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1 Introduction

Since Sims (1980)’s seminal paper, Structural Vector Autoregression (SVAR) models have become

extremely popular for structural and policy analysis. The idea behind these models is that structural

economic shocks can be found as linear combinations of the residuals of the linear projection of a vector

of variables onto their past values, i.e. are innovations with respect to the econometrician’s information

set. Therefore, an obvious requirement for the analysis to be meaningful is that the variables used in

the VAR convey all of the relevant information. Such informational sufficiency is implicitly assumed

in any SVAR application.

But is this assumption always sensible? Unfortunately the answer is no. The basic problem is

that, while agents typically have access to rich information, VAR techniques allow a limited number

of variables to be handled. If the econometrician’s information set does not span that of the agents,

the structural shocks are non-fundamental and cannot be obtained from a VAR (Hansen and Sargent,

1991, Lippi and Reichlin, 1993, 1994, Chari, Kehoe and Mcgrattan, 2008).

Fernandez-Villaverde, Rubio-Ramirez, Sargent and Watson (2007), and Ravenna (2007), show the-

oretical cases in which VAR techniques fail. Fiscal foresight and news shocks are prominent examples

(Yang, 2008, Forni, Gambetti and Sala, 2011, Leeper, Walker and Yang, 2013).1 No identification

scheme (zero restrictions, sign restrictions, etc.) can provide the correct structural shocks and impulse

response functions if the VAR is informationally deficient. We are referring to standard identification

schemes, involving contemporaneous combinations of the VAR residuals. Dynamic rotations as in

Lippi and Reichlin (1994), Mertens and Ravn (2010), Forni, Gambetti, Lippi and Sala (2013a, 2013b)

can in principle solve the problem.

To date, there is no generally accepted and systematic procedure to verify whether a specific VAR

suffers from this informational problem. In this paper we provide a testing procedure which is relatively

easy to implement and valid under fairly general conditions. Moreover, we propose a strategy to amend

the VAR when informational sufficiency is rejected.

Our main theoretical result is a necessary and sufficient condition for informational sufficiency,

which is derived under the assumption that the economy admits a state space representation. The

condition is that there are no state variables that Granger cause the variables included in the VAR.

The intuition is that the state variables convey all of the relevant information; therefore, if they do not

help to predict a vector, such a vector must contain the same information. Based on this result, we

propose the following testing procedure. First, estimate the state variables of the economy by using the

1See also Forni and Gambetti (2010).
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principal components of a large dataset, containing all available macroeconomic information. Second,

test whether the estimated principal components Granger cause the variables included in the VAR.

The variables are informationally sufficient if and only if the null hypothesis of no Granger causality

is not rejected.

If a set of variables is not sufficient, we propose to estimate either a factor model, or a Factor

Augmented VAR model (FAVAR), where the original set of variables is enlarged with the principal

components above. Our test can be applied recursively to the FAVAR in order to determine how many

factors to retain. The number of factors is the minimum number such that the extended vector is

informationally sufficient.

In addition, we show that, even if the VAR does not contain enough information to get all of the

structural shocks, it can in principle be informationally sufficient for a single shock (or a subset of

shocks). In order for an estimated shock to be a structural shock, a necessary condition is orthogo-

nality to the past of the state variables. Under suitable assumptions, orthogonality is also a sufficient

condition, provided that the identification scheme is correct. Hence, once a shock has been identified

and estimated, we can test for its “structuralness” by testing for orthogonality with respect to the

lags of the principal components. If orthogonality is rejected, the VAR can be amended by adding

principal components until orthogonality is reached.

We show our procedures at work with both artificial and real data. In the Monte Carlo exercise, we

generate series for capital and the tax rate following the fiscal foresight DSGE model of Leeper, Walker

and Yang, 2013. We consider two special cases of the model. In the former one, the tax shock is not

anticipated at all, so that fiscal foresight is not there and the VAR including capital and the tax rate is

informationally sufficient. In the latter case, there is a two period foresight, i.e. agents can see at time

t the shock which will affect the tax rate at period t+ 2. The tax rate series, being not affected by the

current tax shock, does not deliver information about it, and the VAR is informationally deficient.

To perform our testing procedures, we generate a panel of auxiliary series, which can be interpreted

as survey variables providing some information on the current structural shocks. Then we compute

the principal components and perform the Granger causality as well as the orthogonality test on both

models, with and without fiscal foresight. Results show that both tests correctly fail to reject infor-

mational sufficiency for the model with no fiscal foresight, with no harmful size distortions. Moreover,

both tests correctly identify informational deficiency in the fiscal foresight case in almost all of the

1000 replications. Finally, both tests perform well in identifying the correct number of principal com-

ponents to amend the VAR model. Impulse response function estimates from the misspecified VAR

are dramatically misleading, whereas the amended VAR provides very good results.
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In the empirical application, we focus on technology shocks in the US. We test whether a small-scale

VAR model, such as those typically used to study the effects of technology shocks, is informationally

sufficient. Following Barnichon (2010), we study a bivariate VAR specification with labor productivity

and the unemployment rate. We find that informational sufficiency is strongly rejected by both the

Granger causality and the orthogonality test. Then we apply our recursive procedure to determine

the number of factors needed to amend the VAR. Finally, we identify the technology shock as the only

one driving productivity in the long run, in both the original and the augmented VAR. Differences

in the results of the two models are dramatic. While in the original specification technology shocks

significantly reduce the unemployment rate, in the augmented VAR the result is reversed. Consistently

with the test outcome, adding further factors does not change results any more.

Finally, we apply the “structuralness” test to the technology shock estimated with richer VAR

specifications, including forward-looking variables: a four-variable VAR including a consumer confi-

dence indicator and a five-variable VAR including stock prices. Both specifications pass the test and

lead to impulse response functions similar to the ones found with the FAVAR model.

Our work is related to several papers. Fernandez-Villaverde et al. (2007) derive a necessary and

sufficient condition for fundamentalness. Such condition, however, requires knowledge of the underlying

DSGE model. However, if one is confident in the economic model, there is little reason to estimate a

VAR. The appeal of VARs is precisely that they do not require one to take a stand on the nature of

the theoretical model.

Forni and Reichlin (1996) and Giannone and Reichlin (2006) derive a necessary condition essentially

equivalent to Proposition 2 below; Giannone and Reichlin (2006) proposes a Granger causality test

based on it. The problem of this test is that, being based on a necessary condition, it is not conclusive

if the null is not rejected. Moreover, its general applicability is limited by the fact that there is no

indication about which variables to use. The crucial novelties with respect to the above works are the

sufficiency results in Propositions 3 and 4 and the related identification of a set of regressors for the

Granger causality test and the orthogonality test.

Forni et al. (2009) propose an informal way to check for fundamentalness by looking at the roots

of the determinant of the matrix of impulse-response functions obtained by estimating a factor model.

The shortcoming of this method is that it checks for sufficiency of the common components of the

variables, rather than the variables themselves; hence results are reliable only if the idiosyncratic

component is small.

As for the FAVAR literature originated by Bernanke et al. (2005) our contribution is twofold. On

the one hand, we provide a clear theoretical motivation for the use of FAVAR models. On the other
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hand, we provide a practical method to verify whether a FAVAR is really necessary or not and to

determine the number of factors.

The remainder of the paper is organized as follows. Section 2 presents theoretical results, as

well as our proposed testing procedures. Section 3 presents our Monte Carlo exercise. Section 4 is

devoted to the empirical application. Section 5 concludes. The online appendix reports the proofs,

a few additional Monte Carlo results and detailed information about the data used in the empirical

application.

2 Theory

The building block of our theoretical framework is a representation of the macroeconomy where q mu-

tually orthogonal structural shocks affect macroeconomic variables through square-summable impulse-

response functions.

Assumption 1 (MA representation). The n-dimensional vector xt of stationary macroeconomic time

series satisfies

xt = F (L)ut, (1)

where ut is a q-dimensional white noise vector of structural macroeconomic shocks and F (L) =∑∞
k=0 FkL

k is an n × q matrix of square-summable linear filters in the non-negative powers of the

lag operator L.

Representation (1) can be thought of as representing the equilibrium of a DSGE model. Consider for

instance the state-space representation studied in Fernandez-Villaverde et al. (2007) i.e.

st = Ast−1 +But (2)

xt = Cst−1 +Dut (3)

where st is an m-dimensional vector of stationary “state” variables, q ≤ m ≤ n, A, B, C and D are

conformable matrices of parameters, B has a left inverse B−1 such that B−1B = Iq. It is seen from

(2) and (3) that xt admits representation (1) with

F (L) =
(
DB−1 + (C −DB−1A)L

)
(I − AL)−1B. (4)

2.1 Sufficient information and fundamentalness

A key step of our analysis is the definition of the information sets of the econometrician and the VAR,

and the concept of sufficient information. To begin, we assume that the econometrician observes xt,
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possibly with error. Allowing for a measurement error (which can be zero), besides being an interesting

generalization per se, will enable us to establish a link between the VAR model and the factor model

introduced below, and extend our results to FAVAR models. Precisely:

Assumption 2. (Econometrician’s information set) The econometrician information set X ∗t is given

by the closed linear space spanned by present and past values of the variables in x∗t , i.e. X ∗t =

span(x∗1t−k, . . . , x
∗
nt−k, k = 1, . . . ,∞), where

x∗t = xt + ξt = F (L)ut + ξt, (5)

ξt being a vector white noise of measurement errors, mutually orthogonal and orthogonal to ujt−k,

j = 1, . . . , q, any k.

In practice the number of observable variables n is very large, so that the econometrician needs to

reduce it in order to estimate a VAR. The VAR information set is then spanned by an s-dimensional

sub-vector of x∗t , or, more generally, an s-dimensional linear combination of x∗t , say z∗t = Wx∗t (with

s not necessarily equal to q). Considering also linear combinations will enable us to apply our results

to the principal components of the variables and therefore to the FAVAR model. The vector z∗t is not

necessarily affected by all of the structural shocks hitting the economy, i.e. z∗t may be driven by a

sub-vector uzt of ut. We consider explicitly this case for reasons that will be clear below.

Assumption 3 (VAR information set). The information set of the VAR is Z∗t = span(z∗1t−k,

. . . , z∗st−k, k ≥ 0), where z∗t = Wx∗t , W being s× n; z∗t is driven by a sub-vector uzt of ut, of dimension

qz ≤ q:

z∗t = WF (L)ut−k +Wξt = B(L)uzt−k +Wξt, (6)

where B(L) =
∑∞

k=0BkL
k has rank qz.

Now, consider the theoretical projection equation of z∗t on its past history, i.e.

z∗t = P (z∗t |Z∗t−1) + εt. (7)

The SVAR methodology consists in estimating a VAR to get εt, the VAR innovation and then attempt-

ing to get the structural shocks driving z∗t as linear combinations of the estimated entries of εt. Hence

a key property of z∗t and the related information set is that the entries of εt span the structural shocks,

i.e. the information in the history of z∗t is sufficient to estimate the shocks. We call such property

“sufficient information”.

Definition 1 (Sufficient information). Let vt be any sub-vector of uzt . We say that z∗t and the related

VAR is “informationally sufficient for vt” if and only if there exist a matrix M such that vt = Mεt.

We say that z∗t is “globally sufficient” if it is informationally sufficient for uzt .
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Observe that, for global sufficiency to hold, we do not require that z∗t is sufficient for all of the structural

shocks, but only the shocks driving it. This gives a fair chance to a small VAR with s < q to be globally

sufficient. Observe also that sufficiency, defined in this way, is related only to the variables in z∗t and

has nothing to do with the choice of a proper identification scheme. The correct identification of M is

a further problem, which in general does make sense only if sufficiency holds true.

Informational sufficiency is closely related to “fundamentalness”. Let us clarify the relation between

the two concepts.

Definition 2 (Fundamentalness). Let wt = Hxt be driven by uwt , a qw-dimensional sub-vector of ut,

qw ≤ q. We say that uwt is fundamental for wt, and the MA representation wt = HF (L)ut = A(L)uwt

is fundamental, if and only if uwjt ∈ Wt = span(w1t−k, . . . , wmt−k,

k ≥ 0), for j = 1, . . . , qw.

The following proposition formally establishes the relation between fundamentalness and sufficiency.

Proposition 1. Under Assumptions 1, 2 and 3, the information in z∗t is sufficient for uzt if and only

if there is a matrix R such that (a) z̃t = Rz∗t = Rzt and (b) uzt is fundamental for z̃t.

For the proof see Appendix A. Proposition 1 says that, for z∗t to be sufficient, there must be a linear

transformation of z∗t which is free of measurement errors and have a fundamental representation in

the structural shocks. Therefore, informational sufficiency is almost equivalent to fundamentalness

plus absence of errors. If errors are small, informational sufficiency and fundamentalness essentially

coincide. If, on the contrary, a VAR includes variables with large errors, information may be insufficient

even if fundamentalness of zt is met.

To conclude this subsection, let us observe that, in the particular case of F (L) being a matrix of

rational functions, fundamentalness of uwt for wt, along with fundamentalness of the associated MA

representation wt = A(L)uwt is equivalent to the following condition (see e.g. Rozanov, 1967, Ch. 2).

Condition R. The rank of A(z) is qw for all complex numbers z such that |z| < 1.

When A(L) is a square matrix the above condition reduces to the well known condition that the

determinant of A(z) has no roots smaller than one in modulus.2 For instance, considering equation

(4) and the case wt = xt, condition R is satisfied if D is invertible and the eigenvalues of A−BD−1C
are strictly less than one in modulus, which is the Poor Man’s Condition 1 of Fernandez-Villaverde et

al., 2007.

2Fundamentalness is slightly different from invertibility, since invertibility rules out also roots with modulus equal to

1. Hence invertibility implies fundamentalness, whereas the converse is not true.
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2.2 Necessary and sufficient conditions for sufficient information

In this subsection we derive testable implications of sufficient information. A first relevant result is

the following.

Proposition 2. Under Assumptions 1, 2 and 3, if x∗t Granger causes z∗t , then z∗t is not globally

sufficient.

For the proof see Appendix A. The intuition is that, if a set of variables is globally sufficient, then it

contains all of the information which is useful to predict it, so that no other variable or set of variables

can Granger cause it. Proposition 2 can be useful in practice. In particular, if the econometrician

believes that a given variable in x∗t , say yt, conveys relevant information, he can check whether yt

Granger causes z∗t as a vector. If yt Granger causes z∗t , the VAR with z∗t is misspecified.3 However,

Proposition 2 has an important limitation in that, being only a necessary condition, it can be used to

reject sufficiency but not to validate it. Clearly, testing all of the variables in x∗t would be close to a

validation, but unfortunately this is not feasible, since in practice x∗t is of high dimension. On the one

hand, we cannot use all of the variables simultaneously; on the other hand, testing each one of them

separately would yield, with very high probability, to reject sufficiency even if z∗t is informationally

sufficient, owing to Type I error.

We can provide a sufficient condition by assuming the state space representation above, i.e. by

replacing Assumption 1 with the more restrictive Assumption 1′:

Assumption 1′ (ABCD representation). The vector xt satisfies equations (2) and (3), where ut is a

q-dimensional white noise vector.

It is easily seen from equations (2), (3) and (5) that x∗t follows the factor model

x∗t = Gft + ξt, (8)

where G = (DB−1 C −DB−1A) and ft =
(
s′t s′t−1

)′
. Notice that the factors contain the same

information as the states. Clearly, when the states (or the factors) are observable without error and

are included in z∗t , there are no informational problems (see equation 2). In this sense, informational

deficiency arises from the fact that some states are unobservable or missing.

In addition to the above assumption, we need a condition ensuring that z∗t is predictable to some

extent. Precisely,

Assumption 4. There exists a summable sequence {ck}∞k=1 such that
∑∞

k=1 ckBk has rank qz.

3Observe that, according to Proposition 2, identification is not required to perform the test, consistently with the

fact that sufficient information, as observed above, is independent of the identification scheme.
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Assumption 4 ensures that the number of variables s is at least as large as the number of shocks qz

driving them, which of course is necessary for sufficiency. In addition, it rules out a few “perverse”

cases. For instance, that the entries of z∗t are contemporaneous linear combinations of the entries of uzt

plus a measurement error: in this case z∗t is not Granger caused by the factors since it is unpredictable,

but is not informationally sufficient because of the measurement error.

The following proposition establishes a necessary and sufficient condition for informational suffi-

ciency.

Proposition 3. Let K be any non-singular r × r matrix, r being the dimension of ft, and gt = Kft.

Under Assumptions 1′, 2, 3 and 4, z∗t is globally sufficient if and only if gt = Kft does not Granger

cause z∗t .

For the proof see Appendix A. The intuition for sufficiency is that, under Assumption 1′, the factors

are informationally sufficient; therefore they Granger cause every predictable vector, unless such a

vector contains the same information.

Proposition 3 is useful in that, besides providing a sufficient condition, it allows us to summarize

the signals in the large dimensional vector xt into a relatively small number of factors (the entries

of ft, or, equivalently, the entries of gt = Kft). Such factors are unobservable, but, under suitable

assumptions, can be consistently estimated by the principal components ĝt, as both the number of

variables and the number of time observations go to infinity (Stock and Watson, 2002; Forni et al.

2009).

2.3 The proposed testing procedure

Proposition 3 provides the theoretical basis for the following testing procedure.

1. Take a large data set x∗t , capturing all of the relevant macroeconomic information.

2. Set a maximum number of factors P and compute the first P principal components of x∗t .

3. Perform a Granger causality test to see whether such principal components Granger cause z∗t .

If the null of no Granger causality is not rejected, z∗t is informationally sufficient. Otherwise,

sufficiency is rejected.

Ideally, the maximum number of principal components should be picked to be at least as large as the

number of factors driving the panel, i.e. P ≥ r, since clearly P < r may lead to acceptance of the null

when it is false, whereas P larger than r should not be harmful. The simulation results in the following
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section are in line with this prescription. Of course, P should not be chosen disproportionately large,

since, as P increases, the estimates of the factors deteriorates and the Granger causality test loses

power. With the data set of Section 4, values of P between 4 and 10 provide fairly consistent results.

In principle, existing criteria to determine the number of factors (Bai and Ng, 2002, Onatski, 2010,

Ahn and Horenstein, 2013) may provide some guidance; however, they prove useless with the data set

of Section 4 (see below). This can be seen as an additional motivation for the method proposed in the

following subsection.4

2.4 Achieving information sufficiency

What should the econometrician do if sufficient information is rejected? Assumption 1′ guarantees that

the factors are informationally sufficient. Hence a possible solution is to forget the VAR and estimate

the factor model (8) along the lines of Forni et al., 2009. But perhaps the most natural solution in the

present context is to extend the vector of variables appearing in the original VAR by adding principal

components; that is, to estimate a FAVAR.

To this end, a crucial problem is to establish the number of factors to retain. Notice that here the

problem is not to determine r, i.e. the number of factors driving the whole macroeconomy, but the

number of factors p needed to achieve informational sufficiency, when taking as a starting point the

original VAR specification. The two problems are conceptually distinct. Clearly r is an upper bound

for p, but sufficiency can in principle be reached with a number of factors p < r. This is for two

reasons: first, potentially useful information is already provided by the variables in z∗t ; second, we do

not want to reach sufficiency with respect to all of the shocks driving the macroeconomy (the entries

of ut), but only the shocks driving the variables of interest z∗t (the entries of uzt ).

Since by Assumption 3 also linear combinations of the x∗’s can be included in the vector z∗t , our

testing procedure can be applied to a FAVAR specification to see whether it is informationally sufficient

or not. Hence the idea is to add the principal components one at a time in decreasing order, apply

recursively the Granger causality test and stop when informational sufficiency is no longer rejected.

Precisely, we propose the following procedure.

1. Take wht = (z∗′t ĝ1t · · · ĝht)′ and test for sufficiency of wht as explained above, for h = 1, . . . , P−1.

4We recommend using a rich dynamic specification or some information criterion to choose the number of lags, since

a too short truncation lag in the VAR specification may produce misleading results both in the Ganger causality test

and the orthogonality test proposed below.
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2. If sufficiency is rejected for all h, retain p = P principal components. Otherwise, choose p as the

smallest h such that wht is informationally sufficient.

It should be noticed that the above procedure might overestimate the number of principal compo-

nents to retain. This is because Granger causality tests are over-sized when the null is sufficiency of

wht with h > 0. The distortion arises from the fact that the principal components are only imperfect

estimates of the factors, and is not there when the null is sufficiency of z∗t . As shown below, overesti-

mation of the number of factors is not particularly harmful; nonetheless, parsimonious specifications

are preferable. Using out-of-sample Granger-causality tests mitigates substantially the problem, since

out-of-sample tests favor parsimony. The online appendix discusses this issue in more detail and shows

results supporting the use of out-sample tests.

2.5 “Structuralness” of an estimated shock

If Granger causality is rejected, the VAR cannot deliver all of the structural shocks driving z∗t . But the

econometrician is often interested in identifying just a single shock and the related impulse response

functions. To this end, in the present subsection we propose a less demanding test.

The following example shows that, even if global sufficiency is rejected, z∗t can still be sufficient for

a single shock, or a subset of shocks. Consider the model

z∗1t = u1t + u2t−1 (9)

z∗2t = u1t − u2t−1. (10)

In this case the determinant of the MA matrix is −2L, which vanishes for L = 0, so that the MA

representation is non-fundamental by Condition R. Hence z∗t is not sufficient for ut by Proposition 1.

Indeed, it is easily seen that u2t cannot be recovered from the present and past values of z∗t , since it is

contained only in the future of z∗t . Nevertheless, z∗t is sufficient for u1t, because u1t = (z∗1t + z∗2t)/2.

We do not have a method to verify a priori whether a given VAR specification is informationally

sufficient for a particular shock. However, after having identified and estimated the relevant shock, we

can verify whether it can be a structural shock by exploiting the following result.

Proposition 4. Let vt = α′εt, α ∈ Rs. (A) Under Assumptions 1 to 3, if vt is a structural shock, then

it is orthogonal to x∗j,t−k, k > 0, for any j, and, under Assumption 1′, 2 and 3, to ft−k, k > 0. (B)

Under Assumption 1′, 2 and 3, if z∗t is free of measurement error, i.e. z∗t = zt, and vt is orthogonal to

ft−k, k > 0, then vt is a linear combination of the structural shocks uzjt, j = 1, . . . , qz.
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For the proof see Appendix A. Statement (A) says that the structural shocks are orthogonal to the

past of all variables. Statement (B) says that, under suitable conditions, if a shock recovered from

z∗t is orthogonal to the factors, then it is a linear combination of the structural shocks. Obviously,

orthogonality does not guarantee that such linear combination is the desired shock; it will, only if

identification is correct.

On the basis of Proposition 4 we suggest testing for orthogonality of the estimated shock with

respect to the lags of the principal components.5 If orthogonality is rejected, we can try to enlarge the

information set by adding either suitable variables, or the principal components themselves. The num-

ber of principal components to retain can be determined by recursive application of the orthogonality

test, as explained in the previous subsection.

3 A Monte Carlo simulation: Fiscal foresight

As discussed in Leeper, Walker and Yang, (2013, LWY henceforth), informational deficiency is likely to

arise when fiscal policy shocks have delayed effects on fiscal policy variables, the phenomenon known

as “fiscal foresight”. The intuition is that current values of fiscal variables might not provide enough

information about the current fiscal shock because the latter has only delayed effects on that variables.

In the paper it is shown that standard VAR analysis aimed at identifying fiscal policy shocks can

provide misleading results. In this section we show our proposed method in action with artificial data

generated by the LWY model.

3.1 The fiscal foresight example

To begin, let us briefly describe the model which will be our Data Generating Process in the controlled

experiment and show its implications on informational sufficiency. The model is a simple RBC model

with income taxes, inelastic labor supply and full capital depreciation. The log-linearized equilibrium

condition for capital is

kt = αkt−1 + uat − (1− θ) τ

1− τ

∞∑
k=0

θkEtτ̂t+k+1, (11)

where kt and τ̂t are capital and the tax rate expressed in log deviations from the steady state, uat

is an i.i.d technology shock observed by agents, τ is the steady state value of the tax rate, and the

5Ramey, 2011, uses an orthogonality test to show that the government spending shock obtained with a SVAR á la

Perotti, 2008, being predicted by the forecast of public expenditure from the survey of professional forecasters, cannot

be the desired structural shock.
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parameters satisfy the inequalities 0 < θ < 1, 0 < α < 1. Fiscal foresight is modeled by assuming that

agents know at time t the tax rate they will face in t+ h, i.e. τ̂t = uτt−h, uτt being an i.i.d. tax shock.

For further details see LWY, Section 2.

We shall focus on the cases h = 0 (no fiscal foresight, model NFF), which is an example of

sufficient information, and h = 2 (a two-period foresight, model FF), which is an example of deficient

information.

In the former case, (11) reduces to kt = αkt−1 + uat, so that capital and the tax rate follow the

VAR(1) model τ̂t
kt

 =

0 0

0 α

τ̂t−1
kt−1

+

uτt
uat

 . (NFF)

The above equation can also be seen as the ABCD representation of the model, the tax rate and the

capital being at the same time the variables of interest and the (observable) states. Here there are

no information problems: assuming as in LWY that the econometrician observes z∗t = (τ̂t kt)
′, the

structural shocks and the related impulse response functions can be obtained simply by estimating the

above VAR.

Now let us come to the fiscal foresight case. With h = 2, equation (11) gives kt = αkt−1 + uat −
κ(θuτt +uτt−1), where κ = τ(1− θ)/(1− τ). The model can be written in the ABCD form (2)-(3) with

states kt, uτt and uτt−1. Since the state uτt is missing, intuition suggests that z∗t is now informationally

deficient. This is in fact the case, as is seen by looking at the structural moving average representation

of z∗t : τ̂t
kt

 =

 L2 0

−κ(L+ θ)
1− αL

1
1− αL

uτt
uat

 . (FF)

The determinant of the above matrix vanishes for L = 0; since such a root is smaller than 1 in

modulus, the MA representation is non-fundamental by Condition R. Hence the variables of interest

are not globally sufficient by Proposition 1. Moreover, neither uτt nor uat can be recovered as linear

combinations of the VAR innovations.

To complete the model, we assume that the econometrician can observe a panel of n time series x∗t ,

including z∗t = (τ̂t kt)
′, as well as an (n− 2)-dimensional vector y∗t , providing noisy information about

the current values of the structural shocks uτt and uat. To make it concrete, we can think of such series

as being survey variables, such as confidence indexes and/or professional forecasts, reflecting agent’s

information about the states of the economy. Precisely, we assume

y∗it = biuτt + ciuat + ξit,
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i = 1, . . . n− 2, where ξit is the measurement error.

3.2 Simulation design

For the simulation exercise, we produced artificial series for capital, the tax rate and n−2 = 30 survey

series y∗it of sample size T = 200 according to both models NFF and FF. As in LWY, we set α = 0.36,

θ = 0.2673, τ = 0.25. The structural shocks uτt, uat were generated as unit variance, Gaussian white

noises, mutually independent at all leads and lags. The measurement errors ξit were produced as

Gaussian white noises mutually independent (and independent of the structural shocks) at all leads

and lags, with random standard deviation σi uniformly distributed between 0 and 1.

We generated bi as a Bernoulli random variable assuming value 1 with probability 0.25 and value

0 with probability 0.75; ci was set equal to 1− bi. In this way, we generated two groups of variables:

the smallest one providing information about uτt, the largest one providing information about uat.

This ensures that the first principal component captures uat, which does not solve the informational

problem, so that two principal components are needed to get informational sufficiency.

Having the data, we computed the first P = 4 principal components of the standardized y∗’s

and performed our Granger causality test on z∗t = (τ̂t kt)
′, including such principal components as

candidates causing variables. To determine the number of principal components to retain, we tested

recursively whether wht = (z∗′t ĝ1t · · · ĝht)′, h = 1, 2, 3, was Granger caused by the remaining principal

components, as described in Section 2. We used the out-of-sample “regression” test proposed by Gelper

and Croux (2007), which is a multivariate generalization of the univariate test proposed by Harvey et

al. (1998).6

Then we estimated, for both NFF and FF data sets, the VAR-FAVAR specifications including

0, 1, . . . , P − 1 principal components. For each specification we identified the tax shock by imposing

that no other shocks affect the tax rate in the long run. The number of lags was determined with

the AIC. Then we tested for orthogonality of the estimated tax shocks with respect to 2 and 4 lags of

the principal components by using a standard F-test, each time including as regressors the principal

components not used in the FAVAR. We performed the test for P = 1, P = 2 and P = 4.

The above procedure was replicated 1000 times, re-drawing each time bi and σi, as well as the

shocks and the measurement errors.

6In the online appendix we report results supporting the use of the above causality test in the present context. We set

an out-of-sample period of 80 observations and used 500 replications to compute the p-values of the test. The number

of lags was determined using the AIC.
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3.3 Simulation results

Table 1 reports the percentage of rejections obtained. For model NFF (upper panel), the two-variable

VAR is informationally sufficient, so that the frequency of rejections provides information about the

size of the tests. The Granger causality test does not present relevant size distortions. By contrast,

the orthogonality test is clearly under-sized. This depends on the fact that the shock tested is only an

imperfect estimate of the true shock.7 However, the fact that the test under-rejects the null when the

null is true is not harmful.

The bottom half of the Table shows results for the fiscal foresight case (model FF). Since in this case

the two-variable VAR is informationally deficient, this part of the table provides information about

the power of the tests. Numbers tell that both tests are extremely powerful for this data generating

process, since fundamentalness is rejected for almost all experiments even at the 1% level, with the

exception of the case P = 1. Not surprisingly, taking a maximum number of principal components

smaller than the true number of factors can lead to acceptance of the null when it is false. On the

contrary, picking a maximum number of factors larger than the true one (P = 4) does not entail

problems.

Table 2 shows the frequency distribution and the average of the number of principal components

selected by the recursive procedure proposed in the previous section, using both the orthogonality test

and the Granger causality test, at the 5% significance level. Both tests perform reasonably well in

selecting the correct number of factors. With P = 4, the orthogonality tests are less powerful than

the Granger-causality test in rejecting the null of just one factor (2.8% and 4.2% of failures with 2

and 4 lags, respectively, as against 0.7% of failures for the Granger causality test). As anticipated in

Section 2.4, the Granger causality test is over-sized (12.8%) when the null is informational sufficiency

of the 2-factor FAVAR. However, the shocks and the impulse response functions estimated with the

3-factor and the 4-factor FAVAR are almost identical to those obtained with the 2-factor FAVAR, so

that overestimating the number of factors does not have serious consequences.

Figure 1 compares the impulse response functions estimated with the informationally deficient and

the amended VAR, with the theoretical impulse response functions. The two upper plots show the

impulse response functions of the tax shock on the tax rate and capital, respectively, estimated with

7The estimated tax shock has, by construction, exactly zero sample covariance with the lags of z∗t included in the

VAR. This reduces the sample covariance with the lags of the true shocks, i.e. the lags of the factors. For instance, the

sample covariance with uτt−1 = τ̂t−1 is exactly zero. Therefore the regression coefficients are smaller than those which

would be obtained with the true tax shock, for which orthogonality holds in population, but does not hold exactly in

the sample.
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the misspecified VAR. The red solid line is the point-wise average across the experiments; the shadowed

regions represent the 68% and the 90% bands; the black line is the theoretical i.r.f. The upper-right

figure closely resembles Figure 1 of LWY. The error made by the econometrician is substantial: fiscal

foresight is simply not there.

Lower panels show the response functions obtained with the FAVAR specification selected, for each

experiment, by the Granger causality test procedure, so that the number of principal components

retained varies across experiments. Clearly, the procedure has been successful, since estimates are now

very close to the target.8

4 An empirical application: Technology shocks

In this section we apply our testing procedure to real data. We revisit the debate about the role of

technology shocks as a source of economic fluctuations and their effects on labor market variables.

Despite the large amount of works that have addressed this question over the last years, no consensus

has been reached. In his seminal paper, Gali (1999) finds a very modest role for technology shocks as a

source of economic fluctuations. On the contrary other authors (see e.g. Christiano, Eichenbaum and

Vigfusson, 2003) provide evidence that technology shocks are capable of generating sizable fluctuations

in macroeconomic aggregates. A common feature of most of the existing evidence is that it is obtained

using small-scale VAR models which are likely to suffer from informational deficiency.

Following Barnichon, 2010, we focus on a two-variable specification including the growth rate of

labor productivity and the unemployment rate. The state variables of the economy are estimated by

using the principal components of a panel of 61 quarterly US macroeconomic series covering the period

1960-I to 2010-IV. Appendix C reports details about the data and their treatment.

4.1 Testing for informational sufficiency

To begin, we test for informational sufficiency of z∗t . As in the simulation exercise of the previous

section, we use the Granger causality “regression” test suggested by Gelper and Croux (2007).9 To

pick P , we first try existing criteria to determine the number of factors. Unfortunately, all Bai and

Ng criteria point to 20 or more factors; too many to get accurate estimates of the parameters and the

factors themselves. On the other hand, Onatski criterion and Ahn and Horenstein criteria indicate

8The response functions and confidence bands obtained with the FAVAR specification selected with the orthogonality

tests, not shown here, are indistinguishable from those presented in the Figure.
9The out-of sample period includes the last 20 years. The number of lags is determined using the AIC.
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just one factor, which is at odds with most of macroeconomic theory and the theoretical premises of

structural VAR literature. Hence we simply try different values of P , ranging from 4 to 10.

Table 3, left panel, shows the results. The first row of the table shows the p-value of the test of

the null hypothesis that the first P principal component do not Granger cause z∗t . The hypothesis

is strongly rejected for all choices of P , indicating that the two variables do not contain sufficient

information to correctly recover the structural shocks. Row h+ 1 shows the p-values of the test of the

null hypothesis that the VAR augmented by the first h principal component, i.e. wht = (z∗′t · · · ĝht)
′,

is not Granger caused by the remaining principal components, from the h+ 1-th to the P -th. Taking

the 5% significance level, our recursive procedure picks four factors with P = 4 and P = 8, and three

factors for P = 6 and P = 10. We conclude that the four factor FAVAR is globally sufficient.

Even if the VAR information is not sufficient to get all of the structural shocks, it can in principle be

sufficient to recover the technology shock. To check whether this is the case, we identify the technology

shock by imposing the standard restriction that the other shocks do not affect productivity in the long

run. Then we test whether the estimated shock is orthogonal to the past of the estimated principal

components (we perform an F-test like in Section 3). The right panel in Table 3 displays the p-values

of the test. Again, sufficiency of z∗t is strongly rejected for all choices of P , suggesting that the shock

obtained from the original VAR is not structural. At the 5% significance level, the recursive procedure

to determine the number of factors points to 2 factors for P = 4 and P = 6 and 3 factors for P = 8

and P = 10. We conclude that three factors are sufficient to estimate the technology shock and the

related impulse response functions.

4.2 Information and impulse response functions

Next we study the consequences of insufficient information in terms of impulse response functions. In

particular, we investigate to what extent the effects of technology shocks change by augmenting the

original VAR with the principal components. According to the results of the test, impulse response

functions are expected to change when adding principal components.

Figure 2 shows the impulse response functions. The left panels plot the impulse response functions

for the two variables, labor productivity and the unemployment rate, for all the eleven specifications

z∗t , w
1
t , . . . , w

10
t . The solid line with dots represents the impulse response functions estimated with z∗t .

The line with crosses represents the impulse response functions estimated with w4
t . The remaining

lines are the estimated responses of the other models. The effects are expressed in percentage terms.

The right panels display, for the two variables, the impact effect (dots), the effect at 1 year (crosses),

2 years (circles) and in the long run (diamonds). The horizontal axis displays the number of principal
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components included in the VAR.

The VAR without principal components predicts that technology shocks reduce unemployment,

i.e. the shock is expansionary. The finding is in line with the theoretical predictions of standard RBC

models and the empirical findings of Christiano, Eichenbaum and Vigfusson (2003) Labor productivity

reacts positively on impact and stays roughly constant afterward, with almost no delay in the diffusion

process, and somewhat unlikely negative effects after one year.

The picture changes dramatically when adding the principal components. Indeed the effect of the

technology shock on the unemployment rate changes sign, becoming positive. Moreover, the impact

effect of productivity reduces substantially while the long run effect is roughly unchanged so that the

diffusion process is much slower, in line with the S-shape view and the recent news shocks literature

(Beaudry and Portier, 2006, Schmitt-Grohe and Uribe, 2008). As can be seen in the right panels

of Figure 1, consistently with the results of the test, models including more than three principal

components all deliver similar impulse response functions.

4.3 Richer VAR specifications

In what follows we test whether richer VAR specifications can be successful in passing the informational

sufficiency test. We consider two specifications, say VAR 1 and VAR2. VAR1 includes five variables:

GDP, the GDP deflator, both in log differences, and a component of the Michigan University consumer

confidence index, i.e. business conditions expected during the next 5 years (series 1, 17 and 55), in

addition to labor productivity (in log differences) and the unemployment rate. VAR2 includes four

variables: productivity and unemployment are complemented with the GDP deflator and the Standard

& Poor’s index of 500 common stocks, divided by the GDP deflator (series 52 and 17), both taken

in log differences. Both specifications include a forward-looking variable, aimed at capturing agents’

information about technology; stock prices have been used to identify technology shocks in Beaudry

and Portier (2006); the confidence indicator, and its ability to anticipate future growth, has been

extensively analyzed in Barsky and Sims (2012). Being concerned with just one shock, we do not try

to reach global sufficiency, but only orthogonality of the estimated shock.

Table 4 shows results of the orthogonality test, with different choices of P and number of lags, for

both VAR1 and VAR2. For comparison, we include also the corresponding results for the deficient

VAR specification (VAR0). For both VAR1 and VAR2, orthogonality is never rejected at the 5%

significance level.

Figure 3 compares the impulse response functions obtained with VAR1 and VAR2 (black solid lines)

with the corresponding impulse response functions of the deficient VAR specification (red dashed lines)
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and the amended 4-factor FAVAR specification (blue dash-dotted lines). For both specifications, the

unemployment rate exhibits on impact a significant positive reaction. The impulse response functions

are fairly similar to each other and the FAVAR specification.

5 Conclusions

The variables included in a VAR contain enough information to identify and estimate the structural

shocks if, and only if, they are not Granger caused by the common factors (the ‘states’) driving macroe-

conomic variables. Moreover, assuming that the identification scheme adopted by the econometrician

is correct, an estimated shock is a consistent estimate of the desired structural shock if and only if it is

orthogonal to the lags of the factors. On the basis of these results, we have proposed misspecification

tests which are simple and relatively easy to implement. If a VAR specification is rejected, the tests

can be used to amend it.

The methods proposed here are particularly useful when there are good reasons to suspect that a

VAR specification is informationally deficient, either because the VAR is very small, or because the

relevant shocks may be anticipated by economic agents, so that the structural MA representation of the

macroeconomic equilibrium can be non-fundamental. Two important examples are “fiscal foresight”

and “news shocks”. Forni, Gambetti and Sala (2011), uses the orthogonality test proposed here to

show that the VARs in Beaudry and Portier (2006) have information problems, and, when information

is properly complemented, the effects of news shocks are smaller and qualitatively different, in line

with the findings of Barsky and Sims (2011) whose specification passes the test. Applications to fiscal

foresight seem a promising task for future research.
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Tables

Significance Orthogonality, 2 lags Orthogonality, 4 lags Causality, AIC

level P = 1 P = 2 P = 4 P = 1 P = 2 P = 4 P = 4

Model NFF

1% 0.0 0.0 0.1 0.0 0.0 0.1 0.9

5% 0.0 0.0 0.4 0.4 0.0 0.9 4.8

10% 0.2 0.0 1.3 0.7 0.3 2.3 10.8

Model FF

1% 76.6 99.9 99.8 41.8 99.8 99.8 100.0

5% 98.6 100.0 99.9 84.1 100.0 99.9 100.0

10% 100.0 100.0 100.0 96.2 100.0 99.9 100.0

Table 1: Percentage of rejections across 1000 experiments for the null of informational sufficiency of the VAR

specification including the tax rate τ̂t and capital kt, generated with model NFF (no fiscal foresight) and model

FF (two-period foresight). We report results for the orthogonality test (informational sufficiency for the tax

rate shock) and the Granger causality test (global sufficiency), for different significance levels, numbers of lags

and numbers of principal components P .
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No. of factors Orthogonality, 2 lags Orthogonality, 4 lags Causality, AIC

retained P = 1 P = 2 P = 4 P = 1 P = 2 P = 4 P = 4

0 1.4 0 0.1 15.9 0 0.1 0

1 98.6 2.8 2.8 84.1 3.4 4.2 0.7

2 - 97.2 91.5 - 96.6 90.2 86.5

3-4 - - 5.6 - - 5.5 12.8

total 100 100 100 100 100 100 100

average 0.99 1.97 2.05 0.84 1.97 2.04 2.16

Table 2: Frequency distribution and average, across 1000 experiments, of the number of principal components

retained in the FAVAR specification, according to the orthogonality test and the Granger causality test, with

different numbers of lags and numbers of principal components P . The data are generated with model FF

(two-period foresight).

23



Granger causality, AIC Orthogonality, 2 lags

P = 4 P = 6 P = 8 P = 10 P = 4 P = 6 P = 8 P = 10

z∗t 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

w1
t 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00

w2
t 0.00 0.03 0.01 0.03 0.10 0.44 0.03 0.03

w3
t 0.00 0.26 0.02 0.12 0.08 0.45 0.09 0.10

w4
t - 0.97 0.43 0.47 - 0.84 0.39 0.11

Table 3: p-values of the out-of-sample Granger causality test (global sufficiency) and the orthogonality F-

test for the estimated productivity shock. The rows correspond to different specifications, z∗t and wht for

h = 1, . . . , 4. P refers to the number of principal components used in the test.
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Orthogonality, 2 lags Orthogonality, 4 lags

P = 4 P = 6 P = 8 P = 10 P = 4 P = 6 P = 8 P = 10

VAR0 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

VAR1 0.33 0.23 0.11 0.11 0.34 0.39 0.09 0.18

VAR2 0.82 0.67 0.33 0.16 0.94 0.52 0.12 0.16

Table 4: p-values of the orthogonality F-test, with two and four lags, for the productivity shock, estimated

with different VAR specifications. P is the number of principal components used in the test. VAR0: labor pro-

ductivity growth, unemployment rate. VAR1: labor productivity growth, unemployment rate, GDP growth,

GDP deflator (inflation rate), business conditions 5 year confidence indicator. VAR2: labor productivity

growth, unemployment rate, GDP deflator (inflation rate), deflated S&P500 index (growth rate).
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Figures

Figure 1: Impulse response functions of the tax rate and capital to a tax shock with model FF (two-period

fiscal foresight). The first row (VAR) plots the true responses (dashed line) and the responses obtained using

a bivariate VAR for tax rate and capital (solid line) along with the 68% and 90% confidence bands, dark

and light grey area respectively. The second row (FAVAR) plots the true responses (dashed line) and the

responses obtained using a estimated using a FAVAR with a number of factor equal to the number suggested

by the test (solid line) along with the 68% and 90% confidence bands, dark and light grey area respectively.
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Figure 2: Impulse response functions to a technology shock. The left panels plot the impulse response functions

for the two variables, labor productivity and the unemployment rate, for all the specifications z∗t , w
1
t , . . . , w

10
t .

The starred line represents the impulse response functions estimated with z∗t . The line with crosses represents

the impulse response functions estimated with w4
t . The remaining lines are the estimated responses of the

other models. The effects are expressed in percentage terms. The right panels display the impact effect

(stars), the effect at 1 year (crosses), 2 years (circles) and in the long run (diamonds). The horizontal axis

displays the number of principal components included in the VAR.
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Figure 3: Impulse response functions to a technology shock of labor productivity and the unemployment rate in

VAR 1 and VAR 2 specifications. VAR 1: labor productivity growth, unemployment rate, GDP growth, GDP

deflator (inflation rate), business conditions 5 year confidence indicator. VAR 2: labor productivity growth,

unemployment rate, GDP deflator (inflation rate), deflated S&P500 index (growth rate). The solid line is

the point estimate, the dark-grey area represents the 68% confidence bands, the light-grey area represents

the 90% confidence bands, the dashed line is the point estimate of the informationally deficient VAR (labor

productivity growth and unemployment rate), the dot-dashed line is the point estimate of the 4-factor FAVAR.
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