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1 Introduction

Since the seminal contributions of Stock (2008), Stock and Watson (2012), Mertens and
Ravn (2013) and Stock and Watson (2018), SVAR-IV (or Proxy-SVARs) models have
become a popular approach to structural macroeconomic analysis. The methodology
relies on VAR residuals and external instruments — variables that provide a possibly noisy
measure of a particular structural shock but are excluded from the VAR, hence external —
to achieve identification of the shock of interest. In this paper, we refer to the application
of this method as the ‘Standard External-Instrument SVAR’, or ‘Standard SVAR-EIV’.

A severe limitation of the method is that it requires either global or partial invertibility
of the structural shocks. The commonly adopted conditions for external-IV identification
in VARs, provided by Mertens and Ravn (2013) and Stock and Watson (2018), require
global invertibility — meaning that each and every shock in the economy can be retrieved
from the vector of contemporaneous VAR innovations. A number of influential papers
discuss global invertibility, including Lippi and Reichlin (1994), Giannone and Reichlin
(2006), Fernandez-Villaverde et al. (2007), Forni et al. (2009), Ramey (2011), Leeper et
al. (2013), Forni and Gambetti (2014), Soccorsi (2016), and Canova and Hamidi Sahneh
(2017).1

Miranda-Agrippino and Ricco (2023) show that the Standard SVAR-EIV procedure
is also valid under partial invertibility, provided that the validity conditions for the in-
strument are suitably reinforced. Partial invertibility is a much less demanding property
since it only requires that one or some of the structural shocks be a linear combination of
the VAR residuals. In this work we adopt a partial-invertibility perspective: when using
the term invertibility we mean partial invertibility, unless otherwise stated.

A long literature in empirical macro has pointed out that, while less demanding than
global invertibility, partial invertibility is nonetheless a restrictive property that can fail
in relatively common settings. For example, it may not be satisfied in the presence of
news technology shocks (Forni et al., 2014), forward guidance (Ramey, 2016), or fiscal
foresight (Mertens and Ravn, 2010, Ramey, 2011, Leeper et al., 2013), and necessarily
fails for the so-called noise shocks (Blanchard et al., 2013, Forni et al., 2017).

Internalising the proxy by including it in the VAR, in an ‘Internal-Instrument SVAR’
(SVAR-IIV), has long been a common approach (see Ramey, 2016). It consists of a
standard Cholesky identification in which the instrument enters the VAR as the first
variable, and the IRFs to the first shock are those of interest. Plagborg-Mgller and Wolf

LA helpful summary of these contributions is provided by Kilian and Liitkepohl (2017).
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(2021) show that, with this procedure, the impulse response functions are consistently
estimated even in the absence of invertibility. Other approaches that are valid under
non-invertibility are the LP-IV (discussed in Stock and Watson, 2018), based on Jorda
(2005)’s Local Projections, and the VARX, where the proxy plays the role of an exogenous
variable (see Paul, 2020), provided that sufficient lags of the proxy are included in the
regression, as suggested in Noh (2017).

However, such solutions come at a price. First, in empirical applications, the available
instruments often have a short time span, as is the case for the existing instruments for
monetary policy, tax, or oil shocks (Gertler and Karadi, 2015, Mertens and Ravn, 2013,
Kénzig, 2021). In the External Instrument approach (SVAR-EIV), the time span of the
VAR can differ from that of the instrument. This is an important flexibility that is lost in
the alternative methods mentioned above. Second, internalising the proxy entails that the
proxy is projected onto the lags of the variables; a treatment that may not be necessary
or may require a different number of lags and possibly different variables. Third, unlike in
a SVAR-IIV, an external IV approach allows one to fix the model, estimate it only once,
and compare results obtained from different instruments. Finally, LP-IV and SVAR-ITV
produces estimates that are more volatile than those of SVAR-EIV, as documented in Li
et al. (2022).

The main methodological contribution of this paper is to generalise the external-
instrument SVAR approach to the case of non-invertibility and non-recoverabilty. We
refer to our proposed method as the Generalised External-Instrument SVAR, (Generalised
SVAR-EIV). We show that all types of analysis that can be carried out with LP-IV and
SVAR-IIV can also be undertaken with our approach, under similar validity conditions.
Compared with the alternative approaches — SVAR-IIV, LP-IV, and VARX — our method
retains the full flexibility of the external IV framework. Furthermore, according to our
simulations, it performs well in terms of Mean Square Error in comparison to the SVAR-
ITV method.

The basic idea is very simple. Instead of regressing the VAR residuals on the current
proxy only, we regress the VAR residuals on the current proxy and its lags. The impulse
response functions are then estimated by combining the coefficients of this regression with
the reduced-form impulse response functions obtained from the VAR. Moreover, we show
how to implement, within our setting, the upper and lower bounds for the ‘absolute’ IRFs
and the variance contributions proposed by Plagborg-Mgller and Wolf (2022).

While the relative impulse-response functions — i.e. dynamic responses normalised



by the response of a variable of interest — can be estimated independently of whether
the shock of interest is invertible or recoverable, the absolute response functions and the
structural shock itself cannot be estimated unless the shock is recoverable. Recoverability
(Chahrour and Jurado, 2021) is less demanding than invertibility. A shock is recoverable
if it is a linear combination of the present, past, and future values of the VAR variables, or,
equivalently, a linear combination of the present and future values of the VAR residuals.

This paper offers a procedure to test for recoverability and to estimate the structural
shock of interest when it is recoverable. It consists in first regressing the instrument on
the present and future values of the VAR residuals. If the shock is recoverable, the fitted
value is a consistent estimate of the shock and therefore must be serially uncorrelated. It
is hence possible to test for recoverability by testing for serial uncorrelation of this fitted
value. Moreover, we show how to estimate the corresponding absolute impulse-response
functions. Having an estimate of the shock, historical decomposition can be performed
as usual. Standard variance decomposition is downward biased at short horizons when
the model is not globally invertible. However, an unbiased variance decomposition can be
obtained by integrating the spectral densities over specific frequency bands, as suggested
in Forni et al. (2019).

The regression of the proxy on the present and future values of the VAR residuals also
allows to test for invertibility. Under invertibility, the shock is a linear combination of
current VAR residuals only. Hence, a simple F-test for the null of zero coefficients on the
future residuals indicates whether the shock is invertible or not. Both the recoverability
test and the invertibility test provide a valuable guidance for the choice of the VAR
variables. If the null of invertibility is not rejected, our proposed procedure collapses to
the Standard SVAR-EIV procedure.

A few Monte Carlo exercises validate our proposed estimation and testing method
in small samples. Our main simulations are based on the DSGE model of Justiniano et
al. (2010) and focus on the monetary policy shock. We show that (i) invertibility is a
serious problem for the standard SVAR-EIV approach; (ii) our procedure can detect and
address this problem; and (iii) the Generalised SVAR-EIV performs well compared with
the SVAR-ITV method.

In the empirical application, we study the effects of US monetary policy using the
proxy of Gertler and Karadi (2015). This instrument is based on surprises in federal
funds futures with three-month maturity, so that it is likely to capture both conventional

monetary policy shocks and shocks to forward guidance about the path of the short-term



rate. This news component might induce noninvertibility, providing a strong motivation
for our analysis.

Our main findings are as follows. First, in standard VAR specifications, the monetary
policy shock turns out to be noninvertible according to our test. This is true even for
specifications including the excess bond premium. Hence, the results obtained so far with
the standard SVAR-EIV approach should be interpreted with caution.

Second, when using our External-Instrument method, a contractionary shock reduces
inflation and output consistently across different VAR specifications, independently of the
inclusion of financial variables. By contrast, when using the standard approach, results
vary dramatically across VAR specifications, with large price and real activity puzzles
emerging when financial variables are not included.

Finally, the monetary policy shock is recoverable, allowing us to perform variance
decomposition. The variance decomposition shows that the contribution of the monetary
policy shock to both output and prices is sizeable and larger than previously reported.
This is a notable result, as it suggests that monetary policy can be effective in controlling
prices.

The remainder of the paper is organised as follows. Section 2 presents our structural
MA model and representation results. In Section 3, we present our identification results
and the proposed estimation and testing procedure, which is summarised in Section 3.6.
Section 4 reports our Monte Carlo exercises. Section 5 presents our empirical application.
The final section concludes. The Online Appendix provides additional results, proofs of
all propositions, illustrative examples, further simulations, and robustness checks for the

empirical analysis.

2 Representation theory

In this section we introduce our theoretical framework and study the relation between
the structural representation and the VAR representation when the structural shock of

interest is not recoverable, recoverable but not invertible, and invertible.

2.1 The model

Let us start from our assumptions about the structural macroeconomic model and the

VAR representation.



Assumption 1. (Structural MA representation) The observable macroeconomic variables
in the n-dimensional vector y,, possibly after suitable transformations, have the represent-

ation
yt - B(L)ut7 (1)

where (i) B(L) = By + B1L + BoL* + - -+ is an n X q matriz of rational impulse-response
functions in the lag operator L; (ii) n < q and B(z), z being a complex variable, has rank
n on the unit circle; (i) u; is a q-dimensional white noise vector including the structural

shocks, whose variance covariance matrix is I;.

The above model is sometimes referred to as the Slutsky-Frisch representation of the
macro economy. It can be thought of as resulting from the linearisation of a DSGE
model and can easily be derived from its state-space representation. Notice that we do
not assume that the number of shocks is equal to the number of variables, so that the
matrix B(L) is not necessarily square. However, we assume that the number of variables
cannot be larger than the number of shocks (n < ¢). This assumption can be justified
by recognising that the variables are observed with error and such errors are allowed to
enter the vector u; together with the structural shocks.

In this paper we are concerned with identification of a single shock of interest, u;. To
highlight the shock of interest and the corresponding response functions, it is convenient
to re-write (1) in the form

yr = bi(L)uy + B(L)iy, (2)

where b;(L) = bio + by L+ bipL? + - - - is the i-th column of B(L), B(L) includes the other
columns of B(L) and @; = (U1 -+ Wi—14 Wit1s - Uge)'
Being stationary and purely nondeterministic by (1), y; always admits the Wold rep-

resentation

yr = C(L)e; (3)

where C(L) = Cy+C{L+CyL*+- - - and ¢; is an n-dimensional vector white-noise process
with covariance matrix .. Notice that this representation is square, since C'(L) is n X n.

By Assumption 1 (ii), B(z) has rank n on the unit circle, so that the spectral density
matrix of y;, i.e. SY(0) = %B(e‘j(’)B’(eﬂ’) = %C(e‘je)ZEC’(eﬁ), for j the imaginary
unit, is nonsingular everywhere in [—m, 7). This implies that C(z) vanishes only outside
the unit disk in the complex plane, so that the Wold representation is invertible and
has the VAR representation

A(L)y, = (4)
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where A(L) = C(L)~'. The existence of a VAR representation is necessary for SVAR
analysis.

It is worth to observe that while our discussion is centred on a model for a stationary
vector v, our results are easily generalised to the case of a nonstationary I(1) process Y;.
Assume that y; = (1 — L)Y;. From equation (4) we obtain A(L)(1 — L)Y; = O(L)Y; = &,
so that there exists a VAR representation for the levels Y; with the same innovation ;.
Consequently, all our results — which concern the relationship between u; and £; — remain

valid in a nonstationary environment.

2.2 Relationship between structural and reduced form

The relation linking the structural representation (1), on the one hand, and the Wold
representation (3), with the associated VAR representation (4), on the other hand, has
been studied in detail for the case n = ¢ in Lippi and Reichlin (1994). In this case, all
of the shocks in u; are recoverable, i.e. they are linear combinations of the present, past
and future values of the variables in y;. The concept of recoverability is introduced and
studied in detail in Chahrour and Jurado (2021). Remark 1 in the Appendix shows that
u; is (globally) recoverable if and only if n = ¢. The important case n > ¢ has not been
exhaustively studied, but for the case of partial invertibility, i.e. the shock of interest
u; is a linear combination of the present and the past of the variables in y; (see Forni
et al. 2019 and Miranda-Agrippino and Ricco 2021). Here we provide general results for
the case n > ¢; such results are used in the next section as the basis for our proposed

identification method. The case n > ¢ is discussed in depth in Forni et al. (2020).

2.2.1 Two basic results

Let us anticipate here the representation results that we shall use in the next subsection
to identify the impulse-response functions and, when possible, the shock of interest. From

equations (1) and (4) we see that
er = A(L)ye = A(L)B(L)uy = Q(L)uy. (5)

Hence the VAR residuals in ¢; are linear combinations of the current and lagged structural
shocks ;. Pre-multiplying both sides of (5) by C(L) = A(L)™! and equating coefficients



we get B(L) = C(L)Q(L). In particular, the IRFs of interest are given by
bi(L) = C(L)g:(L), (6)

where ¢;(L) is the i-th column of the matrix Q(L). Since C'(L) is unique, we see from the
above equation that identification of b;(L) can be obtained by identifying ¢;(L), i.e. the
coefficients linking ; to the present and past values of u;;. This is what we do in the next
section by exploiting the instrument.

Equation (5) expresses the VAR residuals in &; as linear combinations of the structural
shocks. But in order to identify and estimate the structural shocks we need the inverse
relation, i.e. the one linking u; to ;. Hence we consider the linear projection of u; onto

the present, past and future values of the Wold shocks ;. We have
u = D'(Fe; + st (7)

where s; is the residual of the projection, F' = L' is the forward operator such that
Fe; = €441 and D'(F) is a ¢ X n matrix of linear filters. We show below that the past of
g, cannot enter the above relation, so that D(F') is one-sided in the positive powers of F'.

In particular, for the shock of interest we have
Uy = d;i(F)ey + si.

In the special case in which u;; is recoverable, the residual of the above projection vanishes,
s = 0, so that wu; is an exact linear combination of the present and future values of the
£’s. The above equation provides the basis for the method proposed in the next section
to identify and estimate the shock of interest when it is recoverable; moreover, it provides

the basis for our proposed invertibility and recoverability tests.

2.2.2 Formal definitions and statements

Let us now present our formal statements. All proofs are in the Appendix.

Proposition 1. (Impulse-response functions)
(i) D(F) defined in (7) is one-sided in the non-negative powers of F'.
(ii) Q(L) defined in (5) is linked to the projection coefficients in (7) by the relations

Q(L)=%.D(L);  D(L)=3%'Q(L). (8)



(1ii) The structural impulse-response functions are linked to the Wold impulse response

functions by the relation
B(L) = C(L)Q(L) = C(L)XD(L).
In particular, for the impulse-response functions of interest the relation is
bi(L) = C(L)qi(L) = C(L)Ecdi(L), (9)

where q;(L) and d;(L) are the i-th columns of Q(L) and D(L), respectively.

Proposition 1 establishes a mapping between the Wold impulse-response functions
C(L) and the structural impulse-response functions B(L) which holds true independently
of invertibility or recoverability of the structural shocks.

Let us now introduce our definition of recoverability and invertibility.

Definition 1. (Recoverability) Let HY be the closed linear space spanned by present, past
and future values of y,: HY = span(y;—x,j = 1,...,n,k € Z). We say that the structural
shock uy is recoverable with respect to y; if and only if u;y € HY. We say that u, is (globally)

recoverable with respect to vy, if and only if all of the structural shocks are recoverable.

If u; is recoverable, it may be the case that it fulfils a more demanding property, that is
fundamentalness (invertibility). In the literature, fundamentalness is often regarded as a
synonymous of invertibility. Indeed, fundamentalness is somewhat weaker than invertibil-
ity. For instance, if y, = (1— L), then u; is fundamental but not invertible. In our setting
however we are assuming that 3, has a VAR representation, so that fundamentalness and

invertibility coincide.

Definition 2. (Fundamentalness/invertibility) Let H, be the closed linear space spanned
by present and past values of yi: H; = span(y;i—k,j = 1,...,n,k > 0). We say that the
structural shock wuy is fundamental with respect to y, if and only if uy € H; . We say that
ug 1S fundamental with respect to y; if and only if all structural shocks are fundamental

with respect to 1.

From the definition of fundamentalness we see that if u; is fundamental for y;, then

uj is recoverable, whereas the converse is not necessarily true.



Proposition 2. (Structural shocks and VAR residuals)

(i) If uy is recoverable with respect to y;,
Ujp = d;(F)et = qz/'(F)E.e_15t7 (10)

where di(F) = dyg+din F +dinF? +- - - is the i-th column of D(F) and q;(F) = qio+qn F +
qinF? + -+ is the i-th column of Q(F). Moreover, d,(F)¥.d;(L) = ¢;(F)X 1 q;(L) = 1.
(ii) If wy is fundamental for y,, then d;(F) = djy = d; and ¢;(F) = qio = qi, so that

uy = digy = quglgt (11)

and

b(L) = C(L)q; = C(L)Z.d;, (12)

where d;¥.d; = ¢/X'q; = 1.
(ii) If both uy and uj, are recoverable, then d;(L)'S.d;(L) = ¢;(L)'S 1 q;(L) = 0.

Proposition 2 implies that, if the structural shock is recoverable, then it is a linear
combination of current and future values of the VAR residuals, with the polynomials
being such that the spectral density is one at all frequencies; if the structural shock is
fundamental, then it is a linear combination of current VAR residuals, and its impulse-
response functions are linear combination of the Wold impulse-response functions.

A few remarks are reported in the Appendix. Remarks 1 and 2 show that the above
results reduce to a basic result in Lippi and Reichlin (1994) in the special case ¢ = n.

Remarks 3 and 5 introduce theoretical measures of recoverability and fundamentalness.

2.2.3 A general SVAR representation

Let u{ be the (possibly empty) sub-vector of the fundamental structural shocks, u] of the
recoverable (but nonfundamental) shocks, and u} of the nonrecoverable ones. Moreover,
let Q"(L)ul, for h = f,r,n, be the projection of &, onto ul ,, with k > 0, and D"(F)e,,
for h = f,7,n, be the projection of u? onto &;,4, with k > 0. The following result, which
is an immediate consequence of Propositions 1 and 2, provides a general structural VAR

representation of y;.



Proposition 3. (General SVAR Representation) Any vector process y; satisfying As-

sumption 1 can be represented as

ALy = QMul + Q" (L)uf + Q" (L)up
= 2.0l +2.D"(L)uf + S.D™(L)ul. (13)
Moreover, the following properties hold:
(i) DY and Q7 are such that D/'S. D/ = QI'S1Q) = I;
(ii) D"(L) and Q"(L) are such that D" (F)¥X.D"(L) = Q" (F)X'Q"(L) = I.

Since A(L) and X, are unique, equation (13) shows that the impulse response functions
BML) = A(L)7*Q"(L), h = f,r,n, are identified whenever Q"(L) (or D"(L)) is identified;
moreover, we see from (ii) that, for h = f,r, Q"(L) (or D"*(L)) also identifies the shock
uf = QM(F)S A(Ly,

3 The Generalised External Instrument Approach

In this section we present our proposed identification and estimation procedure. First,
we introduce the instrument. Next, we present our estimators for the relative IRFs, and,
in the recoverability case, the absolute IRFs and the shock. Then we discuss variance
decomposition and present our proposed recoverability and invertibility tests. In the last

subsection, we summarise our proposed estimation and testing procedure.

3.1 The instrument
Let us begin by introducing the instrument.

Assumption 2. (The Instrument) The researcher can observe the (scalar) instrument

Zy, which fulfills the linear projection equation
Z = B(L)Z1 + p'(L)wyy + iy + wy, (14)

where auy + wy = z 18 the residual of the projection of Z; on Zi_, xi_p, k >0, and wy is

an error orthogonal to uy and ,1, k > 0 (for simplicity we omit the constant term).

The above condition can be re-written in terms of conditional covariances as follows.
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(1) cov(Ze, wit|Ze—k, Te—p, k > 0) =a # 0  (relevance)
(il) cov(Z, e¢|uit, Ze—, Ti—g, k > 0) = 0 (contemporaneous exogeneity)

(iil) cov(Z:, ern|tit, Ze—, Ti—g, k > 0) =0 for h > 0 (dynamic exogeneity)

This condition is somewhat milder than the LP-IV* condition of Stock and Watson (2018),
i.e. lead-lag exogeneity, conditional on the past history of z; and x;. For, the latter
condition requires that w, in equation (14) is orthogonal to the present, past and future

values of u;, whereas we only require orthogonality with the present and future values of
the Wold residuals ;.

In the following subsections, to exploit properly the above conditions, in place of Z;,

we shall consider the residual of the projection of Z; onto the past history of z; and zy, i.e.
2 = QUi + Wy. (15)

Correspondingly, as a first step of our proposed procedure, we ‘clean’ zZ; by estimating
(14) and then use the residual as our instrument. This of course is not needed if the
instrument is already serially uncorrelated and cannot be predicted by past x’s. Notice
that in equation (14) the conditioning vector variable x; is not necessarily equal to the
VAR vector variable y,. As a suggestion for practitioners, x; might include the principal
components of a large dataset or a few forward-looking financial variables, provided that

they Granger cause Z;.

3.2 Impulse response functions and shocks

In this subsection, we present our main identification results. First we consider the case
of nonrecoverable shocks. In this case the shock and the impulse response functions
corresponding to a unit-variance shock (the absolute IRFs) are not identified, but the
“relative” response functions are identified, meaning that the IRFs are identified up to
a multiplicative constant. Moreover, we can estimate upper and lower bounds for the
absolute IRFs. Then we turn to the case of a recoverable shock. In this case, both the
shock and the absolute IRFs are identified. Finally, we consider the case of a fundamental
shock. In this case the IRFs and the shock are identified by the standard External-

Instrument SVAR formulas. The proofs for all propositions are reported in the Appendix.
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3.2.1 Nonrecoverable shocks

Let us consider the projection of £; onto the current and past values of the proxy:
Et = w(L)Zt + Ct. (16)

The following result holds.

Proposition 4. (Relative IRFs) The coefficients of the projection (16) are related to ¢;(L)
appearing in (6) by the equation

$(L)o? = g(L)o. (17)
Hence the impulse-response functions fulfil the relation
bi(L)a/o? = C(L)(L) = ~(L). (18)

A consequence of Proposition 4 is that a possible strategy to estimate the relative
IRFs is to perform the OLS regression of ¢; onto the present and past values of z; until a
maximum lag r to get an estimate of ¢)(L) = ¢/(L)a/c?, say Q//J\(L), and estimate b; (L)«

as

bi(L)a/o? = C(L)p(L) =H(L), (19)

Unfortunately, in the general case a cannot be found so that we cannot estimate
the impulse response functions corresponding to a unit-variance shock. However, we can
normalise the IRFs in equation (19) by dividing by the effect on a pre-specified variable
at a given lag, as suggested in Stock and Watson (2018). For instance we can normalise

the impulse-response functions by dividing by the impact effect on the first variable:

S
=
=
>

@)~ 510 .
where 77 (L) is the first entry of v(L). The resulting IRFs are then the ones corresponding
to a shock having impact effect 1 on the first variable.

Plagborg-Mgller and Wolf (2022) show that, while it is impossible to estimate the
absolute response functions, it is nonetheless possible to compute upper and lower bounds
for the parameter «; in the Appendix we derive, within our setting, the upper and lower

bounds for the absolute response functions b;(L).
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3.2.2 Recoverable but nonfundamental shocks

If the shock is recoverable, we can identify and estimate the absolute IRFs and the shock
itself. Let us begin with the absolute IRFs. The following result holds.

Proposition 5. (Absolute IRFs) If w; is recoverable, its (absolute) impulse response

functions are given by the equation

(D) =2 (Do = <
k=0 *'k~e k

From the above proposition we see that b;(L) can be estimated as

(21)

Coming to the shock, let us consider the projection of z; onto the space spanned by
the present and the future of the VAR residuals:

Zr = 5/<F)€t + vg. (22)

The following proposition holds.
Proposition 6. (The structural shock) If u; is recoverable, then

§(F)e,

V0 5Bk

From the above proposition we see that, if the shock is recoverable, it can be estimated

Uit = dZ(F)gt =

as

&' (F)é,

VS 0120

Having an estimate of the shock, we can perform historical and variance decomposition

Uit =

(23)

as explained in Section 3.3 below.

3.2.3 Fundamental shocks

If we have fundamentalness, the following result holds.

13



Proposition 7. (IRFs and shocks under fundamentalness)

(i) Let us consider the projection equation e, = ¥z, + €. If uy is fundamental, then
C(L)y
VY

(ii) Let us consider the projection equation z; = 0'e; + e;. If uy is fundamental, then

bi(L) =

5’6’}

VY0

From Proposition 7 (i) we see that, if the shock is fundamental, we can estimate (16)

Uy =

without including the lags of z;, i.e. we can estimate by OLS the projection e, = ¥z + e;

to get an estimate of ¢». The impulse-response functions can then be estimated as

hi(L) = LY (24)

Notice that the above procedure is nothing else that the standard estimation procedure,
which is usually applied without testing (see below for our proposed fundamentalness
test).

Turning to estimation of the shock, by Proposition 7 (ii) we can estimate (22) including
only the current £, among the regressors, in order to estimate §; having B , the unit variance

shock can be estimated as .
d'éy

Jis4

A few considerations about consistency of the estimators above are provided in Remark

(25)

Uy =

6 in the Appendix. Remarks 7 and 8 discuss briefly alternative estimators for the IRFs

and the shock, respectively, and explain why we prefer the estimators above.

3.3 Historical and variance decomposition

In this subsection we discuss historical decomposition and variance decomposition. We
have shown that, if the shock of interest is recoverable, it can be estimated. Having
an estimate of the shock and the corresponding impulse-response functions, historical

decomposition can be performed in the standard way.
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Variance decomposition is more problematic. The standard forecast error variance
decomposition (FVD) can be computed only for globally invertible models. This is because
the forecast error depends on all structural shocks and the corresponding impulse response
functions. Having an estimate of the IRFs of u;; we can of course compute the numerator of
the ratio, but we cannot estimate the denominator without estimating the whole structural
model.

Plagborg-Mgller and Wolf (2022) replace this denominator —i.e. the forecast error
variance of the structural model— with the forecast error variance based on present and
past values of y;, which can be estimated, and name this ratio FVR. However, FVR might
underestimate the variance contribution of the shock of interest at short horizons (See the
online Appendix C.3). We therefore suggest to use the variance decomposition given by
the integral of the spectral density over suitable frequency bands Forni et al. (2019).

Let bjn(L) be the h-th element of b;(L). The total variance of the component of yy,
which is attributable to u;; can be computed as fow bin(€77) by, (e7%)d0 /7, where j denotes
the imaginary unit. We can also compute the variance on a specific frequency band [0; 65).
If we are interested for instance in the variance of waves of business cycle periodicity, say
between 8 and 32 quarters, the corresponding angular frequencies (with quarterly data)
are 0, = 7/16 and 0 = 7/4 and the corresponding variance is fﬂ/4 bin (€77, (€7°)dO /.

w/16
Our suggested measure is

0 . .
2 bih(€7je)bih(€j0)d9
cn(01,05) = =—— :

f01 Sp(0)do

(26)

where Sy, (0) = Cp,(e77)X.Cy(e), Cy(L) is the h-th row of the matrix C'(L), so that the

integral at the denominator is the total variance of the series within the relevant band.
In the case of nonrecoverability only v(L)o? = ab;(L) can be estimated according to

Equation (19). Thus only upper and lower bounds for the variance decomposition can be

obtained. Details about these bounds are discussed in the Appendix.

3.4 Testing for recoverability and fundamentalness

In this subsection we propose a test for recoverability and a test for fundamentalness.
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3.4.1 Recoverability test

In the proof of Proposition 6 we have seen that, if u; is recoverable, then the projection
n (22), ¢'(F)ey, is equal to auy and therefore is a white noise process. By contrast, if
recoverability does not hold, s; # 0 and the projection is not equal to au;. Being a
Moving Average of present and future VAR residuals, the projection will in general be
autocorrelated.

Hence, to check whether the shock is recoverable or not, following a suggestion of
Plagborg-Mgller and Wolf (2022), we propose to test for zero serial correlation of the pro-
jection 0(F')e,. Precisely, we propose to perform the OLS regression of z; onto the present
and future values of &;, until a maximum lead r, to get an estimate of 6(F'). Then apply
the Ljung-Box Q-test to the estimated projection h) (F)é;. The null hypothesis is recover-
ability (serial uncorrelation) and the alternative is nonrecoverability (serial correlation).
In the following section we present a Monte Carlo exercise in which the autocorrelation
test has a reasonably good power in rejecting recoverability when it is false.

When recoverability is rejected there are two options: (1) estimate the relative impulse
response functions and the upper and lower bounds for variance decomposition; (2) amend
the VAR specification by adding variables (or use a FAVAR model in place of the VAR)
and perform the test with the novel VAR specification.

It is worth noticing that the above test is valid under the maintained hypothesis that
Equation (14) is fulfilled. If it is not, the lags of w;; may appear in Equation (15) and
the test may reject serial uncorrelation even if the shock is recoverable. Hence the serial
uncorrelation test is indeed a joint test about recoverability and instrument validity.

If recoverability is not rejected, we can estimate the ‘absolute’ response function, the
unit variance shock and the variance decomposition as explained above.

It should be stressed that global recoverability is never satisfied in the presence of
measurement error (see the Online Appendix A.3, Remarks 1, 2, and 3). Since meas-
urement error cannot be ruled out in any empirical application, the relevant question is
not whether perfect global recoverability holds, but whether, empirically, it is possible to

obtain a good approximation of the shock of interest.

3.4.2 Fundamentalness test

If u; is fundamental with respect to y; we see from Proposition 7 that in Equation (22)
0 = 0 for all positive k£ and §(F') reduces to g = 0. Hence, we can test for the null

of fundamentalness against the alternative of nonfundamentalness by estimating (22) as
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explained above and perform a standard F-test for the joint significance of the coefficients
of the leads. Notice that the test is valid even if recoverability does not hold; hence, in
principle we can test directly for fundamentalness without testing for recoverability. If
fundamentalness is not rejected, we can estimate the ‘absolute’ response function with the
standard method, the unit variance shock and the variance decomposition as explained
in the previous subsections. In the Online Appendix, we report Monte Carlo exercises
showing that the proposed F-test has a good performance in small samples.

Let us relate our test to existing fundamentalness tests in the literature. Giannone
and Reichlin (2006) suggested testing whether selected variables, external to the VAR,
Granger-cause the VAR residuals. If Granger causation is found, the predictability of
the residuals indicates a failure of global invertibility and hence that they cannot be em-
ployed to retrieve the structural shocks. Forni and Gambetti (2014) proposed using, as
external information, the principal components of a large macroeconomic dataset rather
than arbitrary external variables. Canova and Hamidi Sahneh (2017) introduced a differ-
ent formulation of the Granger-causation test. Chen et al. (2017) departed from external
information and Granger causation altogether by assuming that the variables are non-
Gaussian and the structural shocks are i.i.d. All of these procedures are designed to test
for global fundamentalness. Forni and Gambetti (2014) also proposed a test for par-
tial fundamentalness: first estimate the shock of interest and then verify whether it is
predicted by the principal components: if it is, it cannot be a structural shock.

While the above tests are not based on the information provided by the instrumental
variable, more recent works by Stock and Watson (2018) and Plaghorg-Mgller and Wolf
(2022) have proposed fundamentalness tests related to IV identification. Both should be
regarded as tests for partial, rather than global, fundamentalness, since the instrumental
variable, under standard assumptions, provides information exclusively about the shock
of interest. The test proposed by Stock and Watson (2018) compares VAR estimates
with Local Projections estimates, whereas the procedure of Plaghorg-Mgller and Wolf
(2022) verifies whether the proxy Granger-causes the VAR variables. This is essentially
equivalent to checking whether the proxy predicts future VAR innovations, which is what
our method does. Our new method is motivated by the fact that it emerges naturally as

a by-product of our estimation procedure.
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3.5 Inference

For inference purposes, we suggest the following bootstrap procedure. For simplicity, we
assume that the sample size T is the same for z; and ;. The generalisation to the case of
different time spans is straightforward.

First, draw with reintroduction T' — (p + r) integers i(t), t = 1,....T — (p + r),
uniformly distributed between 1 and 7' — (p 4+ r), and construct the artificial sequences
of shocks &, = &4y and v} = O;p), t = p+1,...,T — r, 0; being the estimated residual
of regression (22). Set the final conditions ¢} = &, for t =T —r +1,...,T. Repeat the
procedure H times to get the sequences e?, t =p+1,..., Tand v, t =p+1,...,T —r,
forh=1,..., H.

Second, compute y?, h =1,..., H, according to the VAR Equation (4). Precisely, set

the initial conditions y = 3, t = 1,...,p, for all h. Then compute

p
= Z Ay, + et
k=1

for t = p+1,...,T. As for the proxy, set the initial and final conditions 2! = 2z

t=1,...,pandt=T —r+1,...,T, for all h. Then compute
zth = Zékeiﬁrk—i-vf
k=0

fort=p+1,...,T —r.

Finally, repeat the estimation procedure for any one of the artificial data sets yt, ...y,
h =1,...,H to get the sequences of absolute IRFs b?(L), h = 1,..., H, or the corres-
ponding sequence of relative IRFs. Compute the confidence band as usual, by taking

appropriate percentiles of the distribution of b7, for each lag k.

3.6 The proposed procedure

On the basis of the above considerations and results, we propose the following estimation

and testing procedure.

1. As a first step, regress the available proxy Z; onto the first m lags (m not necessarily
equal to p) of Z; itself and a set of regressors x; —which can in principle be different

from 1,— to get an estimate of the residual z;, say ;. Step 1 is not needed if the
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Figure 1: Flowchart summarising the proposed procedure.

instrument is already serially uncorrelated and cannot be predicted by past x’s.
2. Estimate a VAR(p) with OLS to obtain A(L), C(L) = A(L)™!, &, and ..

3. Regress with OLS the proxy Z; on the current value and the first r leads of the Wold

residuals: i
4= Oplrek + 0 = 0(F)é, + .
k=0
Test for invertibility by performing the F-test for thenull Hy : 61 = dy =--- =9, =0

against the alternative that at least one of the coefficients is non-zero.
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4. Case 1: invertibility is not rejected. In this case estimate (22) without the leads of
g; to get an estimate of ¢ and estimate the unit-variance shock according to (25). To
estimate the corresponding IRFs, apply the standard procedure, i.e. estimate (16)
without the lags of z; to get @E and estimate the IRFs according to (24). Estimate

the variance decomposition according to equation (26) or (7).

4'. Case 2: invertibility is rejected. In this case perform the recoverability test by
testing for the null of serial uncorrelation of the fitted value of the above regression
N = S(F)ét by using the Ljung-Box Q-test.

5. Case 2a: recoverability is not rejected. In this case estimate the unit-variance shock
according to (23) and the corresponding IRFs according to (21). Estimate the
variance decomposition according to equation (26) or (7). Historical decomposition

can be performed in the standard way.

5. Case 2b: recoverability is rejected. In this case, either amend the VAR specification
and repeat steps 2-4, or estimate (16) with a maximum lead r and the ‘relative’
IRFs according to (20). Estimate lower and upper bounds according to (2) and (3)

and the corresponding variance contributions according to (5) and (6) or (8) and

(9).

In this paper, we adopt a frequentist approach. An interesting extension would be
to consider a Bayesian perspective. VARs are often overparameterised, and a Bayesian
framework with informative priors could help address issues arising from the proliferation
of parameters while making inference more stable and reliable. Moreover, it would allow
the inclusion of additional lags, improving the approximation of the underlying Mov-
ing Average representation. The implementation of BVARs, however, requires a careful

translation of the proposed procedures and is left for future research.

4 Simulations: Monetary policy in a DSGE model

In this Section, we evaluate the small-sample performance of our estimation and testing
procedure through two Monte Carlo exercises. The results show that (i) invertibility is a
serious issue for the standard SVAR-EIV approach; (ii) the Generalised SVAR-EIV effect-
ively addresses this problem; and (iii) it performs well relative to the SVAR-IIV method.

The Online Appendix presents two additional simulations: Simulation 3 examines the
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empirical size and power of the proposed invertibility test, while Simulation 4 provides
guidance on lag selection.

In the simulated environment, the Data Generating Process of the economy is given
by the medium-scale DSGE model of Justiniano et al. (2010) (JPT). The model features
seven shocks and incorporates all the frictions deemed necessary to capture the persistence
of macroeconomic data, including habit formation, investment adjustment costs, sticky
prices, and sticky wages. We adopt the specification and parameterisation proposed in
the original work.

The focus of our experiments is the effects of the monetary policy shock — uy; — which

we normalise to have unit variance. The proxy is generated as
Zy = uy + ayie—1 + bwy, (27)

for different values of the parameters a and b. We assume yy; to be output, while w; is an
i.i.d. normal white noise, independent of the other variables at all leads and lags. For all
exercises, we generated 2000 datasets. The number of time observations is T = 240 for
most exercises, but we also consider 7' = 360 and 7" = 480.

Additional Monte Carlo exercises, based on the fiscal foresight model of Leeper et al.

(2013), are provided in the Online Appendix, in Section E.

4.1 Simulation 1: Does the method work?

In our first exercise, we specify three VAR models. VAR I includes four variables: the
interest rate, GDP expressed in log deviations from technology, inflation, and the so-called
‘GDP in the flexible-price allocation’. These variables are also the indicators entering the
linear Taylor rule, so that the monetary policy shock can be obtained as a linear function
of these variables and is therefore (partially) invertible in our VAR. VAR II includes the
first three variables of VAR I. Since the fourth variable is omitted, the shock is no longer
invertible. Finally, VAR III includes the same variables as VAR II, but the variables in
this system are assumed to be measured with relatively small, independent measurement
errors, with a variance equal to 5% of the total variance for each variable. It is important
to note that measurement error worsens the quality of information, making the shock
noninvertible in VAR III.

We simulate 2000 datasets with 7" = 240 and estimate all VAR models. Results are

shown in Figure 2. Red lines represent the true IRFs, black lines are the averages of the
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Figure 2: Simulation 1: JPT DSGE model, IRFs of the monetary policy shock. First column: VAR I
EIV, IRF estimation with the standard EIV method, p = 4. Second column: VAR IT EIV, IRF estimation
with the standard EIV method, p = 4. Third column: VAR III EIV, IRF estimation with the standard
EIV method, p = 4. Fourth column: VAR IIT GEIV, IRF estimation with the generalised EIV method,
p = r = 4. Red lines are true response functions; black lines are the averages of the 2000 estimated
response functions; grey areas, 16th -84th percentiles.

estimated IRFs, and the grey areas indicate the 16th to 84th percentiles. The first three
columns report the IRFs of VAR I, VAR II, and VAR III, respectively, estimated with the
standard SVAR-EIV method, p = 4.

In the first column, the standard method performs well, since the VAR includes suffi-
cient information (there is a small truncation bias due to the true model being an ARMA).
In the second column, the quality of the estimates deteriorates because of the omission of
the fourth variable. In the third column, the estimated IRFs are dramatically incorrect,
particularly for GDP. Interestingly, even relatively small measurement errors produce a
large bias.

The fourth column reports the IRFs for VAR III, estimated with our Generalised
SVAR-EIV method, r = p = 4. The estimated IRFs are very close to the true IRFs,

demonstrating that the method performs well despite noninvertibility.
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4.2 Simulation 2: A comparison with SVAR-IIV

Let us now compare the performance of the Generalised SVAR-EIV procedure with the
SVAR-IIV method. To this end, we consider three specifications of the proxy: (i) a =
b = 0 in equation (27), so that the proxy is equal to the normalised shock u;; (i) a = 0
and b = 0.5; and (iii) @ = 0.1 and b = 0.5. We consider samples of size T" = 240 and
T = 360. For each sample size, we also consider the case of a “short proxy”, where the
first one-third of the sample is missing.

For the Generalised External-Instrument method, denoted by GEIV, both p and r
are selected according to the BIC criterion, which provides the best results according to
Simulation 4 reported in the Online Appendix, specifically designed to guide lag selection.
For r, the criterion is applied to regression (22) (maxp = maxr = 12). The use of equation
(22) in place of (16) is motivated by the results of Simulation 4. In the case of proxy (iii)
above, we include a cleaning step by regressing it onto m lags of y; and the proxy itself,
with m determined by the BIC.

For the internal-instrument SVAR, denoted by ITV, we set the number of lags p accord-
ing to the AIC (maxp = maxr = 12), since the AIC provides the best results according to
Simulation 4. For the “short proxy” cases, internal IV is implemented using two methods:
(i) truncating the sample to match the proxy (IIV) and (ii) filling the missing values with
zeros, censored IIV (IIVc), as suggested in Noh (2017).

We normalise all IRFs by dividing by the impact effect of the shock on the interest
rate, so that the contemporaneous effect on the interest rate is equal to 1. The estimation
error of the competing methods is measured as the sum of squared errors of the GDP IRF

divided by the sum of squared coefficients of the true IRF:

ZkK:o(/V\lk - '71k)2

K 2
k=0 ik

100 x

(28)

We set K = 10. This ratio equals 100 for the flat estimate 7(L) = 0.
Results are reported in Table 1. For the long proxy, the performance of IIV-AIC and
GEIV-BIC is similar. In the short proxy case, GEIV outperforms both IIV and IIVc in

all scenarios. Interestingly, IIVc consistently improves upon IIV.
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T =240 T = 360
Long proxy Short proxy Long proxy Short proxy

IIv. GEIV IIV IIVe GEIV IIV. GEIV 1IIV 1IIVec GEIV
Proxy: Zy = U1t

61.2 60.5 107.7 81.7 73.7 41.4 425 61.2 b53.6 51.4
proxy: Zy = uy¢ + 0.5wy

70.5 67.6 125.0 100.8 84.0 46.5 46.7 689 64.1 57.1
proxy: Zy = u1¢ + 0.1y1¢—1 + 0.5wy

70.1 66.4 123.8 96.2 83.8 46.0 464 68.8 576 56.8

Table 1: Results of Simulation 2. Mean Square Errors for the relative IRFs of GDP, normalised
according to (28), for the internal instrument SVAR-IIV, the censored internal instrument SVAR-IIVe
and our proposed procedure (GEIV). For the SVAR-IIV p is determined by the AIC; for the SVAR-EIV,
p determined by the BIC and r is set according to the BIC applied to (22). We consider three different
proxy, T' = 240 and T = 360. Short proxy means that we have missing values in the fist one-third of the
sample. Boldface numbers are the best results obtained for each case.

5 The effects of monetary policy shocks

In this Section, we provide an empirical application of our method and study the propaga-
tion of monetary policy shocks. We first show that the monetary policy shocks identified
using standard high-frequency surprises at the short end of the yield curve are likely to
be nonfundamental but recoverable in a few routinely used VAR specifications. We then
demonstrate that the standard External-Instrument SVAR procedure produces price and
output puzzles. By contrast, when using our proposed procedure for noninvertible shocks,

the results align with the textbook effects of monetary policy.

5.1 Data, VAR specification, instruments

Our baseline VAR specification includes three variables at monthly frequency: the 1-year
government bond rate (1YB), industrial production (IP) in growth rates and CPI inflation
(Specification I). We also present results for two additional specifications, one including
Gilchrist and Zakrajsek (2012)’s excess bond premium (EBP) (Specification II); the other
including EBP along with the mortgage spread (MS) and the commercial paper spread
(CPS) (Specification III). We use 1YB as the policy indicator variable.?

2We use monthly data taken from the FRED-MD data set of McCracken and Ng (2015). Specifically,
we use industrial production (FRED mnemonic INDPRO, IP from now on), taken in log differences, the
CPI index (FRED mnemonic CPTAUCSL), taken in log differences, and the 1-year government bond rate
(FRED mnemonic GS1, 1YB from now on). In addition, we use the excess bond premium (EBP), the
mortgage spread (MS) and the commercial paper spread (CPS) taken from the replication files of Gertler
and Karadi (2015).
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Our benchmark sample spans the period 1983:1-2008:12. In two robustness exercises,
we consider alternative initial dates, i.e. 1979:7, 1987:8, and 1990:1, as well as two al-
ternative ending dates, i.e. 2012:6 and 2019:6.> The trending variables, CPI and IP, are
taken in differences since these variables are unlikely to be cointegrated. In a robustness
exercise, we consider a VAR specification with all the trending variables in levels.

The instrument for monetary policy shocks consists of the Giirkaynak et al. (2005)’s
intra-daily monetary policy surprises triggered by Federal Open Market Committee (FOMC)
decisions in the three month ahead monthly Fed Funds futures (FF4), as proposed in
Gertler and Karadi (2015) (GK from now on). The use of this instrument provides scope
for testing our approach to noninvertibility since, as discussed in Gertler and Karadi
(2015) and Ramey (2016), surprises in futures with a three month maturity are likely to
capture both conventional monetary policy shocks, and shocks to forward guidance about
the path rate at short horizon. We ‘clean’ the instrument by regressing it onto its own lags
and the lags of the three variables of Specification I, using 6 lags.* The instrument turns
out to be relevant, the measure of relevance IR (the correlation between the estimated
shock and the instrument, see Remark 9 in the Online Appendix) being between 0.4 and

0.6, depending on the specification adopted.

5.2 Fundamentalness and recoverability

We start our analysis by applying our fundamentalness test (Table 2a) to verify whether
our specifications turns out to be fundamental or not when using our instrument GK. The
main takeaway is that the results obtained with the standard proxy-SVAR approach in
the monetary policy literature should be taken with caution, since the VAR specification
might be affected by nonfundamentalness. In fact, results in Table 2a show that, for
r > 6, fundamentalness is rejected at the 1% level with Specifications I and II and for
r > 7 is rejected either at the 5% level or the 10% level with Specification III. The degree
of fundamentalness Efc (see Remark 5 in the Appendix) is below 0.5 for all specification
for > 6. We conclude that the inclusion of financial variables in the VAR may not be

sufficient to solve fundamentalness problems. These results are in line with the findings

3The samples starting in 1983:1 and 1987:8 are chosen in line with Sims and Zha (2006). Moreover,
1979:7 is the beginning of Volcker’s mandate; 1987:8 is the beginning of Greenspan’s mandate; 2008:12
is the first month in which the 1-year bond rate falls below 1%, so that cutting our sample to 2008:12
excludes the zero lower bound period.

4The regression is significant at the 5% level and the residual is serially uncorrelated according to the
Ljung-Box Q-test.
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Number of leads r Number of leads r
r=4 r=5 r=6 r=7 r=8 r=9 r=4 r=5 r=6 r=7 r=8 r=9

Specification I Specification I

p=6 0.008 0.028 0.002 0.003 0.001 0.001 p=6 0.619 0.662 0.251 0.469 0.037 0.060
p=9 0.016 0.051 0.003 0.003 0.002 0.001 p=9 0350 0.571 0.114 0.435 0.050 0.042
p=12 0.011 0.045 0.003 0.002 0.001 0.000 p=12 0.880 0.944 0.324 0.820 0.466 0.285
Specification 11 Specification 11

p=6 0.080 0.195 0.027 0.001 0.000 0.000 p=6 0441 0.473 0.308 0.777 0.394 0.357
p=9 0.180 0.351 0.034 0.002 0.000 0.000 p=9 0.119 0.18 0.104 0.517 0.222 0.193
p=12 0.221 0.457 0.059 0.003 0.000 0.000 p=12 0472 0.558 0.269 0.913 0.701 0.575
Specification 111 Specification 111

p=6 0.060 0.184 0.089 0.003 0.001 0.002 p=6 0.034 0.315 0.446 0.608 0.738 0.546
p=9 0.184 0.362 0.220 0.020 0.002 0.003 p=9 0.005 0.064 0.148 0.046 0.391 0.103
p=12 0.215 0.353 0.250 0.060 0.031 0.027 p=12 0.032 0.037 0.065 0.057 0.343 0.022

(a) Fundamentalness test (b) Recoverability test

Table 2: P-values for the invertibility (a) and the recoverability tests (b), for different values of p and 7.
Specification I includes the 1-year bond rate (1YB, industrial production growth (IP) and CPI inflation
(CPI). Specification II includes 1YB, IP, CPI and the excess bond premium (EBP). Specification III
includes 1YB, IP, CPI, EBP, the mortgage spread and the commercial paper spread. The proxy is the
one of Gertler and Karadi (2015).

of Plagborg-Mgller and Wolf (2022) and the arguments in Ramey (2016), who cautions
against the standard SVAR-IV approach.

On the other hand, the shock is recoverable. The p-values of the Ljung-Box Q-test
for serial correlation of the estimated monetary policy shock, for our three specifications,
with different values of p and r (maximum lag 24) are reported in Table 2b. The result is
that recoverability cannot be rejected at the 5% level for most parameter configurations.
We conclude that, at least for our time span, the monetary policy shock is recoverable,
even with the three-variable Specification I, and that financial variables are not needed
to find the policy shock.

5.3 The three-variable VAR

In this subsection we compare the impulse response functions obtained with the standard
method with those obtained with our proposed method. We choose Specification I with
the GK instrument as our benchmark.

For the number of lags in the VAR, the BIC selects p = 2, which appears too parsi-
monious for monthly data. In contrast, the AIC, with a maximum of 24 lags, selects 24,
which is likely excessive. Given these conflicting indications, we set p = 12, in line with

standard practice in the literature. As for the number of lags r included in the regression
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Figure 3: VAR results: Specification I, p = 12, GK instrument. Top panels: estimated response
functions with » = 0 (standard method). Bottom panels: estimated response functions with our proposed
method r = 6. Black line: point estimate. Grey area: 68% confidence bands.

of the proxy, the BIC applied to regression (22) suggests 7 = 1, which again seems too
parsimonious, whereas the AIC applied to the same regression suggests » = 11, and the
recursive F-tests indicate » = 5. We set r = 6, which appears to be a reasonable com-
promise between these conflicting indications. In a robustness exercise, we try different
values of p and r (online Appendix, Section F).

The basic insight delivered by our exercise is that by incorrectly assuming invertibility
without testing one can get dramatically misleading results. On the contrary, when the
proposed procedure is applied, the estimation delivers results in line with textbook effects
of monetary policy, even with a small VAR, not including the EBP or other financial
variables.

The results from the baseline model are reported in Figure 3. All responses are norm-
alised to have an impact effect of 100 basis points on the 1-year bond rate. The top panels
show the estimated impulse response functions obtained with » = 0, i.e. the standard
proxy SVAR procedure. The response of 1YB is hump-shaped and very persistent (the
zero line is not reached after 3 years). Both prices and industrial production significantly
increase after a tightening shock, so that we have both a large price puzzle and a large
real activity puzzle.

The bottom panels show the result obtained with our proposed procedure with r = 6.

Results are completely different and much more plausible. The reaction of the policy
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variable is much less persistent: after the significant impact effect it reaches the zero line
in about 4 months and further on it is no longer significant. Both inflation and output
puzzles disappear: prices and industrial production reduce significantly after an impact
effect which is very close to zero. The effects on real activity are no longer significant
after about one year, showing that the effects of monetary policy on real activity are
transitory, in line with the consensus. In Section F of the Online Appendix, we report
several robustness checks. The overall conclusion is that the above results are reasonably
robust.

Figure 3 shows that our proposed procedure delivers meaningful results even with a
small VAR that does not include the EBP. This should not be interpreted as exempting
the researcher from considering a more appropriate specification, as we discuss in the

following section.

5.4 Medium-size VAR specifications

Are results sensitive to the VAR information set? To answer this question, in this sub-
section we examine results for Specification II, that includes EBP, and Specification III,
that incorporates the mortgage spread and the commercial paper spread, as well as EBP.
We set p = 12, r = 0 and r = 6, as in the previous subsection. The main conclusion
of this exercise is that results obtained with our proposed method are reasonably robust,
whereas results obtained with the standard method are not.

In the top panels, Figure 4 reports the case r = 0 (standard method). The lines are
respectively the point estimates for Specification I (black), Specification 1T (blue), and
Specification IIT (red). We also report the confidence bands of Specification III (pink
shaded areas). Results appear to be very sensitive to the set of variables included in
the VAR. With Specification II, the effects on prices and real activity are essentially
zero. With Specification III, the sign of the IRFs of prices and industrial production are
negative, and the puzzles of Specification I disappear. Still, the effects are quantitatively
small, especially for prices, and not significant.

The IRFs obtained with the Generalised External-Instrument approach (r = 6) of the
first three variables are similar to those obtained with Specifications I and II (bottom
panels in Figure 4). The reaction of prices is large and significant. The reaction of IP is
barely significant, since the confidence bands are very large, however the point estimates
consistently show a sizeable reduction of about 3-5 percentage points of production after

one year, depending on the VAR specification.
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Figure 4: IRFs for Medium-size specifications. The instrument is GK. Red line: point estimates for
Specification III; blue line: point estimates for Specification II; black line: point estimates for Specification
I. Top panels: estimated response functions with p = 12, r = 0 (standard method). Bottom panels:
estimated response functions with our proposed method, p = 12, »r = 6. Pink shaded area: 68% confidence
bands for Specification III.

5.5 Variance decomposition

Do monetary policy shocks account for a sizeable share of the variance of prices and
output? To answer this question, it is useful to evaluate the variance decomposition VD
of CPI inflation and industrial production growth obtained with our VAR specifications
(p =12, r = 6). We report results for waves of periodicity 2-18 months (short run), 18-96
month (business cycle) and 2+ months (overall variance). The main finding is that the
effects of monetary policy on prices are much larger than previously reported, suggesting
that it can be used successfully in controlling inflation.

Table 3 reports the point estimates and the 68% confidence bands (in brackets) for
the percentage of variance explained by the monetary policy shock. The estimates for
the cyclical variance (18-96 months) are not very reliable because of the large confidence
bands, so that we focus mainly on the short-run and overall variances. The point estimates
of the short-run volatility contributions range from 12.3% to 19.2% for inflation and from
16.1% to 27.7% for industrial production growth. As for the overall variance, the estimates
range from 12.5% to 20.8% for inflation and from 13.0% to 28.3% for industrial production.

With Specification III, which provides the smallest estimates, the monetary policy

shocks explains 12.5% of the overall variance of inflation and 13% of the overall variance
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Waves of periodicity
2 — 18 months 18 — 96 months 2+ months

Specification I

CPI inflation 19.2 27.6 20.8
(13.5—29.1) (12.8—64.2) (16.2—35.1)
IP growth 27.7 33.8 28.3

(191—36.4)  (13.1—55.4)  (20.0—37.6)

Specification 11

CPI inflation 12.3 12.9 13.2
(10.4—23.1) (9.7—45.1)  (13.4—26.8)
IP growth 20.3 29.5 22.5

(15.8—28.2) (11.4—51.5) (16.7—31.3)
Specification 111

CPI inflation 12.5 10.3 12.5
(10.2—19.5) (6.9—34.2) (11.2—21.5)
IP growth 16.1 5.2 13.0

(12.2—22.2) (42-22.0)  (11.2—20.7)

Table 3: Percentage of variance accounted for by the monetary policy shock, for waves of periodicity
2-18 months (short run), 18-96 months (business cycle), 24 months (overall variance). 68% confidence
bands in brackets.

of production, with the 68% confidence bands ranging between a minimum of around 10%
and a maximum of around 20% for both variables. We conclude that, contrary to previous
findings, the effects of discretionary monetary policy on inflation are far from negligible.
These results are at odds with the ones in Plagborg-Mgller and Wolf (2022), where,
according to FVR estimates, the contribution of policy shocks to inflation fluctuations is
negligible at all horizons between 0 and 24 months.

To understand the sources of the difference, we compute the point estimates of the
FVR of inflation, reported in Table 4. In the lower part of the table, we also report
results for CPI in levels, as is common practice in the literature. At short horizons, the
variance contributions are small. As argued in Subsection 3.3, these numbers should be
taken with caution because of the downward bias. By contrast, the estimate of the FVR
at the 24-month horizon is reliable, since we see in the upper part of the table that the
numbers are almost identical to those of the overall VD, reported in the last column for
convenience. This means that at horizon 24 all of the IRFs of inflations are already close
to zero and the bias has disappeared. We conclude that the use of FVR in place of VD

cannot explain the inconsistency of estimates. Coming to the bottom part of the table
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FVR Horizon VD
impact 3 months 6 months 12 months 24 months 2-+ months

CPI inflation

Specification I 0.5 7.2 15.3 18.4 20.7 20.8
Specification II 0.2 4.7 9.1 13.3 13.4 13.2
Specification III 0.3 5.6 7.4 12.5 12.4 12.5
CPI index in levels

Specification I 0.5 4.2 9.9 20.0 21.5
Specification II 0.2 2.6 5.3 13.7 22.5
Specification III 0.3 4.4 7.1 13.8 18.5

Table 4: Percentage of variance of CPI inflation and prices accounted for by the monetary policy shock,
according to the FVR measure of Plagborg-Mgller and Wolf (2022), on impact and at 3,6, 12, 24 months
horizons.

and focusing on the 2-year horizon, we see that the variance contribution of monetary
policy to the forecast error of prices is even larger when considering the price index taken
in levels.

Another potential source of differences in the empirical estimates is the policy indic-
ator. Following Plagborg-Mgller and Wolf (2022), we consider a model (Specification
IV) incorporating the same variables of Specification II but with the federal funds rate
(FFR) in place of 1YB. In addition, we set p = 6, as in Plagborg-Mgller and Wolf (2022)
(instead of p = 12). We retain m = 6 and set x; = y; for the preliminary treatment
of the instrument. We report the point estimates of VD and FVR at horizon 24 in the
first line of Table 5. The estimates are somewhat larger than the ones obtained above for
Specification II. We conclude that the number of lags used in VAR estimation and the
use of FFR in place of 1YB cannot explain the difference.

Finally, let us consider the results for different time spans, reported in Table 5. In the
second row, we report the estimates for the time span 1990:1-2012:6, the same used in
Plagborg-Mgller and Wolf (2022). The explained variances for this sample are sizeably
smaller than the ones of our time span: the overall VD is 8.0% as against 16.1%. This
points to the fact that the different time spans explain part of the discrepancy. The
remaining difference can only be due to the estimation methods.

The span of the GK instrument, 1990:1-2012:6, by excluding the 80’s and including
the first years of the zero-lower-bound period, exhibits little variation of both inflation

and interest rates, which could be detrimental to the reliability of the estimates. To verify
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VD: waves of periodicity FVR: horizon

Time span 2 — 18 months 18 — 96 months 2+ months 24 months
1983:1-2008:12 10.4 22.0 16.1 15.5
1990:1-2012:6 6.3 15.5 8.0 8.1
1987:1-2008:12 7.3 15.4 11.3 10.6
1983:1-2012:6 10.0 24.6 12.7 12.8
1979:7-2012:6 17.2 19.3 17.4 17.5
1979:7-2019:6* 15.7 18.2 15.3 15.1

Table 5: Variance decomposition of inflation for different time spans, Specification IV: FFR, CPI
inflation, IP growth, EBP. VD: percentage of inflation variance accounted for by the monetary policy
shock, for waves of periodicity 2-18 months (short run), 18-96 months (business cycle), 2+ months (overall
variance). FVR: percentage of forecast error variance of inflation accounted for by the monetary policy
shock at the 2-year horizon. *For the sample 1979:7-2019:6 in place of the EBP series we use three
financial variables: the 10-year treasury bond rate, the BAA corporate bond yield and the S&P500 stock
price index.

how different spans affect the estimates, we report in the bottom part of the table the
results for four additional time spans: 1987:1-2008:12, 1983:1-2012:6, 1979:7-2012:6 (the
same of Gertler and Karadi, 2015) and 1979:7-2019:6. For the latter time span in place
of the EBP series, which is not available, we use three financial variables: the 10-year
treasury bond rate, the BAA corporate bond yield and the S&P500 stock price index.
Notice that, for these time spans (as well as our benchmark 1983:1-2008:12) the Internal-
Instrument method cannot be used, at least with the GK instrument. This is a nice
illustration of the advantages of our proposed method. Despite results vary considerably
across different samples, the overall picture emerging from Table 5 confirms our main

finding: discretionary monetary policy has non-negligible effects on prices.

6 Concluding remarks

In this paper we propose a new estimation procedure for structural VARs with an external
instrument. The procedure includes a test for invertibility and a test for recoverability,
a method to estimate the relative impulse response functions when the shock is not re-
coverable and a method to estimate the absolute response functions and the shock itself
when the shock is recoverable but not invertible. The procedure reduces to the standard
method when the shock is invertible. Results reported in this paper indicate that all
procedures work remarkably well under simulation, when the sample size is comparable

with those typical of macroeconomic empirical analyses.
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An application to monetary policy shocks, using the instrument of Gertler and Karadi,
2015, indicates that the policy shocks are not invertible in a few popular monetary policy
VAR specifications. While the standard method produces puzzling results, our proced-
ure delivers results in line with textbook effects. Finally, we find that the policy shock
is recoverable, so that we can estimate its variance contributions. Variance decomposi-
tion shows that monetary policy has sizeable effects on both real activity and inflation,

suggesting that monetary policy can be effective in controlling prices.

References

Blanchard, Olivier J., Jean-Paul L’Huillier, and Guido Lorenzoni, “News, Noise,

and Fluctuations: An Empirical Exploration,” American Economic Review, December
2013, 103 (7), 3045-70.

Canova, Fabio and Mehdi Hamidi Sahneh, “Are Small-Scale SVARs Useful for Busi-
ness Cycle Analysis? Revisiting Nonfundamentalness,” Journal of the Furopean Eco-
nomic Association, 09 2017, 16 (4), 1069-1093.

Chahrour, Ryan and Kyle Jurado, “Recoverability and Expectations-Driven Fluctu-
ations,” The Review of Economic Studies, 03 2021, 89 (1), 214-239.

Chen, Bin, Jinho Choi, and Juan Carlos Escanciano, “Testing for fundamental
vector moving average representations,” Quantitative Economics, 2017, 8 (1), 149-180.

Fernandez-Villaverde, Jesus, Juan F. Rubio-Ramirez, Thomas J. Sargent, and
Mark W. Watson, “ABCs (and Ds) of Understanding VARs,” American Economic
Review, June 2007, 97 (3), 1021-1026.

Forni, Mario and Luca Gambetti, “Sufficient information in structural VARs,”
Journal of Monetary Economics, 2014, 66, 124-136.

_ , Domenico Giannone, Marco Lippi, and Lucrezia Reichlin, “Opening the Black
Box: Structural Factor Models with Large Cross Sections,” FEconometric Theory, 2009,
25 (5), 1319-1347.

_ , Luca Gambetti, and Luca Sala, “No News in Business Cycles,” Economic Journal,
December 2014, 124 (581), 1168-1191.

_, _,and _ , “Structural VARs and noninvertible macroeconomic models,” Journal of
Applied Econometrics, 2019, 34 (2), 221-246.

_, _, Marco Lippi, and Luca Sala, “Noisy News in Business Cycles,” American
Economic Journal: Macroeconomics, October 2017, 9 (4), 122-152.

33



_, _,_y,and _ , “Common Component Structural VARs,” CEPR Discussion Papers
15529, C.E.P.R. Discussion Papers December 2020.

Gertler, Mark and Peter Karadi, “Monetary Policy Surprises, Credit Costs, and
Economic Activity,” American Economic Journal: Macroeconomics, 2015, 7 (1), 44-76.

Giannone, Domenico and Lucrezia Reichlin, “Does Information Help Recovering
Structural Shocks from Past Observations?,” Journal of the Furopean Economic Asso-
ciation, 2006, 4 (2-3), 455-465.

Gilchrist, Simon and Egon ZakrajSek, “Credit Spreads and Business Cycle Fluctu-
ations,” American Economic Review, 2012, 102 (4), 1692-1720.

Giirkaynak, Refet S, Brian Sack, and Eric Swanson, “Do Actions Speak Louder
Than Words? The Response of Asset Prices to Monetary Policy Actions and State-
ments,” International Journal of Central Banking, May 2005, 1 (1).

Jorda, Oscar, “Estimation and Inference of Impulse Responses by Local Projections,”
American Economic Review, March 2005, 95 (1), 161-182.

Justiniano, Alejandro, Giorgio E. Primiceri, and Andrea Tambalotti, “Invest-
ment shocks and business cycles,” Journal of Monetary Economics, 2010, 57 (2), 132—
145.

Kilian, Lutz and Helmut Liitkepohl, Structural Vector Autoregressive Analysis
Themes in Modern Econometrics, Cambridge University Press, 2017.

Kanzig, Diego R., “The Macroeconomic Effects of Oil Supply News: Evidence from
OPEC Announcements,” American Economic Review, April 2021, 111 (4), 1092-1125.

Leeper, Eric M., Todd B. Walker, and Shu-Chun Susan Yang, “Fiscal Foresight
and Information Flows,” Econometrica, May 2013, 81 (3), 1115-1145.

Li, Dake, Mikkel Plagborg-Mgller, and K. Wolf Christian, “Local Projections vs.
VARs: Lessons From Thousands of DGPs,” NBER Working Papers 30207, National
Bureau of Economic Research, Inc July 2022.

Lippi, Marco and Lucrezia Reichlin, “VAR analysis, nonfundamental representations,
Blaschke matrices,” Journal of Econometrics, July 1994, 63 (1), 307-325.

McCracken, Michael W. and Serena Ng, “FRED-MD: A Monthly Database for
Macroeconomic Research,” Working Papers 2015-12, Federal Reserve Bank of St. Louis
June 2015.

Mertens, Karel and José Luis Montiel-Olea, “Marginal Tax Rates and Income: New
Time Series Evidence,” The Quarterly Journal of Economics, 2018, 133 (4), 1803-1884.

34



_ and Morten O. Ravn, “Measuring the Impact of Fiscal Policy in the Face of An-
ticipation: A Structural VAR Approach*,” The Economic Journal, 2010, 120 (544),
393-413.

_ and _ , “The Dynamic Effects of Personal and Corporate Income Tax Changes in the
United States,” American Economic Review, June 2013, 103 (4), 1212-47.

_ and _ , “A reconciliation of SVAR and narrative estimates of tax multipliers,” Journal
of Monetary Economics, 2014, 68, S1-S19. Supplement issue: October 19-20, 2012 Re-
search Conference on “Financial Markets, Financial Policy, and Macroeconomic Activ-
ity” Sponsored by the Study Center Gerzensee and the Swiss National Bank.

Miranda-Agrippino, Silvia and Giovanni Ricco, “The Transmission of Monetary
Policy Shocks,” American Economic Journal: Macroeconomics, July 2021, 13 (3), 74—
107.

and _ , “Identification with External Instruments in Structural VARs,” Journal of
Monetary Economics, 2023, 135, 1-19.

Noh, Eul, “Impulse-response analysis with proxy variables,” 2017. Available at SSRN
3070401.

Paul, Pascal, “The Time-Varying Effect of Monetary Policy on Asset Prices,” The Review
of Economics and Statistics, 2020, 102 (4), 690-704.

Plagborg-Mgller, Mikkel and Christian K. Wolf, “Local Projections and VARs
Estimate the Same Impulse Responses,” Econometrica, 2021, 89 (2), 955-980.

_ and _ , “Instrumental Variable Identification of Dynamic Variance Decompositions,”
Journal of Political Economy, 2022, 130 (8), 2164-2202.

Ramey, Valerie A., “Identifying Government Spending Shocks: It’s all in the Timing,”
The Quarterly Journal of Economics, 2011, 126 (1), 1-50.

_, “Macroeconomic Shocks and Their Propagation,” in John B. Taylor and Harald Uhlig,
eds., Handbook of Macroeconomics, Vol. 2 of Handbook of Macroeconomics, Elsevier,
2016, chapter 2, pp. 71 — 162.

Sims, Christopher A. and Tao Zha, “Were There Regime Switches in U.S. Monetary
Policy?,” American Economic Review, March 2006, 96 (1), 54-81.

Soccorsi, Stefano, “Measuring nonfundamentalness for structural VARs,” Journal of
Economic Dynamics and Control, 2016, 71, 86—101.

Stock, James H., “What’s New in Econometrics: Time Series, Lecture 7,” NBER Sum-
mer Institute, Short course lectures 2008.

35



and Mark W. Watson, “Disentangling the Channels of the 2007-09 Recession,”
Brookings Papers on Economic Activity, 2012, 44 (1 (Spring), 81-156.

_ and _ , “Identification and Estimation of Dynamic Causal Effects in Macroeconomics
Using External Instruments,” The Economic Journal, 2018, 128 (610), 917-948.

36



	Introduction
	Representation theory
	The model
	Relationship between structural and reduced form
	Two basic results
	Formal definitions and statements
	A general SVAR representation


	The Generalised External Instrument Approach
	The instrument
	Impulse response functions and shocks
	Nonrecoverable shocks
	Recoverable but nonfundamental shocks
	Fundamental shocks

	Historical and variance decomposition
	Testing for recoverability and fundamentalness
	Recoverability test
	Fundamentalness test

	Inference
	The proposed procedure

	Simulations: Monetary policy in a DSGE model
	Simulation 1: Does the method work?
	Simulation 2: A comparison with SVAR-IIV

	The effects of monetary policy shocks
	Data, VAR specification, instruments
	Fundamentalness and recoverability
	The three-variable VAR
	Medium-size VAR specifications
	Variance decomposition

	Concluding remarks

