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1 Introduction

Mainstream theory predicts that a monetary policy tightening reduces prices
and produces an immediate appreciation of the domestic currency followed by
a depreciation. Empirical studies based on structural VAR analysis fail to find
evidence supporting such theoretical predictions. Sims (1992) finds that, after
a monetary contraction, prices increase, a result known as the price puzzle.
Eichenbaum and Evans (1995) and Grilli and Roubini (1995) find that exchange
rates react with a long delay, being barely affected on impact, a result known
as the delayed overshooting puzzle.

In recent years there have been many attempts to reconcile empirical results
with the theory. On the one hand, some authors call into question the standard
recursiveness assumption and propose alternative identification schemes. A no-
table example is Kim and Roubini (2000), where a substantial mitigation of the
delayed overshooting puzzle is obtained. However their identifying restrictions
have been questioned by other authors (see e.g. Faust and Rogers, 2003); more-
over, it has been shown that, under very mild sign restrictions, the overshooting
puzzle is restored (Scholl and Uhlig, 2005).

On the other hand, influential papers argue convincingly that the puzzles
could be due to a deficient information set: if the VAR includes less informa-
tion than that used by Central Banks and private economic agents, empirical
results can be completely wrong. As a matter of fact, the price puzzle can be
solved by adding to the VAR data set either commodity prices or suitable linear
combinations of variables (Sims, 1992, Bernanke, Boivin and Eliasz, 2005, BBE
from now on).

Nevertheless, even including commodity prices, the estimated reaction of
prices to monetary policy is negligible in size and disproportionately small as
compared to the large response of output (see e.g. Christiano, Eichenbaum,
Evans, 1999, CEE from now on). This finding, somewhat understated in the
literature, can hardly be reconciled with mainstream theories. Moreover, the
delayed overshooting puzzle seems to be robust to different VAR specifications
within the recursive approach.

Adding further variables to the data set could in principle enlarge the esti-
mated response of prices and/or solve the delayed overshooting puzzle. Unfortu-
nately, there are no obvious criteria to determine a priori how many and which
variables should be added. Furthermore, adding too many variables would lead
to inaccurate estimates. In short, insufficient information is a problem which
cannot be easily solved within the VAR framework (see however Banbura et al.,
2007, where it is shown that large Bayesian VARs can be successfully used for
both forecasting and structural analysis, provided that suitable priors are set).

In the last decade, a relevant stream of research has focused on models specif-
ically designed to handle a large amount of information, i.e. the generalized (or
approximate) dynamic factor models (early works are Forni, et al., 2000, 2005,
Forni and Lippi, 2001, Stock and Watson, 2002a, 2002b, Bai and Ng, 2002,
Bai, 2003). Such models, successfully used for forecasting and the construction

2



of coincident indicators1, have recently been proposed for structural macroeco-
nomic analysis, (Forni, Giannone, Lippi and Reichlin, (2009, FGLR from now
on). Macroeconomic variables are represented as the sum of a common compo-
nent and an idiosyncratic component. The idiosyncratic components represent
measurement errors or sectoral variations and are not of direct interest for the
analysis. The common components are driven by a few macroeconomic shocks
which are loaded with different impulse response functions. Identification can
be obtained in just the same way as in VAR models. Factor models like FGLR
are compatible with neoclassic or neo-Keynesian DSGE models augmented with
measurement errors (see Sargent, 1989; Altug, 1989; Ireland, 2004 and the lit-
erature mentioned therein).

In this paper the FGLR model and the related estimation procedure are used
to analyze the effects of exogenous monetary policy shocks. The data set is made
up of 112 US monthly macroeconomic series covering the flexible exchange rate
period March 1973 — November 2007. The monetary policy shock is identified
by imposing a standard recursive scheme on industrial production, the consumer
price index, the federal funds rate, and a real exchange rate. Within a VAR
model, such identification produces both the price and the delayed overshooting
puzzles. The main finding is that in the factor model both puzzles disappear.
Moreover, the response of prices in the medium run is relatively large and similar
in size to that of industrial production. Finally, reasonable responses for many
economic variables are found.

This paper is closely related to BBE. The general line of research is the same.
The difference is that here a pure structural factor model is employed, whereas
BBE use a mixture of a factor model and a VAR model (the FAVAR model).
From this point of view, this paper is closer to Stock and Watson (2005) and
Giannone et al. (2004). Mumtaz and Surico (2008), using a FAVAR model,
find that the delayed overshooting puzzle is somewhat reduced for the UK. Yet,
it is argued in Section 3.6. that the puzzle cannot be solved within a FAVAR
approach with US data.

The paper is structured as follows. Section 2 presents the factor model and
the estimation procedure and discusses the relation with VAR and FAVAR.
Section 3 is devoted to the empirical analysis and shows the results. Section 4
concludes.

2 Theory

This section provides a presentation of the FGLR model and the related estima-
tor. FGLR is a special case of the generalized dynamic factor model proposed
by Forni et al. (2000) and Forni and Lippi (2001). Such models differ from the
traditional dynamic factor model of Sargent and Sims (1977) and Geweke (1977)
in that the number of cross-sectional variables is infinite and the idiosyncratic
components are allowed to be mutually correlated to some extent, along the
lines of Chamberlain (1983), Chamberlain and Rothschild (1983) and Connor

1See Altissimo et al. (2006)
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and Korajczyk (1988). Closely related models have been studied by Stock and
Watson (2002a, 2002b, 2005), Bai and Ng (2002, 2007) and Bai (2003).

2.1 The factor model

Each variable xit is the sum of two mutually orthogonal unobservable compo-
nents, the common component χit and the idiosyncratic component ξit:

xit = χit + ξit. (2.1)

The idiosyncratic components are poorly correlated in the cross-sectional
dimension (see FGLR, Assumption 5 for a precise statement). They arise from
shocks or sources of variation which considerably affect only a single variable
or a small group of variables; in this sense, they are not “macroeconomic”
shocks. For variables related to particular sectors, the idiosyncratic component
may reflect sector specific variations (let us say “microeconomic” fluctuations);
for exchange rates, the idiosyncratic component might reflect non-US shocks,
specific to foreign countries (see below); for strictly macroeconomic variables
like GDP, investment or consumption, the idiosyncratic component must be
interpreted essentially as a measurement error.

The common components are responsible for the main bulk of the co-movements
between the macroeconomic variables, being linear combinations of a relatively
small number r of factors f1t, f2t, · · · , frt, not depending on i:

χit = a1if1t + a2if2t + · · ·+ arifrt = aifff t. (2.2)

The dynamic relations between the macroeconomic variables arise from the fact
that the vector fff t of the common factors follows the VAR relation

fff t = D1fff t−1 + · · ·+Dpfff t−p + εεεt
εεεt = Ruuut,

(2.3)

where R is a r × q matrix and uuut = (u1t u2t · · · uqt)′ is a q-dimensional vector
of orthonormal white noises, with q ≤ r. Such white noises are the “common”
or “primitive” shocks or “dynamic factors” (whereas the entries of fff t are the
“static factors”). Observe that, if q < r, the residuals of the above VAR relation
have a singular variance covariance matrix.2

From equations (2.1) to (2.3) it is seen that the variables themselves can be
written in the dynamic form

xit = bi(L)uuut + ξit, (2.4)

where
bi(L) = ai(I −D1L− · · · −DpL

p)−1R. (2.5)

The dynamic factors uuut and bi(L) are assumed to be structural macroeconomic
shocks and impulse response functions respectively.

2Equations (2.1) to (2.3) need further qualification to ensure that all of the factors are
loaded, so to speak, by enough variables with large enough loadings (see FGLR, Assumption
4); this “pervasiveness” condition is necessary to have uniqueness of the common and the
idiosyncratic components, as well as the number of static factors r and dynamic factors q.
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2.2 Interpretation of the static factors and the parameter
r

Unlike the dynamic factors, the static factors do not have a structural economic
interpretation; rather, they are a statistical tool which is useful to model the
dynamics of the system. They enable us to represent such dynamics in a flexible
but parsimonious way, by means of the vector autoregression in (2.3).

A proper choice of the number of static factors r is crucial to reach a good
compromise between parsimony and flexibility. Loosely speaking, given q, the
larger is the number of static factors r, the more cross-sectional heterogeneity
is allowed for in the impulse response functions.

Consider for instance the simple case with just one shock (q = 1). If there
is one static factor as well, i.e. r = 1, all the impulse response functions bi(L)
become proportional to that of the factor itself. Different variables can load the
shock with different “intensity” and different sign (so that both pro-cyclical and
counter-cyclical behaviors are allowed); but the “shape” of the impulse response
function is the same for all variables. In order to allow for a more heterogeneous
dynamics, e.g. leading, coincident and lagging, a larger r is needed.

With a large r, the dynamics of the system may be quite general. For
instance, sticking to the case q = 1, a factor model with non restricted MA(s)
impulse response functions, i.e.

χit = bi0ut + bi1ut−1 + · · ·+ bisut−s

can be written in the form (2.2)-(2.3) with r = s+ 1 static factors and p = 1 by
setting fff t = (ut ut−1 · · · ut−s)′, ai = (bi0 bi1 · · · bis),

D1 =


0 0 · · · 0 0
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


and R = (1 0 · · · 0)′.3 With q > 1, r = q(s + 1) is required to encompass the
MA(s) case.

2.3 Identification

As observed above, common components are identified; however, representation
(2.4) is not unique, since the impulse response functions are not identified. In
particular, if H is any orthogonal q×q matrix, then Ruuut in (2.3) is equal to Svvvt,
where S = RH ′ and vvvt = Huuut, so that χχχit = ci(L)vvvt, with ci(L) = bi(L)H ′ =
ai(I −D1L− · · · −DpL

p)−1S. Post-multiplication by H ′ is the only admissible
transformation, i.e. the impulse response functions are unique up to orthogonal
rotations, just like in structural VAR models (see FGLR, Proposition 2). As a

3Observe that in this case the static factors are simply the lags of the dynamic factor.
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consequence, structural analysis in factor models can be carried on along lines
very similar to those of standard SVAR analysis.

To be precise, let us assume that economic theory implies a set of re-
strictions on the impulse response functions of some variables, the first m
with no loss of generality. Let us write such functions in matrix notation as
Bm(L) = (b1(L)′b2(L)′ · · · bm(L)′)′. Given any non-structural representation

χχχmt = Cm(L)vvvt, (2.6)

along with the relation
Bm(L) = Cm(L)H, (2.7)

it is assumed that theory-based restrictions are sufficient to obtain H and there-
fore bi(L) for any i (just identification).

Consider first the case m = q: in such a case, any set of restrictions, like
for instance zero impact or long-run restrictions, which identifies a structural
VAR with q variables, identifies the factor model as well. The triangular iden-
tification scheme is a typical example. While the case of just identification is
described above, restrictions producing partial identification or inequality re-
strictions (Uhlig, 2005) can be used as well.

The number of variables contributing to identification, however, can be larger
than the number of structural shocks (and even equal to n). For instance a
demand shock could be identified by minimizing some function of its long-run
effects on several monetary variables (which are not necessarily of direct interest
for the analysis); or the monetary policy shock could be identified by minimizing
the sum of the squared impact effects on many slow-moving variables, like prices
and industrial production indexes.

In this paper the traditional scheme with m = q is adopted to help compar-
ison with VAR results. Nonetheless, the possibility of identifying using restric-
tions involving a large number of variables is an interesting feature of structural
factor models. In particular, inequality restrictions, when imposed on a large
number of series, would likely be much more effective in reducing the set of
admissible impulse response functions.

2.4 Estimation

The estimation is performed as follows. First, starting with an estimate r̂ of
the number of static factors, the static factors themselves are estimated by
means of the first r̂ ordinary principal components of the variables in the data
set, and the factor loadings by means of the associated eigenvectors. Precisely,
let Γ̂x be the sample variance-covariance matrix of the data: the estimated
loading matrix Ân = (â′1â

′
2 · · · â′n)′ is the n × r matrix having on the columns

the normalized eigenvectors corresponding to the first largest r̂ eigenvalues of
Γ̂x, and the estimated factors are fff t = Â′n(x1tx2t · · ·xnt)′.

Second, a VAR(p) is run with fff t to get estimates of D(L) and the residuals
εεεt, say D̂(L) and ε̂εεt.
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Now, let Γ̂ε be the sample variance-covariance matrix of ε̂εεt. As the third
step, having an estimate q̂ of the number of dynamic factors, an estimate of a
non-structural representation of the common components is obtained by using
the spectral decomposition of Γ̂ε. Precisely, let µ̂εj , j = 1, . . . , q̂, be the j-
th eigenvalue of Γ̂ε, in decreasing order, M̂ the q × q diagonal matrix with√
µ̂εj as its (j, j) entry, K̂ the r × q matrix with the corresponding normalized

eigenvectors on the columns. Setting Ŝ = K̂M̂, the estimated matrix of non-
structural impulse response functions is

Ĉn(L) = ÂnD̂(L)−1Ŝ. (2.8)

Finally, Ĥ and b̂i(L) = ĉi(L)Ĥ i = 1, . . . , n are obtained by imposing the
identification restrictions on

B̂m(L) = Ĉm(L)Ĥ. (2.9)

Proposition 3 of FGLR states that b̂i(L), for a fixed i, is a consistent estima-
tor of bi(L). To be more precise, as min(n, T )→∞, T being the number of ob-
servation over time, b̂i(L) tends to bi(L) in probability with rate max

(
1√
n
, 1√

T

)
.

Confidence bands are obtained by a standard non-overlapping block boot-
strap technique. Let X = [xit] be the T×n matrix of data. Such matrix is parti-
tioned into S sub-matrices Xs (blocks), s = 1, . . . , S, of dimension τ×n, τ being
the integer part of T/S.4 An integer hs between 1 and S is drawn randomly
with reintroduction S times to obtain the sequence h1, . . . , hS . A new artificial
sample of dimension τS × n is then generated as X∗ =

[
X ′h1

X ′h2
· · ·X ′hS

]′ and
the corresponding impulse response functions are estimated. A distribution of
impulse response functions is obtained by repeating drawing and estimation.

2.5 Discussion

Factor models impose a considerable amount of structure on the data, implying
restricted VAR relations among variables (see Stock and Watson, 2005 for a
comprehensive analysis). In this sense, factor models are less general than VAR
models. On the other hand, factor models, being more parsimonious, can model
a larger amount of information. Within VAR models, the number of variables
cannot be enlarged very much, because of both estimation and identification
problems. Estimation would become rather inaccurate given the number of
observations usually available in the time dimension. Identification can be even
more problematic, since the number of restrictions needed to reach a complete
identification grows with n2, n being the number of series in the data set. Since
theory-based restrictions are often questionable, keeping their number small is
essential for credibility and ease of interpretation. By contrast, in the factor
model described here, the number of primitive shocks q and the associated
number of identifying restrictions do not change at all as n increases. The

4Note that τ has to be large enough to retain relevant lagged auto- and cross-covariances.
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ability to model a large number of variables without requiring a huge number of
theory-based identifying restrictions is a remarkable feature of structural factor
models.

The relevance of the information issue is stressed in several influential papers,
including Quah (1990), Sims (1992), Bernanke and Boivin (2003), BBE. If, as is
reasonable, economic agents base their decisions on all of the available macroe-
conomic information, structural shocks should be innovations with respect to a
large information set, which can hardly be included in a VAR model.

A problem which is strictly related to the information set used by economic
agents is the possibility of non-fundamental representations. Assume that the
number of structural shocks is q and measurement errors are not there. Let us
consider a q-dimensional vector of macroeconomic variables of interest. There is
simply no reason why its structural representation should be invertible (indeed,
if economic agents observe at least one additional variable Granger-causing such
a vector, the representation cannot be invertible). Obviously, a non-invertible
structural representation cannot be found by inverting a VAR (Lippi and Reich-
lin, 1994). The fundamentalness problem is considerably mitigated in the con-
text of factor models. For a comprehensive discussion of this point see FGLR.
The intuition is that factor models use a large information set, virtually includ-
ing all available macroeconomic data, so that superior information of economic
agents is much less likely.

The FAVAR model recently proposed by BBE is very close to a structural
factor model. Indeed, the name FAVAR is somewhat misleading, since it is es-
sentially a structural factor model including observable factors. Though, there
is an important difference with the model described above: BBE does not dis-
tinguish between r, the number of static factors, and q, the number of structural
shocks. As a consequence, an important advantage of the factor model is lost:
a relatively large r, needed to retain relevant information, cannot be set with-
out having to impose a large number of economic restrictions in order to reach
identification. Moreover, existing tests applied to US data do not support the
restriction r = q (see e.g. Bai and Ng, 2007, Amengual and Watson, 2007, and
Section 3.2 below).

In addition, a noticeable difference between the present paper and BBE
concerns identification. In BBE identification is reached by imposing restrictions
on the impulse response functions of the static factors, rather than the impulse
response functions of the variables. The static factors are identified only up to
orthogonal rotations and do not have any economic interpretation, so that it
is hard to say which restrictions should be satisfied by the factors according to
economic theory. This is the reason why BBE departs from standard principal
components estimators and considers factors which are linear combinations of
“slow-moving” variables, like prices and production indexes, so that imposing
zero impact effects of the monetary shock is reasonable. But excluding “fast-
moving” variables implies an efficiency loss.
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3 Empirical analysis

This section describes the data used in the empirical analysis, discusses the
choice of the number of dynamic and static factors, presents the results and
checks their robustness to different parameter specifications.

3.1 Data and data treatment

The data set is made up of 112 US monthly series, covering the period from
March 1973 to November 2007. Most series are those of the Stock-Watson data
set used in BBE. A few real exchange rates and short-term interest rate spreads
between US and some foreign countries are added, and some discontinued series
are eliminated. The starting date has been chosen in such a way as to discard
the fixed exchange rate regime.

As in BBE, transformations are kept to a minimum. For instance, interest
rates and real exchange rates are taken in levels (rather than first differences)
and prices are taken in differences of logs (rather than second differences). For
a few series (particularly interest rates) stationarity is problematic according
to standard tests. Nonetheless, these transformations are the most widely used
and help comparison with both VAR and FAVAR results.

The full list of variables along with the corresponding transformations is
reported in the supplementary materials.

3.2 The number of static and dynamic factors

To determine the number of static factors, the criterion used here is the popular
ICp2 proposed by Bai and Ng (2002), which gives r̂ = 16. Most of the results
below are obtained conditioning on such r̂. Obviously, there is uncertainty
about the number of factors, but how to deal with it is far from trivial within
the present frequentist framework. The strategy adopted here is to repeat the
analysis with different specifications of r. Section 3.6 below shows results for
r̂ = 10 and r̂ = 4.5

To determine the number of dynamic factors three criteria are used: Bai
and Ng (2007), Amengual and Watson (2007) and Hallin and Liska (2007).
The Bai and Ng (2007) criterion is computed using the residuals of a VAR(2)
with the first 16 estimated factors. Using the covariance matrix of such residuals
(parameters δ = .1, m = 1) it is found q̂3 = 7 and q̂4 = 10. Using the correlation
matrix (parameters δ = .1, m = 1.25, 2.25) it is found q̂3 = 7, q̂4 = 7. Using

the Amengual and Watson criterion B̂N
ICP

(ŷA), with r̂ = 16 and p = 2,

5In the present paper confidence bands are computed as usual by assuming a fixed r for
all repetitions of the bootstrap procedure described in Section 2.4. An alternative would be
to choose a criterion (such as ICp2) and let r vary across bootstrap repetitions according to
such criterion. The latter strategy would only partially take into account model specification
uncertainty since, of course, it would not document uncertainty related to the choice of the
criterion. A second alternative would be to use an estimation method not requiring the
specification r. Preliminary work along this line of research can be found in Forni and Lippi
(2008).
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gives 7 primitive factors with ICp1 and 4 primitive factors with ICp2. Finally,
the “non-log” criterion proposed by Hallin and Liska produces 4 to 6 factors
depending on the penalty function and the initial random permutation. We
conclude that the number of dynamic factors is in the interval 4-7. In the
benchmark specification 4 dynamic factors are used; Section 3.6 shows results
for a seven-shock specification.

The number of lags p of ˆD(L) appearing in equation (2.8) is set equal to 2,
i.e. the average of AIC (3 lags) and BIC (1 lags).

To conclude this subsection, let us have a look at the common-idiosyncratic
variance decomposition of a few key variables (the ones appearing in the bench-
mark VAR below) with r̂ = 16. The common variance of industrial production,
the consumer price index and the federal funds rate are respectively 94, 92 and
96% of total variance. These numbers seem compatible with the measurement
error interpretation of the idiosyncratic components. Note in particular the very
low noise-to-signal variance ratio of the federal funds rate, which should be es-
sentially free of measurement errors. On the other hand, the common variance
of the Swiss/US real exchange rate is relatively low (71%). The Japan/US,
UK/US and Canada/US exchange rates have similar common-to-total variance
ratios (82, 72 and 79% respectively). A reasonable interpretation is that such
relevant idiosyncratic fluctuations are due to non-US, country specific sources
of variation.

3.3 The benchmark VAR

Before showing the results for the structural factor model, let us present for
comparison the impulse response functions to a contractionary monetary policy
shock of a simple VAR including industrial production, a consumer price index
(CPI), the federal funds rate and the Swiss/US real exchange rate (i.e. the
series nos. 5, 96, 75 and 106 in the Appendix). The VAR is estimated using
9 lags. Similar results are obtained by replacing the Swiss/US rate with either
the Japan/US rate, or the UK/US rate, or the Canada/US rate, and using
different lag specifications. Similar results are also obtained by adding monetary
aggregates such as M2, total reserves or borrowed reserves, and/or the spread
between US and Swiss short-term interest rates (like in Eichenbaum and Evans,
1995). We prefer the four-variable specification to help comparison with the
four-shock factor model.

Following Eichenbaum and Evans (1995), identification is achieved by as-
suming that both industrial production and prices do not respond contempora-
neously to the monetary policy shock, neither directly, nor indirectly, through
its impact on the exchange rate, and the exchange rate does not affect contem-
poraneously the federal funds rate. In other words, a standard recursive scheme
(see CEE) is employed, where the monetary policy shock is the third one with
the above order of variables.6

6Zero impact effects on prices and output are also assumed in the benchmark VAR of BBE,
where exchange rates are not included.
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The impulse response functions are reported in Figure 1, left column, along
with 80% confidence band computed with standard bootstrap. Two well known
results emerge. First, prices significantly increase. Second, the response of the
real exchange rate is hump-shaped with a maximal value reached after five years.
The first finding, known as the price puzzle, is in contrast with predictions from
standard theoretical models of monetary policy since a contractionary action
should reduce prices. The second finding, known as the delayed overshooting
puzzle, is in contrast with simple overshooting models like Dornbusch (1976) in
which the largest response of the real exchange rate should occur contempora-
neously. Observe also that industrial production is negatively affected even in
the long run.

To our knowledge, the delayed overshooting puzzle has never been solved
within a recursive identification approach. On the other hand the price puzzle
can be solved, as far as the sign of the long-run response is concerned, either by
including in the VAR a commodity price index (not shown here) or within the
FAVAR approach. However, in both cases the reaction of prices is nearly zero
or still positive during the first year.7 Moreover, in both cases the percentage
of the forecast error variance of prices explained by the policy shock is very
low (less than 5%) even in the long run (see CEE and BBE). This finding,
somewhat understated in the literature, is particularly puzzling in view of the
large reactions commonly estimated for real variables when the federal funds rate
is taken as the policy instrument.8 In the reference VAR above the monetary
policy shock accounts for about 30% of the forecast error variance of industrial
production at a four year horizon (Table 1); similar results are obtained with
more sophisticated VAR specifications, including commodity prices (see CEE).

3.4 Main results

Let us now come to the factor model. For the sake of comparison, identification
is obtained just in the same way as the VAR model above. More precisely, with
reference to equation (2.9), letting B̂m(L) be the matrix of impulse response
functions of industrial production, CPI, federal funds rate and Swiss/US real
exchange rate (in this order), B̂m(0) is restricted to be lower triangular. Let-
ting Gm be the (lower triangular) Cholesky factor of Ĉm(0)Ĉm(0)′, the above
restriction is obtained by setting Ĥ = Ĉm(0)−1Gm. The monetary policy shock
is the third one9.

Figure 1, right column, displays the responses of the four series included in
the VAR to a monetary policy shock raising the federal funds rate by 50 basis
points. The dotted lines are the 80% confidence bands obtained with the block
bootstrap procedure described in Section 2.4 (the block length is 52 months).

7In the FAVAR model prices still react positively to a contractionary monetary policy shock
for about one year both in the 3 and the 5 factor specifications.

8This is not the case for the FAVAR, where the reaction of industrial production is also
relatively small.

9As for the VAR, global identification is just a standard device to obtain the monetary
policy shock (see CEE).
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The most striking result is that both puzzles disappear.
The Swiss/US real exchange rate reacts immediately, with an appreciation

of about 7%, and from the first month the effect starts to converge quickly to
zero, vanishing after about one year. Confidence bands are rather large, so that
the effect is not significant. Nevertheless, the point estimate is perfectly con-
sistent with Dornbusch (1976)’s overshooting theory, where the maximal effect
is predicted to occur contemporaneously. Also, to the best of our knowledge,
such a clear-cut result has never been obtained before. Observe also that the
magnitude of the impact effect is about six time larger than the maximal VAR
response (around 1.2%).

As for prices, the CPI falls from the second month, reducing by about 0.2%
after six months and 0.4% after one year. These numbers are compatible with
a monetary policy aimed at controlling short run price fluctuations and differ
from those obtained by both CEE with commodity prices (see CEE, Figures 2)
and BBE with the FAVAR. There, after one year the effects are still slightly
positive.

Observe also that industrial production significantly falls for about 20 months,
the response displaying the typical inverted hump-shape. The maximal reduc-
tion, of about 1%, is reached after about one year. Moreover, the federal funds
rate displays negative, albeit not significant, responses after 4-5 months. This
is consistent with the existence of a counter cyclical feedback rule of the central
bank to prices and output. Overall, impulse response functions are consistent,
from both a qualitative and quantitative point of view, with predictions about
the transmission mechanisms of monetary policy arising in standard theoretical
models. Specifically, after a contractionary policy shock, prices and industrial
production sensibly fall, the former permanently while the latter only temporar-
ily, and the real exchange rate substantially appreciates in the month the shock
occurs.

Let us come now to the variance decomposition (Table 2). At a six months
horizon the shock has small effects on both industrial production and prices.
Only 6.5% and 0.5% of the variance of the two series respectively is accounted
for by the shock. The effects however increase at longer horizons; after four
years the shock explains 13% and 16% of the volatility of industrial production
and prices respectively. Overall, results confirm a sizable role of the monetary
policy in affecting the dynamics of both real and nominal variables.

Figure 2 depicts the impulse response functions of the three real exchange
rates Canada/US, UK/US and Japan/US (left column) and the relative condi-
tional UIP (right column), computed as in Scholl and Uhlig (2005). Impulse
response functions are similar to that of the Swiss/US exchange rate: the maxi-
mal effect is observed on impact or, in the case of the Japan/US exchange rate,
in the second month, and quickly reduces to zero afterward. Such effects are
relatively large ranging from 3 to 4%. The point estimates of the conditional
UIP (right column, annualized percentage returns) are not negligible although
the confidence bands are very large making the responses not significant.

The last four rows of Table 2 display the variance decomposition of real
exchange rates. A few results are worth noting. First, on impact the percentage
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of variance explained by the shock is quite heterogeneous, ranging from 19%
for the Japan/US up to 75% for the Canada/US exchange rates. Second, with
the exception of the Japan/US rate, at longer horizons the importance of the
shock reduces. For instance at a four years horizon the percentage of variance
explained by the shock ranges from 12% to 38%.10 This finding is in sharp
contrast with that obtained with SVARs where, given the very tiny effects on
exchange rates on impact, the portion of variance explained by the shock in the
short run is much smaller.

3.5 Additional results

Figure 3 depicts the impulse response functions of a number of relevant macroe-
conomic variables.

The response of both nominal earnings and the producer price index (PPI)
is very similar to that of consumer prices. The two variables react very little on
impact, suggesting a certain degree of price and wage stickiness, and reduce at
longer horizons (although the effects are never significant). Notice that, given
the present identification scheme, also the (log of) real wage responds with a
delay to the shock. M2 reduces, although not significantly, from the second
month after a nearly zero impact effect. Consistently with findings in Bernanke
and Blinder (1992), loans reduce on impact by a relatively modest amount.
After the first year the effect becomes significant and persistent, suggesting
long lasting effects of monetary policy on credit variables.

The figure also depicts a consistent picture of the reaction of firms and
consumers to monetary policy shocks. Real personal consumption immediately
falls, reaching the minimum after about one quarter, and reverts back to the
pre-shock level after two years. The fall in consumption triggers a delayed and
significant reduction in consumer credit. The response of orders is very similar
in terms of shape to that of consumer credit, the effects being particularly long
lasting and persistent. Given that production is unaffected and sales decline
immediately, inventories initially increase, while after the second month they
start reducing significantly. This behavior is consistent with the goal of keeping
the amount of inventories to a target level. Housing starts is the real variable
that most rapidly reacts to the monetary policy shock with a large negative
impact effect (around -5%).

Finally let us look at the impulse response of selected labor market variables.
Hours, employment and vacancies immediately and significantly fall with the
largest effect observed after one year. Such an effect is particularly pronounced
for vacancies (-4%). On the other hand, consistently with CEE, unemployment,
both number of persons and the rate, reacts to the shock with one month of
delay. After one year the unemployment rate increases by about 0.2%.

10Such numbers are in line with Scholl and Uhlig (2005) and Kim and Roubini (2000), and
smaller than those of Clarida and Gali (1994) and Rogers (1999).
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3.6 Robustness

This subsection studies the robustness of the results to changes in the number
of both dynamic and static factors.

First let us compare the results of our benchmark specification (r = 16,
q = 4) with two alternative specifications: r = 10, q = 4 and r = 16, q = 7.11

Figure 4 displays the impulse response functions of the main macro aggregates.
In the seven dynamic factor case the magnitude of the responses are generally
smaller. Still, the shapes are qualitatively the same for the three specifications.
In particular, the responses of real exchange rates are noticeably similar: a
sizable immediate appreciation is followed by nearly zero responses.

In the second exercise let us stick to the 4 dynamic shock specification and
study what happens to exchange rates and prices when varying the number of
static factors from 4 to 16. The response of prices do not change that much. On
the other hand, the response of exchange rates changes substantially. Figure 5
displays the responses of the four real exchange rates with 4, 10 and 16 static
factors. Results for the 10 and the 16 factor cases are similar. On the contrary,
in the 4 factor case the response functions become very similar to those of the
SVAR model. The delayed overshooting is apparent, the maximal level being
reached several months after the shock. The 4 static factor case is particularly
interesting in that, when the number of static and dynamic factors is the same,
the factor model is very much like to a FAVAR. This suggests that a FAVAR
including 4 factors would not be able to solve the delayed overshooting puzzle.
This result empirically highlights the importance of allowing for a number of
static factors substantially larger than that of dynamic factors.12

Overall results seem to be robust to changes in model specification.

4 Conclusions

This paper studies the effects of monetary policy shocks within a structural fac-
tor model approach. The factor model enables the researcher to handle a large
amount of information and therefore to avoid an important limitation of struc-
tural VAR models. The monetary policy shock is identified by imposing on the
factor model a standard recursive scheme that, when imposed on a VAR model,
produces both the price puzzle and the delayed overshooting puzzle. The results
obtained with the factor model are in sharp contrast with those obtained with
the VAR model. First, bilateral real exchange rates react contemporaneously
with sizable appreciations to a contractionary monetary policy shock. After
the initial increase, the effects of the shock are negligible. Second, prices fall

11For the seven dynamic factor specification Identification is implemented in just the same
way, the only difference being that now the other three real exchange rates are added after
the federal funds rate in the recursive identification scheme.

12As suggested by an anonymous referee, economic arguments concerning the plausibility
of impulse response functions might also be used to determine the number of static factors r
in situations where existing criteria provide conflicting results. Here, for instance, at least 10
factors should be retained.
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at all horizons after a zero impact effect. Furthermore, the monetary policy
shocks have a sizable role in affecting the dynamics of both real and nominal
variables. These results highlight the importance of using extended information
sets and show that the structural factor model is a promising tool for applied
macroeconomics.
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Tables

Table 1: Variance decomposition SVAR (∗)

k=0 k=6 k=12 k=48
Ind. production 0 (0) 0.0361 (0.0634) 0.1129 (0.1388) 0.3062 (0.1737)

CPI 0 (0) 0.0483 (0.0300) 0.0461 (0.0364) 0.0170 (0.0358)
Federal funds rate 0.9209 (0.0205) 0.5435 (0.0182) 0.3996 (0.0208) 0.1854 (0.0322)
Swi/US real ER 0.0275 0.0313 0.0685 (0.0420) 0.0923 (0.0497) 0.1434 (0.0607)

(∗) Months after the shocks on the columns.

Table 2: Variance decomposition SDFM (∗)

k=0 k=6 k=12 k=48
Ind. production 0 (0) 0.0657 (0.0465) 0.1299 (0.0674) 0.1346 (0.0710)

CPI 0 (0) 0.0057 (0.0243) 0.0333 (0.0608) 0.1634 (0.1679)
Federal funds rate 0.5345 (0.2335) 0.1463 (0.2036) 0.1986 (0.1676) 0.2989 (0.1575)
Swi/US real ER 0.5227 (0.2704) 0.4330 (0.2123) 0.4041 (0.2028) 0.3836 (0.1666)
Can/US real ER 0.7541 (0.2605) 0.3474 (0.1825) 0.2523 (0.1794) 0.1643 (0.1580)
Jap/US real ER 0.1885 (0.2897) 0.2371 (0.2101) 0.2092 (0.2013) 0.1746 (0.1765)
UK/US real ER 0.2313 (0.2165) 0.1463 (0.1841) 0.1227 (0.1795) 0.1200 (0.1543)

(∗) Months after the shocks on the columns.
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Figures

Figure 1: Impulse response functions to a contractionary monetary policy shock
increasing the federal funds rate by 50 basis points. VAR: left column. Dynamic
Factor Model (16 static factors, 4 dynamic factors): right column. Solid line:
point estimates. Dotted line: 80% confidence bands. Vertical axis: percentages.
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Figure 2: Dynamic Factor Model (16 static factors, 4 dynamic factors) impulse
response functions to a contractionary monetary policy shock increasing the
federal funds rate by 50 basis points. Solid line: point estimates. Vertical axis:
percentages (annualized for UIP). Dotted line: 80% confidence bands.
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Figure 3: Dynamic Factor Model (16 static factors, 4 dynamic factors) impulse
response functions to a contractionary monetary policy shock increasing the
federal funds rate by 50 basis points. Solid line: point estimates. Dotted line:
80% confidence bands. Vertical axis: percentages except for Loans (billion dol-
lars), Inventories (index), Hours Manufacturing (weekly hours), Unemployment
(thousand people).
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Figure 4: Dynamic Factor Model impulse response functions to a contractionary
monetary policy shock increasing the federal funds rate by 50 basis points, for
different specifications of the number of static (r) and dynamic (q) factors. Solid
line: r = 16, q = 4. Dotted line: r = 16, q = 7. Dashed line: r = 10, q = 4.
Vertical axis: percentages.
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Figure 5: Dynamic Factor Model impulse response functions to a contractionary
monetary policy shock increasing the federal funds rate by 50 basis points, for
different specifications of the number of static factors (r = 4, 10, 16). Vertical
axis: percentages.
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