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Abstract:

This paper proposes a new empirical method to analyze the real effects of monetary policy

within a structural VAR approach. The monetary policy shock is the one having (i) zero im-

pact effect on real GDP and prices; (ii) a large impact effect of opposite sign on non-borrowed

reserves and federal funds rate. This definition provides a set of (a) partial identifying condi-

tions and a set of (b) quasi-identifying conditions applied to US monthly data relative to the

period 1965:1-1994:3. Results show that a contractionary monetary policy shock produces

a large negative effect on the real GDP which reduces and vanishes in the long-run. We

find strong empirical evidence in favor of money non-neutrality in the short-run and money

neutrality in the long-run.
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1 Introduction

The purpose of this paper is to provide new empirical evidence on the real ef-

fects of monetary policy by means of VAR analysis. Money neutrality and the

effectiveness of monetary policy have been one of the most discussed topics in

economic theory for half a century. In recent years there seems to be a growing

agreement between economists on the facts of monetary policy. Monetary pol-

icy is non-neutral in the short-term, because of imperfect information (Lucas,

1972) or nominal rigidities, (Fisher, 1977, Taylor, 1980, 1999), and is neutral

in the long run, since the price level adjustment will offset real effects. In this

paper we propose empirical evidence in favor of this view.

Starting from the original contribution by Sims (1980), VAR analysis has been

widely used in empirical macroeconomics (see Canova, 1995, for a survey). The

basic idea of VAR models is the propagation impulse mechanism of Slutsky

(1937) and Frisch (1933) formalized by the Wold Representation Theorem. The

economic cycle is seen as the sum of white noise shocks of different nature that,

through complex propagation mechanisms, cause booms and recessions. By

means of VAR analysis it is possible to separate the effects of any single shock

and to study their relative weight over the cycle. In the last decade there have

been numerous contributions aiming to recover the effects of monetary policy

by means of structural VAR analysis; the research has been directed toward

both more refined econometric techniques and new identification methods (see

Christiano, Eichenbaum and Evans (1998) for a survey).

Resuming the recent contributions of Bernanke and Mihov (1998a, 1998b) and

Uhlig (1999), this work proposes a new criterion for identifying the effects

of monetary policy. Such a criterion involves a Partial Identification of the

VAR−only the effects of the monetary policy shock are identified. The identifi-

cation is based on hypotheses concerning the shock impact effect on real GDP,

prices, non-borrowed reserves and the federal funds rate. No restrictions are im-

posed on the long run behavior. The monetary policy shock is the one having

a zero impact effect on real GDP and prices and a large effect of opposite sign
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on non-borrowed reserves and the federal funds rate, according to the theory of

the liquidity effect. While the first hypothesis involves standard restrictions to

zero of the impact coefficients for the impulse response functions of real GDP

and prices, the second involves non-standard restrictions obtained by means

of a joint constrained maximization of the impact effects on non-borrowed re-

serves and the federal funds rate. Once the shock is identified, we develop a

Quasi-Identification Criterion (QIC); such a criterion does not exactly identify,

but identifies a set of admissible impulse response functions for each variable.

Since the shape and the sign of the impulse response functions are very similar,

quasi-identification enables us to identify the sign and the shape; that finding,

by confirming the identification results, strengthens our identification criterion.

Our main findings are:

1. A contractionary monetary policy shock reduces real GDP temporaneously.

Monetary policy is non neutral in the short-run and neutral in the long-run.

2. Inflation drops sluggishly. A contractionary shock succeed in reducing infla-

tion, but with lag and not permanently. Commodity prices drop more quickly

than inflation; the effect of the shock last for three years and vanishes in the

long-run.

3. Reserves and the federal funds rate react immediately to the shock. From

the first year the effect of the shock reduces and vanish in the long run.

This paper is organized as follows. Section 2 sets up the model. Section 3

discusses the theoretical hypotheses and describes the identification criterion.

Section 4 illustrates the results of identification. Section 5 proposes a sensitivity

analysis. Section 6 describes the quasi-identification criterion. Section 7 draws

the conclusions.

We use US monthly data relative to the period 1965:1-1994:3. The data set in-

cludes real GDP (GDP), the inflation rate (∆GDPD) a commodity price index

(CP), total reserves (TR), non-borrowed reserves (NBR) and the federal funds

rate (FFR).

We use routines constructed by the author in MATLAB.
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2 The Model

Let Xt be a covariance stationary stochastic vector process (n × 1)1; from the

Wold Theorem we may represent Xt in terms of innovations

Xt = A(L)εt (1)

where A(L) = I +A1L+A2L
2 + ... is a matrix of polynomials in the lag operator

L (n×n) and εt is a zero mean white noise vector process (n× 1) with variance

Eεtε
′
t = Σε and Eεtε

′
t−k = 0 for k 6= 0. Let S be the Choleski factor of Σε

and H any matrix such that HH ′ = I. By postmultiplying A(L) for SH and

premulitiplying εt for H ′S−1 we obtain the orthonormal representation

Xt = C(L)et (2)

where

C(L) = A(L)SH (3)

et = H ′S−1εt, Eete
′
t = I and C(0) = SH. Equation (2) is the VAR structural

form and the matrix C(L) contains the effects of the structural shocks on the

vector Xt. In order to obtain (2) from (1) we need to identify the model, that

is, since S is given, we must choose the matrix H under the orthonormality

constraint HH ′ = I.

Partial Identification

Let us suppose that we are not interested in completely identifying − in de-

termining the effects of all the n shocks − but are interested in a determinate

subclass of et containing m shocks with m = 1, ..., n− 1. In this case, we need

only the first m columns of the matrix C(L). In order to identify the first m

columns of C(L) it is sufficient to choose the first m columns of H. Parti-

tioning H, C1(L) and et as follows, H = (H1|H2), C(L) = (C1(L)|C2(L)) and

e′t = (e′1t|e′2t), our model will be

Xt = A(L)SH1H
′
1ηt + A(L)SH2H

′
2ηt = C1(L)e1t + C2(L)e2t (4)

1See Appendix A for details of the model.
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where C1(L) = A(L)SH1, C2(L) = A(L)SH2, e1t = H ′
1ηt

2 and e2t = H ′
2ηt;

H1 is the matrix we must choose for identifying, e1t is the vector of m struc-

tural shocks to be identified and C1(L) is the matrix of the impulse response

functions relative to e1t. C2(L)e2t is the model relative to the other (n − m)

shocks. The orthogonality condition provides us (m− 1)/2 restrictions and the

orthonormality condition m restrictions; since the number of free parameters is

nm, in order to fix H1 we need m(2n−m − 1)/2 further restrictions. As with

the exact identification, such restrictions can be short or long run restrictions

imposed on the first m columns of C1(0) or C1(1).

3 Identification

Let us consider equation (4)3. Let Xt be the vector of variables4 GDP6, ∆GDPD,

CP, NBR, FFR, TR and e1 the monetary policy shock. Our purpose is to de-

termine C1(L); since m = 1, C1(L) is the first column of C(L) and H1 the first

column of H. As already observed, in order to identify we have to fix H1. Given

the orthonormality condition we need n− 1 further restrictions. We adopt two

different sets of theoretical hypotheses. On the one hand we refer to macroeco-

nomic assumptions, on the other hand we refer to the operating mechanism of

the market for bank reserves. We assume that

2See Appendix A for the definition of ηt.
3We estimated the autoregressive form of representation (1), A1LXt = εt. In order to have

the impulse response functions A(L), we transformed the VAR model into an AR(1) process,

then inverted the AR(1) in a MA(∞) process. MA(∞) being a finite variance process, we

truncated it at k = 100.
4The data set is provided by Bernanke and Mihov and contains US monthly data for the

following variables: real GDP (GDP), inflation rate (∆GDPD)5, commodity price index (CP),

total reserves (TR), non-borrowed reserves (NBR) and federal funds rate (FFR). All variables

are taken in logarithms−except FFR−and in levels since the existence of cointegrating rela-

tions may bias the estimates in first differences.
6The real GDP is a monthly interpolation of several monthly variables, see Bernanke Mihov

(1998a) for details.
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(i) prices are sticky: both the inflation rate and the commodity price index

react to the monetary policy shock with a period of lag,

(ii) real GDP reacts to the monetary policy shock with a period of lag,

(iii) a contractionary monetary policy shock has a negative impact effect on

non-borrowed reserves,

(iv) a contractionary monetary policy shock has a positive impact effect on

the federal funds rate,

(v) the impact effects in (iii) and (iv) are both large.

Hypotheses (i) and (ii) are widely used in VAR literature (see e.g Bernanke

and Blinder, 1992, Strongin, 1995 and Bernanke and Mihov, 1998a 1998b). As-

sumption on ∆GDPD is derived from sticky price models (see e.g. Fisher, 1977,

Blanchard, 1984 and Taylor, 1998, for a survey). The assumption on commodity

prices is derived from the time pattern of the international propagation mecha-

nisms of monetary policy: exchange rate variations induced by monetary policy

actions may produce effects on commodity prices via capital flows, but over

time horizons longer than one month. Assumption (ii) refers to the lag in the

transmission of monetary policy actions to real economy.

Assumption (iii) and (iv)7 derive from the theory of the liquidity effect: for

a given reserves demand, a change in non-borrowed reserves produces, in the

short term, a change of opposite sign on nominal interest rate (see e.g. Cagan

and Gandolfi, 1968, Leeper and Gordon, 1992, Christiano, Eichenbaum and

Evans, 1992, Pagan and Robertson, 1995, Strongin, 1995, Bernanke and Mihov,

1998b). Assumption (v) states that the portion of variances of FFR and NBR

7As suggested by several authors (see e.g. Gordon and Leeper, 1994, Strongin, 1995,

Bernanke and Mihov, 1998a), by considering both the effects we exclude endogenous effects

induced by reserve demand. With an interest rate targeting policy, variations in the supply

of reserves may be due to an accommodating behavior of the central bank in consequence

of demand variations in order to keep the interest rate constant. On the other hand, with a

non-borrowed reserves policy, changes in the interest rate may be due to variations in reserve

demand in order to keep the supply constant.
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explained by the monetary policy shock within the first month is large8.

From equation (4) we define C1 = C1(0) = SH1 the impact vector of the

monetary policy shock. We have to fix the vector H1 so that restrictions (i),

(ii), (iii), (iv), (v) on C1 can be respected. Denoting ci the ith element of C1, and

hi the ith element of H1, from hypotheses (i) and (ii) we have c1 = c2 = c3 = 0;

since c1 = s11h1, c2 = s21h1 + s22h2 and s21h1 + s22h2 + s23h3 this implies

h1 = h2 = h3 = 0 (see Appendix B). Hypothesis (iii) involves c4 < 0 and

hypothesis (iv) c5 > 0. Hypothesis (v), by assuming that c4 and c5 are large,

provides us with a constrained maximization restriction. In order that c4 and

c5 be jointly large, we need, first, an idea of their maximal size and, second, a

technical procedure to keep them that way. Let us define θ1 = c2
41/σ

2
NBR and

θ2 = c2
51/σ

2
FFR

9. In order to have an idea of the maximal size of the impact

effect of the shock on FFR and NBR let us maximize separately θ1 and θ2. Let

Θ1 = max(θ1) and Θ2 = max(θ2)
10. Θ1, Θ2 signify the largest contribution

possible of the monetary policy shock in the first month to the variances of the

two series FFR and NBR (see note 8).

In order to keep the impact effects jointly large, we proceed as follows: first,

8Since Eete
′

t−k = 0 for k 6= 0 the variance of the ith element xi of the vector Xt will be

var(xit) = σ2

xi
=

6
∑

j=1

∞
∑

k=0

var(ej)c
2

ijk (5)

with i = 1, ..., n, j = 1, ..., n and k the time horizon; since var(ej) = 1

var(xit) =

6
∑

j=1

∞
∑

k=0

c2

ijk . (6)

By assuming that cij0 is large, we assume that the contribution of the jth shock to the variance

of the ith variable in k = 0 is large. That assumption is justified since FFR and NBR are

under the Fed control and there are no lag in the transmission of monetary policy actions to

these variable.
9We normalize the coefficients for the standard deviations of the first differences of the

series.
10The only constraint is

∑n

i=1
h2

i = 1; Θ1 = max(θ1) for h2
4 = 1 and Θ2 = max(θ2) for

h2

4
+ h2

5
= 1
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we calculate the ratio r = Θ1/Θ2 and second we maximize θ1 under the con-

straints θ1/θ2 = r. In such a way we obtain the constrained maximal values

Θ̄1 and Θ̄2. From Θ̄1, Θ̄2 and from the sign constraints (iii) c4 < 0 and (iv)

c5 > 0, it is possible to derive the impact coefficients ĉ4 and ĉ5. The constrained

maximization implies two restrictions, on h4 and h5 (see Appendix B). From

the hypothesis of orthonormality of the matrix H, the following condition must

hold,
∑n

i=1 h2
i = 1; such a condition implies a restriction on h6 which determines

ĉ6 and identifies C1(L) (see Appendix B).

The monetary policy impact vector, C1, is .

C1 =



























0

0

0

ĉ4

ĉ5

ĉ6



























(7)

4 Results

The results are shown in Figure 1; the impulse response functions are plotted

with 90% confidence bands11.

Inflation rate reacts very sluggishly and drops significantly only after 16 months.

The decline in inflation persists for five years and than vanishes. The monetary

contraction succeeds in reducing inflation but with 16-months of lag and not

permanently. Commodity prices drop more quickly than inflation, since com-

11The confidence bands are constructed with the bootstrapping method; let {ε̂t}T
t=1

be

the vector of residuals of the VAR with T the number of observations. By extracting with

introduction T times from {ε̂t}T
t=1

we construct 1000 new residual matrices {ε̂t(j)}T
i=1

with

j = 1, ..., 1000. For each j matrix, given initial conditions, we construct a new set of series.

For each set we estimate the VAR, and collect the impulse functions. For each variable at any

lag we extract the 50th lower value and the 950th higher value. In so doing, for each original

impulse function we obtain two 90% confidence bands.
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modities are traded on markets with flexible prices, and for the first three years

the decline is significant. The reduction of the commodity price operates pre-

sumably via dollar appreciation; a contractionary monetary shock, by increasing

interest rate, causes external capital inflow, making the dollar appreciate. Such

appreciation, the prices of commodities being expressed in dollars, sets off an

international disinflation process which reduces the price of commodities.

Non-borrowed reserves and total reserves initially drop with non-borrowed re-

serves dropping more than total reserves, in accordance to an interest rate in-

elastic short-term reserves demand (Strongin, 1995). The drop of non-borrowed

reserves is partially offset by an increase in borrowing by commercial banks.

From one to two years both non-borrowed and total reserves turn positive and

than converge to the initial values in the long-run. Our findings are consistent

with the theory. After the initial contraction, monetary authorities ease the

monetary policy tightness by progressively expanding reserves.

The federal funds rate reacts positively reaching its maximum during the sec-

ond month and than reversing course and turning negative within the year.

The behavior of the federal funds rate is also consistent with the theory. In the

very short term the liquidity effect holds and the federal funds rate rises. With

inflation declining, price expectations adjust and make the federal funds rate

turn negative; over longer time horizons a Fisherian effect holds and the federal

funds rate drops.

The response of real GDP seems conventional with the theory. After the initial

6-months, real GDP falls significantly and the decline persists for three years.

In the short-term monetary policy succeeds in reducing output and reduction

is significant at 90%. From the third year the effect of the shock on real GDP

reduces, vanishing after four years in consequence of the gradual easening of the

monetary policy tightness. We find evidence in favor of the traditional view:

monetary policy is non-neutral in the short-run and neutral in the long-run.

In conclusion:
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1. A contractionary monetary policy shock reduces real GDP temporaneously.

Monetary policy is non neutral in the short run and neutral in the long run.

2. Inflation drops sluggishly. A contractionary shock succeeds in reducing infla-

tion but with lag and not permanently. Commodity prices drops more quickly

than inflation; the effect of the shock last for three years and vanishes in the

long-run.

3. Reserves and the federal funds rate reacts immediately to the shock than

from one to two years the effect begins to reduce and vanishes in the long run.

5 Sensitivity Analysis

Our identification criterion, as shown in Appendix B, depends on the ratio r.

Since r does not derive from any theoretical assumption, this could affect the

results. We relax the assumption that r = Θ1/Θ2 and we perform a sensitivity

analysis of the results for different values of r. We set a range of possible values

for r and for any value we repeat the identification (Section 3 and Appendix

B). Since hypothesis (v) must hold, we choose the range −1 + Θ1/Θ2 ≤ r ≤
Θ1/Θ2 + 1; inside this range we choose eleven equally spanned values for r.

From Figure 2 we may conclude that r does not affect significantly the results

and our identification procedure is invariant for different values of r satisfying

hypothesis (v).

6 Quasi-Identification Criterion

In Section 4 identification is achieved by jointly maximizing the square impact

effects of non-borrowed reserves and the federal funds rate under the constraint

r. It could be objected that our methodology has an arbitrary aspect: though

the effects are large, they may not be the largest. If that were the case our

criterion would not be correct.

In this Section we propose a method that, by relaxing the identification hypothe-
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ses12, confirms the results described in Section 4 and strengthens the identifica-

tion criterion. We call this method Quasi-Identification Criterion (QIC) since it

does not identify but enables us to recover the sign and the shape of the effect.

A set of possible impulse response functions is identified. Let us suppose that

all the resulting admissible impulse response functions have the same shape or,

more simply, that they all present the same property. In this case we can say

nothing about the exact size of the effect, but we may recover both the sign and

the shape.

This kind of analysis reduces the number of the a priori restrictions to be

imposed; exact identification requires n(n − 1)/n restrictions, partial identifi-

cation m(2n − m − 1)/2, quasi identification one at least. The hypotheses of

quasi-identification are the following: a contractionary monetary policy shock

has (i) a zero impact effect on real GDP, (ii) a zero impact effect on prices,

(iii) a positive impact effect on federal funds rate, (iv) a negative impact ef-

fect on non-borrowed reserves and (va) an impact effect on the federal funds

rate and non-borrowed reserves to such an extent that the contribution of the

shock to the variance of the two series in the first month is at least equal to one

third of the largest contribution possible; in other words, that θ1 ≥ Θ1/3 and

θ2 ≥ Θ2/313. All the impact vectors which satisfy restrictions (i)-(va) conform

to the definition of monetary policy impact vectors and their relative impulse

response functions conform to the effects of the monetary policy shock.

From hypotheses (i) and (ii) c1 = c1 = c3 = 0 and h1 = h2 = h3 = 0 (see

Appendix B and Section 3). From the orthonormality hypothesis the following

condition holds
∑n

i=1 h2
i = 1. Incorporating the orthonormality condition in H1

we parameterize the vector H1 as follows14

12In Section 5 we relaxed the hypothesis r = Θ1/Θ2. Here we relax also the maximization

restriction.
13Assumptions (i)-(iv) are the same as in section 3; assumption (va) replaces the maximiza-

tion assumption (v).
14This parameterization is a variant of Uhlig (1999).
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H1 =



























0

0

0

cos(δ1)cos(δ2)

cos(δ1)sin(δ2)

sin(δ1)



























δ ∈ <2. (8)

We consider different values for the vector (δ1, δ2) in the interval [0, 2π], i.e.

(δ1, δ2) = (πh/5, πk/5); h = 1, ..., 20; k = 1, ..., 20. 202 vectors δj will result,

with j = 1, ..., 400 any of which generates an impact vector C j
1 . For some of

those the restrictions will be respected, for others they will not. Denoting with

Ω the set of δj for which the restrictions (iii), (iv) and (va) are respected, the

aim of the quasi-identification criterion is to study the set of admissible im-

pulses Cj
1(L) generated by the δj-vectors of Ω in order to recover the sign and

the shape of the effect of the monetary policy shock.

Results of quasi-identification are shown in Figure 2. We find 74 vectors δj

for which restrictions (i)-(va) are respected. All the resulting impulse response

functions present the same sign and the same shape both in the short and in

the long run, except total reserves which have an undetermined impact effect.

Moreover the results are in line with those described in Section 4. In so do-

ing, the suspicion that maximization could produce distortions in the results is

dispelled.

7 Conclusions

The main conclusion of this paper is that monetary policy is non-neutral in

the short-run and neutral in the long-run. We find evidence in favor of the

mainstream view and our results are in line with several empirical works (see

e.g. Bernanke and Mihov, 1998a, 1998b, Uhlig, 1999). Our findings are obtained

by means of a partial identification criterion based on restrictions on the sign

and the size of the impact effect of real GDP, prices, federal funds rate and
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non-borrowed reserves. In addition, we propose a quasi-identification criterion

that, by relaxing the identification hypothesis, enables the sign and the shape

of the response functions to be recovered confirming the identification results.
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Appendix A

The building block of VAR econometrics is the Wold Representation Theorem

that states that any stationary stochastic process can be decomposed in two

orthogonal components in the following manner:

Xt =
∞
∑

j=0

αjεt−j + µt (9)

where
∑∞

j=0 αjεt−j represents the stochastic component, with
∑∞

j=0 α2
j < ∞,

{εt−j}∞j=0 is a zero mean white noise process, that is (a) Eεtε
′
t =

∑

ε, Eεtε
′
t−k =

0 for k 6= 0, and µt represents the purely deterministic component, the one

perfectly predictable by using past information. As usual in VAR literature,

we will consider only regular process, that is those processes for which µt =

0. Rewriting (9) in lag operator terms and assuming µt = 0 we have the

representation (1). Equation (1) is the Wold representation of the process Xt

and the following conditions hold: (a), (b) all the roots of the determinant of

A(L) are outside the unit circle in the complex field, (c) A(0) = I. Conditions

(a), (b) and (c) guarantee the unicity of the representation. From the Wold

representation is possible to derive the class of fundamental 15 representations

of the process Xt. Given any non singular matrix of constants R is possible to

rewrite (1) as follows

Xt = A(L)RR−1εt = B(L)ut (10)

where B(L) = A(L)R and ut = R−1εt. Since R can be any non-singular matrix

of constants, it follows that the class of fundamental representations defined by

(10) has infinite representations that differ from each other for a particular R.

From the class of fundamental representations we may define a subclass, that

of orthonormal representations. Let S be the Choleski factor of
∑

ε such that

SS ′ = Σε. Postmultiplying A(L) for S and premultiplying εt for S−1 in (1) we

15The representations for which condition (b) holds; for non-fundamental representations

see Lippi and Reichlin (1993).
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obtain

Xt = D(L)ηt (11)

where D(L) = A(L)S and ηt = S−1εt. Equation (11) is the Choleski represen-

tation of Xt and has the following properties: D(0) = S, D(L) = S + D1L +

D2L + ...,
∑

η = Eηtη
′
t = S−1

∑

ε S ′−1 = I. As for the class of fundamental

representations, even in this case it is possible to generalize to the whole class

of orthonormal representations. For any matrix H such that HH ′ = I, by

postmultiplying A(L)S for H and premultiplying ηt for H ′ we obtain the rep-

resentation (2). Representation (1) has the same properties of representation

(11) and differs from (11) for H. The class of orthonormal representations,

as subclass of fundamentals, contains infinite representations which differ from

each others for a particular choice of H.

Given a matrix H, equation (1) and (2) set up our model: the first is the reduced

form and the second the structural form of the VAR. The following relations

hold: C(L) = A(L)SH and et = H ′S−1εt.
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Appendix B

Here we show technical aspects of the identification criterion and we show how

to choose the vector H1. The first step consists in transforming the model

expressed by equation (1) into the orthonormal model expressed by equation

(11) by postmultiplying A(L) by the Choleski factor S of the variance-covariance

matrix
∑

ε. The second step consists in choosing the vector H1 in order to

determine C1(L) by postmultiplying A(L)S for H1. H1 is obtained as follows.

Let us consider the impact vector C1 = SH1. Hypotheses (i) and (ii) entail

s11h1 = 0, s21h1 + s22h2 = 0 and s31h1 + s32h2 + s33h3 = 0; since S is lower

triangular, sij 6= 0 for i ≥ j, h1 = h2 = h3 = 0. Hypotheses (iii) and (iv) involve

s44h4 < 0 and s54h4 + s55h5 > 0. From hypothesis (v) s44h4 and s54h4 + s55h5

must be jointly large. Recall that16 θ1 = (s44h4)
2 and θ2 = (s54h4 + s55h5)

2,

Θ1 = max(θ1) = (s44h
∗
4)

2 and Θ2 = max(θ2) = (s54h
∗
4 + s55h

∗
5)

2. First we

calculate the ratio, r = Θ1/Θ2, then we maximize θ1 under the constraints

θ1/θ2 = r and the sign constraints s44h4 < 0, s54h4 + s55h5 > 0. Hence we have
s44h4

s54h4+s55h5
= −√r Easy arithmetic passages lead to

h5 = h4

(

−s44 +
√

rs54√
rs55

)

. (12)

Let
(

−s44 +
√

rs54√
rs55

)

= Γ. (13)

From the orthonormality condition,
∑n

i=1 h2
i = 1, the following restriction must

hold

h6 = ±
√

1− h2
4 − h2

5 = ±
√

1− h2
4 − h2

4Γ
2 (14)

From equation (12) and (14) we have

(1 + Γ2)h2

4 ≤ 1 (15)

16Here we assume, for convenience of exposition, that the elements sij of S have been

divided by the standard deviation, σi, of first differences of the ith element xi.
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Since s44 is constant, the impact effect on non-borrowed reserves will be maxi-

mum when h4 is maximum, hence when h2
4 is maximum, and we will have

h4 = ± 1√
1 + Γ2

(16)

In particular from (iii), since s44 > 0, see Table 2, h4 must be negative. From

equations (14) and (16) we have h6 = 0; this last passage completes the identi-

fication. H1 will result

H1 =



























0

0

0

− 1√
1+Γ2

− Γ√
1+Γ2

0



























, (17)

Θ̄1 =
(

s44√
1+Γ2

)2

, Θ̄2 =
(

s54+s55Γ√
1+Γ2

)2

, ĉ4 = − s44√
1+Γ2

and ĉ5 = − s54+s55Γ√
1+Γ2

, since

s54 < 0, s55 > 0 and Γ < 0, see Table 2. The vector C1 will be

C1 =



























0

0

0

− s44√
1+Γ2

− s54+s55Γ√
1+Γ2

s65Γ−s64√
1+Γ2



























. (18)
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Tables

Table 1: Impact values for non-borrowed reserves and federal funds rate

Θ1 Θ2 Θ̄1 Θ̄2 Θ1/3 Θ2/3 r −√r

0.69 0.43 0.61 0.39 0.23 0.14 1.5 -1.2

Table 2: The matrix S

GDP 0.0071 0 0 0 0 0

GDPD 0.0001 0.0018 0 0 0 0

CP 0.0017 -0.0000 0.0172 0 0 0

NBR -0.0010 -0.0006 -0.0027 0.0134 0 0

FFR 0.1042 0.0029 0.0662 -0.1321 0.4495 0

TR 0.0001 -0.0004 -0.0002 0.0051 0.0033 0.0069

Table 3: Vector H1

H1

0

0

0

0.7825

-0.6227

0
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Figures

Figure 1

Results of identification. We plot, from the left to the right, the impulse

response functions for GDP, DGDPD (first row), CP, NBR (second row), FFR

and TR (third row) with 90
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Figure 2

Impulse response functions for different values of r. We consider eleven equally

spanned values of r of distance 0.2 in the interval [0.5, 2.5]. Results show that

identification is invariant to r, since all the impulses response functions present

the same shape and very similar values for any k, with k=1,,100. We plot 74

response functions for each variable. k=1,,100 are months.
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Figure 3

Results of Quasi Identification. We plot the impulse response, functions, from

left to right, for the variables: GDP, DGDPD (first row), CP, NBR (second

row), FFR and TR (third row). k = 1, , 100 are months.
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