeably, the effect of false news is transitory,

the cumulated response being zero (whereas the effect of true news is permanent, the cu-

mulated response being c > 0). Hence, the noise bubble is fated to burst, like traditional

bubbles.

On the other hand, there are important differences. In the present value model,

traditional bubbles are related to multiple equilibria; they arise because the economy is

shifting to an unstable equilibrium, for reasons which are not specified by the theory.

Sooner or later they burst, but the theory has nothing to say about when this will

happen. By contrast, the noise bubble (i) is part of the stable equilibrium; (ii) arise

when the market exaggerate the implications of current signals about future economic

fundamentals; (iii) lasts until agents learn that the signal was in fact noise.

Two interesting limit cases are σ2
e = 0, i.e. there is no noise at any t, and σ2

e → ∞,

i.e. false news are largely predominant. When σ2
e = 0, the signal st is equal to at, so

that agents can see the true economic shock. Obviously in this case the noise bubble is

not there and equation (7) reduces to (6).

Somewhat surprisingly, the noise bubble disappears even in the opposite case, when

σ2
e goes to infinity. For, the variance of the noise component is 2c2σ4

aσ
2
e/σ

4
s , which

vanishes for σ2
e → ∞. The economic intuition is that, when et is very large, the signal

is not reliable, so that the stock market does not react to it. Equation (7) reduces to

pt = pt−1 + cat−1, reflecting the fact that, st being not informative, agents see only at−1

and therefore respond to the structural shock with delay.

The noise bubble is large when dividend and noise shocks have approximately the

same size. To see this, let us compute the ratio of the variance of the noise component to

the variance of ∆pt. The structural component in equation (7) has variance c2σ2
a(σ

4
a +

σ4
e)/σ

4
s , whereas the variance of the noise component is c2σ2

a(2σ
2
eσ

2
a)/σ

4
s . Summing the

two variances gives the variance of ∆pt, i. e. c2σ2
a. The ratio of the variance of the noise

component to total variance is then 2σ2
eσ

2
a/σ

4
s . Such ratio is zero for both σ2

e = 0 and

σ2
e →∞, as observed above, and reaches its maximum 1/2 for σ2

e = σ2
a.

7



2.3 Information sets and learning

Now let us go back to the general model. Since a basic feature of our model is that the

information set of the agents does not coincide with the information set spanned by the

structural shocks —the dividend shock and the noiseshock— we start by studying the

relation between these information sets.

In the lag operator notation, equation (2) becomes

∆dt = c(L)at, (8)

where c(0) = 0. The relation between the information set of the agents, Ωt, and the

complete information set, Φt, is characterized by the relation linking the vectors (∆dt st)
′

and (at et)
′. We have (

∆dt

st

)
=

(
c(L) 0

1 1

)(
at

et

)
, (9)

This relation is not invertible, since the determinant of the MA matrix is c(L), which by

assumption vanishes for L = 0, which is less than 1 in modulus. Non-invertibility implies

that we do not have a VAR representation for ∆dt and st in the structural shocks, and

that present and past values of the observed variables ∆dt and st contain strictly less

information than present and past values of at and et.
8

Representation (9) is not the only MA representation of ∆dt and st. In particular,

there is a “fundamental” representation, i.e. an MA representation in the innovations of

Ωt.
9 Let rj , j = 1, . . . , n, be the roots of c(L) which are smaller than one in modulus

and

b(L) =
n∏
j=1

L− rj
1− r̄jL

, (10)

where r̄j is the complex conjugate of rj . Then let us consider the representation:(
∆dt

st

)
=

(
c(L)/b(L)σ2

s c(L)σ2
a/σ

2
s

0 1

)(
ut

st

)
, (11)

where (
ut

st

)
=

(
b(L)σ2

e −b(L)σ2
a

1 1

)(
at

et

)
. (12)

8Notice that, if the representation were invertible, such a VAR would exist, so that the structural

shocks could be written as a linear combination of present and past values of observable variables, and

the information sets Φt and Ωt would be equal, contrary to the assumption that the dividend shock does

not belong to the information set of the agents.
9“Fundamental” in the present context is a term of time series theory, which has nothing to do with

the “fundamental” value of a security or economic “fundamentals”.
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It is easily verified that (11) and (12) imply (9). Moreover, ut and st are jointly white

noise and orthogonal.10 Finally, the determinant of the matrix in (11), i.e. c(L)/b(L)σ2
s ,

vanishes only for |L| ≥ 1 because of the definition of b(L). It follows that ut and st are

orthogonal innovations for Ωt, i.e. Ωt = span(ut−k, st−k, j = 1, . . . ,m, k ≥ 0).

The shock ut, let us call it the learning shock, must be interpreted as agents’ new in-

formation resulting from observation of ∆dt. The contemporaneous value of ∆dt conveys

information concerning the past of dividend and noise shocks (there is no information

about the present, since, by the definition of b(L), the condition c(0) = 0 implies that

b(0) = 0).

In the long run, observation of economic fundamentals completely unveils whether

past signals were true or not. To make this point clear, consider that the roots of the

determinant of the matrix in (12), b(L)σ2
s , are smaller than one in modulus by the

definition. Hence representation (12), though not invertible toward the past, can be

inverted toward the future. Considering that 1/b(L) = b(F ), where F = L−1 is the

forward operator, we get (
at

et

)
=

1

σ2
s

(
b(F ) σ2

a

−b(F ) σ2
e

)(
ut

st

)
. (13)

The above equation shows that the structural shock and the noise shock are linear

combinations of future values of the learning shock ut and the present of st. This point

is crucial for the identification of the econometric model, as we shall see in Section 3.

2.4 Deriving stock prices

In the Appendix we derive the following formula for a generic process ∆yt = α(L)εt,

where εt is observed:
1− ρ
ρ

∞∑
j=1

ρjEtyt+j = yt + α̃(L)εt, (14)

where α̃(L) = [α(L)− α(ρ)]/(L− ρ). Applying the above formula to ∆dt = c(L)at and

taking differences gives prices for the complete information case, i.e.

∆pΦ
t = c∗(L)at. (15)

where c∗(L) = c(L) + (1− L)c̃(L) = [c(L)(1− ρ)− c(ρ)(1− L)]/(L− ρ).

10Let us first observe that ut = b(L)(σ2
eat − σ2

aet) is a white noise process. To see this, consider that

σ2
eat−σ2

aet is a white noise (being the sum of two white noise processes, orthogonal at all leads and lags)

and b(L) is a so called “Blaschke” factor, such that b(L)b(L−1) = 1. Hence the covariance generating

function is σ2
ub(L)b(L−1) = σ2

u, so that all lagged covariances are zero. Obviously, st = at + et is a white

noise as well. In addition, ut is orthogonal to st at all leads and lags, since σ2
eat − σ2

aet is orthogonal to

at + et.
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Coming to incomplete information, it is seen seen from (11) and (2) that dividends

can be represented as

∆dt =
γ(L)

σ2
s

ut +
c(L)σ2

a

σ2
s

st,

where γ(L) = c(L)/b(L). Applying formula (14) we get

∆pt =
1

σ2
s

γ∗(L)ut +
σ2
a

σ2
s

c∗(L)st. (16)

Finally, using (12) and taking into account that γ(L)b(L) = c(L) we get

∆pt = c∗(L)at −
σ2
e

σ2
s

(1− L)γ(ρ)b̃(L)at +
σ2
a

σ2
s

(1− L)γ(ρ)b̃(L)et. (17)

The third term on the right hand side is the noise bubble. When a false signal arrives,

agents over-react by an amount proportional to σ2
a/σ

2
s , which measures the confidence of

agents in the signal st. The first term is the reaction to at of the complete information

equation (15). The second term reduces the reaction of agents to the dividend shock

with respect to the complete information response. When true news arrive, the market

prudentially under-react, and the reduction is larger, the larger σ2
e/σ

2
s , i.e the noise to

signal variance ratio.

A few remarks are in order. Firstly, the factor (1−L) appearing in the third term on

the right-hand side confirms that the noise shock has transitory effects even in the general

model. By contrast, the long-run effect of at on stock prices is c∗(1) = c(1) =
∑∞

j=1 cj .

Second, we have c∗(0) = c(ρ)/ρ, b̃(0) = b(ρ)/ρ and γ(ρ)b(ρ) = c(ρ), so that the impact

effects of both the structural and the noise shock is σ2
ac(ρ)/(σ2

sρ). The impact effects are

equal because agents cannot distinguish false and true news on impact.11 Third, when

σ2
e = 0, the noise bubble disappears as well as the “caution” term, so that (17) reduces

to (15). On the other hand, when σ2
e goes to infinity, the signal becomes unreliable. As

we have already seen for the illustrative example, the variance of the term driven by the

noise shock goes to zero, being O(σ4
aσ

2
e/σ

4
s), σ

2
e/σ

2
s → 1 and

∆pt → [c∗(L)− (1− L)γ(ρ)b̃(L)]at.

Since c∗(0) − γ(ρ)b̃(0) = c∗(ρ)/ρ − γ(ρ)b(ρ)/ρ = 0, pt reacts to at with delay, reflecting

the fact that the signal is uninformative and agents do not learn anything about at at

time t. The maximal effect of the noise shock is obtained somewhere in the open interval

(0 < σ2
e/σ

2
s < 1), but in the general model neither the maximum point nor the maximum

itself are easily found.

11In the empirical Section, where, following the VAR tradition, the shocks are normalized to have unit

variance, the impact responses are proportional to the standard deviations of the shocks.
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3 Econometrics

In Section 2.3 we have analyzed the joint MA representation of ∆dt and st. Such rep-

resentation however is not suitable for estimation, since st is not directly observable by

the econometrician. In the present section we focus on the joint representation of ∆dt

and ∆pt, which are both observable.

From (9) and (17) it is seen that the structural representation of ∆dt and ∆pt can

be written as (
∆dt

∆pt

)
=

(
σac(L) 0

d(L) e(L)

)(
at/σa

et/σe

)
, (18)

where d(L) = σa[c
∗(L)− σ2

e
σ2
s
γ(ρ)(1−L)b̃(L)] and e(L) = σ2

aσe
σ2
s
γ(ρ)(1−L)b̃(L) and b̃(L) =

[b(L)− b(ρ)] /(L − ρ). The shocks are normalized to have unit variance, as usual in

structural VAR analysis. Our target is to estimate the shocks and the impulse response

functions of the above representation.

Just like in representation (9), however, the determinant of the MA matrix vanishes

for L = 0, since c(0) = 0. It follows that the representation is not invertible. This has

dramatic consequences for empirical analysis.

3.1 Non-invertibility in models with noisy shocks

The problem of non-invertibility, or “non-fundamentalness” is a debated issue in the

structural VAR literature. Early references are Hansen and Sargent, 1991 and Lippi

and Reichlin, 1993, 1994; more recent contributions include Giannone and Reichlin,

2006, Fernandez-Villaverde et al., 2007, Chari et al., 2008, Forni and Gambetti, 2011.

In essence, the problem is that standard SVAR methods assume that the structural

shocks are linear combinations of the residuals obtained by estimating a VAR. If the

structural MA representation of the variables included in the VAR is non-fundamental,

the structural shocks are not linear combinations of such residuals, so that the method

fails.12

In most of the economic literature, the structural shocks are elements of agents’

information set and non-fundamentalness may arise if the econometrician uses less infor-

mation than the agents. In this case, non-fundamentalness can in principle be solved by

12An MA representation is fundamental if and only if its associated matrix is non-singular for all L with

modulus less than one (see Rozanov, 1967, Ch. 2). This condition is slightly different from invertibility,

since invertibility requires non-singularity also when L is unit modulus. Hence non-fundamentalness im-

plies non-invertibility, whereas the converse is not true. When the variables are cointegrated, for instance,

the MA representation of the first differences is not invertible, but nonetheless can be fundamental. In

such a case, non-invertibility can be easily circumvented by resorting to structural ECM or level VAR

estimation. Non-fundamentalness is a kind of non-invertibility which cannot be solved in this way.

11



enlarging the information set used by the econometrician (Forni, Giannone, Lippi and Re-

ichlin, 2009, Forni and Gambetti, 2011). But in the present setting non-fundamentalness

stems from agents’ ignorance and cannot be solved by adding variables to the VAR.13

The economic intuition is that agents’ behavior cannot reveal information that agents

do not have. Stock prices or other variables which are the outcome of agents’ decisions

do not add anything to the information already contained in dt and st. More generally,

in models assuming that agents cannot see the structural shocks, the structural repre-

sentation is non fundamental for whatever set of observable variables. For, if it were,

agents could infer the shocks from the variables themselves, contrary to the assumption

(unless we assume that there are variables that are observable for the econometrician

but not for the agents).

On the other hand, in our theoretical framework, if identification is generalized to

include dynamic unitary transformations (i.e. Blasckhe matrices), structural VAR es-

timation may still be successful. Dynamic unitary transformations are rotations which

may involve, besides current values, past and future values of the VAR residuals. In fact,

we have already seen in Section 2.3, equation (13), that the structural shocks, dividend

and noise, can be written as linear combinations of the current signal and future values

of the learning shock, which in principle can be found with a standard VAR procedure.

A general treatment of dynamic identification in structural VARs can be found in

Lippi and Reichlin, 1994. When considering the more general class of dynamic rotations,

identification is more demanding than in the standard, contemporaneous rotation setting,

because it requires stronger theoretical restrictions. A contribution of the present paper

(and the companion paper Forni, Gambetti, Lippi and Sala, 2013) is to show that in

models with noisy signals the restrictions arising naturally from the theory are sufficient

to identify the structural shocks. Below we explain in detail how to find the structural

and the noise shock, as well as the corresponding impulse response functions.14

13See also Blanchard et al., 2010.
14Blanchard et al., 2010, and Barski and Sims, 2012, present news-noise models where agents never

learn the true nature of past shocks. The basic difference with respect to our model in this respect is that

in both papers there are three structural shocks, whereas agents see just two dynamically independent

sources of information. Since the dynamic dimension of the structural shocks is larger than the dynamic

dimension of agents’ information space, there is no way for the agents to see such shocks, even when

assuming known the future values of the observable series. For the same reason, the econometrician

cannot recover the shocks and the impulse response functions by means of a structural VAR, even by

resorting to dynamic transformations of the VAR residuals.
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3.2 Dynamic identification of the bivariate VAR

Now let us come to our identification and estimation strategy. From (11) and (16) it is

obtained15(
∆dt

∆pt

)
=

(
a11(L) a12(L)

a21(L) a22(L)

)(
ut/σu

st/σs

)
=
σa
σs

(
σeγ(L) σac(L)

σeγ
∗(L) σac

∗(L)

)(
ut/σu

st/σs

)
, (19)

where γ∗(L) and c∗(L) are defined as in (15). Estimation of (19) is our first step to

identify and estimate the structural representation.

Unfortunately, there is no convincing motivation to assume that (19) is fundamental.

However, in this case, whether (19) is fundamental or not can be checked by a simple test,

see Section 3.3. Thus we proceed in two steps. Firstly, we assume that representation

(19) is fundamental, so that it can be estimated by means of standard structural VAR

procedures. Secondly, in Section 3.3, we discuss the testing procedure, which is then

employed in Section 4.

Assuming that (19) is fundamental, an estimate of [aij(L)]i=1,2;j=1,2 is obtained by

estimating and inverting an unrestricted VAR. Identification is obtained by imposing

â12(0) = 0, which corresponds to the condition c(0) = 0, which is derived by the theory.

The theory imposes further restrictions on the entries of the MA matrix appearing in

(19). We do not use such restrictions for estimation, since we want to use them for

testing purposes (see below).

Now, let us re-write equation (12) as(
ut/σu

st/σs

)
=

1

σs

(
b(L)σe −b(L)σa

σa σe

)(
at/σa

et/σe

)
. (20)

where the shocks are normalized to have unit variance. Since (18) is obtained from (19)

and (20), our target is to get an estimate of the latter representation.

First, we need an estimate of b(L), which is given by the roots of c(L) which are

smaller than 1 in modulus (see equation (10)). Such roots are revealed by our estimate

of â12(L), which is proportional to c(L) (of course, one out of these roots will be zero

because of the identification constraint â12(0) = 0). This is the crucial step of our

procedure. The proportionality of the reactions of dividends to the dividend shock, on

the one hand, and the signal shock, on the other hand, is due to the assumption that

noise shocks do not affect dividends at any lag —an assumption which is essential, from

a theoretical point of view, to distinguish the dividend shock from the noise shock.

Next, we need an estimate of σa/σs and σe/σs. Since γ(L) = c(L)/b(L) and b(1) = 1,

we have γ(1) = c(1) so that an estimate of σa/σe can be obtained as

σ̂a/σe =
â12(1)

â11(1)
.

15Let us remind that σu = σeσaσs.
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Considering that σ2
a/σ

2
s +σ2

e/σ
2
s = 1, it is seen that σa/σs and σe/σs are the sine and the

cosine, respectively, of the angle whose tangent is σa/σe. Hence σ̂a/σs and σ̂e/σs can be

obtained as sin(arctan(σ̂a/σe)) and cos(arctan(σ̂a/σe)), respectively.

Finally, the (normalized) structural shocks at/σa and et/σe can be estimated by

inverting equation (20):(
at/σa

et/σe

)
=

1

σs

(
b(F )σe σa

−b(F )σa σe

)(
ut/σu

st/σs

)
. (21)

The above relation involves future values of ut and st, so that the structural shocks

cannot be estimated consistently at the end of the sample. This is perfectly in line

with the assumption that neither the agents, nor the econometrician can see the current

values of the structural shocks. However, in the middle of the sample future is known

and relation (21) can in principle provide reliable estimates of at/σa and et/σe.

Summing up, our estimation strategy is the following.

1. We estimate an (unrestricted) reduced form VAR for dt and pt
16 and identify by

imposing â12(0) = 0, i.e. that st does not affect dt on impact. In such a way we

get an estimate of the matrix [aij(L)]i=1,2;j=1,2 appearing in (19) as well as the

normalized learning and signal shocks.

2. We estimate b(L) by computing the roots of â12(L), selecting the ones which are

smaller than one in modulus and using (10).

3. We estimate σa/σe as the ratio â12(1)/â11(1).17 Then we get σ̂a/σs and σ̂e/σs as

sin(arctan(σ̂a/σe)) and cos(arctan(σ̂a/σe)), respectively. Steps 2 and 3 provide an

estimate of (20).

4. Finally, we estimate the structural impulse response functions in (18) by using (19)

and (20). Moreover, we estimate the structural shocks by using relation (21).

3.3 Testing and additional estimation issues

As already noticed, the restrictions appearing in representation (19) which are not used

for identification can be used for testing. In particular, we can test the theoretical

implication that et has temporary effects on prices. Moreover, â12(L)b̂(L)σ̂a/σe should

be equal to â12(L).18 Such condition implies that in the structural representation (18)

16We estimate the VAR in levels for reasons which will be clarified below.
17In practice we compute the cumulated long-run effects as the effects at forty quarters.
18Our identification conditions imply that such relation is satisfied both on impact and in the long

run. At intermediate lags the relation can be violated.
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the upper-right response function is zero, which can be tested by verifying whether the

confidence bands include the x-axis for all lags.

Let us now go back to the first step of our estimation procedure, i.e. estimation of

(19). The determinant of the MA matrix appearing in (19) is proportional to

γ(L)c∗(L)− γ∗(L)c(L) = γ(ρ)(1− L)γ(L)
b(L)− b(ρ)

L− ρ
, (22)

which vanishes for L = 1, so that dt and pt are cointegrated. This problem is solved,

as is well known, by estimating an ECM or a VAR in the levels of the variables, rather

than the first differences. Our choice, see Section 4, is a VAR in levels.

Moreover, as observed in Section 3.2, representation (19) might be non-fundamental,

i.e. the determinant (22) may have roots within the unit circle. As γ(L) can vanish only

outside the unit circle by definition, the problem arises with the factor [b(L)−b(ρ)]/(L−
ρ). Clearly, when b(L) has just one zero, so does b(L) − b(ρ), its root being ρ, and the

ratio reduces to a constant. Indeed, in such case b(L) = L, by the definition of b(L)

along with the assumption that c(0) = 0, and the ratio is equal to 1. However, when

b(L) has two or more zeros, roots smaller than one in modulus may occur.

To see this, assume for instance that c(L) has the “wrong” root r, besides the root

zero. In this case, b(L) = L(L− r)/(1− rL) and the ratio [b(L)− b(ρ)]/(L− ρ) reduces

to (ρ − r + L)/(1 − ρL), which vanishes for L = ρ − r. Since |r| < 1, the root is larger

than one in modulus when r lies in the open interval (−1, ρ − 1). Notice that a second

zero root for c(L) would violate the condition, since ρ < 1.

As a further example, consider the case b(L) = Lk. All of the roots of Lk − ρk lie on

the circumference centered in the origin and with radius ρ in the complex plane. When

dividing by L− ρ one of these roots disappears, but the others do not. Hence for k > 1

we do not have a fundamental representation.

Here non-fundamentalness, when it is there, does not arise from the fact that agents

do not have enough information, but from the fact that the econometrician uses less

information than the agents, i.e. span(∆dt−k,∆pt−k, k ≥ 0) ⊂ Ωt = span(ut−k, st−k, k ≥
0), because present and past values of dt and pt do not reveal completely ut and st.

A simple check for fundamentalness, which can be used in this case, has been pro-

posed by Forni and Gambetti, 2011. The test consists in verifying whether the estimated

shocks are orthogonal to past values of the principal components of a large data set of

macroeconomic series. In the empirical application below we replace the principal com-

ponents with a set of selected control variables. If orthogonality is rejected, the shocks

cannot be innovations with respect to available information, and the VAR should be

amended by adding variables reflecting agents’ information. A multivariate specification

may help solving the problem, by closing the gap between the information used by agents

and the one used by the econometrician.
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3.4 Higher-dimensional specifications

Let ∆yt be the n−2-dimensional vector of additional variables. In order to have a square

system, it is convenient to assume that there are also n−2 additional shocks, potentially

affecting dt and pt. The innovation representation becomes∆yt

∆dt

∆pt

 =

Q(L) f(L) g(L)

h(L) σaσeγ(L)/σs σ2
ac(L)/σs

p(L) σaσeγ
∗(L)/σs σ2

ac
∗(L)/σs


 vt

ut/σu

st/σs

 , (23)

where f(L), g(L), h(L), p(L) and the entries of the n − 2 × n − 2 matrix Q(L) are

absolutely summable.

Within the multivariate framework, the condition that the dividend shock does not

affect dt on impact is no longer sufficient, by itself, to identify the model. In the empirical

section we impose a Cholesky triangularization with yt ordered first, dt ordered second,

and pt ordered third, i.e. f(0) = g(0) = 0 and Q(0) lower triangular. The reason for this

ordering is that we want to allow for a contemporary effect of vt on dividends and stock

prices. Stock prices, in particular, can in principle react on impact to shocks affecting

dividends and interest rates.

The corresponding structural representation is obtained by postmultiplying the above

matrix by In−2 0 0

0′ b(L)σe/σs −b(L)σa/σs

0′ σa/σs σe/σs

 ,

where 0 denotes the (n− 2)-dimensional null column vector.

4 Empirics

In this section we present our empirical analysis. Our benchmark specification is a four-

variable VAR with dividends, stock prices, and two interest rates. We find that, in line

with the theory, noise shocks do not affect dividends and have transitory effects on stock

prices. Despite this, noise explains a large fraction of stock market fluctuations at short

and medium run horizons and is responsible for large deviations of stock prices from the

intrinsic value of equities. Noise explain most of the information technology bubble, as

well as other boom-bust episodes, including a sizable fraction of the stock market crash

of 2008-2009.

4.1 The data

For our empirical analysis we use US quarterly series covering the period 1960:Q1—

2010:Q4. The stock price series is the monthly average of the Standard & Poor’s Index
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of 500 Common Stocks reported by Datastream (code US500STK). We converted the

series in quarterly figures by taking simple averages and divided the resulting series by the

GDP implicit price deflator in order to express it in real terms. Dividends are NIPA Net

Corporate Dividends, divided by the GDP implicit price deflator and population aged

16 years or more (the BLS Civilian Non-institutional Population, converted to quarterly

frequency by taking monthly averages). Both dividends and stock prices are taken in

log-levels rather than differences to avoid estimation problems related to cointegration.

The interest rates included in our baseline specification are the 3-Month Treasury Bill,

Secondary Market Rate, and the Moody’s Seasoned Aaa Corporate Bond Yield. We

toke the monthly averages of business days (original source: Board of Governors of the

Federal Reserve System) and converted the monthly series in quarterly figures by taking

simple averages. Interest rates are taken in levels.

To test for fundamentalness, we use an additional interest rate, the 10-Year Trea-

sury Constant Maturity Rate, the inflation rate and two leading indexes. The interest

rate is treated as the other interest rates. The inflation rate is the NIPA GDP Implicit

Price Deflator, taken in first differences of the logs. The leading indexes are the Confer-

ence Board Leading Economic Indicators Index (Datastram code USCYLEAD) and the

Michigan University Survey of Consumers Expected Index.

For the last multivariate VAR we use two additional variables, i.e. the NIPA Real

Private Nonresidential Fixed Investment and the Real Potential GDP released by the

U.S. Congress, Congressional Budget Office. Both series are divided by civilian non-

institutional population and taken in logs.

Stock prices and the Conference Board leading index are taken from Datastream, the

consumer confidence index is taken from the website of the Michigan University, whereas

all other series are downloaded from the FRED data base.

4.2 The effects of dividend and noise shocks

As a first exercise, we estimate the two-variable VAR with dividends and stock prices.

We include 4 lags, according to the AIC criterion and identify the signal, learning,

dividend and noise shocks as explained in Section 3.2. Then we test for fundamentalness

as explained in Section 3.3, by regressing the estimated shocks onto 2 and 4 lags of the

3-Months Treasury Bill, the Aaa Corporate Bond Yield, and the four control variables

described above, one at a time. Dividend and noise shocks are truncated at time T − 4

since the filter obtained by inverting (20) involves the leads of the signal and the learning

shocks, producing an end-of-sample bias.19 The p-values of the F -statistic of these

regressions are reported in Table 1. The null hypothesis that the signal is orthogonal to

19The truncation size is chosen on the basis of the estimated filter.
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the past of the regressors is rejected at the 5% level for all interest rates and the inflation

rate. A similar result holds for the noise shock. We conclude that dividends and stock

prices do not contain enough information to represent adequately agents’ information

set.

Hence we amend the VAR by adding two control variables, i.e the 3-Month Treasury

Bill, Secondary Market Rate and the Moody’s Seasoned Aaa Corporate Bond Yield. We

estimate the four-variable VAR with 4 lags according to the AIC criterion and identify by

imposing a Cholesky scheme with the interest rates ordered first as explained in Section

3.4. Again, we perform the orthogonality test. As shown in Table 2, orthogonality cannot

be rejected, even at the 10% level, for all regressions. Hence we use the four-variable

VAR as our baseline specification.

Figures 3a and 3b show the impulse response functions of dividends and stock prices

to signal, learning and interest rate shocks. The dark gray and the light gray areas

show the 68% and the 90% confidence bands, respectively, obtained by performing 500

bootstrap replications. A positive signal, anticipating future dividend growth, has large

and significant contemporaneous effects on stock prices. On the other hand, the stock

market reacts more cautiously and gradually to a positive learning shock, which has large

contemporaneous and permanent effects on dividends. Positive interest rates shocks have

little effects on dividends, but, as expected, have significant negative impact on stock

prices in the short run.

Let us now consider the structural representation. We begin the analysis by examin-

ing the series of the estimated shocks. First of all notice that the point estimate of σa/σs

is 0.44 (standard error 0.3), which entails a large noise, i.e. σe/σs = 0.90 (standard error

0.15). Figure 4 plots the two shocks. The vertical lines report events, most of them

exogenous, coinciding with peaks and troughs in the estimated series of the signal. All

of the events coincide with peaks or troughs of the noise shock. For instance the largest

negative noise shock is observed in 1987:Q4 and corresponds to the Black Monday (Oc-

tober 1987). Other negative shocks are registered in coincidence with the collapse of the

Franklin National Bank, the Gulf War I and the bankruptcy of the Lehman Brothers.

Positive noise shocks are found in coincidence of the Bush re-election and the 2009 fis-

cal stimulus. In coincidence of some of these events the dividend shock has the same

sign as the noise shock although is somehow smaller in terms of magnitudes. A notable

difference between the dividend shock and the noise shock is observed in 2004:Q4, in

coincidence with the Bush re-election, where the two shocks have opposite sign. Accord-

ing to our estimates, the Bush re-election is an episode with large negative effects on

economic fundamentals, accompanied by a large positive noise shock responsible for the

under-reaction of the stock market.

Figure 5a shows the impulse response functions of dividend and noise shocks on
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dividends and stock prices. Positive dividend shocks are followed by an increase in

dividends, which reach their new long-run level after three quarters. Stock prices react

immediately by a similar percentage amount and then remain approximately stable at

the new level. In line with the theory, the effect of the noise shock on dividends is small

and not significant at all horizons, even considering the tighter confidence region. By

contrast, the effect of noise on the stock market, large and strongly significant on impact,

declines sharply after a few quarters and approaches zero in the long run, confirming the

temporary effect predicted by the model.

Table 3 reports the estimated decomposition of the forecast error variance at different

horizons. The signal explains about 20% of dividend variation at medium and long-run

horizons (two years or more), while the bulk of dividend volatility is captured by the

learning shock. As for stock prices, the role of the signal and the learning shocks are

inverted: the signal explains the bulk of stock price volatility, whereas learning has a

sizable effect only in the long run (about 20%). Learning and signal explain together

about 90% of stock price variation on impact and about 70% at longer horizons, the

remaining 30% being explained by interest rates shocks. The dividend shock explains

about 20% of stock price variation on impact and almost one half at the ten year horizon.

Noise is very important, in that it explains the bulk of stock price variance on impact

(about 70%) and in the short-medium run (about 50% and 40% at the 2-year and the

4-year horizons, respectively).

Figure 5b shows the impulse response functions of the two interest rates to dividend

and noise shocks. Both shocks induce a monetary policy tightening; the T-Bill increases

significantly for a few quarters according to the narrower bands. Interestingly enough,

after about two years the response of the T-Bill rate to the noise shock becomes negative

and significant at the 68% confidence level. Given that the noise shock has negligible real

effects, the dividends are largely unaffected, the result seems to support the idea that

monetary policy, to some extent, responds to fluctuations in stock prices. Nonetheless

the response turns out to be relatively small. In fact the T-Bill increase up to 0.2% in

front of an increase of about 6% of stock prices. Moreover only a small fraction of the

interest rate, about 5%, is explained by noise.

4.3 Noisy news and business cycles

So far we have assumed that dividends are not affected by the noise shock. This assump-

tion is crucial for our identification procedure, since, if dividends are affected by noise,

their response to the signal is no longer proportional to their response to the dividend

shock, and b(L) cannot be identified as explained in Section 3.2.

On the other hand, part of the recent noisy-news literature suggests that noise shocks

can be a source of economic fluctuations (Lorenzoni, 2009, Blanchard et al., 2010). In
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the companion paper Forni, Gambetti, Lippi and Sala, 2013, we address this issue in

detail and find that a sizable fraction of cyclical fluctuations can be explained by the

noise shock. If consumption, investment and output are affected by noise, we cannot

rule out the possibility that dividends be affected by noise as well.

To deal with this problem, we replace dividends with potential GDP, which represents

the long-run behavior of economic fundamentals, but, being free of cyclical fluctuations,

cannot be affected by noise shocks. Precisely, we estimate a five-variable VAR including

dividends, non-residential investment, the Aaa Corporate Bond Yield, potential GDP

and stock prices. The first step of the identification procedure is performed by imposing

a Cholesky scheme with the above ordering. The basic difference with respect to the

previous identification is that the learning shock is identified as the shock associated

with potential GDP, rather than dividends. The other steps are the same as before.

As usual, we verify fundamentalness by performing the orthogonality tests. Table 4

shows that the shocks of interest are orthogonal to the past values of all control variables

(the smallest p-value is 0.18).

Figures 6a and 6b show the impulse response functions of all variables to positive sig-

nal and learning shocks. The reaction of potential GDP to both shocks is quantitatively

similar to the reaction of dividends obtained in the previous VAR, albeit the increase is

more gradual, reaching its long-run level in about three years (as against three quarters).

The response of stock prices is essentially the same as in the four-variable VAR, with

a large contemporaneous effect of the signal, followed by a decline, and a much smaller

effect of learning.

The responses of dividends and nonresidential investment (Figure 6b) are very much

similar to each other. Learning induces a gradual increase, which becomes significant in

the medium-long run. By contrast, the signal is followed by a fast and sizable growth,

reaching its maximum after about one year, and a subsequent decline. The effect,

strongly significant in the short run, loses significance after a couple of years.

Coming to the structural representation, the estimate of σa/σs is 0.47 (standard error

0.33), which implies σe/σs = 0.88 (standard error 0.12); such numbers are very close to

the ones obtained with the four-variable VAR.

Figures 7a and 7b show the effects of positive dividend and noise shocks. Figure 7a

is very much similar to Figure 5a, with potential output in place of dividends. The noise

does not affect potential output at any horizon, even looking at the narrower bands.

Genuine good news have a positive and permanent effect on prices, with an essentially

flat response function, whereas noise have a large but transitory effect. The temporary

nature of noise prove itself for all variables (Figure 7b). However, in the short run, noise

shocks have significant effects on both dividends and nonresidential investment.

Table 5 reports the variance decomposition. The percentage of the forecast error
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variance of stock prices explained by dividend and noise shocks is very much similar

to the one found with the four-variable VAR. In particular, noise explains the bulk of

stock market fluctuations at short and medium run horizons (about 65% on impact, 50%

and 40% at two and four years respectively). As for dividends, the variance explained

by noise is modest (only about 10% at the 2-year and 4-year horizons), despite the

significance of the corresponding impulse response function. By contrast, the effect of

noise on nonresidential investment in terms of explained variance is far from negligible,

being between 20 and 25% after two and four years. This result is in line with the

literature supporting a sizable effect of noise on business cycle fluctuations.

4.4 Measuring historical boom-bust episodes

We have seen that stock prices, expressed in logs, are equal to the sum of the noise

component —the “noise bubble”— plus the structural component, which, being the only

one anticipating future dividends, can be interpreted as the intrinsic value. Hence the

noise component has a noticeable interpretation: it measures the percentage deviation of

current prices from the “true” value of equities. A positive (negative) value means that

prices are overvaluated (undervaluated) with respect to the intrinsic value by a certain

percentage. Such a measure is obtained by filtering the estimated noise shock with the

corresponding impulse response function.20

Figure 8 and 9 show the bubble component (solid line), estimated with the four-

variable and the five-variable VAR, respectively. For the sake of comparison, the figures

also report the stock price series (dashed line) and the structural component, i.e. the

intrinsic value (dotted line). The estimates show several episodes of prolonged and

sustained deviations from the fundamental price. Here we limit our attention only to

those episodes in which deviations are 20% or higher.21 We find eight of such episodes:

four positive and four negative bubbles. The positive bubbles episodes are:

1. First half of the 70s (span: 1972:Q3-1973:Q1, max: 22.1% in 1972:Q3)

2. Second half of the 80s (span: 1987:Q3; max: 22.5% in 1987:Q3)

3. Dot-com (span: 1997:Q3-2002:Q1; max: 56.4% in 2000:Q2)

4. Mid 2000 (span: 2005:Q1; max: 21.1% in 2005:Q1)

20Formally the bubble is

b̂t = â(L)êt (24)

where â(L) = â0 + â1L+ â2L
2 + ... is the estimated impulse response function of the log of stock prices

to the noise shock and êt is the estimated noise shock.
21Adalid and Detken (2006) identify boom-bust episodes for a number of industrial countries. For the

US they find two episodes, the 1986-87 and the dot-com bubble, which appear also in our list.
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The negative bubbles are

5. 1974 stock market crash (span: 1974:Q4; min: -23.7% in 1974:Q4)

6. Second half of the 70s (span: 1977:Q4-1979.Q4; min: -29.8% in 1978:Q1)

7. First half of the 80s (span: 1982:Q3-1983.Q2; min: -27.1% in 1983:Q1)

8. Great Recession (span: 2008:Q1-2009:Q4; min: -41.7% in 2009:Q1)

The dot-com bubble represents, by far, the episode with the largest and longest-

lasting deviations. Between 1997 and 2002 prices have been over-evaluated on average

by 40% with a peak of 56% in 2000:Q2. From the figures it emerges clearly that the

bulk of fluctuations in prices around these years is attributable to news having no effect

on future fundamentals, which were largely interpreted as genuine good news.

Notice that while our estimates point out to a relatively large noise component in

2005, they show that the peak in 2007:Q2 was not a bubble. On the contrary, stock

prices were undervaluated by about 10% compared to their fundamental value in that

quarter. Finally, the noise component accounts, to a large extent, for the large drop in

prices in 2008.

The dot-com bubble spurred a boom in investment activity mainly in information

technology and telecommunications which then plunged in 200122. The investment boom

and bust is evident in Figure 10 where the dashed line is the log of real nonresidential

investment. The series displays two humps in correspondence of the dot-com bubble

and in 2007. The solid line is the noise component and the dotted line is the difference

between investment and the noise component. Mirroring the result for stock prices, the

boom and bust episode of the late 90s is almost entirely attributable to noise, while in

the 2007-08 the noise component is relatively small. To see this more clearly, Figure 11

displays the original investment series and the noise component both filtered with a band-

pass filter retaining only waves of periodicity between 6 and 32 quarters. In the dot-com

episode cyclical investments (dotted line) exhibit a large boom and a subsequent drop

which, unlike what happens for the other cyclical swings, are almost entirely explained

by the stock prices bubble.

We conclude this section with a historical digression on the conduct of monetary

policy in response to the noise bubble. Figure 12 plots the 3M T-Bill rate (dashed line),

the noise component (solid line) and the difference between the variable and the noise

component (dotted line). Figure 13 plots the noise component of the 3M T-Bill rate and

the stock prices together. In general, fluctuations in the interest rate driven by noise

have become more volatile since late 90s. More specifically, at the onset of the dot-com

22See for instance see Doms (2004) for a discussion about the causes of the investment boom and bust
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bubble monetary policy responded to the increase in prices by increasing the interest by

about 1%. However, around 1997, while prices kept rapidly growing, the interest rate

stalled. The stock prices bust is followed by a huge drop in the interest rate, by around

3%. Actually during the second half of the 2000 absent the bubble, the interest rate

would have been much higher, around 4%, than the observed value of 1.5%. Given that

the real effects of the noise shock are relatively limited, the huge fall of the interest rate

supports the idea that monetary policy has reacted quite strongly to the burst of the

bubble and that the low levels of the interest rate observed until 2005 were driven by

factors disconnected from economic fundamentals.

5 Conclusions

In this paper we have studied a simple present value stock price model where rational

traders receive noisy signals about future economic fundamentals. We have shown that

the resulting stock price equilibrium includes a transitory component which can be re-

sponsible for boom and bust episodes unrelated to fluctuations of economic fundamentals

—the “noise bubbles”. Noise bubbles are a component of what is usually referred to as

the “fundamental” value of securities, i.e. the present value of expected dividends, so

that they have nothing to do with multiple equilibria and self-fulfilling expectations.

We have shown that, in our theoretical framework, the structural shocks —“dividend”

and “noise” shocks— can be estimated by using a non-standard structural VAR proce-

dure, where identification is obtained by imposing a “dynamic” rotation of the VAR

residuals, involving their future values.

In the empirical section we have applied our procedure to US data. We have found

that, consistently with the theory, the noise shock has transitory effects on stock prices,

whereas the dividend shock has permanent effects. Moreover, noise is very important, in

that it explains the bulk of stock price fluctuations at short and medium-run horizons.

Finally, the historical decomposition shows that the component of stock prices driven by

the noise shock is responsible for the information technology bubble; the boom peaking

in 2007 was entirely driven by genuine news, whereas the following stock market crisis

is largely accountable to a negative noise bubble.
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Appendix

The log-linear present value model

To obtain formula (1), let us start from the accounting identity

Pt =
1

1 + rt+1
(Pt+1 +Dt+1),

where Pt is the price of equities, Dt is dividends and rt is the rate of return on equities.

Setting rt = r and taking logs we get

pt = − log(1+r)+log
(
ept+1 + edt+1

)
= − log(1+r)+pt+1 +log

(
1 + edt+1−pt+1

)
, (25)

where pt = logPt and dt = logDt. Now let us set wt = dt−pt and linearize log (1 + ewt+1)

with respect to wt+1 around µ = Ewt. We obtain

log (1 + ewt+1) ≈ log (1 + eµ)+
eµ

1 + eµ
(wt+1−µ) = − log ρ−µ(1−ρ)+(1−ρ)(dt+1−pt+1),

where ρ = (1 + eµ)−1. Replacing in (25) we get the approximate accounting identity

pt = k + ρpt+1 + (1− ρ)dt+1, (26)

where k = − log(1 + r) − log ρ − µ(1 − ρ) = − log(1 + r) − log ρ + (1 − ρ) log(1/ρ − 1).

Equation (1) is obtained by solving forward and taking expectations at time t on both

sides.

Derivation of formula (14)

Let St = 1−ρ
ρ

∑∞
j=1 ρ

jEtyt+j and ∆yt = α(L)εt, εt being the innovation of the relevant

information set. We have

ρEtyt+1 = ρyt + ρEt∆yt+1

ρ2Etyt+2 = ρ2yt + ρ2Et∆yt+1 + ρ2Et∆yt+2

· · · = · · ·

Summing terms we get

∞∑
j=1

ρjEtyt+j =
ρ

1− ρ
yt +

ρ

1− ρ
Et∆yt+1 +

ρ2

1− ρ
Et∆yt+2 + · · ·

Considering that Et−1∆yt = (α(L)− α0)εt and Et∆yt+j − Et−1∆yt+j = αjεt, we have

LSt = yt−1 + Et−1∆yt + ρEt−1∆yt+1 + ρ2Et−1∆yt+2 + · · ·

ρSt = ρyt + ρEt∆yt+1 + ρ2Et∆yt+2 + · · ·

(L− ρ)St = (L− ρ)yt + α(L)εt − α0εt − ρα1εt − ρ2α2εt − · · ·
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Hence

St =
1− ρ
ρ

∞∑
j=1

ρjEtyt+j = yt +
α(L)− α(ρ)

L− ρ
εt.

About stock price volatility

Given the volatility of dividends, stock price volatility, as predicted by the present value

model, is much smaller than volatility observed in real data (Shiller, 1981, Le Roy and

Porter, 1981, Campbell and Shiller, 1988, West, 1988). Intuition suggest that noise

shocks, by adding uncertainty, may enlarge stock price volatility, and therefore may help

explaining the puzzle.

Comparing the variances of ∆pt for the cases of complete and incomplete information

is extremely complicated for the general case. Therefore we shall limit ourselves to the

interesting special case c(L) = cLk.

In this case, it is easily seen that γ(L) = γ∗(L) = c. Moreover,

c∗(L)

c
=
Lk(1− ρ)− ρk(1− L)

L− ρ
= (1− ρ)

k−1∑
j=1

ρj−iLk−j + ρk−1.

The sum of squared coefficients is then λ = (1 − ρ)2(1 + ρ2 + · · · + ρ2k−4) + ρ2k−2 =

(1− ρ+ ρ2k−1)/(1 + ρ). Using (15), it is seen that the variance of ∆pΦ
t is

var(∆pΦ
t ) = c2σ2

aλ.

Since 0 < ρ < 1, λ is smaller than 1 for k > 1. Moreover, it decreases monotonically with

k, approaching (1 − ρ)/(1 + ρ) as k → ∞. Volatility is smaller when k is large because

uncertainty is smaller, since agents can predict perfectly what will happen to dividends

far in the future.

As for incomplete information, from (16) we get c2σ2
u/σ

4
s + c2σ4

aλ/σ
2
s . From (12) we

see that σ2
u = σ2

aσ
2
eσ

2
s , so that the variance of prices is

var(∆pt) =
c2σ2

aσ
2
e

σ2
s

+
c2σ4

aλ

σ2
s

.

The second term is the variance of the signal component. It is decreasing in k, like the

complete information case, since when k gets larger, forecasts improve. Moreover, it is

decreasing in σ2
e , because, as we have already seen, when the noise is large, the signal

is not reliable and agents do not react to it. On the contrary, the first term, i.e. the

variance of the learning component, is increasing in σ2
e . This is because the noise worsen

forecasts and therefore the learning shock gets larger. In other words, prices change little

following the signal, since the market does not trust in it, but change a lot when agents

can see the large forecast errors produced by the signal and adjust their response.
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On balance, provided that k > 1 and therefore λ < 1, total variance increases

monotonically with σ2
e , starting from c2σ2

aλ, with σ2
e = 0, and approaching c2σ2

a as

σ2
e → ∞. The effect is sizable when k is large and therefore λ is small. Hence, the

intuition that noise enlarges uncertainty and therefore stock price volatility is correct.

When k is small, forecast errors are already large, so that the noise cannot change things

that much. But when forecast errors are small, the noise has large volatility effects.

Finally, let us consider the variance ratio. Dividing the variance of ∆pt by the

variance of ∆pΦ
t we obtain

var(∆pt)

var(∆pΦ
t )

=
λ−1σ2

e

σ2
s

+
σ2
a

σ2
s

= 1 + (λ−1 − 1)
σ2
e

σ2
s

.

Therefore the variance ratio is greater than 1 for k > 1, grows monotonically with k,

and is increasing in σ2
e when k > 1.

However, for reasonable values of the parameters the variance effect is not large. For

instance, with k = 4, ρ = 0.92 and σ2
e/σ

2
s = 0.8, the variance of ∆pt under incomplete

information is about 50% larger than the variance of the complete information case. More

generally, Shiller, 1981, and West, 1988, argue convincingly that information cannot

explain completely excess volatiliy in the context of the present value model. In our

empirical setting, excess volatilitily can be detected by looking at the reaction of prices

to both learning and signal shocks, which is too large with respect to what is predicted

by the theory and reported in equation (11). Adding uncertainty about interest rates

goes in the right direction; but we think that excess volatility calls for some additional

explanation, which cannot be found in the present value framework.
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Tables

Shock Lags Regressors

(1) (2) (3) (4) (5) (6)

Learning 2 0.66 0.82 0.98 0.92 0.66 0.93

4 0.07 0.09 0.42 0.64 0.41 0.88

Signal 2 0.03 0.00 0.00 0.02 0.81 0.05

4 0.10 0.01 0.01 0.05 0.91 0.05

Dividend 2 0.21 0.39 0.73 0.86 0.51 0.21

4 0.39 0.48 0.78 0.97 0.62 0.41

Noise 2 0.01 0.00 0.00 0.02 0.63 0.03

4 0.03 0.00 0.01 0.05 0.86 0.05

Table 1. Results of the fundamentalness test in the bivariate VAR. The table reports the p-

values of the F -test in the regressions of the estimated shocks on 2 and 4 lags of the regressors

(1)-(6). Dividend and noise shocks are truncated at time T −4 since end-of-sample estimates are

inaccurate. Regressors: (1) 3-Month Treasury Bill: Secondary Market Rate; (2) 10-Year Treasury

Constant Maturity Rate; (3) Moody’s Seasoned Aaa Corporate Bond Yield; (4) GDP Implicit

Price Deflator; (5) The Conference Board Leading Economic Indicators Index; (6) Michigan

University Consumer Confidence Expected Index.
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Shock Lags Regressors

(1) (2) (3) (4) (5) (6)

Learning 2 1.00 0.91 1.00 0.79 0.82 0.60

4 1.00 0.95 1.00 0.84 0.98 0.70

Signal 2 1.00 0.98 1.00 0.43 0.95 0.53

4 1.00 0.97 1.00 0.59 0.98 0.27

Dividend 2 0.91 0.90 0.98 0.80 0.89 0.22

4 0.96 0.72 0.97 0.91 0.98 0.51

Noise 2 0.95 0.96 0.93 0.31 0.73 0.20

4 0.99 0.99 0.99 0.58 0.93 0.14

Table 2. Results of the fundamentalness test in the 4-variable VAR. The table reports the

p-values of the F -test in the regressions of the estimated shocks on 2 and 4 lags of the regressors

(1)-(6). Dividend and noise shocks are truncated at time T −4 since end-of-sample estimates are

inaccurate. Regressors: (1) 3-Month Treasury Bill: Secondary Market Rate; (2) 10-Year Treasury

Constant Maturity Rate; (3) Moody’s Seasoned Aaa Corporate Bond Yield; (4) GDP Implicit

Price Deflator; (5) The Conference Board Leading Economic Indicators Index; (6) Michigan

University Consumer Confidence Expected Index.
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Variable Horizon

Impact 1-Year 2-Year 4-Years 10-Years

Learning

3-M T. Bill Rate 0.0 (0.0) 0.3 (1.5) 0.5 (2.7) 0.6 (3.6) 1.2 (5.1)

AAA C. Bond Yield 0.0 (0.0) 0.2 (1.3) 0.1 (2.0) 0.5 (3.7) 0.8 (5.9)

Dividends 99.7 (10.7) 81.7 (9.0) 75.2 (11.4) 73.8 (12.5) 74.0 (15.9)

Stock Prices 2.5 (2.1) 1.3 (2.7) 1.9 (4.7) 4.6 (8.9) 18.4 (14.6)

Signal

3-M T. Bill Rate 0.0 (0.0) 5.4 (4.2) 7.3 (6.1) 8.0 (6.4) 17.0 (8.8)

AAA C. Bond Yield 0.0 (0.0) 3.0 (3.4) 3.8 (4.9) 2.7 (5.6) 11.1 (9.2)

Dividends 0.0 (0.0) 14.7 (7.0) 20.7 (10.1) 17.3 (11.6) 17.8 (15.4)

Stock Prices 87.5 (5.0) 72.1 (9.5) 67.7 (11.5) 63.1 (13.7) 56.8 (15.8)

Dividend shock

3-M T. Bill Rate 0.0 (0.0) 1.4 (2.8) 2.8 (4.6) 2.6 (4.8) 5.9 (8.1)

AAA C. Bond Yield 0.0 (0.0) 0.3 (1.7) 0.4 (2.7) 0.7 (3.6) 1.7 (7.5)

Dividends 0.0 (0.0) 94.2 (11.5) 94.4 (10.8) 90.0 (13.4) 91.3 (13.7)

Stock Prices 17.3 (21.3) 21.4 (18.8) 21.5 (18.1) 26.1 (18.3) 45.0 (19.7)

Noise

3-M T. Bill Rate 0.0 (0.0) 4.2 (3.6) 4.9 (4.8) 6.0 (6.2) 12.2 (8.0)

AAA C. Bond Yield 0.0 (0.0) 2.8 (2.9) 3.6 (4.3) 2.5 (5.3) 10.2 (8.8)

Dividends 0.0 (0.0) 1.3 (9.6) 1.1 (7.7) 0.8 (6.3) 0.4 (4.3)

Stock Prices 72.4 (21.5) 52.0 (19.1) 47.9 (18.1) 41.4 (16.7) 30.0 (14.1)

Table 3. Variance decomposition in the 4-variable VAR. The entries are the percentages of

forecast error variance explained by the shocks at the specified horizons. Standard errors in

brackets.
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Shock Lags Regressors

(1) (2) (3) (4) (5) (6)

Learning 2 0.91 0.98 1.00 0.91 0.96 0.53

4 0.97 0.97 1.00 0.51 0.96 0.86

Signal 2 0.83 0.98 1.00 0.62 0.77 0.38

4 0.94 0.99 1.00 0.90 0.97 0.22

Dividend 2 0.90 0.88 0.96 0.43 0.89 0.55

4 0.90 0.85 1.00 0.67 0.66 0.18

Noise 2 0.78 0.98 0.96 0.55 0.77 0.38

4 0.85 1.00 1.00 0.68 0.84 0.27

Table 4. Results of the fundamentalness test in the 5-variable VAR. The table reports the

p-values of the F -test in the regression of the estimated shocks on 2 and 4 lags of the regressors

(1)-(6). Dividend and noise shocks are truncated at time T −4 since end-of-sample estimates are

inaccurate. Regressors: (1) 3-Month Treasury Bill: Secondary Market Rate; (2) 10-Year Treasury

Constant Maturity Rate; (3) Moody’s Seasoned Aaa Corporate Bond Yield; (4) GDP Implicit

Price Deflator; (5) The Conference Board Leading Economic Indicators Index; (6) Michigan

University Consumer Confidence Expected Index.
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Variable Horizon

Impact 1-Year 2-Year 4-Years 10-Years

Learning

Dividends 0.0 (0.0) 0.2 (1.5) 2.4 (4.4) 9.4 (7.6) 17.2 (9.7)

Nonresidential Inv. 0.0 (0.0) 0.2 (1.6) 1.8 (2.7) 2.5 (4.7) 11.9 (7.1)

AAA C. Bond Yield 0.0 (0.0) 1.1 (2.3) 1.6 (3.7) 3.1 (4.9) 6.3 (6.1)

Potential GDP 99.7 (1.4) 94.5 (6.6) 83.7 (11.3) 71.3 (15.0) 63.4 (17.4)

Stock Prices 0.0 (0.7) 0.5 (2.4) 2.1 (4.7) 4.8 (6.7) 10.0 (8.4)

Signal

Dividends 0.0 (0.0) 12.9 (6.7) 17.4 (8.9) 12.3 (7.7) 11.5 (9.7)

Nonresidential Inv. 0.0 (0.0) 19.5 (6.7) 27.8 (10.1) 28.1 (10.1) 27.7 (9.3)

AAA C. Bond Yield 0.0 (0.0) 4.2 (3.7) 3.7 (3.8) 5.1 (6.3) 15.3 (11.1)

Potential GDP 0.0 (0.0) 1.2 (2.3) 6.6 (6.3) 16.7 (11.2) 19.1 (13.8)

Stock Prices 82.0 (6.3) 71.4 (9.7) 68.7 (11.5) 64.1 (13.8) 50.8 (16.0)

Dividend shock

Dividends 0.0 (0.0) 2.0 (3.6) 5.7 (6.4) 11.3 (8.8) 22.9 (12.7)

Nonresidential Inv. 0.0 (0.0) 4.0 (4.6) 4.8 (6.3) 7.6 (7.9) 20.7 (10.4)

AAA C. Bond Yield 0.0 (0.0) 0.3 (1.3) 0.4 (2.0) 4.1 (5.3) 14.7 (9.8)

Potential GDP 0.0 (0.0) 81.9 (21.1) 83.6 (17.3) 85.2 (17.9) 81.4 (19.0)

Stock Prices 17.8 (18.0) 14.9 (15.3) 19.5 (15.7) 26.2 (16.5) 31.8 (17.0)

Noise

Dividends 0.0 (0.0) 11.0 (6.2) 12.9 (7.7) 8.8 (6.1) 5.3 (5.9)

Nonresidential Inv. 0.0 (0.0) 15.6 (6.7) 23.1 (9.6) 22.4 (9.3) 18.4 (8.3)

AAA C. Bond Yield 0.0 (0.0) 4.4 (3.5) 4.5 (3.9) 3.6 (5.1) 6.6 (8.1)

Potential GDP 0.0 (0.0) 9.4 (11.3) 3.5 (7.4) 1.2 (5.1) 0.4 (2.3)

Stock Prices 64.2 (18.2) 56.8 (16.6) 51.0 (16.4) 42.4 (15.7) 28.8 (15.1)

Table 5. Variance decomposition in the 5-variable VAR. The entries are the percentages of

forecast error variance explained by the shocks at the specified horizons. Standard errors in

brackets.
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Figure 2. S&P 500 (dotted line) and Net Corporate Dividends (solid line) both in logs.

On the x-axis there are the quarters. The events occurs in quarter 1.
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Figure 3a. Impulse response functions of dividends and stock prices to signal and

learning shocks in the 4-variable VAR. Solid line: point estimates. Dark gray area: 68%

confidence bands. Light gray area: 90% confidence bands.
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Figure 3b. Impulse response functions of dividends and stock prices to the 3-month

Treasury bill, secondary market interest rate shock and the AAA corporate bond yield

shock in the 4-variable VAR. Solid line: point estimates. Dark gray area: 68% confidence

bands. Light gray area: 90% confidence bands.
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Figure 5a. Impulse response functions of dividends and stock prices to dividend and

noise shocks in the 4-variable VAR. Solid line: point estimates. Dark gray area: 68%

confidence bands. Light gray area: 90% confidence bands.
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Figure 5b. Impulse response functions of 3M T-Bill and AAA Bond yield to dividend

and noise shocks in the 4-variable VAR. Solid line: point estimates. Dark gray area:

68% confidence bands. Light gray area: 90% confidence bands.
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Figure 6a. Impulse response functions of potential GDP and stock prices to signal and

learning shocks in the 5-variable VAR. Solid line: point estimates. Dark gray area: 68%

confidence bands. Light gray area: 90% confidence bands.
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Figure 6b. Impulse response functions of AAA corporate bond yields, dividends and

nonresidential investment to signal and learning shocks in the 5-variable VAR. Solid line:

point estimates. Dark gray area: 68% confidence bands. Light gray area: 90% confidence

bands.
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Figure 7a. Impulse response functions of potential GDP and stock prices to dividend

and noise shocks in the 5-variable VAR. Solid line: point estimates. Dark gray area:

68% confidence bands. Light gray area: 90% confidence bands.
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Figure 7b. Impulse response functions of AAA corporate bond yields, dividends and

nonresidential investment to dividend and noise shocks in the 5-variable VAR. Solid line:

point estimates. Dark gray area: 68% confidence bands. Light gray area: 90% confidence

bands.
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Figure 8. Historical decomposition in the 4-variable VAR. Dashed line: log of the S&P

500 stock price index divided by the GDP deflator. Solid line: noise component of the

stock price index. Dotted line: difference between the stock price index and the noise

component. The decomposition is truncated at time T −4 since end-of-sample estimates

are inaccurate.
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Figure 9. Historical decomposition in the 5-variable VAR. Dashed line: log of the S&P

500 stock price index divided by the GDP deflator. Solid line: noise component of the

stock price index. Dotted line: difference between the stock price index and the noise

component. The decomposition is truncated at time T −4 since end-of-sample estimates

are inaccurate.
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Figure 10. Historical decomposition in the 5-variable VAR. Dashed line: nonresidential

investment (demeaned) . Solid line: noise component of of nonresidential investment.

The decomposition is truncated at time T − 4 since end-of-sample estimates are inaccu-

rate.
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Figure 11. Historical decomposition in the 5-variable VAR. Dashed line: business cycle

component of nonresidential investment (band-pass filter, frequencies between 6 and 32

quarters). Solid line: noise component of the business cycle component of nonresidential

investment. The decomposition is truncated at time T −4 since end-of-sample estimates

are inaccurate.
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Figure 12. Historical decomposition in the 4-variable VAR. Dashed line: 3M T-Bill.

Solid line: noise component of the 3M T-Bill. Dotted line: difference between the 3M

T-Bill and the noise component. The decomposition is truncated at time T − 4 since

end-of-sample estimates are inaccurate.
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Figure 13. Historical decomposition in the 4-variable VAR. Dashed line: noise com-

ponent of the log of the (real) S&P 500 stock price index. Solid line: noise component

of the 3M T-Bill. The decomposition is truncated at time T − 4 since end-of-sample

estimates are inaccurate.
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