
12. The role of information



The problem

So, what can go wrong with VAR analysis?

I Economic agents take their decisions based on large information
sets. For instance central banks typically monitor a large amount
of series.

I SVAR econometricians estimate models with a much reduced
number of series (previous example).

I That means that the information set of the econometrician is
likely to be narrower than that of the agents.

... what are the implications?



The problem

I In this situation SVAR model cannot in general consistently
estimate the impulse response functions of the structural shocks
and the structural shocks.

I Why? The present and past values of the series considered are
not enough informative.

I Intuition: the innovation of the econometrician does not coincide
with that of the agents.

I The problem is also known as nonfundamentalness (see Hansen
and Sargent, 1991, Lippi and Reichlin, 1993).

I Formally speaking in this case the MA representation in terms of
structural shocks of the series is not invertible.

... the problem.



The problem

I The problem has been largely ignored in the macroeconometrics
literature in the past.

I More recently it has been the focus of several research
contributions because there are many relevant economic cases
that can give rise nonfundamentalnes.

...let us see some examples.



Fundamentalness

I First of all it is instructive to review the definition of
fundamentalness.

I Assume that the n-dimensional stochastic vector µt admits a
moving average representation

µt = K(L)vt

where K(L) is a n× q (q ≤ n) polynomial matrix and vt is a
q × 1 white noise.

I The above representation is fundamental if and only if the rank
of K(L) is q for all z such that |z| < 1.

I If n = q (the SVAR case) if and only if the roots of the
determinant of K(L) are larger than one in absolute value.



Fundamentalness

Example 1: suppose

K(L) =

(
θ − L 0
θ 1

)
the determinant (θ − L) is zero for L = θ. The representation is
fundamental iff θ ≥ 1



Fundamentalness

Example 2: suppose

K(L) =

 L 0
2 1

0L


the determinants of all the 2× 2 submatrices are zero in zeros the
representation is non-fundamental



Fundamentalness

Example 3: suppose

K(L) =

 L 0
2 1

1L


the roots of the determinants of the 2× 2 submatrices are smaller
than 1 in absolute value but different so the representation is
fundamental. However notice that all the bivariate sub-systems are
non-fundamental.



Examples (I): Price puzzle

I We noticed before that prices increase after a contractionary
monetary policy shock.

I Result is counterintuitive: Bernanke should reduce the fed funds
rate to fight inflation.

I The result is known as price puzzle.

I Sims (1992) shows that once a commodity price index is included
in the VAR prices fall.

I The reason is that the an important variable that signals future
inflation pressures is omitted from the econometrician
information set.



Examples (II): Fiscal foresight

I Recent works argued that fiscal policy actions are anticipated
(see e.g. Yang, 2008, Leeper, Walker and Yang, 2008, Mertens
and Ravn, 2010).

I Private agents receive signals about future changes in taxes and
government spending before these changes actually take place.

I The reason is the existence of legislative and implementation lags:
it takes time for a policy action to be passed and implemented.

I The phenomenon is called ”fiscal foresight”.



Examples (II): Fiscal foresight

I Leeper, Walker and Yang, (2008) shows theoretically that this
raises big problems for VAR analysis.

I The intuition is that given that the shock does not affect fiscal
variables immediately these variables loose informational content.

... so let’s see the example in detail.



Examples (II): Fiscal foresight

The model is a standard growth model. Log-linearized equilibrium
solution for the three state variables of the model is

kt = αkt−1 + at − κ
∞∑
i=0

θiEtτt+i+1

at = εA,t

τt = ετ,t−q

where kt is capital at is the technology shock and τt are taxes,
ετ,t−q, εA,t are i.i.d. shocks to taxes and technology,
θ = αβ(1− τ) < 1, κ = (1− θ)(τ/(1− τ)), where 0 < α < 1 is the
0 < β < 1, and 0 ≤ τ < 1 is the steady state tax rate, q is the period
of foresight.

Suppose that q = 2. The capital transition equation becomes

kt = αkt−1 + at − κ(ετ,t−1 + θετ,t)



Examples (II): Fiscal foresight

Suppose the econometrician wants to use data for capital and
technology to estimate a VAR in order to identify the fiscal shock.
The solution of the model for the two variables is(

at
kt

)
=

(
0 1

−κ(L+θ)
1−αL

1
1−αL

)(
ετ,t
εA,t

)
= A1(L)εt (1)

The determinant of A1(z) is κ(z+θ)
1−αz which is zero for z = −θ < 1.

This implies that the shock cannot be recovered using a VAR with
data for capital and technology.



Examples (II): Fiscal foresight

Now suppose that the econometrician decides to use data for capital
and taxes. The solution of the model for the two variables is(

kt
τt

)
=

(−κ(L+θ)
1−αL

1
1−αL

L2 0

)(
ετ,t
εA,t

)
= A2(L)εt (2)

The determinant of A1(z) is z2

1−αz which is zero for z = 0 meaning
that the MA representation is non-invertible and the shock
non-fundamental for τt and kt.

Again the shock cannot be recovered using a VAR with data for
capital and taxes.

If the shocks are nonfundamental then SVAR models are not useful
for structural analysis.



Examples (III): News shocks

Consider the simple Lucas tree model. The agent maximizes

Et

∞∑
t=0

βtct,

where ct is consumption and β is a discount factor, subject to the
constraint

ct + ptst+1 = (pt + θt)st,

where pt is the price of a share, st is the number of shares and
(pt + θt)st is the total amount of resources available at time t.

TFP evolves as

θt = θt−1 + εt−2 + ut

εt: news shock - ut: TFP shock.



Examples (III): News shocks

The equilibrium value for asset prices is given by:

pt = Et

∞∑
j=1

βjθt+j

We have

Etθt+1 = θt + εt−1,

Etθt+j = θt + εt−1 + εt, for j ≥ 2,

so that the price equation reads

pt =
β

1− β
θt +

β

1− β
(βεt + εt−1).



Examples (III): News shocks

Taking first differences we get the following structural MA
representation (

∆θt
∆pt

)
=

(
L2 1

β2

1−β + βL β
1−β

)(
εt
ut

)
. (3)



Examples (III): News shocks

The determinant is

− β2

1− β
− βz +

β

1− β
z2

which vanishes for z = 1 (cointegrated variables) and z = −β.

As β < 1, the two shocks ut and εt are non-fundamental for the
variables ∆Pt and ∆θt.

Here the agents see the shocks. The econometrician only see the
variables. In this case not even a very forward-looking variable like
stock prices conveys enough information to recover the shock.



Noninvertibility and the state space: News shocks

As an alternative explanation, the joint dynamics of θt and pt can be
represented in state-space form as θt

εt
εt−1

 =

1 0 1
0 0 0
0 1 0

θt−1

εt−1

εt−2

+

0 1
1 0
0 0

(εt
ut

)
(4)

(
θt
pt

)
=

(
1 0 1
δ δ δ

)θt−1

εt−1

εt−2

+

(
0 1
δβ δ

)(
εt
ut

)
. (5)

where δ = β/(1− β).



Noninvertibility and the state space: News shocks

In fact the model for θt and pt is a VARMA with a nonfundamental
MA component(

θt
pt

)
=

(
1 0
δ 0

)(
θt−1

pt−1

)
+

(
L2 1

δβ + δL+ δL2 δ

)(
εt
ut

)
. (6)

The root of the determinant of the MA component vanishes for −β



Noninvertibility and the state space: News shocks

I The structural shocks can be obtained as the residuals of a VAR
on the state variables.

I Unfortunately, the state vector includes εt and εt−1, which are
not observable.

I By observing pt the econometrician can obtain some information
about the missing states but cannot tell apart εt and εt−1.



Noninvertibility and the state space:
Fernandez-Villaverde et al (AER 2011)

Suppose the economy is representable with the state-space
representation

st = Ast−1 +But (7)

xt = Cst−1 +Dut (8)

where

I st is an r-dimensional vector of stationary state variables,

I q ≤ r ≤ n, A, B, C and D are conformable matrices of
parameters,

I B has a left inverse B−1 such that B−1B = Iq.



Noninvertibility and the state space:
Fernandez-Villaverde et al (AER 2011)

Notice that
ut = B−1st −B−1Ast−1.

Substituting in xt we have

xt = Cst−1 +Dut

= Cst−1 +DB−1st −DB−1Ast−1

=
[
DB−1 − (DB−1A− C)L

]
st

In the square case q = n we have

xt = DB−1
[
I − (A−BD−1C)L

]
st



Noninvertibility and the state space:
Fernandez-Villaverde et al (AER 2011)

I st and therefore the shocks can be recovered as a square
summable combination of the present and past of yt iff the
eigenvalues of (A−BD−1C) are strictly less than one in modulus.

I In this case a VAR representation in terms of the structural
shocks exists

xt =

∞∑
j=0

(A−BD−1C)jBD−1xt−j +Dut

I Useful only for theoretical model but no implications for
empirical analysis.



Sufficient information in Structural VARs

I In the next slides we study the testing procedure proposed in
Forni and Gambetti (2011) ”Sufficient information in Structural
VARs”.

I Proofs of the propositions and other detail can be found in the
paper.



Test of sufficient information: Assuming ABCD

We can provide a sufficient condition by assuming the state-space
representation in Villaverde, Rubio-Ramirez, Sargent and Watson
(2007), i.e.

st = Ast−1 +But (9)

xt = Cst−1 +Dut (10)

where

I st is an r-dimensional vector of stationary state variables,

I q ≤ r ≤ n, A, B, C and D are conformable matrices of
parameters,

I B has a left inverse B−1 such that B−1B = Iq.



Test of sufficient information: Assuming ABCD

It can be seen that the model has a factor model representation.
Indeed

ut = B−1st −B−1Ast−1. (11)

Substituting into the states

xt = DB−1st + (C −DB−1A)st−1. (12)

Therefore x∗t has the factor representation

x∗t = Gft + ξt, (13)

where the G =
(
DB−1 C −DB−1A

)
and ft =

(
s′t s′t−1

)′
.

structural shocks are fundamental for the factors ft.



A necessary and sufficient condition

Main result: z∗t is informationally sufficient if and only if ft does not
Granger cause z∗t .

The intuition for sufficiency is that if ft does not help predicting z∗t ,
then nothing can, since ft is informationally sufficient.

Proposition 3 implies that we can summarize the information in the
large dimensional vector x∗t into a relatively small number of factors
(the entries of ft).

Such factors are unobservable, but can be consistently estimated by
the principal components of x∗t (Stock and Watson, 2002).



An empirical testing procedure

Proposition 3 provides the theoretical basis for the following testing
procedure.

1. Take a large data set x∗t , capturing all of the relevant
macroeconomic information.

2. Set a maximum number of factors P and compute the first P
principal components of x∗t .

3. Perform Granger causation tests to see whether the first h
principal components, h = 1, . . . , P , Granger cause z∗t . If the null
of no Granger causality is never rejected, z∗t is informationally
sufficient. Otherwise, sufficiency is rejected.



Structuralness of a single shock

Global sufficiency is needed to recover all of the structural shocks.

But the econometrician is often interested in identifying just a single
shock within a VAR model. To this end, we propose a less demanding
test.

The following example shows that, even if global sufficiency does not
hold, z∗t can be sufficient for a single shock:

z∗1t = u1t + u2t−1 (14)

z∗2t = u1t − u2t−1. (15)

In this case z∗t is not sufficient for ut but is sufficient for u1t, since
z∗1t + z∗2t = 2u1t.



The orthogonality test

Clearly the structural shock ujt is orthogonal to ft−k, k > 0.

Conversely, if a linear combination of the VAR residuals is orthogonal
to the past of the factors, then it is a linear combination of the
structural shocks.

Main result: Let vt = α′εt, α ∈ Rs. if z∗t is free of measurement error,
i.e. z∗t = zt, and vt is orthogonal to ft−k, k > 0, then vt is a linear
combination of the structural shocks.

Orthogonality does not guarantee that such linear combination be the
desired shock; it will, only if identification is correct.

After having identified our shock of interest, we can therefore test
whether it can be a structural shock by testing for orthogonality with
respect to the lags of the principal components.



Solutions

What should we do if informational sufficiency or structuralness is
rejected?

1. To add the principal components f̂t to the VAR information set

and estimate an enlarged VAR with wt =
(
z∗′t f̂ ′t

)′
.

2. To use a FAVAR (Bernanke et al., 2005) .

3. To use a factor model (forni et al 2009).

Remember: these models provide an estimate of the state which is are
the key variables.



Application: Technology shocks and the business cycle

I Now we will see an empirical application of the methods studied
above.

I Question: Do technology shock explain aggregate fluctuations?

I The empirical evidence is mixed.

I In his seminal paper, Gali (1999) finds a very modest role for
technology shocks as a source of economic fluctuations.

I On the contrary other authors, see for instance Christiano,
Eichenbaum and Vigfusson (2003) and Beaudry and Portier
(2006), provide evidence that technology shocks are capable of
generating sizable fluctuations in macroeconomic aggregates.

I Most of the existing evidence about the effects of technology
shocks is obtained using small-scale VAR models.



Technology shocks and the business cycle

I Following Barnichon (2010), we focus on the vector z∗t including
the growth rate of total factor productivity (TFP) and the
unemployment rate.

I The state variables of the economy are estimated by using the
principal components of a large dataset of 110 quarterly US
macroeconomic series covering the period 1960-I to 2010-IV.

I To begin, we test for informational sufficiency of z∗t .

I We find that sufficiency is rejected. To get sufficiency, we have to
augment the VAR with 9 principal components.



Results: the Granger-causality test

FAVAR specifications
j z∗t w1

t w2
t w3

t w4
t w5

t w6
t w7

t w8
t w9

t

1 0.03
2 − 0.14
3 − 0.37 0.95
4 − 0.25 0.07 0.06
5 − 0.00 0.00 0.00 0.67
6 − − − − 0.90 0.03
7 − − − − 0.00 − 0.00
8 − − − − − − − 0.35
9 − − − − − − − 0.03 0.01
10 − − − − − − − − − 0.64
11 − − − − − − − − − 0.13
12 − − − − − − − − − 0.10
13 − − − − − − − − − 0.51
14 − − − − − − − − − 0.59
15 − − − − − − − − − 0.17

Table 1: p-values of the out-of-sample Granger causality test for global sufficient

information. wh
t is the original VAR vector z∗t , augmented with h principal

components. j refers to the number of principal components used in the test.



Testing for orthogonality of the estimated shock

I As a validation, we check for structuralness of the estimated
technology shock.

I We identify the technology shock in both the original VAR with
z∗t and the FAVAR w9

t , by imposing the standard long-run
restriction that technology is the only shock driving TFP.

I Then we test whether the estimated shock is orthogonal to the
past of the principal components.

I Specifically we run a regression of the estimated shock on the
past of the principal components and we perform an F-test of the
null hypothesis that the coefficients are jointly zero.

I We find that the hypothesis is strongly rejected for z∗t , but
cannot be rejected for w9

t .



Impulse-response functions

I Next we study the consequences of insufficient information in
terms of impulse response functions.

I We investigate how the predicted effects of technology shocks
change by augmenting the original VAR with one, two,..., sixteen
principal components.

I Figure 1 show the impulse response functions. The left column
plots the impulse response functions for total factor productivity
and unemployment, for all the sixteen specification.

I The right column displays for the three variables the effects on
impact (blue-points) at 1 year (red-crosses) 2 year
(magenta-circles) and in the long run (green-diamonds). In the
horizontal axis we put the number of principal components
included in the VAR. The first value refers to the VAR without
principal components.



Figure 1: Impulse response functions



Comment for Figure 1

I The VAR without principal components predicts that the
technology shock reduces unemployment, as predicted by
standard RBC models. Total factor productivity reacts positively
on impact and stays roughly constant afterward.

I The picture changes dramatically when adding the principal
components. The effect of the technology shock on the
unemployment rate becomes positive. Moreover, the impact
effect on TFP reduces substantially, so that the diffusion process
is much slower, in line with the S-shape view.

I As can be seen in the right panels of Figure 1, consistently with
the results of the test, models including more than nine principal
components all deliver similar impulse response functions.



Figure 2: Additional impulse response functions



Comment for Figure 2

I Figure 2 plots the FAVAR impulse response functions of some
variables of interest.

I GDP increases significantly only after a few quarters.

I Per capita hours worked reduce in the short run.

I Such results are at odds with the standard RBC model.

I The GDP deflator significantly reduces, while real wages
significantly increase.

I Somewhat surprisingly, the response of the S&P500 index is
sluggish, whereas the consumer confidence (expected) index
jumps immediately.



Amending the VAR with forward-looking variables

I As a further exercise, we try to amend the VAR by adding
suitable variables.

I Natural candidates are forward-looking variables such as stock
prices and consumer confidence indicators.

I We focus on the real Standard & Poor’s 500 index, (in log
differences), and a component of the Michigan University
consumer confidence index, i.e. Business Conditions expected
during the next 5 years.

I We test for orthogonality of the estimated shock with the lags of
the principal components.

I Table 2 shows results for different specifications, including one or
both of the above variables. The two specifications including the
survey variable are not rejected.



Results: the orthogonality test

VAR1 VAR2 VAR3 VAR4 VAR1 VAR2 VAR3 VAR4
j 1 lag 2 lags
1 0.02 0.26 0.40 0.63 0.24 0.42 0.34 0.61
2 0.00 0.04 0.17 0.23 0.08 0.12 0.17 0.39
3 − − 0.30 0.40 0.16 0.28 0.23 0.52
4 − − 0.35 0.56 0.31 0.22 0.13 0.27
5 − − 0.48 0.67 0.01 0.18 0.10 0.29
6 − − 0.37 0.62 0.00 0.01 0.07 0.14
7 − − 0.48 0.69 − − 0.07 0.07
8 − − 0.59 0.78 − − 0.11 0.11
9 − − 0.66 0.83 − − 0.14 0.16
10 − − 0.74 0.89 − − 0.18 0.22
11 − − 0.72 0.89 − − 0.23 0.29
12 − − 0.73 0.92 − − 0.34 0.39
13 − − 0.52 0.86 − − 0.35 0.42
14 − − 0.57 0.90 − − 0.36 0.44
15 − − 0.58 0.91 − − 0.22 0.29

Table 2: p-values of the orthogonality test for different VAR specifications. VAR 1:
TFP, Unemployment rate. VAR 2: TFP, Unemployment rate and the S&P500 stock
price index. VAR 3: TFP, Unemployment rate and Business conditions expected during
the next 5 years. VAR 4: TFP, Unemployment rate, S&P500, Business conditions
expected during the next 5 years.



Figure 3: Impulse response functions



Comment for Figure 3

I Figure 3 shows the impulse response functions obtained with all
four specifications.

I The impulse response functions of the rejected specifications
VAR1 and VAR2 (lines 1 and 2, respectively) are similar to each
other.

I The impulse response functions of VAR3 and VAR4 (lines 3 and
4, respectively) are very much similar to each other and to the
one obtained with the 9-factor FAVAR model.

I For both specifications, the unemployment rate exhibits on
impact a significant positive reaction.



Application: News and business cycles, Beaudry and
Portier (2006 AER)

I Main idea back to Pigou: news about future productivity growth
can generate business cycles since agents react to news by
investing and consuming.

I Beaudry and Portier (2006 AER) finds news shocks are
important for economic fluctuations. Output, investment,
consumption and hours positively comove and the shocks explain
a large fraction of the their variance.

I Use a VECM for TFP and stock prices.

I Standard model do not replicate the empirical finding since
because of consumption comove negatively with investment and
hours.

I Big effort in building models where news shocks generate
business cycles (Jaimovich and Rebelo, 2009, Den Haan and
Kaltenbrunner, 2009, Schmitt-Grohe and Uribe, 2008).



Application: News and business cycles, Beaudry and
Portier (2006 AER)

Two identification procedures:

1. Technology shocks is the only shock driving TFP in the long run.

2. News shocks raise stock prices on impact but not TFP (lagged
adjustment.



Application: News and business cycle, Beaudry and
Portier (2006 AER)

Main finding:

I the two identified shocks are the same;

I such shocks generate positive comovement in consumption,
investment, output and hours (consistently with business cycles
conmovements) and they explain a large portion of the variance
of these series.

Conclusion: news shocks can generate business cycles.



Application: News and business cycle, Beaudry and
Portier (2006 AER)

Source: Beaudry and Portier (AER 2006)



Application: News and business cycle, Beaudry and
Portier (2006 AER)

Source: Beaudry and Portier (AER 2006)



Application: News and business cycle, Beaudry and
Portier (2006 AER)

Source: Beaudry and Portier (AER 2006)



Application: News and business cycle, Beaudry and
Portier (2006 AER)

Source: Beaudry and Portier (AER 2006)



No news in business cycle, Forni, Gambetti and Sala
(2011)

I Motivation: news shocks can give raise to nonfundamentalness
(recall example at the beginning).

I VAR models like Beaudry and Portier AER can have an hard
time in estimating news shocks.

I Here:
I Test whether the news shock is fundamental for TFP and stock

prices, i.e. are fundamental for the variable in BP.

I Estimate the shocks using a FAVAR model.



Testing for fundamentalness

Use the Forni and Gambetti (2011) orthogonality test:

1. estimate a VAR with a given set of variables yt and identify the
relevant shock, wt;

2. test for orthogonality of wt with respect to the lags of the factors
(F-test);

3. the null of fundamentalness is rejected if and only if
orthogonality is rejected.

The factors are not observed and we estimate them using the
principal components of a dataset composed of 107 US quarterly
macroeconomic series, covering the period 1960-I to 2010-IV.



Testing for fundamentalness

We consider the following VAR specifications.

2-variable VAR

S1 TFP adj. Stock P

S2 TFP Stock P

4-variable VAR

S3 TFP adj. Stock P Cons Hours

S4 TFP Stock P Cons Hours

S5 TFP adj. Output Cons Hours

7-variable VAR

S6 TFP adj. Stock P Output Cons Hours Confidence Inflation



Testing for fundamentalness

I We apply the Forni and Gambetti test.

I For each specification we use two identifications of the news
shock:

I The news shock is the shock that does not move TFP on impact
and (for specifications from S3 to S6) has maximal effect on TFP
at horizon 40.

I The news shock is identified is the only shock with a non-zero
effect on TFP in the long run.



Results of the test: Identification 1

Principal components (from 1 to j)

spec lags 1 2 3 4 5 6 7 8 9 10
S1 1 0.12 0.30 0.07 0.02 0.04 0.04 0.02 0.04 0.06 0.06

4 0.37 0.19 0.04 0.06 0.10 0.03 0.06 0.09 0.12 0.02
S2 1 0.31 0.60 0.03 0.01 0.01 0.01 0.00 0.00 0.01 0.01

4 0.56 0.61 0.09 0.06 0.12 0.04 0.08 0.11 0.13 0.04
S3 1 0.02 0.01 0.02 0.03 0.06 0.02 0.02 0.03 0.04 0.03

4 0.20 0.09 0.07 0.20 0.12 0.08 0.08 0.10 0.12 0.21
S4 1 0.21 0.02 0.04 0.04 0.06 0.02 0.03 0.02 0.02 0.03

4 0.48 0.03 0.08 0.13 0.03 0.03 0.08 0.08 0.06 0.08
S5 1 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S6 1 0.55 0.19 0.35 0.30 0.41 0.36 0.43 0.53 0.58 0.32

4 0.43 0.24 0.53 0.52 0.49 0.72 0.58 0.66 0.72 0.72

Results of the fundamentalness test. Each entry of the table reports the p-value of
the F -test in a regression of the news shock estimated using specifications S1 to
S6 on 1 and 4 lags of the first differences of the first j principal components,
j = 1, . . . , 10. The news shock is identified as the shock that does not move TFP
on impact and (for specifications from S3 to S6) has maximal effect on TFP at
horizon 60.



Results of the test: Identification 2

Principal components (from 1 to j)

spec lags 1 2 3 4 5 6 7 8 9 10
S1 1 0.54 0.82 0.36 0.23 0.34 0.24 0.08 0.12 0.17 0.08

4 0.18 0.02 0.00 0.01 0.01 0.00 0.01 0.02 0.03 0.01
S2 1 0.32 0.60 0.38 0.12 0.15 0.05 0.04 0.06 0.09 0.04

4 0.34 0.02 0.01 0.02 0.02 0.01 0.03 0.05 0.08 0.03
S3 1 0.02 0.01 0.02 0.04 0.07 0.02 0.02 0.03 0.04 0.03

4 0.20 0.08 0.06 0.19 0.10 0.06 0.08 0.09 0.11 0.20
S4 1 0.28 0.01 0.02 0.03 0.05 0.02 0.03 0.02 0.03 0.04

4 0.52 0.02 0.07 0.12 0.03 0.05 0.13 0.14 0.10 0.09
S5 1 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S6 1 0.54 0.22 0.37 0.26 0.37 0.36 0.42 0.51 0.57 0.37

4 0.25 0.15 0.41 0.37 0.35 0.58 0.48 0.54 0.60 0.60

Results of the fundamentalness test. Each entry of the table reports the p-value of
the F -test in a regression of the news shock estimated using specifications S1 to
S6 on 1 and 4 lags of the first differences of the first j principal components,
j = 1, . . . , 10. The news shock is identified as the only shock with a non-zero effect
on TFP in the long run.



Identifying news shocks

I We study the effects of news shocks with a FAVAR model.

I As in Beaudry and Portier (2006) stock prices and TFP are
treated as observable factors.

I The news shock is identified by assuming that

1. does not have a contemporaneous impact on TFP;

2. has a maximal effect on the level of TFP at the 60-quarter
horizon.

I We also identify a standard technology shock by assuming that

1. is the only shock that affects TFP on impact.



How many factors?

FAVAR with Principal components (from h + 1 to j)
h factors 1 2 3 4 5 6 7 8 9 10

0 0.12 0.30 0.07 0.02 0.04 0.04 0.02 0.04 0.06 0.06
1 - 0.17 0.04 0.08 0.10 0.15 0.19 0.20 0.02 0.01
2 - - 0.79 0.96 0.96 0.97 0.79 0.47 0.16 0.04
3 - - - 0.49 0.46 0.56 0.65 0.52 0.60 0.69
4 - - - - 0.95 0.99 0.98 0.82 0.91 0.95
5 - - - - - 0.71 0.84 0.75 0.87 0.92
6 - - - - - - 0.76 0.40 0.59 0.74
7 - - - - - - - 0.10 0.26 0.43
8 - - - - - - - - 0.59 0.72
9 - - - - - - - - - 0.63

Results of the test for the number of principal components to be included in FAVAR models in

specification S1. Each entry of the table reports the p-value of the F -test in a regression of the news

shock on two lags of the principal components from the h + 1-th to j-th, j = h + 1, . . . , 10. The news

shock is estimated from a FAVAR with h principal components; it is identified as the shock that does

not move TFP on impact and has maximal effect on TFP at horizon 60.



The effects of enlarging the information set

Impulse response functions to a news shock. Solid (only in the upper boxes): VAR, specification S1.

Dash-dotted: FAVAR 1-2 principal components. Solid with circles: FAVAR, 3 principal components.

Dashed: FAVAR, 4-6 principal components.



The effects of enlarging the information set

Impulse response functions to a news shock (continued). Dash-dotted: FAVAR 1-2 principal

components. Solid with circles: FAVAR, 3 principal components. Dashed: FAVAR, 4-6 principal

components.



The effects of enlarging the information set

Variance decomposition for the news shock. Solid (only in the upper boxes): VAR, specification S1.

Dash-dotted: FAVAR 1-2 principal components. Solid with circles: FAVAR, 3 principal components.

Dashed: FAVAR, 4-6 principal components.



The effects of enlarging the information set

Variance decomposition for the news shock. Dash-dotted: FAVAR 1-2 principal components. Solid

with circles: FAVAR, 3 principal components. Dashed: FAVAR, 4-6 principal components.



The effects of news shocks

Impulse response functions to a news shock. Solid: FAVAR model, specification S1 + 3 principal

components. Dark gray areas denote 68% confidence intervals. Light gray areas denote 90%

confidence intervals.



The effects of news shocks

Impulse response functions to a news shock (continued). Solid: FAVAR model, specification S1 + 3

principal components. Dark gray areas denote 68% confidence intervals. Light gray areas denote 90%

confidence intervals.



Variance decomposition

Variables Horizons BC freq.
0 4 8 16 24 40

0 0.6 0.4 1.8 7.5 25.8 15.1
TFP adj. [93]

(0) (2.2) (2.8) (4.6) (8.4) (12.2) (8.1)

0.0 1.7 4.0 12.0 20.8 29.7 8.6
Stock Prices [96]

(13.3) (13.1) (13.3) (14.2) (14.6) (14.6) (11.5)

26.5 16.4 22.4 40.9 57.8 73.7 43.2
Consumption [11]

(15.9) (13.7) (15.0) (18.0) (17.2) (14.3) (12.8)

22.1 3.8 2.5 5.4 8.1 8.6 4.8
Hours [26]

(16.5) (9.9) (8.9) (8.3) (8.4) (8.3) (9.6)

3.7 2.5 7.7 25.7 43.0 60.4 20.6
Output [5]

(7.9) (9.4) (11.6) (14.7) (14.4) (13.1) (9.7)

1.1 0.3 2.5 14.9 30.2 47.9 16.5
Investment [7]

(5.1) (8.1) (9.6) (13.3) (14.1) (13.8) (9.4)

0.2 2.6 7.5 17.9 21.3 22.1 4.4
Business Condition [104]

(7.8) (10.5) (11.7) (11.7) (11.0) (11.0) (8.8)

19.9 30.6 36.2 37.2 36.0 36.4 20.3
CPI Inflation [71]

(15.1) (16.0) (15.2) (13.7) (13.2) (13.1) (11.5)

Variance decomposition to a news shock. Columns 2-7: fraction of the variance of the forecast error

at different horizon. Column 8: fraction of the variance at business cycle frequencies (between 2 and 8

years). It is obtained as the ratio of the integral of the spectrum computed using the impulse

response functions of the news shock to the integral of the spectrum at frequencies corresponding to 6

to 32 quarters. Numbers in brackets are standard deviations across bootstrap simulations. Numbers

in square brackets correspond to the series in the data appendix.



Robustness

Impulse response functions to a news shock. Solid: Benchmark specification S1+3. Dark gray areas

denote 68% confidence intervals. Light gray areas denote 90% confidence intervals. Dotted: VAR S5.

Dash-Dotted: VAR S3. Solid with point: FAVAR specification S5+3. Solid with circles: FAVAR

specification S5+3.



Robustness

Impulse response functions to a news shock. Solid: Benchmark specification S1+3. Dark gray areas

denote 68% confidence intervals. Light gray areas denote 90% confidence intervals. Dotted:

maximization horizon 80 quarters. Dash-Dotted: maximization horizon 40 quarters.



Application: Fiscal foresight

I Problem with Blanchard and Perotti identification: the shock is
predictable (Ramey, 2011).

I Suppose the growth rate of government spending is

gt = φ1εt−1 + φ2εt−2

with φ2 > φ1 (fiscal foresight: gt increases slowly).

I Expectation is
Etgt+1 = φ1εt + φ2εt−1

I But the process is not invertible.

I However the forecast revision gives the shock

Etgt+1 − Et−1gt+1 = φ1εt



Application: Fiscal foresight
I Construct the agent’s innovation set.

I Idea: changes in expectations of future government spending.

I Let ĝt+q|t forecast of growth rate of government spending from
period t+ q − 1 to period t+ q using the information at time t.

I The measured forecast revision is

n̂t(1, 3) =

3∑
j=1

(ĝt+j|t − ĝt+j|t−1). (16)

I The variable is the difference between two sums:
I The first is the sum of the 1,2 and 3-period ahead forecasts made

at time t, i.e. the growth rate of government spending from
period t + 1 to t + 3 predicted in t.

I The second is the sum of the 2,3 and 4-period ahead forecasts
made at time t− 1, i.e. the growth rate of government spending
from period t + 1 to t + 3 predicted in t− 1.



Application: Fiscal foresight

Plot of n̂t(1, 3). The vertical lines are associated to the following episodes: fall of the Berlin Wall

(1989:IV); the beginning of the Gulf War (1990:III); the beginning of the War in Afghanistan

(2001:IV); the beginning of the Iraq War (2003:I); the approval of the Obama’s fiscal stimulus package

(2009:I).



Application: Fiscal foresight

Ramey’s variable (solid line) and n̂t(1, 3) (dashed-pointed line). The vertical lines are associated to

the following episodes: fall of the Berlin Wall (1989:IV); the beginning of the Gulf War (1990:III); the

beginning of the War in Afghanistan (2001:IV); the beginning of the Iraq War (2003:I); the approval

of the Obama’s fiscal stimulus package (2009:I).



Application: Fiscal foresight

Impulse response functions to an anticipated government spending shock in BENCHVAR.

BENCHVAR includes, in that order, the logs of real government spending, real GDP, real

consumption and the cumulated sum of the forecast revision of the growth rate of government

spending. The shock is the last of the Cholesky decomposition. Solid lines are point estimates, dotted

line are 68% confidence bands.



13. Factor models and FAVARs



The Factor Model

Forni, Giannone, Lippi and Reichlin (Econometric Theory 2009). Let
us assume

xt = Aft + ξt, (17)

D(L)ft = εt (18)

εt = Rut

where

I xt − a vector containing the n variables of the panel.

I Aft − the common component.

I ft − a vector containing r < n unobserved factors.

I ut − a vector containing q < r structural macro shocks.

I R − a r × q matrix of coefficients.

I D(L) − a r × r matrix of polynomials in the lag operator.

I ξt − a vector of n idiosyncratic components (orthogonal to the
common one, poorly correlated in the cross-sectional dimension.



The Factor Model

From (1)-(2) We can derive the dynamic representation of the model
(in terms of structural shocks)

xt = B(L)ut + ξt (19)

where B(L) = AD(L)−1R − a n× q matrix of impulse response
functions to structural shocks.

Notice that the fact that q < r makes D(L)−1 a rectangular where the
conditions for fundamentalness are those described below.



Identification

I B(L) is identified up to an orthogonal (q × q) matrix H (such
that HH ′ = I) since B(L)ut = C(L)vt where B(L) = C(L)H and
vt = H ′ut.

I In this context identification consists in imposing
economically-based restrictions on B(L) to determine a
particular H. This is the same as in VAR but restriction can be
imposed on a n× q matrix of responses.

I In practice, given a matrix of nonstructural impulse response

functions ˆC(L) obtained as described in the estimation one has
to choosing H by imposing some restrictions on B(L).

I Same types of restrictions used in VAR: Cholesky, long run, signs
etc.



Consistent estimator of impulse response functions

I Γ̂x the sample variance-covariance matrix of the data. Loadings
Â = (â′1â

′
2 · · · â′n)′ is the n× r matrix having on the columns the

normalized eigenvectors corresponding to the first largest r̂
eigenvalues of Γ̂x. Factors are f̂t = Â′(x1tx2t · · ·xnt)′.

I VAR(p) for f̂t gives D̂(L).

I Γ̂ε the sample variance-covariance matrix of ε̂t µ̂
ε
j eigenvalue. M̂

the q × q diagonal matrix with
√
µ̂εj as its (j, j) entry, K̂ the

r × q matrix with the corresponding normalized eigenvectors on
the columns.

Ĉ(L) = ÂD̂(L)−1K̂M̂. (20)

I Finally, Ĥ and b̂i(L) = ĉi(L)Ĥ i = 1, . . . , n are obtained by
imposing the identification restrictions on

B̂(L) = Ĉ(L)Ĥ. (21)



Why is the factor model fundamental?

I Recall the Rozanov condition for fundamentalness.

I Assume that the n-dimensional stochastic vector µt admits a
moving average representation

µt = K(L)vt

where K(L) is a n× q (q ≤ n) polynomial matrix and vt is a
q × 1 white noise.

I The above representation is fundamental if and only if the rank
of K(L) is q for all z such that |z| < 1.



Why is the factor model fundamental?

I In the case n > q the condition is violated if and only if all the
q × q submatrices of K(L) share a common root smaller than one
in modulus.

I Going back the the fiscal foresight example. The full system is
fundamental atkt

τt

 =

 0 1
−κ(L+θ)

1−αL
1

1−αL
L2 0

(ετ,t
εA,t

)
(22)



Why is the factor model fundamental?

Consider again the state space representation

xt =
[
DB−1 − (DB−1A− C)L

]
st

=
[
DB−1 − (DB−1A− C)L

]
(I −AL)−1But (23)

If n > r then the representation is always fundamental and a (reduced
rank) VAR representation always exists.



Why is the factor model fundamental?

Example: to get the intuition of how large information can mitigate
the nonfundamentalness problem consider the two MA

Xt = (1 + 2L)εt,

Yt = Lεt

both are nonfundamental because the absolute root in the first is 0.5
and in the second is 0.

However the process
Zt = Xt − 2Yt = εt

is obviously fundamental.



Inference

Confidence bands are obtained by a standard non-overlapping block
bootstrap technique.

I Let X = [xit] be the T × n matrix of data. Such matrix is
partitioned into S sub-matrices Xs (blocks), s = 1, . . . , S, of
dimension τ × n, τ being the integer part of T/S.

I An integer hs between 1 and S is drawn randomly with
reintroduction S times to obtain the sequence h1, . . . , hS .

I A new artificial sample of dimension τS × n is then generated as
X∗ =

[
X ′h1

X ′h2
· · ·X ′hS

]′
and the corresponding impulse response

functions are estimated.

I A distribution of impulse response functions is obtained by
repeating drawing and estimation.



Determination of the number of factors
There are criteria available for the determination of the number of
both static and dynamic factors.

I # of static factors r Bai and Ng (2002) proposes consistent
criteria. The most common one is the ICp2(r). r should be
chosen in order to minimize

ICp2(r) = lnV (r, f̂t) + r

(
n+ T

nT

)
ln (Min(n, T )

where V (r, f̂t) is the sum of residuals (divided by (nT) from the
regression of xi on the r factors for all i,

V (r, f̂t) = min
A

N∑
i=1

T∑
t=1

(xit −Ari frt )2

I # of dynamic factors q
I Bai and Ng (2007) based on the rank of the residual covariance

matrix.

I Amengual and Watson (2008). Regress x on f̂t and apply Bai and
Ng (2002) to the new obtained residuals to study the number of
dynamic factors.



An application: Forni and Gambetti (2010, JME)

I Motivation: standard theory of monetary policy predicts that
after a contractionary policy shock:

I Prices fall

I The real exchange rate immediately appreciates and then
depreciates (overshooting theory)

I With VAR puzzling results:
I Prices increase (price puzzle)

I The real exchange rate appreciates with a long delay (delayed
overshooting puzzle)

I Here: we study the effects of monetary policy shocks within a
SFM.

I Why: information could be the key.

I Main result: both of them solved IRF behave like theory predicts.



An application: Forni and Gambetti (2010, JME)

I Data: 112 US monthly series from March 1973 to November
2007. Most series are those of the Stock-Watson, we added a few
real exchange rates and short-term interest rate spreads between
US and some foreign countries.

I The monetary policy shock is identified by the following
assumptions:

1. the monetary policy shock is orthogonal to all other structural
shocks,

2. the monetary policy shock has no contemporaneous effect on
prices and output (Cholesky scheme).



An application: Forni and Gambetti (2010, JME)
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An application: Forni and Gambetti (2010, JME)



An application: Forni and Gambetti (2010, JME)



FAVAR

I Similar to factor models.

I Two main differences:

1. Same number of dynamic and static factors q = r.
2. Possibility of including observed factors in the VAR for the

factors.



FAVAR and Monetary policy shocks - BBE

I Bernanke Boivin and Eliasz (2002) use a FAVAR model to study
the effects of a monetary policy shock.

I xt consists of a panel of 120 monthly macroeconomic time series.
The data span from January 1959 through August 2001.

I The federal funds rate is the only observable factor.

I The model is estimated with 13 lags.

I 3 and 5 unobservable factors are used.

I Identification of the monetary policy shock similar to CEE



FAVAR and Monetary policy shocks - BBE
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