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1 Introduction

The US economy has undergone many structural changes during the post-WWII period.

Long run trends in many macroeconomic variables have changed. Average unemployment

and inflation were particularly high during the 70s and low in the last decades, see e.g.

Staiger, Stock and Watson (2001). Business cycle fluctuations have moderated substantially

in the last twenty years, in particular the volatility of output growth has reduced sharply,

the phenomenon typically referred to as the ”Great Moderation” (Stock and Watson, 2004).

Inflation has become less volatile and persistent (see Cogley and Sargent, 2001, and Cogley,

Primiceri and Sargen, 2010).1

In addition to these series-specific changes many important shifts in the relationships

between macroeconomic variables have been documented. For instance, some authors have

argued that the Phillips curve is no longer a good characterization of the joint dynamics

of inflation and unemployment. Such a claim is partly based on the result that the pre-

dictive content of unemployment for inflation has vanished since the mid 80s (Atkenson

and Ohanian, 2001, Roberts, 2006 and Stock and Watson, 2008).2 The same period has

seen significant changes in the conduct of macroeconomic policy. For example, according to

many observers, monetary policy has become much more transparent and aggressive against

inflation since the early 80s (Clarida, Gali, and Gertler, 2000).

In this paper we address the following question: can the accuracy of macroeconomic

forecasts be improved by explicitly modeling structural change? The answer to this question

is far from trivial. On the one hand, clearly, if the structure of the economy has changed,

a forecasting model that can account for such changes would be better suited and should

deliver better forecasts. On the other hand, however, a richer model structure implying a

higher number of parameters should increase the estimation errors and reduce the forecast

accuracy.

The importance of modeling time variation for forecasting was originally stressed by

Doan, Litterman, and Sims (1984), but surprisingly there are only a few papers aiming at

exploring the issue systematically (see Stock and Watson, 1996, Canova, 2007, Clark and

McCracken, 2007, Stock and Watson, 2007, Clark, 2009). Moreover, existing studies have

two limitations. First, none of them consider both changes in the parameters and shock

volatilities simultaneously, two features which have proven to be very relevant to correctly

characterize structural changes in the US economy (see for instance Cogley and Sargent,

1Changes in persistence are still debated, for instance Pivetta and Reis (2007) finds that the changes are

not significant.
2More generally, the ability to exploit macroeconomic linkages for predicting inflation and real activity

seems to have declined remarkably since the mid-1980s, see D’Agostino, Giannone, and Surico (2006) and

Rossi and Sekhposyan (2008).
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2005). Second, none of them is a pure real time exercise.

In this paper we forecast in real-time three US macroeconomic variables: the unem-

ployment rate, inflation and a short term interest rate, using a Time-Varying Coefficients

VAR with Stochastic Volatility (TV-VAR henceforth) as specified by Primiceri (2005).3

The model is very flexible. In particular it allows for a) changes in the predictable compo-

nent (time-varying coefficients), which can be due to variations in the structural dynamic

interrelations among macroeconomic variables; and b) changes in the unpredictable com-

ponent (stochastic volatility), that is, variations in the size and correlation among forecast

errors, which can be due to changes in the size of exogenous shocks or their impact on

macroeconomic variables.4

In the forecasting exercise we aim at mimicking as close as possible the conditions faced

by a forecaster in real-time. We use “real-time data” to compute predictions based only

on the data that were available at the time the forecasts are made. We forecast up to 3

years ahead. Using mean square forecast errors and log predictive scores we compare the

forecast accuracy of the TV-VAR based to that of other standard forecasting models: fixed

coefficients VARs and ARs (estimated recursively or with rolling window), Time-Varying

ARs and the näıve random walk model.

Our main findings show that the TV-VAR is the only model which systematically de-

livers accurate forecasts for the three variables. In particular, the forecasts of inflation

generated by the TV-VAR are significantly more accurate than those obtained with any

other model. For unemployment, the forecasting accuracy of the TV-VAR model is very

similar to that of the fixed coefficient VAR, while forecasts for the interest rate are com-

parable to those obtained with the Time-Varying AR. The results are confirmed over the

Great Moderation period, a period in which forecasting models are often found to have dif-

ficulties in outperforming simple näıve models in forecasting many macroeconomic variables

especially inflation.

Results suggest that, on the one hand time varying models are “quicker” in recognizing

structural changes in the permanent components of inflation and interest rate, and, on

the other hand, that short term relationships among macroeconomic variables carry out

important information, once structural changes are properly taken into account.

The remainder of the paper is organized as follows: section 2 describes the TV-VAR

model; section 3 explains the forecasting exercise; section 4 describes the data and presents

the results; section 5 concludes.

3An alternative strategy to cope with structural instability, although not pursued here, is represented by

model averaging, see Bates and Granger (1968) and Strachan and van Dijk (2008).
4Allowing for the two sources of change is also important in the light of the ongoing debate about the

relative importance of changes in the predictable and unpredictable components in the Great Moderation

(Giannone, Lenza, and Reichlin, 2008).
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2 The Time-Varying Vector Autoregressive Model

The model is the Time-Varying Coefficients Vector Autoregression with stochastic volatility

of the residuals; it has become a quite popular tool in macroeconomics, over the last few

years, to address questions related to the evolution of the structure of the economy and

the volatility of the shocks (see Cogley and Sargent, 2005, Primiceri, 2005, Benati, 2008,

Canova and Gambetti, 2009, Gali and Gambetti, 2009).

Let yt = (πt, URt, IRt)
′ where πt is the inflation rate, URt the unemployment rate and

IRt a short term interest rate. We assume that yt satisfies

yt = A0,t +A1,tyt−1 + ...+Ap,tyt−p + εt (1)

where A0,t is a vector of time-varying intercepts, Ai,t are matrices of time-varying coef-

ficients, i = 1, ..., p and εt is a Gaussian white noise with zero mean and time-varying

covariance matrix Σt. Let At = [A0,t, A1,t..., Ap,t], and θt = vec(A′t), where vec(·) is the

column stacking operator. Conditional on such an assumption, we postulate the following

law of motion for θt:

θt = θt−1 + ωt (2)

where ωt is a Gaussian white noise with zero mean and covariance Ω. We let Σt = FtDtF
′
t ,

where Ft is lower triangular, with ones on the main diagonal, and Dt a diagonal matrix. Let

σt be the vector of the diagonal elements of D
1/2
t and φi,t, i = 1, ..., n− 1 the column vector

formed by the non-zero and non-one elements of the (i+ 1)-th row of F−1
t . We assume that

log σt = log σt−1 + ξt (3)

φi,t = φi,t−1 + ψi,t (4)

where ξt and ψi,t are Gaussian white noises with zero mean and covariance matrix Ξ and

Ψi, respectively. Let φt = [φ′1,t, . . . , φ
′
n−1,t], ψt = [ψ′1,t, . . . , ψ

′
n−1,t], and Ψ be the covariance

matrix of ψt. We assume that ψi,t is independent of ψj,t, for j 6= i, and that ξt, ψt, ωt, εt

are mutually uncorrelated at all leads and lags.5

2.1 Forecasts

Let yT = [y′1...y
′
T ]′ be the vector of data up to time T and let yT+1,T+h = [y′T+1...y

′
T+h]′

be the vector of variables we want to forecast. Forecasts are obtained using the posterior

predictive density

p(yT+1,T+h|yT ). (5)

5Giordani and Villani (2009) and Amisano and Geweke (2007) relax the Gaussianity assumption and

show that this can lead to gains in terms of forecasting performance.
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Let Θt denote the vector containing all the drifting parameters of the model and Φ the

vector of constant parameters. Let ΘT+1,T+h = [Θ′T+1...Θ
′
T+h]′ and ΘT = [Θ′1...Θ

′
T ]′. The

above density can be written as

p(yT+1,T+h|yT ) =

∫ ∫
p(yT+1,T+h,ΘT+h,Φ|yT )dΘT+hdΦ (6)

where

p(yT+1,T+h,ΘT+h,Φ|yT ) = p(yT+1,T+h|yT ,ΘT+h,Φ)p(ΘT+1,T+h|yT ,ΘT ,Φ)p(ΘT ,Φ|yT )

A draw from the last term of the above expression is obtained using the Primiceri (2005)

MCMC algorithm described in Appendix. To draw from the second term, a draw of future

shocks in the drifting parameters is made and a realization of the parameters is obtained

iterating on (2)-(4). Finally using such a draw for the parameters together with a draw

for future VAR residuals a draw for the vector of future variables is obtained,see Cogley,

Morozov, and Sargent (2005) for details. The point estimate of the forecast is the median

of the predictive density.

2.2 Priors Specification

The model is estimated using Bayesian methods. While the details of the posterior sim-

ulation are accurately described in the Appendix, in this section we briefly discuss the

specification of our priors. Following Primiceri (2005), we make the following assumptions

for the priors densities. First, the coefficients of the covariances of the log volatilities and

the hyperparameters are assumed to be independent of each other. The priors for the initial

states θ0, φ0 and log σ are assumed to be normally distributed. The priors for the hyperpa-

rameters, Ω, Ξ and Ψ are assumed to be distributed as independent inverse-Wishart. More

precisely, we have the following priors:

• Time varying coefficients: P (θ0) = N(θ̂, V̂θ) and P (Ω) = IW (Ω−1
0 , ρ1);

• Diagonal elements: P (log σ0) = N(log σ̂, In) and P (Ψi) = IW (Ψ−1
0i , ρ3i);

• Off-diagonal elements: P (φi0) = N(φ̂i, V̂φi) and P (Ξ) = IW (Ξ−1
0 , ρ2);

where the scale matrices are parameterized as follows Ω−1
0 = λ1ρ1V̂θ, Ψ0i = λ3iρ3iV̂φi and

Ξ0 = λ2ρ2In. The hyper-parameters are calibrated using a time invariant recursive VAR

estimated using a sub-sample consisting of the first T0 = 32 observations. For the initial

states θ0 and the contemporaneous relations φi0, we set the means, θ̂ and φ̂i, and the

variances, V̂θ and V̂φi , to be the maximum likelihood point estimates and four times its

variance. For the initial states of the log volatilities, log σ0, the mean of the distribution is
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chosen to be the logarithm of the point estimates of the standard errors of the residuals of

the estimated time invariant VAR. The degrees of freedom for the covariance matrix of the

drifting coefficient’s innovations are set to be equal to T0, the size of the initial-sample. The

degrees of freedom for the priors on the covariance of the stochastic volatilities’ innovations,

are set to be equal to the minimum necessary to insure that the prior is proper. In particular,

ρ1 and ρ2 are equal to the number of rows Ξ−1
0 and Ψ−1

0i plus one respectively.

The parameters λi are very important since they control the degree of time variations in

the unobserved states. The smaller such parameters are, the smoother and smaller are the

changes in coefficients. The empirical literature has set the prior to be rather conservative in

terms of the amount of time variations. In our benchmark specification explosive roots are

discarded and the parameters are set as follows: λ1 = (0.01)2, λ2 = (0.1)2 and λ3 = (0.01)2.

However, we also run some robustness checks to understand the sensitivity of the model to

alternative specifications. In a first simulation, we set more conservative priors (less time

variation), while in a second simulation we do not discard the explosive draws.

3 Real-Time Forecasting

As stressed above, three variables are included in our model: the unemployment rate, the

interest rate and the inflation rate.

The interest rate IRt is measured by the three-month Treasury bill rate, the unemploy-

ment rate URt is measured by the civilian rate of unemployment. Inflation is measured

in terms of annualized quarterly growth rate of prices, πt = 400 log( Pt
Pt−1

), where Pt is the

GDP deflator.

Following Cogley and Sargent (2001, 2005) and Cogley, Primiceri, and Sargent (2008),

we transform the unemployment rate and the interest rate, available at monthly frequen-

cies, into quarterly series by taking the value at the second month of the quarter for the

unemployment rate and the value at the first month of the quarter for the interest rate.

We use quarterly real time data vintages from 1969:Q4 to 2007:Q4. Vintages can differ

since new data on the most recent period are released, but also because old data get revised.6

As a convention we date a vintage as the last quarter for which all data are available. For

each vintage the sample starts in 1948:Q1.7

We forecast the interest rate and the unemployment rate, IRt+h and URt+h respectively,

6Real-time data for unemployment rate and the deflator are available on the Federal Reserve Bank of

Philadelphia website at: http://www.phil.frb.org/econ/forecast/reaindex.html. The interest rate series is

not subject to revisions and is available on the FRED dataset of the Federal Reserve Bank of St. Louis

(mnemonics TB3MS), at: http://research.stlouisfed.org/fred2/series/TB3MS.
7The vintages have a different time length, for example the sample span for the first vintage is 1948:Q1-

1969:Q4, while the sample span for the last available vintage is 1948:Q1-2007:Q4.
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h-quarter ahead. As far as prices are concerned, we forecast the h-period ahead annualized

price changes of the GDP deflator, which corresponds to the average over the first h horizons

of the forecast of the annualized quarterly inflation rate: πht+h = 400
h log(

Pt+h
Pt

) = 1
h(πt+1 +

...+ πt+h).

3.1 The Forecasting Exercise

We perform an out-of-sample simulation exercise. The procedure consists of generating the

forecasts using the predictive density (6) with the same information available to the econo-

metrician at the time the forecasts are made. The simulation exercise begins in 1969:Q4

and, for such a vintage, parameters are estimated using the sample 1948:Q1 to 1969:Q4.

The model is estimated with two lags. We compute the forecasts up to 12 quarters ahead

outside the estimation window, from 1970:Q1 to 1972:Q4, and the results are stored.8 Then,

we move one quarter ahead and re-estimate the model using the data in vintage 1970:Q1.

Forecasts from 1970:Q2 to 1973:Q1 are again computed and stored. This procedure is then

repeated using all the available vintages. Predictions are compared with ex-post realized

data vintages. Since data are continuously revised at each quarter, several vintages are

available. Following Romer and Romer (2000), predictions are compared with the figures

published after the next two subsequent quarters. These figures are conceptually similar to

the series predicted in real time since they do not incorporate re-benchmarking and other

definitional changes. Nonetheless the results are similar if we compare the forecasts with

the data from the last vintage.

We evaluate the forecasting accuracy by considering both point forecasts (the median of

the predictive density) and density forecasts. Specifically we focus on mean square forecast

errors (MSFE) and log predictive scores. Accuracy is evaluated over two samples: the full

sample, 1970:Q1-2007:Q4 and the post-84 sample, 1985:Q1-2007:Q4. The latter corresponds

to the great moderation period.

3.2 Other Forecasting Models

We compare the forecasts obtained with the TV-VAR with those obtained using different

standard forecasting models. We consider six competing models:

1) A Time-varying Coefficients Autoregressive process with Stochastic Volatility (TV-

AR) estimated separately for each of the three series. This corresponds to the general

TV-VAR model in which the matrices of the autoregressive parameters and the co-

8In the simulation exercise forecasts for horizon h = 1 correspond to nowcast, given that in real time

data are available only up to the previous quarter.
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variances of the residuals are diagonal. We keep the same specification and priors

used for the TV-VAR.

2-3) A stochastic volatility VAR (SV-VAR) and AR (SV-AR) with fixed coefficients. We

keep the same prior specification for the stochastic volatilities and assume a flat prior

for the VAR coefficients.

4-5) Fixed coefficients VARs estimated using both a rolling estimation scheme (VAR-ROL),

i.e. using only the ten most recent years of data available at each time the forecasts are

made and a recursive estimation scheme (VAR-REC), i.e. using all the data available

when the forecasts are made.

6-7) Fixed coefficients ARs estimated separately for each variables using a recursive esti-

mation scheme (AR-REC) and a rolling estimation scheme (AR-ROL).

8) Random walk or näıve models (RW). According to these models, the unemployment

rate and the interest rate forecasts, for all future horizons, are equal to the value

observed in the current quarter. In the case of inflation, we follow Atkeson and

Ohanian (2001) which proposes a model of ”no change” for annual inflation. More

precisely, the näıve model predicts quarterly inflation to be constant and equal to the

average inflation over the most recent past four quarters. It is worth noticing that all

the random walk models are restricted ARs. In particular, for the interest rate and

the unemployment rate we have an AR(1) with autoregressive coefficient equal to 1.

For inflation we have an AR(4) with all coefficients equal to 1/4.

All the models are estimated using Bayesian techniques and two lags. However for the

time invariant AR and VAR we specify a Jeffreys prior which implies that the forecasts

coincide with those obtained using maximum likelihood (ML). For the näıve model the only

unknown parameter is the residual variance, for which we also use the Jefferys prior.

4 Results

This section discusses the main findings of the forecasting exercise.

4.1 How much time variation?

As a preliminary step of our analysis, in order to understand whether time variation is an

important characteristic of the dataset, we estimate the TV-VAR model over the whole

sample.
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Figure 1 shows the evolution of the coefficients over time. The solid lines are the

posterior means of the coefficients and the dashed lines are the 68% confidence bands.

Many coefficients display constant patterns, while four parameters are characterized by

remarkable fluctuations over time. Figure 2 shows the evolution of the standard deviations

of the residuals. Again the solid lines are the posterior means of the coefficients and the

dashed lines the 68% confidence bands. All the volatilities exhibit substantial time variation

over the sample. The figure also shows that, concomitant with the great moderation period,

around the mid 80s, there is a sharp drop in the volatilities.

All in all, the results show that time variation is an important feature of the data.

4.2 Forecast Accuracy: Point Forecast

Table 1 summarizes the results of the real time forecast evaluation based on the MSFE over

the whole sample for the three variables (inflation rate πt, unemployment rate URt and the

interest rate IRt), and for forecast horizons of one quarter, one year, two years and three

years. To facilitate the comparison between various models, the results are reported in

terms of relative MSFE, that is the ratio between the MSFE of a particular model and the

MSFE of the näıve model, used as benchmark. When the relative MSFE is less than one,

the forecasts of a given model are, on average, more accurate that those produced with the

benchmark model. For example, a value of 0.8 indicates that the model under consideration

improves upon the benchmark by 20%. For the näıve models we report the MSFE.

Overall the TV-VAR produces very accurate forecasts for all the variables and, on

average, performs better than any other model considered. In particular it outperforms

the näıve benchmark for all the variables at all horizons, except for unemployment at an

horizon of one quarter, with gains ranging from 5 to 28 percent.

The best relative performances of the TV-VAR model is obtained for inflation. For

this variable, the TV-VAR model produces the best forecast with an average (over the

horizons) improvement upon the benchmark of about 30%. A relative good performance is

also observed for the TV-AR with improvements of about 10% at horizons of 1 and 2 years.

The other time invariant specifications, univariate and multivariate, fail to improve upon

the benchmark in terms of forecasting accuracy.

As far as the interest rate is concerned, univariate and multivariate time-varying models

both perform better than the constant parameters models. For unemployment, multivariate

models tend to deliver better results than the random walk model and other univariate

models especially at long horizons.

In conclusion, our main findings show that the TV-VAR is the only model which sys-

tematically delivers accurate forecasts for the three variables. In particular, the forecasts

of inflation generated by the TV-VAR are significantly more accurate than those obtained
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with any other model.

To understand whether predictability comes from stochastic volatilities, as Clark (2011)

suggests, or rather from time-varying coefficients we have investigated the forecasting perfor-

mance of a stochastic volatility VAR and AR with fixed autoregressive parameters, SV-VAR

and SV-AR respectively. In general both models improve in terms of forecasting accuracy

upon constant parameters models. Specifically the forecasts of the unemployment rate ob-

tained with the SV-VAR are found to be particularly accurate. Nonetheless the TV-VAR

still produces better forecasts for inflation. All in all findings suggest an important role for

both time-varying coefficient and volatilities.

Table 2 shows the results for the “Great Moderation” period. Most of the previous find-

ings are confirmed. First, the TV-VAR model generates the most accurate forecasts for all

the variables. Second, the TV-VAR performs particularly well in forecasting inflation. The

average (over the horizons) improvement is about 30%. At a 3-year horizon the improve-

ment in forecasting accuracy is almost two times that obtained in the full sample, being now

about 52%. Third, the forecasts of the interest rate and the unemployment rate obtained

with time varying models are more accurate than those obtained in the full sample.

The results obtained for the shorter sample are particularly interesting given that several

authors have shown that over the post-84 period standard fixed-coefficients models fail to

improve upon the simple näıve random walk. Here we show that, once structural changes,

modeled by means of time-varying parameters and stochastic volatility, are accounted for,

inflation becomes much more predictable.

Finally the higher predictability of the interest rate might reflect the increased impor-

tance of the systematic predictable component of monetary policy in the last two decades.

We also check of the robustness of the results with two alternative model specifications.

First we tried with a different parametrizations of the λ’s, namely λ1 = 0.00001, λ2 =

0.001, λ3 = 0.00001. Second, we repeated the forecasting exercise keeping the explosive

draws obtained in the Gibbs sampling algorithm. In the first case results are comparable,

in terms of accuracy, with those obtained with the previous specification, although the

magnitudes of the gains are slightly smaller. In the second exercise the accuracy of the

forecasts deteriorates for all the variables and in particular for the unemployment rate and

the interest rate.9

4.3 Forecast Accuracy: Predictive density

In this section we asses the accuracy of the models by looking at the entire predictive density.

In a situation in which monetary policy and the economy are subject to ongoing changes, the

9Results are available in the ECB working paper version of the article.
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ability of correctly predicting not only the central tendency but also the uncertainty of the

forecasts has become an important aspect for assessing the quality of different models (See

Clark, 2009; Amisano and Giacomini, 2007; Jore, Mitchell, and Vahey, 2010). By allowing

the variance of the forecast errors to change over time, the TV-VAR model is in principle

well suited to characterizing not only point forecasts but also forecasting uncertainty (See

Cogley, Morozov, and Sargent, 2005).

Figure 3 plots the 2-year ahead forecast of unemployment, inflation and the interest

rate. Shaded areas represent the 68% and 90% confidence bands and the solid lines are the

true series. The model appears to correctly capture not only short-run movements of the

series but also lower frequency fluctuations such as the rise and the fall of trend inflation.

To gauge the quality of the density intervals shown in Figure 3 we first perform PITs

tests. The PITs are the value of the predictive cumulative distribution evaluated at the

true realized values of the time series, see for instance Mitchell and Wallis (2010). PITS are

widely used to assess the calibration of density forecasts (most recent works include Jore et

al., 2009, Mitchell and Wallis, 2010, Geweke and Amisano, 2010, Huurman et al., 2010, and

Clark, 2011). If the density forecasts are well calibrated, then the PITs should be uniformly

distributed in the interval zero-one. Testing uniformity of the PITs is equivalent to test

that the inverse normal transformation of the PITs is standard normal. This is done by

testing whether the third and fourth moments of the inverse normal transformation of the

PITs are equal to zero and three respectively.

In Tables 3 we report the third and fourth moments along with standard deviations

in brackets.10 Results suggest that the density forecasts produced by the TV-VAR model

are well calibrated for inflation, since we do not find evidence of excess skewness or excess

kurtosis. Evidence is more mixed for unemployment and the interest rate for which we

find evidence of excess kurtosis at some horizons. In general, the calibration of the density

forecasts produced by using TV-VAR model compares well with the ones obtained using

the other models.

The accuracy of the density forecast is assessed by using the log-predictive scores of the

model under consideration. The log-predictive score is simply the logarithm of the value

of the predictive density evaluated at the true realized value of the time series11. A high

value is obtained when high probability is assigned to the actual outcome. At the limit, the

maximum value of the log score (zero) is obtained if a probability of 100% is assigned to

the actual outcome.

10Following Bai and Ng (2005) we report the heteroskedasticity and autocorrelation consistent (HAC)

standard deviation estimator. The estimates of the standard deviation should, however, be taken with

caution since parameters estimation uncertainty is ignored.
11The predictive density is estimated by smoothing the empirical distribution of the forecasts obtained

with the Gibbs sampler using a normal kernel function.
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Using forecast densities we compute the log predictive score for every model, horizon

and time period in the evaluation sample. Then we take the differences between the log

score of the TV-VAR and the log score of any other model and regress them on a constant

term. The constant represents the average difference between the log predictive scores. A

constant greater than zero indicate that the density forecasts produced by the TV-VAR are

more accurate.

The t−statistics associated to the constant can be interpreted as a Diebold-Mariano test

of equal predictive accuracy. Results should be taken with caution, since the test ignores

estimation uncertainty. 12

The results of the evaluation of density forecasts over the full sample are reported in

Table 3. We report the estimated constant and the heteroskedasticity and autocorrelation

consistent (HAC) estimator of its standard deviation in brackets. The evaluation for the

post-1984 period is reported in Table 4. Conclusions based on the magnitude of the relative

MSFE in the previous section are largely confirmed when looking at the predictive density.

In general the TV-VAR tends to significantly dominate all the other models, for all the

horizons and all the variables.

Summing up, the good performance of the TV-VAR in forecasting inflation is confirmed

when considering density forecasts. Improvements with respect to all the other models are

large and significant especially for inflation. For interest rate the TV-VAR together with the

TV-AR are the models that perform the best, whereas as far as unemployment is concerned

the TV-VAR is the best model together with VAR-ROL.13

5 Conclusions

The US economy has changed substantially during the post-WWII period. This paper tries

to assess whether explicitly modeling these changes can improve the forecasting accuracy

of key macroeconomic time series.

We produce real time out-of sample forecasts for inflation, the unemployment rate and

a short term interest rate using a time-varying coefficients VAR with stochastic volatility

and we compare its forecasting performance to that of other standard models. Our findings

show that the TV-VAR is the only model which systematically delivers accurate forecasts

for the three variables. In particular, the forecasts of inflation generated by the TV-VAR are

much more accurate than those obtained with any other model. These results hold for the

Great Moderation period, after the mid 80’s. The last result is particularly relevant given

12The t−statistics corresponds to the Amisano and Giacomini (2007) test when the models are estimated

using a rolling scheme. This is not the case in our exercise since we also use a recursive estimation procedure.
13Results are confirmed also when testing for equal predictive accuracy of point forecasts. The results are

available upon request.

12



that previous studies have found that over such a period forecasting models have consid-

erable difficulty in outperforming simple näıve models in predicting many macroeconomic

variables, in particular inflation.

We draw two main conclusions. First, taking into account structural economic change is

important for forecasting. Second, the TV-VAR model is a powerful tool for real-time fore-

casting since it incorporates in a flexible but parsimonious manner the prominent features

of a time-varying economy.

13
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Appendix

Estimation is done using Bayesian methods. To draw from the joint posterior distribution of

model parameters we use a Gibbs sampling algorithm along the lines described in Primiceri

(2005). The basic idea of the algorithm is to draw sets of coefficients from known condi-

tional posterior distributions. The algorithm is initialized at some values and, under some

regularity conditions, the draws converge to a draw from the joint posterior after a burn in

period. Let z be (q × 1) vector, we denote zT the sequence [z′1, ..., z
′
T ]′. Each repetition is

composed of the following steps:

1. p(σT |xT , θT , φT ,Ω,Ξ,Ψ, sT )

2. p(sT |xT , θT , σT , φT ,Ω,Ξ,Ψ)14

3. p(φT |xT , θT , σT ,Ω,Ξ,Ψ, sT )

4. p(θT |xT , σT , φT ,Ω,Ξ,Ψ, sT )

5. p(Ω|xT , θT , σT , φT ,Ξ,Ψ, sT )

6. p(Ξ|xT , θT , σT , φT ,Ω,Ψ, sT )

7. p(Ψ|xT , θT , σT , φT ,Ω,Ξ, sT )

Gibbs sampling algorithm

• Step 1: sample from p(σT |yT , θT , φT ,Ω,Ξ,Ψ, sT )

To draw σT we use the algorithm of Kim, Shephard and Chibb (KSC) (1998). Consider

the system of equations y∗t ≡ F−1
t (yt−X ′tθt) = D

1/2
t ut, where ut ∼ N(0, I), Xt = (In⊗ x′t),

and xt = [1n, yt−1...yt−p]. Conditional on yT , θT , and φT , y∗t is observable. Squaring and

taking the logarithm, we obtain

y∗∗t = 2rt + υt (7)

rt = rt−1 + ξt (8)

where y∗∗i,t = log((y∗i,t)
2 + 0.001) - the constant (0.001) is added to make estimation more ro-

bust - υi,t = log(u2
i,t) and rt = log σi,t. Since, the innovation in (7) is distributed as logχ2(1),

we use, following KSC, a mixture of 7 normal densities with component probabilities qj ,

means mj − 1.2704, and variances v2
j (j=1,...,7) to transform the system in a Gaussian

one, where {qj ,mj , v
2
j } are chosen to match the moments of the logχ2(1) distribution. The

values are:

14See below the definition of sT .
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Table A1: Parameters Specification

j qj mj v2
j

1.0000 0.0073 -10.1300 5.7960

2.0000 0.1056 -3.9728 2.6137

3.0000 0.0000 -8.5669 5.1795

4.0000 0.0440 2.7779 0.1674

5.0000 0.3400 0.6194 0.6401

6.0000 0.2457 1.7952 0.3402

7.0000 0.2575 -1.0882 1.2626

Let sT = [s1, ..., sT ]′ be a matrix of indicators selecting the member of the mixture to

be used for each element of υt at each point in time. Conditional on sT , (υi,t|si,t = j) ∼
N(mj−1.2704, v2

j ). Therefore we can use the algorithm of Carter and Kohn (1994) to draw

rt (t=1,...,T) from N(rt|t+1, Rt|t+1), where rt|t+1 = E(rt|rt+1, y
t, θT , φT ,Ω,Ξ,Ψ, sT , ) and

Rt|t+1 = V ar(rt|rt+1, y
t, θT , φT ,Ω,Ξ,Ψ, sT ).

• Step 2: sample from p(sT |yT , θT , σT , φT ,Ω,Ξ,Ψ)

Conditional on y∗∗i,t and rT , we independently sample each si,t from the discrete density

defined by Pr(si,t = j|y∗∗i,t , ri,t) ∝ fN (y∗∗i,t |2ri,t +mj − 1.2704, v2
j ), where fN (y|µ, σ2) denotes

a normal density with mean µ and variance σ2.

• Step 3: sample from p(φT |yT , θT , σT ,Ω,Ξ,Ψ, sT )

Consider again the system of equations F−1
t (yt −X ′tθt) = F−1

t ŷt = D
1/2
t ut. Conditional

on θT , ŷt is observable. Since F−1
t is lower triangular with ones in the main diagonal, each

equation in the above system can be written as

ŷ1,t = σ1,tu1,t (9)

ŷi,t = −ŷ[1,i−1],tφi,t + σi,tui,t i = 2, ..., n (10)

where σi,t and ui,t are the ith elements of σt and ut respectively, ŷ[1,i−1],t = [ŷ1,t, ..., ŷi−1,t].

Under the block diagonality of Ψ, the algorithm of Carter and Kohn (1994) can be applied

equation by equation, obtaining draws for φi,t from a N(φi,t|t+1,Φi,t|t+1), where φi,t|t+1 =

E(φi,t|φi,t+1, y
t, θT , σT ,Ω,Ξ,Ψ) and Φi,t|t+1 = V ar(φi,t|φi,t+1, y

t, θT , σT ,Ω,Ξ,Ψ).

• Step 4: sample from p(θT |yT , σT , φT ,Ω,Ξ,Ψ, sT )

Conditional on all other parameters and the observables we have

yt = X ′tθt + εt (11)

θt = θt−1 + ωt (12)
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Draws for θt can be obtained from aN(θt|t+1, Pt|t+1), where θt|t+1 = E(θt|θt+1, y
T , σT , φT ,Ω,Ξ,Ψ)

and Pt|t+1 = V ar(θt|θt+1, y
T , σT , φT ,Ω,Ξ,Ψ) are obtained with the algorithm of Carter and

Kohn (1994).

• Step 5: sample from p(Ω|yT , θT , σT , φT ,Ξ,Ψ, sT )

Conditional on the other coefficients and the data, Ω has an Inverse-Wishart posterior

density with scale matrix Ω−1
1 = (Ω0 +

∑T
t=1 ∆θt(∆θt)

′)−1 and degrees of freedom dfΩ1 =

dfΩ0 +T , where Ω−1
0 is the prior scale matrix, dfΩ0 are the prior degrees of freedom and T is

length of the sample use for estimation. To draw a realization for Ω make dfΩ1 independent

draws zi (i=1,...,dfΩ1) from N(0,Ω−1
1 ) and compute Ω = (

∑dfΩ1
i=1 ziz

′
i)
−1 (see Gelman et. al.,

1995).

• Step 6: sample from p(Ξi,i|yT , θT , σT , φT ,Ω,Ψ, sT )

Conditional the other coefficients and the data, Ξ has an Inverse-Wishart posterior

density with scale matrix Ξ−1
1 = (Ξ0 +

∑T
t=1 ∆ log σt(∆ log σt)

′)−1 and degrees of freedom

dfΞ1 = dfΞ0 + T where Ξ−1
0 is the prior scale matrix and dfΞ0 the prior degrees of freedom.

Draws are obtained as in step 5.

• Step 7: sample from p(Ψ|yT , θT , σT , φT ,Ω,Ξ, sT ).

Conditional on the other coefficients and the data, Ψi has an Inverse-Wishart posterior

density with scale matrix Ψ−1
i,1 = (Ψi,0 +

∑T
t=1 ∆φi,t(∆φi,t)

′)−1 and degrees of freedom

dfΨi,1 = dfΨi,0 + T where Ψ−1
i,0 is the prior scale matrix and dfΨi,0 the prior degrees of

freedom. Draws are obtained as in step 5 for all i.

In the first estimation (the first out-of-sample forecast iteration), we make 12000 repeti-

tions discarding the first 10000 and collecting one out of five draws. For the other estimates,

we initialize the coefficients with the medians obtained in the previous estimation, and we

make 2500 repetitions discarding the first 500 and collecting one out of five draws.
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ä
ıv

e
m

o
d
el

.
F

o
r

ea
ch

h
o
ri

zo
n

it
is

a
ls

o
re

p
o
rt

ed
th

e
av

er
a
g
e

o
f

th
e

R
M

S
F

E
a
cr

o
ss

va
ri

a
b
le

s
(A

v
g
.)

.

21



T
a
b
le

2
:

F
o
re

ca
st

in
g

A
cc

u
ra

cy
ov

er
th

e
sa

m
p
le

1
9
8
5
-2

0
0
7
:

M
ea

n
sq

u
a
re

fo
re

ca
st

er
ro

rs
.

H
o
ri

zo
n

V
a
ri

a
b
le

R
W

A
R

-R
E

C
A

R
-R

O
L

S
V

-A
R

T
V

-A
R

V
A

R
-R

E
C

V
A

R
-R

O
L

S
V

-V
A

R
T

V
-V

A
R

(q
u
a
rt

er
s)

(M
S
F

E
)

(R
M

S
F

E
)

(R
M

S
F

E
)

(R
M

S
F

E
)

(R
M

S
F

E
)

(R
M

S
F

E
)

(R
M

S
F

E
)

(R
M

S
F

E
)

(R
M

S
F

E
)

π
0
.9

3
2
.6

1
1
.1

9
1
.2

3
1
.2

1
1
.2

9
1
.3

5
1
.2

8
0
.9

8

1
U
R

0
.0

5
2
.8

0
1
.1

6
1
.0

5
1
.0

7
1
.0

9
1
.1

7
0
.9

9
1
.0

3

I
R

0
.2

7
3
.6

4
1
.0

8
0
.8

5
0
.8

3
0
.8

7
1
.0

2
0
.7

7
0
.8

3

A
v
g
.

3
.0

2
1
.1

4
1
.0

5
1
.0

4
1
.0

8
1
.1

8
1
.0

1
0
.9

4

π
0
.4

5
5
.7

6
1
.5

4
1
.1

9
1
.1

6
2
.2

2
2
.6

4
1
.4

2
0
.9

4

4
U
R

0
.3

7
3
.0

0
1
.1

5
0
.8

2
0
.8

2
0
.9

7
1
.2

3
0
.7

7
0
.8

9

I
R

2
.0

9
1
.7

4
1
.1

7
0
.7

8
0
.8

1
0
.7

8
1
.2

0
0
.7

4
0
.8

1

A
v
g
.

3
.5

0
1
.2

9
0
.9

3
0
.9

3
1
.3

2
1
.6

9
0
.9

7
0
.8

7

π
0
.5

7
6
.3

9
2
.0

9
1
.1

0
1
.0

8
3
.0

3
3
.1

1
1
.5

5
0
.7

2

8
U
R

1
.3

3
1
.7

2
0
.8

6
0
.6

1
0
.5

6
0
.4

2
0
.7

2
0
.3

8
0
.5

7

I
R

5
.1

6
1
.5

3
1
.0

5
0
.6

8
0
.7

4
0
.6

7
1
.2

0
0
.6

3
0
.7

5

A
v
g
.

3
.2

1
1
.3

3
0
.8

0
0
.7

9
1
.3

7
1
.6

8
0
.8

5
0
.6

9

π
0
.9

2
4
.6

1
2
.1

0
0
.9

1
0
.8

6
3
.4

7
2
.5

1
1
.3

4
0
.4

6

1
2

U
R

2
.2

5
1
.2

2
0
.7

2
0
.4

8
0
.4

3
0
.3

5
0
.7

3
0
.2

7
0
.4

8

I
R

7
.6

9
1
.4

4
0
.8

9
0
.5

5
0
.6

3
0
.7

0
1
.1

3
0
.5

1
0
.6

1

A
v
g
.

2
.4

2
1
.2

4
0
.6

5
0
.6

4
1
.5

1
1
.4

6
0
.7

1
0
.5

1

T
h
e

ta
b
le

re
p

o
rt

s
th

e
re

su
lt

s
re

la
ti

v
e

to
th

e
fo

re
ca

st
in

g
a
cc

u
ra

cy
u
si

n
g

p
o
in

t
fo

re
ca

st
s.

T
h
e

va
ri

a
b
le

w
e

fo
re

ca
st

a
re

in
fl
a
ti

o
n

(π
t
),

th
e

u
n
em

p
lo

y
m

en
t

ra
te

(U
R
t
)

a
n
d

th
e

in
te

re
st

ra
te

(I
R
t
).

T
h
e

fo
re

ca
st

in
g

m
o
d
el

s
a
re

:
R

W
-

ra
n
d
o
m

w
a
lk

;
A

R
-R

E
C

-
A

R
es

ti
m

a
te

d
re

cu
rs

iv
el

y
;

A
R

-R
O

L
-

A
R

es
ti

m
a
te

d

w
it

h
a

ro
ll
in

g
w

in
d
ow

;
T

V
-V

A
R

-
ti

m
e-

va
ry

in
g

V
A

R
;

V
A

R
-R

E
C

-
V

A
R

es
ti

m
a
te

d
re

cu
rs

iv
el

y
;

V
A

R
-R

O
L

-
V

A
R

es
ti

m
a
te

d
w

it
h

a
ro

ll
in

g
w

in
d
ow

.
F

o
r

th
e

ra
n
d
o
m

w
a
lk

m
o
d
el

w
e

re
p

o
rt

th
e

m
ea

n
sq

u
a
re

fo
re

ca
st

er
ro

r
(M

S
F

E
).

F
o
r

th
e

o
th

er
m

o
d
el

s
w

e
re

p
o
rt

th
e

re
la

ti
v
e

m
ea

n
sq

u
a
re

fo
re

ca
st

er
ro

r

(R
M

S
F

E
),

i.
e.

th
e

ra
ti

o
o
f

th
e

M
S
F

E
o
f

a
p
a
rt

ic
u
la

r
m

o
d
el

to
th

e
M

S
F

E
o
f

th
e

n
ä
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Table 3: PITs Tests.

Horizon Variable Moment RW AR-REC AR-ROL SV-AR TV-AR VAR-REC VAR-ROL SV-VAR TV-VAR

(quarters)

π 3rd -0.05 0.44 0.65 0.37 0.50 0.59 -0.10 0.76 0.24

(0.15) (0.21) (0.59) (0.36) (0.40) (0.49) (0.18) (0.45) (0.27)

4th 0.94 1.50 7.73 4.00 4.25 6.15 1.25 4.89 2.68

(0.34) (0.53) (1.67) (0.88) (1.03) (1.32) (0.39) (1.25) (0.61)

1 UR 3rd 0.55 0.86 0.70 0.79 1.01 0.76 0.32 0.42 0.16

(0.31) (0.38) (0.58) (0.38) (0.42) (0.52) (0.26) (0.28) (0.29)

4th 2.25 2.96 7.05 3.55 4.11 6.27 2.16 2.52 2.64

(0.88) (1.10) (1.67) (1.04) (1.20) (1.48) (0.62) (0.68) (0.72)

IR 3rd 0.18 0.08 -0.34 -0.24 -0.18 -0.07 0.18 0.31 0.15

(0.61) (0.61) (0.61) (0.40) (0.38) (0.51) (0.59) (0.40) (0.45)

4th 7.00 6.99 6.94 3.74 3.64 5.77 6.68 4.05 4.65

(1.81) (1.83) (1.81) (1.14) (1.00) (1.43) (1.73) (1.07) (1.25)

π 3rd 0.18 1.12 0.52 0.76 1.01 0.61 -0.17 1.09 0.53

(0.51) (0.69) (0.93) (0.72) (0.72) (0.89) (0.55) (0.86) (0.50)

4th 2.51 3.00 7.45 3.84 3.86 7.06 2.86 5.22 2.68

(1.25) (1.94) (2.54) (2.06) (2.00) (2.41) (1.32) (2.44) (1.29)

4 UR 3rd 0.78 1.22 1.67 1.37 1.52 1.13 0.42 0.43 0.34

(0.64) (0.60) (0.86) (0.67) (0.72) (0.67) (0.37) (0.26) (0.25)

4th 4.00 3.04 5.83 3.93 4.18 4.61 1.46 1.52 1.30

(1.65) (1.58) (2.47) (1.87) (2.00) (1.82) (1.00) (0.54) (0.53)

IR 3rd 0.54 0.42 -0.17 0.30 0.61 0.15 0.35 1.31 1.04

(1.00) (0.89) (0.80) (0.53) (0.42) (0.82) (0.71) (0.95) (0.76)

4th 8.63 7.34 6.47 3.66 2.93 5.98 5.52 8.03 5.97

(2.73) (2.37) (2.02) (1.22) (0.82) (2.19) (1.78) (2.52) (1.92)

π 3rd 0.09 1.84 1.15 1.04 1.59 1.02 -0.21 1.26 0.97

(0.75) (1.12) (1.41) (0.92) (1.02) (1.33) (1.16) (1.11) (0.77)

4th 3.70 4.73 9.30 4.29 4.91 8.73 5.72 5.43 3.09

(2.19) (3.10) (3.93) (2.70) (2.77) (3.51) (3.15) (3.08) (2.15)

8 UR 3rd 0.73 1.80 2.16 1.77 2.10 1.70 0.35 0.44 0.39

(0.69) (0.99) (1.20) (0.99) (1.14) (1.07) (0.34) (0.27) (0.24)

4th 3.80 4.51 7.00 4.95 5.65 5.10 1.11 1.04 0.89

(1.68) (2.52) (3.23) (2.62) (3.03) (2.85) (0.69) (0.46) (0.37)

IR 3rd 0.99 1.02 -0.01 0.89 1.03 0.09 0.57 1.21 1.50

(1.49) (1.30) (1.38) (1.05) (0.80) (1.58) (1.14) (1.59) (1.16)

4th 10.80 8.61 9.94 6.29 4.52 10.25 7.28 10.60 7.36

(4.35) (3.55) (3.69) (2.56) (1.84) (4.43) (3.05) (4.31) (2.92)

π 3rd 0.21 2.66 1.81 1.43 2.26 1.41 -0.38 1.79 1.10

(0.52) (1.61) (1.91) (1.06) (1.41) (1.67) (1.57) (1.44) (0.75)

4th 2.26 6.86 12.72 4.52 6.54 10.35 7.61 6.57 2.82

(1.44) (4.38) (5.42) (3.00) (3.79) (4.43) (4.27) (3.97) (1.95)

12 UR 3rd 0.51 2.16 1.59 1.73 2.11 1.69 0.46 0.37 0.46

(0.57) (1.31) (1.06) (1.11) (1.30) (1.15) (0.53) (0.34) (0.30)

4th 2.72 5.54 5.47 4.98 5.87 5.23 1.78 1.13 0.96

(1.29) (3.32) (2.44) (2.72) (3.26) (3.04) (1.17) (0.64) (0.49)

IR 3rd 1.20 1.38 0.53 1.06 0.99 -0.07 1.06 1.28 1.63

(1.51) (1.56) (1.74) (1.36) (0.84) (1.67) (1.28) (1.99) (1.42)

4th 8.34 8.07 10.11 6.75 3.98 9.25 6.58 11.49 7.35

(4.63) (4.51) (4.81) (3.52) (1.80) (4.53) (3.56) (5.50) (3.73)

The table reports the estimates of the third and fourth moments of the distribution of the inverse normal transformation of the PITs.

HAC corrected standard deviations are reported in brackets.
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Table 4: Forecasting Accuracy over the sample 1970-2007: log scores.

Horizon Variable RW AR-REC AR-ROL SV-AR TV-AR VAR-REC VAR-ROL SV-VAR

(quarters)

π 0.20 0.19 0.13 0.07 0.08 0.20 0.11 0.14

(0.04) (0.04) (0.06) (0.03) (0.04) (0.04) (0.05) (0.05)

1 UR 0.14 0.08 0.20 0.03 0.02 0.10 0.05 -0.05

(0.05) (0.04) (0.14) (0.08) (0.06) (0.03) (0.06) (0.02)

IR 1.38 1.50 0.41 -0.05 -0.06 0.05 0.93 -0.06

(0.87) (1.15) (0.21) (0.11) (0.06) (0.51) (0.11) (0.05)

π 0.23 0.39 0.29 0.22 0.21 0.43 0.76 0.52

(0.07) (0.10) (0.13) (0.11) (0.10) (0.10) (0.41) (0.24)

4 UR 0.16 0.20 0.21 0.20 0.23 0.13 0.02 -0.08

(0.08) (0.09) (0.13) (0.18) (0.18) (0.05) (0.11) (0.03)

IR 0.30 0.20 0.26 -0.04 -0.02 0.47 0.03 0.07

(0.16) (0.15) (0.16) (0.05) (0.04) (0.08) (0.26) (0.08)

π 0.21 0.58 0.78 0.41 0.62 0.47 2.66 1.32

(0.13) (0.23) (0.39) (0.24) (0.41) (0.18) (2.04) (0.94)

8 UR 0.21 0.24 0.29 0.22 0.25 0.10 -0.14 -0.16

(0.08) (0.14) (0.15) (0.15) (0.17) (0.08) (0.14) (0.05)

IR 0.19 0.01 0.25 -0.09 -0.03 0.69 -0.01 0.10

(0.11) (0.08) (0.14) (0.06) (0.06) (0.10) (0.36) (0.13)

π 0.25 0.66 0.71 0.33 0.46 0.62 2.85 1.00

(0.12) (0.30) (0.32) (0.15) (0.23) (0.25) (2.06) (0.63)

12 UR 0.18 0.19 0.26 0.14 0.19 0.22 -0.18 -0.21

(0.08) (0.17) (0.15) (0.13) (0.17) (0.08) (0.18) (0.08)

IR 0.22 0.07 0.17 -0.04 -0.11 0.48 -0.05 0.10

(0.16) (0.11) (0.15) (0.09) (0.16) (0.08) (0.41) (0.21)

The table reports the results relative to the forecasting accuracy using predictive densities. The variable

we forecast are inflation (πt), the unemployment rate (URt) and the interest rate (IRt). The forecasting

models are: RW - random walk; AR-REC - AR estimated recursively; AR-ROL - AR estimated with a

rolling window; TV-VAR - time-varying VAR; VAR-REC - VAR estimated recursively; VAR-ROL - VAR

estimated with a rolling window. For each model we report the sample average of the difference between

the log score of the TV-VAR and the log score of that model. Standard deviation are reported in brackets.
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Table 5: Forecasting Accuracy over the sample 1985-2007: log scores.

Horizon Variable RW AR-REC AR-ROL SV-AR TV-AR VAR-REC VAR-ROL SV-VAR

(quarters)

π 0.27 0.23 0.05 0.06 0.05 0.25 0.11 0.09

(0.05) (0.05) (0.06) (0.03) (0.03) (0.05) (0.05) (0.03)

1 UR 0.22 0.13 0.02 -0.03 -0.03 0.00 0.12 -0.05

(0.04) (0.03) (0.05) (0.03) (0.03) (0.03) (0.08) (0.02)

IR 0.30 0.29 0.16 0.10 0.02 0.16 0.24 -0.03

(0.07) (0.06) (0.05) (0.12) (0.04) (0.06) (0.06) (0.03)

π 0.25 0.39 0.23 0.13 0.11 0.43 0.38 0.18

(0.07) (0.10) (0.17) (0.05) (0.05) (0.10) (0.13) (0.05)

4 UR 0.07 0.16 0.08 -0.02 0.00 0.18 0.09 -0.10

(0.05) (0.07) (0.13) (0.05) (0.06) (0.07) (0.18) (0.04)

IR 0.05 -0.01 0.16 -0.06 -0.02 0.25 -0.06 -0.05

(0.10) (0.10) (0.12) (0.07) (0.05) (0.10) (0.15) (0.08)

π 0.35 0.42 0.68 0.21 0.19 0.52 0.65 0.31

(0.12) (0.14) (0.45) (0.08) (0.08) (0.16) (0.27) (0.10)

8 UR 0.16 0.10 0.15 0.04 0.03 0.21 -0.10 -0.16

(0.09) (0.10) (0.13) (0.08) (0.08) (0.10) (0.22) (0.07)

IR 0.01 -0.10 0.22 -0.06 0.01 0.60 -0.18 -0.08

(0.11) (0.10) (0.15) (0.07) (0.07) (0.13) (0.34) (0.14)

π 0.43 0.38 0.79 0.25 0.21 0.63 0.81 0.36

(0.17) (0.18) (0.45) (0.11) (0.11) (0.25) (0.36) (0.15)

12 UR 0.22 0.00 0.15 -0.01 -0.04 0.26 -0.19 -0.24

(0.11) (0.10) (0.13) (0.08) (0.09) (0.11) (0.30) (0.11)

IR 0.09 -0.07 0.20 -0.06 0.05 0.89 -0.12 -0.13

(0.10) (0.07) (0.16) (0.09) (0.07) (0.10) (0.63) (0.15)

The table reports the results relative to the forecasting accuracy using predictive densities. The variable

we forecast are inflation (πt), the unemployment rate (URt) and the interest rate (IRt). The forecasting

models are: RW - random walk; AR-REC - AR estimated recursively; AR-ROL - AR estimated with a

rolling window; TV-VAR - time-varying VAR; VAR-REC - VAR estimated recursively; VAR-ROL - VAR

estimated with a rolling window. For each model we report the sample average of the difference between

the log score of the TV-VAR and the log score of that model. Standard deviation are reported in brackets.
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Figure 2: Stochastic Volatilities estimated with the TV-VAR model. Solid lines are the

posterior means of the variances of the reduced form residuals, dashed lines are the 68%

confidence bands.
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Figure 3: Two-years ahead forecast of inflation, the unemployment rate and the interest

rate. Shaded areas represent the 68% and 90% confidence bands and the solid line is the

true series.

29


