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Università Bocconi, IGIER and Baffi Carefin

Abstract

The conditions of validity of structural VAR techniques are less restrictive than usually

believed. A shock of interest can be recovered, either exactly or with good approximation,

even when invertibility does not hold or there are less variables in the VAR than shocks in

the macroeconomy. We state the conditions under which a VAR is informative enough to

estimate a shock (along with the impulse response functions) and show how to measure its

informational content. By using a seven-shock DSGE model, we show that the information

provided by a VAR may differ dramatically across shocks: the VAR may perform well

for some shocks and badly for others. We then use an informationally sufficient VAR for

validation purposes. We find that the transmission mechanism of news shocks predicted

by the theory is in line with empirical evidence.
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1 Introduction

In recent years several works have challenged the validity of structural VARs as a tool for

estimating and studying the transmission mechanisms of structural shocks. Actually, in many

of the DSGE models recently studied in the literature, the solution is incompatible with a

VAR representation. The basic problem has become known as “non-fundamentalness” or

“non-invertibility” of the moving average representation implied by the DSGE. When such

representation is not invertible, a VAR representation in terms of all of the structural shocks

does not exist (Lippi and Reichlin, 1993).1 In an important paper, Fernandez-Villaverde,

Rubio-Ramirez, Sargent and Watson, 2007 derive a condition for the validity of VAR methods,

related to the state space representation of the macroeconomy. The condition, known as the

“Poor Man’s Condition” (PMC henceforth), implies fundamentalness of the corresponding

moving average representation2 and the possibility of recovering all of the structural shocks

from a VAR.

Non-fundamentalness is best seen as an informational deficiency problem: the variables in

the VAR do not convey enough information to recover the structural shocks. Deficiency is

endemic in two relevant situations. First, when the number of shocks in the theoretical model

is larger than the number of variables included in the VAR. This case is particularly interesting

since the use of VAR models with few variables is widespread in the literature but modern

DSGE models feature a relatively large number of shocks (see Smets and Wouters, 2007).

Second, when the DSGE features the so-called “anticipated” shocks, that is, shocks with a

delayed effects on some variables. Anticipated shocks have recently become a standard feature

in DSGE models since they can match important empirical facts. Examples of anticipated

shocks are fiscal shocks (Leeper, Walker and Yang, 2013, Mertens and Ravn, 2010, Forni

and Gambetti, 2016), news shocks to TFP (Sims, 2012, Schmitt-Grohe and Uribe, 2012) and

risk shocks (Christiano, Motto and Rostagno, 2014). In presence of anticipated shocks, VAR

deficiency stems from the fact that, being the effects of the shock delayed, the current value of

the series does not convey information about the current shocks.

The increasing popularity of DSGE models featuring several sources of fluctuation, among

which anticipated shocks, has been coupled with an increasing skepticism about the effective-

ness of VAR methods. In an influential paper entitled “Assessing structural VARs”, Christiano,

1See also Hansen and Sargent, 1991 and Lippi and Reichlin, 1994a, 1994b. A partial list of recent papers

about nonfundamentlness includes Giannone, Reichlin and Sala, 2006, Giannone and Reichlin, 2006, Ravenna,

2007, Yang, 2008, Forni, Giannone, Lippi and Reichlin, 2009, Sims, 2012, Leeper, Walker and Yang, 2013,

Giacomini, 2013, Forni, Gambetti, Lippi and Sala, 2013, 2016, Forni, Gambetti and Sala, 2014, Forni and

Gambetti, 2014, Beaudry and Portier, 2015, Chen, Choi and Escanciano, 2015
2See Franchi and Paruolo, 2015, about the converse implication.
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Eichenbaum and Vigfusson (2007, p. 2) state that “structural VARs are a useful guide to con-

structing and evaluating DSGE models”. A few years later, Christiano, Motto and Rostagno

(2014, p. 49) give up performing a VAR for validation purposes, arguing that for their model

including anticipated shocks, “standard methods for identifying VARs do not work”.

In this paper we revisit the conditions of validity of standard structural VAR techniques.

When one looks at the VAR literature of the last twenty years it emerges clearly that the

common practice is to identify just one shock or a subset of shocks of interest (the so-called

partial identification). Partial identification characterizes for instance the extensive literature

on monetary policy shocks, government spending shocks and technology shocks. As far as

partial identification is concerned, the relevant issue is not to establish whether the VAR is

fundamental or not, but whether it can correctly estimate the shock of interest and its impulse

response functions.

Our starting point is the following question: what are the conditions under which a VAR

can successfully recover one specific structural shock? We argue that, from this perspective,

fundamentalness is unnecessarily restrictive and the appropriate condition is a shock-specific

condition, that we call informational sufficiency. The concept of informational sufficiency is

simple: a VAR is sufficient for a shock if such shock is a linear combination of the current

and past values of the variables included in the VAR. The relation with fundamentalness is

straightforward: fundamentalness holds if and only if the VAR is informationally sufficient

for all of the structural shocks. As we will show below partial sufficiency, far from being a

statistical curiosity, is a situation which arises in several economic models.

Our second argument is that in order for partial identification to be successful, sufficiency

has not to hold exactly. What is required is the parameters of the “true” model to be close to

the sufficiency region. The reason is that the impulse response coefficients implied by the VAR

are continuous functions of the true coefficients. Thus when the true coefficients are on the

border between the sufficiency and the deficiency regions, small movements toward the interior

of the deficiency region imply small changes of the impulse response functions.

A very simple and effective way to measure deficiency is to take the unexplained variance

of the orthogonal projection of the shock of interest, call it uit, onto the VAR residuals. This

measure, which we call δi, can easily be computed for any calibrated or estimated DSGE

model. It takes on values between zero and one: δi = 0 implies sufficient information, so that

the VAR specification is good; δi = 1 means no information, so that the VAR specification is

dramatically bad. If δi is close to zero the VAR is approximately sufficient and performs fairly

well, as shown in the examples of Section 3 as well as the empirical application.

The deficiency measure can be regarded as a generalization of the PMC, in the sense that

it essentially reduces to PMC when we require zero deficiency for all i. Unlike PMC, δi (a) is
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shock-specific, (b) provides information about the “degree” of non-fundamentalness, (c) can be

computed even if the number of variables in the VAR is smaller than the number of structural

shocks.

In the empirical application we illustrate the relevance of this generalization. We focus

on a New-Keynesian DSGE, similar to the one used by Blanchard, Lorenzoni and L’Huillier

(2013, BLL henceforth). The model features seven exogenous sources of fluctuations, including

a news permanent shock and a surprise temporary shock in technology. A few parameters are

calibrated by using BLL estimates, whereas the remaining ones are estimated by means of

Bayesian techniques. We then use such parameter values to compute δi, all i, for ten VAR

specifications, nine of them including less than seven variables. We find that fundamentalness

(and hence PMC) doe not hold in any of the specifications (including the seven-variable square

specification). Despite this result, most specifications are sufficient, or almost sufficient, for at

least one shock and most shocks can be perfectly, or almost perfectly, recovered from at least

one specification. The news shock, in particular, exhibits δ < 0.01 in four specifications.

Our proposed measure can be used for DSGE validation purposes as follows.3 Consider a

calibrated or estimated DSGE model and consider a VAR specification including a subset of

variables included in the DSGE. Compute δi under the null that the model is true. If δi is close

to zero, the teoretical VAR and the DSGE are compatible. Therefore we can assess whether

the impulse response functions derived from DSGE and in line with those obtained from the

VAR estimated with actual data. In the empirical application, we use this procedure to test

for the transmission mechanisms of the news shocks in the DSGE model described above. We

choose a relatively small VAR (a four-variable VAR) with δi = 0.006. We identify the news

shock consistently with the model and find that the theoretical response functions lie within

the VAR confidence bands for almost all variables.

We are close in spirit to three previous works. First, Sims, 2012, which shows that a VAR

may perform well despite non-fundamentalness. Second, Forni and Gambetti, 2014, where the

concept of sufficient information has first been proposed. Third, Sims and Zha, 2007, which

make use of the measure δi in the context of an empirical validation exercise.What we do here

is essentially to connect these seemingly unrelated ideas to each other and to existing VAR

validity conditions. The picture emerging and the implied reassessment of structural VARs is

the contribution of the present work.4

The remainder of the paper is organized as follows. Section 2 presents and discusses the

main ideas. Section 3 presents formal time series results and more technical material. Section

3See Canova (2002, 2007) for DSGE validation through VARs.
4Our paper is also related to Soccorsi, 2015, where an interesting fundamentalness measure is proposed. The

main difference with respect to δi is that it is not shock-specific, and, like PMC, is only defined for square

systems.
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4 shows a couple of examples and the related simulations. Section 5 discusses an application

of the theoretical framework to DSGE models and validates a theory of news shocks Section 6

concludes. The Appendix reports the details of the DSGE model used in Section 5.

2 Theory: the main ideas

In the present section we illustrate our main theoretical arguments; more technical details and

formal results are postponed to the following section.

2.1 The macroeconomy

We assume that the macroeconomic variables in the model have a Moving Average (MA)

representation, possibly derived from a state-space representation, where the structural shocks

propagate through linear impulse response functions. As a consequence, our results hold true

for any theoretical model (not necessarily DSGE) which can be cast in MA form.5

Let us focus on the section of the macroeconomic model corresponding to the variables

used in the VAR, i.e. the entries of the n-dimensional vector xt. We assume that xt, possibly

after transformations inducing stationarity, can be represented as

xt =
∞∑
k=0

Akut−k = A(L)ut, (1)

where ut = (u1,t · · · uq,t)′ is a q-dimensional white noise vector of mutually orthogonal macroe-

conomic shocks, and A(L) =
∑∞

k=0AkL
k is an n × q matrix of square-summable impulse

response functions.

Representation (1) is “structural” in the sense that the vector ut includes all of the ex-

ogenous shocks driving xt. However, we do not assume that all of the shocks in ut have a

structural economic interpretation: some of them may be statistical residuals, devoid of eco-

nomic interest, arising from measurement errors. This enables us to evaluate VAR deficiency

– and therefore its performance – with respect to the shocks of interest when actual variables

are affected by measurement errors.6

We do not assume that the number of variables n is equal to the number of shocks q.

In other words, representation (1) is not necessarily square. In particular, it can be “short”,

with more shocks than variables, q > n. Short systems are relevant for applied work for

5As observed above, a relevant problem for the validation of DSGE models through VARs is that most DSGE

models are non-linear. The theoretical impulse response functions result from a linear approximation which in

principle may be inaccurate. Since our focus is on informational deficiency, we do not address this issue here.
6Giannone, Reichlin and Sala, 2006, study the the impact of measurement errors in VAR estimation.
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two reasons. First, several empirical analyses are based on small-scale VARs, with just two

or three variables. If the economy is driven by a larger number of shocks, the above MA

system will be short. Second, most variables are in practice affected by measurement errors

and/or small shocks of limited economic interest, so that, even if we have as many variables as

major structural shocks (or even more variables than shocks) the system may be short because

measurement errors are included in the vector ut.
7

2.2 VAR deficiency

Given model (1), we want to evaluate whether a VAR in xt conveys the information needed to

recover the shocks of interest and the corresponding impulse response functions. In practice, the

impulse response function obtained with a VAR are affected by estimation errors arising from

the finiteness of the sample size. Such finiteness requires specification of low-order VARs, which

might be affected by truncation bias. Since our main focus here is on the non-fundamentalness

bias, we abstract from estimation errors and lag truncation, by replacing finite-sample, finite-

order VARs with orthogonal projections on infinite-dimensional information spaces.

Within this conceptual framework, the structural VAR procedure consists in performing

the orthogonal decomposition

xt = P (xt|Hx
t−1) + εt, (2)

where Hx
t is the closed linear space span(x1,t−k, . . . , xn,t−k, k = 1, . . . ,∞) and εt is the Wold

innovation, and capturing uit (by means of suitable identification restrictions) as a linear

combination of the entries of εt.

The best possible result is the projection of uit onto the entries of εt. We therefore consider

the projection equation

uit = Mεt + eit. (3)

We define informational deficiency as the fraction of unexplained variance in the above

regression:8

δi = σ2ei/σ
2
ui . (4)

The deficiency measure δi can be computed from the theoretical model (1), that is from

A(L), according to the formula provided in Section 3.

We say that xt is informationally sufficient for uit if and only if uit is an exact linear

combination of the entries of εt, i.e. uit = Mεt and δi = 0. In Section 3 we show that

7“Tall” systems, i.e. systems with more variables than shocks, are also interesting from a theoretical point of

view, but are unlikely to occur in practice, because of measurement errors. We shall not consider them further

in the present work.
8For simplicity of notation we do not explicit the dependence of δi on xt.
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projecting uit onto the entries of εt is equivalent to projecting it onto the VAR information

set Hx
t . It follows that we have sufficiency for uit if and only if uit ∈ Hx

t ; in words, if

the structural shock is a linear combination of the present and past values of the variables

included in the VAR. By the very definition of informational sufficiency, if the vector M is

obtained (by imposing suitable identification restrictions derived from economic theory), then

an informationally sufficient VAR for uit delivers uit without error, whereas an informationally

deficient VAR for uit produces an approximation, whose error is measured by δi.

However, the ultimate goal of the VAR procedure are the impulse response functions, rather

than the shock uit itself. In Section 3 we show that a VAR, which is sufficient for uit (but

possibly deficient for the other structural shocks) —and correctly identifies it as Mεt— delivers

the correct impulse response functions. In addition, the impulse response coefficients implied

by the VAR are continuous functions of the true ones. Hence, when the true coefficients change,

moving from the border of the sufficiency region towards the interior of the deficiency region

(so that δi becomes positive) δi provides a meaningful indication about the performance of the

theoretical VAR in approximating the impulse response functions.

Of course, in practical situations we do not have theoretical VARs, but only finite-sample,

finite-order VARs, which are affected by estimation and lag-truncation errors. Such real world

VARs provide estimates whose asymptotic bias is measured by δi, as the sample size and the

truncation lag increase at appropriate rates.

Although the truncation bias is not our focus here, the deficiency measure can be naturally

extended to the case of finite-order VARs. Deficiency of a VAR(K) with respect to uit, denoted

by δKi , is given by the fraction of unexplained variance of the projection of uit onto the truncated

VAR information space spanned by present and past values of the x’s, until the maximum lag

K. By its very definition, the sequence δKi is nonincreasing in K. The finite-order deficiency

δKi measures the total asymptotic bias due to deficiency plus lag truncation, provided that the

VAR residuals are serially uncorrelated (see Section 3 for details).

2.3 Beyond the Poor Man’s Condition

How does our deficiency measure relate to fundamentalness and existing fundamentalness con-

ditions? We have fundamentalness when all of the shocks in ut belong to the econometrician

information set, i.e. uit ∈ Hx
t , for all i. Hence we have fundamentalness if, and only if, the

VAR is informationally sufficient for all shocks, that is δi = 0 for all i. Sufficient information

is then a notion of “partial fundamentalness”, a straightforward shock-specific generalization

of the fundamentalness concept.

Note that short systems are never fundamental (see Section 3, Proposition 1). This is quite

intuitive: if we have just n variables we cannot estimate consistently more than n orthogonal
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shocks. By contrast, square systems can be either fundamental or not, depending on the roots

of the determinant of A(L): we have fundamentalness if there are no roots smaller than 1 in

modulus.

Fernandez-Villaverde et al., 2007, propose a fundamentalness condition, the PMC, based

on the state-space representation of the economy. Consider the following linear equilibrium

representation of a DSGE model

st = Ast−1 +But (5)

xt = Cst−1 +Dut (6)

where st is an m-dimensional vector of stationary “state” variables, xt is the n-dimensional

vector of variables observed by the econometrician, and ut is the q-dimensional vector of shocks

with q ≤ m. A, B, C and D are conformable matrices of parameters, B has a left inverse B−1

such that B−1B = Iq. Representation (5)-(6) can always be cast in form (1). If the matrix

D is square (this implies that the system is square, q = n) and invertible, the matrix A(L)

appearing in representation (1) can be written as

A(L) = DB−1
[
I − (A−BD−1C)L)

]
(I −AL)−1B. (7)

The PMC is that all the eigenvalues of the matrix A − BD−1C are strictly less than one in

modulus. It is easily seen that, if the PMC holds, the MA representation of xt is invertible and

ut can be represented as a linear combination of the present and past values of xt. In other

words, the PMC implies fundamentalness, i.e. sufficient information for all shocks.9 Hence, if

the system is square, and the PMC holds, then δi = 0 for all i.

Summing up, the deficiency measure can be regarded as a generalization of the PMC (as

well as other existing fundamentalness conditions), both because it is shock specific and because

it provides information about the “degree” of non-fundamentalness. In addition, the PMC is

only defined for square systems, whereas deficiency does not require q = n.

This generalization is very important for applied work. As anticipated above, short systems

are never fundamental. Adding variables to the VAR in such a way to get a square system

does not necessarily solve the problem. Let us stress again that non-fundamental structural

MA representations, far from being an oddity, are quite common in modern macroeconomic

models. We show below that, despite non-fundamentalness, we may have small deficiency for a

single shock of interest even when q > n. This implies a relevant fact, which is not well known

in the literature: small-scale VARs can in principle be successfully employed even when the

number of shocks driving the economy is large.

9About the converse implication see Franchi and Paruolo (2015).
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Sims (2012) makes the point that a VAR may perform reasonably well even if fundamen-

talness does not hold. With his words, non-fundamentalness “should not be thought of as

an “either/or” proposition – even if the model has a non-invertibility, the wedge between

VAR innovations and economic shocks may be small, and structural VARs may nonetheless

perform reliably” (Sims, 2012, abstract). Both Beaudry and Portier (2015) and the present

work provide further evidence about this fact. Our deficiency measure can be regarded as a

formalization of the notion of “wedge” discussed in Sims’ paper.

3 Theory: formal results

This section presents formal time series results, the related proofs and some technical discus-

sion. It can be skipped by the non technical reader without loosing the general message of the

paper and without threatening the comprehension of the following sections.

3.1 Fundamentalness: definition and standard results

Let us begin by reviewing the definition of fundamentalness and a few related results.

Definition 1 (Fundamentalness). We say that ut is fundamental for xt, and the MA rep-

resentation xt = A(L)ut is fundamental, if and only if uit ∈ Hx
t , i = 1, . . . , q, where Hx

t =

span(x1,t−k, . . . , xn,t−k, k = 0, . . . ,∞).

Now, consider the theoretical projection equation of xt on its past history, i.e. equation (2).

The Wold representation of xt is

xt = B(L)εt, (8)

where B(0) = In.

The following result is standard in time series theory.

Proposition 1. ut is fundamental for xt if and only if there exist a nonsingular matrix Q such

that ut = Qεt.

It is apparent from the above condition that fundamentalness cannot hold if the system

is short. In this case, a matrix Q satisfying Proposition 1 does not exist, since for any q × n
matrix Q, with q > n, the entries of Qεt are linearly dependent, whereas the entries of ut are

mutually orthogonal.

By contrast, in the square case n = q fundamentalness clearly holds if the impulse response

function matrix A(L) is invertible; for, in this case, we can write

A(L)−1xt = ut,
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so that the condition defining fundamentalness is fulfilled. It is easily seen from (8) that in

this case Proposition 1 holds with Q = A(0)−1 and A(L) = B(L)A(0).

In the particular case of A(L) being a matrix of rational functions, fundamentalness of ut

for xt is equivalent to the following condition (see e.g. Rozanov, 1967, Ch. 2).

Condition R. The rank of A(z) is q for all complex numbers z such that |z| < 1.

When A(L) is a square matrix the above condition reduces to the well known condition that the

determinant of A(z) has no roots smaller than one in modulus. Fundamentalness is therefore

slightly different from invertibility, since invertibility rules out also roots with modulus equal

to 1. Hence invertibility implies fundamentalness, whereas the converse is not true.10

3.2 Sufficient information

For simplicity we shall assume here that the target of VAR estimation is the single shock of

interest uit (along with the corresponding impulse response functions). The generalization to

any subvector vt of ut, including s ≤ q shocks, is straightforward.

Let us go back to the VAR representation of xt, i.e. equation (2), and the projection equa-

tion (3). The following proposition says that the structural VAR strategy, i.e. approximating

uit by means of the VAR residuals, is optimal in the sense that it provides the best linear

approximation, given the VAR information set.

Proposition 2 (Optimality of the structural VAR procedure). The projection of uit onto the

entries of εt, i.e. Mεt, is equal to the projection of uit onto Hx
t .

Proof. From (3) it is seen that Hx
t is the direct sum of the two orthogonal spaces Hx

t−1 and

span(εjt, j = 1, . . . , n). Hence P (uit|Hx
t ) = P (uit|εjt, j = 1, . . . , n) + P (uit|Hx

t−1). Since uit

is orthogonal to the past values of the x’s, the latter projection is zero. Hence P (uit|Hx
t =

P (uit|εjt, j = 1, . . . , n) = Mεt. QED

Proposition 2 motivates the following definitions.

Definition 2 (VAR deficiency and sufficient information). The informational deficiency of xt

(and the related VAR information set Hx
t ) with respect to uit is

δi = var[uit − P (uit|Hx
t )]/σ2ui = σ2ei/σ

2
ui .

We say that xt is informationally sufficient for uit if and only if δi = 0, i.e. uit ∈ Hx
t , or,

equivalently, uit = Mεt.

10The unit root case is economically interesting in that, if xt = ∆Xt and the determinant of A(z) vanishes

for z = 1, then the entries of Xt are cointegrated. Non-invertibility implies that xt does not have a VAR repre-

sentation and VAR estimates do not have good properties. However this problem can be solved by estimating

an ECM or a VAR in the levels Xt.
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As an immediate consequence of Definitions 1 and 2, we have the following result.

Proposition 3. ut is fundamental for xt if and only if xt is informationally sufficient for uit,

i = 1, . . . , q, i.e. δi = 0 for all i.

3.3 Partial sufficiency: IRFs

Until now we have focused on the conditions under which the VAR is able to recover the shock

uit. However, the ultimate goal of the VAR validation procedure are the impulse response

functions, rather than the shock itself. Hence a basic question in our framework is the following.

Let the VAR be sufficient for uit and the identification restrictions be correct. Are the impulse

response functions obtained from the VAR equal to the theoretical ones? Standard results in

VAR identification theory guarantee a positive answer when the MA representation is (globally)

fundamental. But what happens if this is not the case?

The structural VAR procedure consists in inverting the VAR representation to estimate the

Wold representation (8) and choosing identification restrictions which deliver an “identification

matrix”, say Q. The structural shocks are then obtained as vt = Qεt and the corresponding

impulse response functions as A∗(L) = B(L)Q−1.

Let us assume that Hx
t is sufficient for uit, so that uit can be recovered as the linear

combination Mεt. We shall use the following definition.

Definition 4 (Correct identification). An identification matrix is a nonsingular n× n matrix

Q such that QΣεQ
′ is diagonal, i.e. the entries of vt = Qεt are orthogonal. An identification

matrix is correct for uit if and only if vt = Qεt is such that vht = uit for some 1 ≤ h ≤ n, i.e.,

denoting with Qh the h-th line of Q, Qh = M .

If Q is a correct identification matrix, we can write the impulse response function representation

derived from the VAR as

xt = A∗(L)vt = A∗h(L)vht +A∗−h(L)zt = A∗h(L)uit +A∗−h(L)zt, (9)

where A∗h(L) is the h-th column of A∗(L), A∗−h(L) is the n×n−1 matrix obtained by eliminating

the h-th column from A∗(L) and zt = (v1t · · · vh−1,t vh+1,t · · · vnt)′. A∗h(L) is the vector of

impulse response functions derived from the VAR – let us say the “empirical” impulse response

functions, even if, of course, we are speaking of the population VAR (with infinite sample size

and infinite number of lags).

Now let Ai(L) be the i-th column of A(L) and A−i(L) be the n× q− 1 matrix obtained by

eliminating the i-th column from A(L). The structural MA representation can then be written

as

xt = A(L)ut = Ai(L)uit +A−i(L)wt, (10)

10



where wt = (u1t · · ·ui−1,t ui+1,t · · ·uqt)′. Ai(L) is the vector of the “true” impulse response

functions.

Proposition 4. Let xt and the related VAR be informationally sufficient, and the identification

matrix be correct for uit. Then the empirical impulse response functions are equal to the true

impulse response functions, i.e. there is a column h of A∗(L) such that A∗h(L) = Ai(L).

Proof. Let us first observe that the entries of vt are orthogonal at all leads and lags, since

vt = Qεt is a vector white noise and Q is an identification matrix. It follows that uit is

orthogonal to the entries of zt at all leads and lags. Moreover, by the assumptions of model

(1), uit is also orthogonal to ujt, j 6= i, and therefore to the entries of wt, at all leads and lags.

From (9) and (10) we get A∗h(L)uit +A∗−h(L)zt = Ai(L)uit +A−i(L)wt. Projecting both sides

onto ui,t−k, k ≥ 0 we get A∗h(L)uit = Ai(L)uit, which implies the result. QED

Let us remark that the equality result in Proposition 4 translates into a consistency re-

sult for real-world, finite-sample VARs, provided that the parameters of the population VAR

are estimated consistently, and the truncation lag increases with the sample size, following a

consistent information criterion.

3.4 Partial sufficiency: variance decomposition

Under sufficiency the “empirical” IRFs of uit are equal to the true IRFs. But what about the

forecast error variance decomposition when sufficiency does not hold for all shocks? It turns

out that it is downward biased, as shown by the following argument.

It is well known that Hε
t ⊆ Hu

t and, if ut is non-fundamental for xt, H
ε
t ⊂ Hu

t . As a

consequence, in the non-fundamental case, the prediction error of vt is larger than the one of

ut. Precisely, for any horizon s ≥ 0, we have

var [P (xi,t+s|Hu
t−1)− xi,t+s] ≤ var [P (xi,t+s|Hv

t−1)− xi,t+s], (11)

and the inequality is strict at least for s = 0 if ut is non-fundamental for xt. Hence if xt is

informationally sufficient for uit, but not for all shocks, then total forecast error variance is

overestimated by the VAR model at short horizons. On the other hand, Proposition 4 implies

that the impulse response functions of uit, and therefore the variance of the forecast errors, is

estimated consistently. Putting things together, the fraction of total variance accounted for by

uit, derived from the VAR, is downward biased, since the numerator is unbiased, whereas the

denominator is upward biased.11

11If xit = ∆Xit a similar result holds for the decomposition of the forecast error variance of the level Xi,t+s.

This explains the large estimation error, at horizon 0, reported in Table 1 for the variable rt.
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An alternative variance decomposition, which is not affected by this bias, is obtained by

using integrals of the spectral densities over suitable frequency bands (see e.g. Forni, Gambetti

and Sala, 2016).

Let Ai,j(L) and A∗h,j(L), be the j-th elements of the matrices Ai(L), A∗h(L), respectively.

As is well known, the variance of the component of xjt which is attributable to vht can be

computed as σ2vh
∫ π
0 A−i,j(e

−iθ)A−i,j(e
iθ)dθ/π. If we are interested for instance in the variance

of waves of business cycle periodicity, say between 8 and 32 quarters, the corresponding an-

gular frequencies (with quarterly data) are θ1 = π/4 and θ2 = π/16 and the corresponding

variance is σ2vh
∫ θ2
θ1
A−i,j(e

−iθ)A−i,j(e
iθ)dθ/π. On the other hand, the total “cyclical” variance

of xjt is given by
∫ θ2
θ1
Sxj (θ)dθ/π, where Sxj (θ) denotes the spectral density of xjt. Hence the

contribution of vht to the cyclical variance of xjt is given by

σ2vh
∫ θ2
θ1
A∗h,j(e

−iθ)A∗h,j(e
iθ)dθ∫ θ2

θ1
Sxj (θ)dθ

.

Similarly, the contribution of uit is given by

σ2ui
∫ θ2
θ1
Ai,j(e

−iθ)Ai,j(e
iθ)dθ∫ θ2

θ1
Sxj (θ)dθ

.

Under the assumptions of Proposition 4, the numerators are equal, so that the ratios are equal.

Therefore this kind of variance decomposition analysis is preferable to the standard one in that

it is not biased in the case of partial fundamentalness.

3.5 Finite-order deficiency

In this subsection we consider a quite natural extension of the deficiency measure to the case

of finite-order VARs. Let us denote the VAR(K) information set as Hx
t (K) = span(xj,t−k, j =

1, . . . , n, k = 0, . . . ,K) and consider the orthogonal decompositions

xt = P (xt|Hx
t (K)) + εKt (12)

uit = MKεKt + eKit . (13)

Proposition 2 still holds for the finite-order VAR.

Proposition 2′ The projection of uit onto the entries of εKt , i.e. MKεKt , is equal to the

projection of uit onto Hx
t (K).

The proof is the same as that of Proposition 2, with εKt in place of εt and Hx
τ (K) in place of

Hx
τ , τ = t, t− 1. The VAR(K) deficiency can then be defined as

δKi = var[uit − P (uit|Hx
t (K))]/σ2ui = σ2

eKi
/σ2ui . (14)
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Correspondingly, we can say that Hx
t (K) is informationally sufficient for uit if and only if

δKi = 0, i.e. uit ∈ Hx
t (K), or, equivalently, uit = MKεKt .

As K increases, the spaces Hx
t (K) are nested, so that the sequence δKi is non-increasing in

K and δi ≤ δKi for any K. The difference δKi − δi provides information about the additional

effect of lag truncation on estimation of the shock uit.

By inverting the finite-order VAR, we get the representation

xt = BK(L)εKt ,

and, by imposing the identification constraints, we get the “shocks” vKt = QεKt and the corre-

sponding impulse response functions

AK(L) = BK(L)Q−1. (15)

Proposition 4, as it is, does not hold for the finite-order VAR. It might be the case that the

K-order VAR is sufficient for uit, but the corresponding impulse response functions are biased.

This is because the VAR residuals in εKt might be serially correlated. To get unbiasedness of

these response functions we need to reinforce the assumptions of Proposition 4 with the addi-

tional condition that εKt is a vector white noise (i.e. xt has an exact VAR(K) representation).

Proposition 4′. Let a VAR(K) be informationally sufficient, and the identification matrix

be correct for uit. Assume further that the VAR residual εKt is a vector white noise. Then

the empirical impulse response functions are equal to the true impulse response functions, i.e.

there is a column h of AK(L) such that AKh (L) = Ai(L).

We omit the proof, which is essentially the same as that of Proposition 4. Notice that, starting

from the parameters of the economic model, we can check in principle whether zero serial

correlation of εKt is fulfilled. In the latter case, the difference δKi − δi can be regarded as a

measure of the additional bias due to lag truncation.

3.6 Computing deficiency

To compute VAR deficiency, a simple formula can be derived as follows. Let us write the

projection equation of uit onto Hx
t (K) as

uit = P (uit|Hx
t (K)) + eKit = Fyt + eKit ,

where yt−1 = (x′t−1 · · · xt−K)′ and F = E(uity
′
t−1)Σ

−1
y , Σy being the variance covariance

matrix of yt. From (16) and the above equation we get

δi(K) = 1− FΣyF
′/σ2ui = 1− E(uity

′
t)Σ
−1
y E(uity

′
t)/σ

2
ui .
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Using (10) it is easily seen that E(uitx
′
t) = Ai(0)′ and E(uitx

′
t−k) = 0 for all k > 0, so that

E(uity
′
t) = (Ai(0)′ 0 · · · 0).

Hence

δKi = 1−Ai(0)′GAi(0)/σ2ui , (16)

where G is the n× n upper-left submatrix of Σ−1y , Σy being

Σy =


Γ0 Γ1 · · · ΓK−1

Γ−1 Γ0 · · · ΓK−2
...

...
. . .

...

Γ−K+1 Γ−K+2 · · · Γ0

 , (17)

where Γk = E(xtx
′
t−k), k = 0, . . . ,K−1. The covariance matrices of xt can easily be computed

from the MA representation (1) by using the covariance generating function

A(L)ΣuA(L−1)′ =

∞∑
k=−∞

ΓkL
k. (18)

As for δi, it can simply be approximated with any desired precision by using a suitably large

K.12

3.7 Near sufficiency and the empirical IRFs

What happens if δi is not exactly zero, but close to zero? The following continuity argument

shows that the empirical IRFs are close to the true IRFs.

Let us assume for simplicity that the true IRFs are rational functions of the form Aij(L) =

Nij(L)/Dij(L) with maximum lag l1 at the numerator and l2 at the denominator, so that each

entry is characterized (under the normalization Dij(0) = 1) by l = l1 + l2 − 1 parameters.

12An exact formula for δi is

δi = 1 − σ2
ui
Ai(0)′Σ−1

ε Ai(0). (19)

This formula is obtained from (3) by observing that M = E(uitεt
′)Σ−1

ε and noting that, by (2) and (1),

E(εtuit) = E(xtuit) = Ai(0)σ2
ui

. If the model can be written in the state-space form

st = Ast−1 +But

xt = Hst

the matrix Σε can be obtained from the Wold representation

xt =
{
In +H(Im −AL)−1SL

}
εt

where S is the steady-state Kalman gain: Σε is given by HPH ′, where P is the steady-state variance-covariance

of the states.
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Moreover, without loss of generality, let us normalize the structural shocks in such a way that

Σu = Iq. Hence the parameters of the macroeconomic model can be assembled into the finite-

dimensional vector θ ∈ Rm, with m = nq(l+ 1). Now, the point is that the empirical IRFs are

continuous functions of θ.

To see this, consider the companion form of the VAR(K), i.e.

yt = Ryt−1 + st,

where yt = (x′t · · · xt−K+1)
′, st = [εK

′
t 0 · · · 0]′ and

R =


Φ1 Φ2 · · · ΦK−1 ΦK

In 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · In 0

 (20)

(
Φ1 Φ2 · · · ΦK

)
=
(

Γ1 Γ2 · · · ΓK

)
Σ−1y , (21)

Σy being defined in (17). The empirical impulse response functions AK(L) are given by equa-

tion (15), where BK(L) is the n× n upper-left submatrix of

Is +RL+R2L2 + · · · , s = nK. (22)

The matrices Γk, k = 1, . . . ,K are convolutions of the true IRF (matrix) coefficients, as implied

by (18), so that they are continuous functions of θ. Moreover R, and ultimately the empirical

IRFs in AK(L) = AK0 + AK1 L + AK2 L
2 + · · · + AKk L

K + · · · , are continuous functions of the

covariances Γk, k = 1, . . . ,K (whenever Σ−1y exists), as implied by (20), (21) and (22). Hence

AKk,j,i, the j, i entry of AKk , is a continuous function of θ and so is the bias βKk,j,i = |AKk,j,i−Ak,j,i|.
Similarly, δKi is a continuous function of θ (see equation(16)).

Now, let Bi ⊂ Rm be the boundary of uit’s sufficiency region and let the assumptions of

Proposition 4′ be fulfilled. If δKi (θ) is small, then θ is close to some θ̄ ∈ Bi where, by Proposition

4′, βKk,j,i(θ̄) = 0 for any j and k. By continuity, βKk,j,i(θ) must be small as well, for any variable

and lag.

4 Examples and simulations

In this section we show two simple examples illustrating the concepts of partial sufficiency and

approximate partial sufficiency. In addition, we study the VAR implications of a fully fledged

DSGE model featuring news shocks. A few simulations are performed to show the connection

between the deficiency measure δi and the VAR performance.
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4.1 Example 1: Exact partial sufficiency in a square system

Let us assume that output deviates from its potential value because of a demand shock dt

inducing temporary fluctuations, and reacts negatively to the interest rate rt, expressed in

mean deviation, with a one-period delay. Precisely, the output gap yt is given by

yt = (1 + αL)dt − βrt−1,

where α and β are positive. The central bank aims at stabilizing output by responding to

output gap deviations, so that the interest rate follows the rule

rt = γyt + vt,

where vt is a discretionary monetary policy shock and γ > 0.13 The structural MA represen-

tation for the output gap and the interest rate is then(
yt

rt

)
=

1

1 + γβL

(
1 + αL −βL

γ(1 + αL) 1

)(
dt

vt

)
. (23)

Here the determinant of the MA matrix is (1 +αL), which vanishes for L = −1/α, so that the

representation is non-fundamental if |α| > 1. From the policy rule we see that vt = rt − γyt,
so that the monetary policy shock can be recovered from the present values of the variables

included in the VAR, irrespective of α (of course, dt cannot be found from the x’s if |α| > 1).

What happens when the above model is non-fundamental (α > 1) and the econometrician

tries to estimate the monetary policy shock and the related impulse-response functions? To

answer this question we generated 1000 artificial data sets with 200 time observations from

(23), with α = 3, γ = 0.4, β = 1 and standard normal shocks. We then estimated for each

data set a VAR with 4 lags and identified both shocks by imposing a standard Cholesky, lower

triangular impact effect matrix, consistently with the model.

Figure 1 displays the true impulse response functions (red solid lines) along with the me-

dian (black dashed lines), the 5-th and the 95-th percentiles (grey area) of the distribution

of the estimated impulse-response function to the demand shock dt (first column) and the

monetary policy shock vt (second column). In the lower panels we report the distributions of

the correlation coefficients between the estimated shocks and the true shocks.

The figure shows clearly that the impulse response functions are very poorly estimated for

dt, but very precisely for vt. A similar result holds for the shocks themselves: the distribution

of the correlation coefficients is very close to 1 for vt and far from 1 for dt.

13The example can be easily generalized to the case of a more realistic rule where the interest rate also reacts

to inflation.
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Let us now have a look to the true and estimated variance decomposition. Table 1 shows the

fraction of the forecast error variance of yt and rt accounted for by the monetary policy shock.

The contribution of the monetary policy shock to total variance is severely underestimated on

impact, slightly underestimated at horizon 1 and well estimated at longer horizons.

Table 2 shows the values of δKd , δKv , K = 1, 4, 1000. The VAR is dramatically deficient for

the demand shock, consistently with Figure 1, but exhibits perfect information for the second

shock, the monetary policy shock. Note that xt must be deficient for the demand shock, since

the MA representation is non-fundamental.

4.2 Example 2: Near sufficiency in a short system

Partial approximate sufficiency, far from being a statistical curiosity, is relevant in practice.

As already noticed, most observed variables are likely affected by small macroeconomic shocks

and/or measurement errors. Owing to these minor shocks, the applied researcher is usually

faced with short systems, which are necessarily non-fundamental, but may be approximately

sufficient for the shocks of interest.

As an example, consider the following news shock model, similar to the one used in Forni,

Gambetti and Sala (2014). Total factor productivity, at, follows the slow diffusion process

at = at−1 + αεt + εt−1 (24)

where 0 ≤ α < 1.

The representative consumer maximizes

Et

∞∑
t=0

βtct, (25)

where Et denotes expectation at time t, ct is consumption and β is a discount factor, subject

to the constraint ct + p̄tnt+1 = (p̄t + at)nt, where p̄t is the price of a share, nt is the number

of shares and (p̄t + at)nt is the total amount of resources available at time t. The equilibrium

value for asset prices is given by:

p̄t =
∞∑
j=1

βjEtat+j . (26)

Using (24), we see that Etat+k = at + εt for all k > 0. Hence, p̄t = (at + εt)β/(1 − β) and

∆p̄t = b(1 +α)εt, where b = β/(1−β). Let us assume further that actual prices pt are subject

to a temporary deviation from the equilibrium, driven by the shock dt, so that pt = p̄t + γdt.

In addition, let us add an orthogonal measurement error et to the technology variable a∗t ,
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observed by the econometrician. The structural MA representation of ∆a∗t and ∆pt is short,

because we have three shocks and just two variables:

(
∆a∗t
∆pt

)
=

(
α+ L 0 θ(1− L)

b(1 + α) γ(1− L) 0

)εtdt
et

 . (27)

We assume unit variance shocks, so we add a scaling factor θ to the impulse response function

of et to control for the size of the measurement error. We set β = 0.99, α = 0.5 and γ = 20.

Moreover, we set θ = 0.5, so that the measurement error is large (it explains more than 25%

of the total variance of ∆a∗t ).

Figure 2 shows the estimation results obtained by a Monte Carlo exercise with T = 200,

i.i.d. unit variance Gaussian shocks and 1000 artificial data sets. The VAR is estimated with

4 lags and is identified by assuming that εt is the only shock affecting a∗t in the long run,

consistently with the model. The estimates of the technology shock εt and the related impulse

response functions are fairly good, even if a small distortion is visible. On the contrary,

the temporary shock to stock prices dt and the associated responses are poorly estimated.

Correspondingly, the deficiency measure is 0.03 for εt and 0.97 for dt (see Table 3).

4.3 A fully fledged model: computing the δ’s

Let us now consider a fully fledged economic model. The model is a New-Keynesian DSGE,

similar to the one used in Blanchard, Lorenzoni and L’Huillier (2013, BLL henceforth). It

features several frictions, such as internal habit formation in consumption, adjustment costs

in investment, variable capital utilization, Calvo price and wage stickiness. The model also

features seven exogenous sources of fluctuations; namely, a news shock and a surprise shock in

technology, an investment-specific shock, a monetary policy shock, a shock to price markups,

a shock to wage markups and a shock to government expenditures.

In particular we assume that the logarithm of technology follows the process

at = at−1 + εt−4 + (1− L)Tt (28)

Tt = ρTt−1 + vt (29)

where εt is a news shock, which is observed by agents at time t, but will be reflected in at at

time t + 4. The component Tt is a temporary component driven by the surprise technology

shock vt. The news shock εt is the main focus of our analysis.

As for the parameters, some of them are calibrated using the posterior mean values esti-

mated by BLL (see Table 4). The remaining ones are estimated using Bayesian techniques;
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estimation results are reported in Table 5. A complete description of the model and the

estimation details are reported in Appendix A.

Having the parameters, we can now compute VAR deficiency for different VAR specifica-

tions. We examine ten specifications:

S1 : TFP, consumption.

S2 : TFP, investment.

S3 : TFP, consumption, hours worked, interest rate.

S4 : TFP, GDP, consumption, hours, interest rate.

S5 : TFP, GDP, consumption, hours, inflation.

S6 : TFP, GDP, investment, hours, interest rate.

S7 : TFP, GDP, investment, hours, inflation.

S8 : TFP, GDP, investment, hours, interest rate and inflation.

S9 : TFP, GDP, consumption, investment, hours, interest rate.

S10 : TFP, GDP, consumption, investment, hours, interest rate and inflation.

The informational deficiency measure is computed on the variables transformed to obtain

stationarity (see Appendix A). The structural shocks cannot be fundamental for specifications

1-9, since they are short. Specification S10 is square, so that in principle we might have

fundamentalness. For each specification, we compute the value of δ(K), K = 1, 2, 4, 12, 1000.

The value of δ(1000) is taken as our approximation of δ. Even if we are primarily interested

in the news shock, we compute δ for all shocks for illustrative purposes.

Table 6 shows the results. Few observations are in order. First, the structural shocks are

non-fundamental for the variables in S10, since for some i we have δi > 0. Of course the PMC

is not satisfied, the largest eigenvalue being 1.13. Hence all of the specifications considered

have a non-fundamental representation in the structural shocks.

Second, despite non-fundamentalness, several specifications exhibit very low deficiency for

a few specific shocks. For instance, in the 4-variable specification S3, δi < 0.01 for both the

news and the surprise technology shocks (columns 1 and 2, respectively).

Third, a specification may be highly deficient for some shocks and sufficient for other shocks.

For instance specification S9 is sufficient, or almost sufficient, for four shocks out of seven, but

has a value of δ as high as 0.78 for the third shock, which is the price markup shock. This is

far from surprising, since the inflation rate is not included in S9.

19



Focusing on our shock of interest (first column), we see that there are four specifications,

namely S3, S4, S9 and S10, exhibiting a value of δ smaller than 0.05. Table 7 shows the

values of δ(K) for the news shocks, K = 1, 2, 4, 12, 1000, for these four specifications. As

already observed, these numbers should be interpreted as measuring the total bias due to non-

fundamentalness and lag truncation and therefore can provide some guidance for the number

of lags to use in the VAR. We see from the Table that including just one lag is inappropriate

for all specifications. By contrast, for K ≥ 2 the value of δ is smaller than 0.05. The most

interesting specifications are S3, which is parsimonious, and S10, which enables the researcher

to consider more variables.

4.4 A fully fledged model: simulations

Now let us focus on our preferred specifications S3 and S10. Chari et al., 2008, highlights that

the VAR may be affected by large truncation and estimation bias. To evaluate the different

sources of bias involved in VAR estimation, we generate artificial data for the variables in levels

from the model and estimate the VAR on artificial data in order to see whether the VAR is able

to reproduce the true impulse response functions. We use 500 Monte Carlo replications. For

each artificial data set we estimate a Bayesian VAR with diffuse priors and take the average

of the posterior impulse responses over 50 draws from the posterior distribution of the VAR

parameters.

Following Beaudry and Portier (2015), the news shock is identified by imposing that (i)

no shocks other than the technology surprise shock affect TFP on impact; (ii) surprise and

news shocks are the only ones affecting TFP at a given horizon.14 Restrictions (i) and (ii) are

just identifying and, of course, are consistent with the theory (see the above equation). This

identification scheme is the same as the one used in Forni, Gambetti and Sala (2014), where

condition (ii) is replaced by the equivalent condition that the effect of news on TFP at the

given horizon is maximized.

Figures 3 report the results for the four-variable specification S3. The blue dashed lines are

the theoretical impulse response functions. The red thick solid lines are obtained with 5000

time observations and 12 lags. We take them as showing the asymptotic deficiency bias. The

green dotted lines are obtained with 5000 time observations and 4 lags. We interpret them

as showing the total asymptotic bias due to deficiency and lag truncation. The black thin

solid lines are obtained with 243 observations15 and 4 lags. They show the total bias due to

deficiency, truncation and small sample estimation. The dark gray and light gray areas are the

14Here we use the five year horizon (lag 20). Other choices in the range 12-28 lags produce very similar results.

Longer horizons, such as the ten-year horizon, produce a larger estimation bias in the present case.
15This is in order to replicate the sample size in US data.
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68% and 90% posterior probability intervals obtained with 4 lags and 243 observations.

We see from the figure that (a) the deficiency bias is negligible, in that the red lines are

almost identical to the blue dashed lines; (b) the truncation bias is fairly small, even if it is

clearly visible in the TFP and the hours-worked panels (green-dotted versus red-solid lines);

(c) the small sample bias is sizable (black-solid versus green-dotted lines). The total bias is

relevant, particularly for consumption and hours worked. However, the theoretical impulse

response functions lie within the narrower bands, except for the corner of the TFP response

at lag 4.

Figure 4 reports results for the seven-variable specification. The conclusions are similar

to the previous ones, even if in this case the the total bias is somewhat less pronounced at

medium-long horizons.

5 Application: Validating a theory of news shocks

VAR analysis has been widely used in the literature for validation purposes or to discriminate

between competing models. A prominent example is the technology-hours debate. The RBC

model predicts that hours should increase while the New-Keynesian model predicts that hours

should fall in response to a contemporaneous and permanent technology shock. Gali, 1999,

estimates a bivariate VAR in labor productivity and hours and identifies the technology shock

as the only one shock driving labor productivity in the long run. He then checks whether hours

respond positively, as implied by the RBC model, or negatively, as implied by sticky prices

models.

In this section, we perform a validation exercise in the spirit of the above literature. The

reference model is the DSGE model described in the previous section. As before, we focus on

the news shock.

5.1 Choosing the VAR specification

In order for the results obtained from VAR analysis to be meaningful, it is important to check

that the deficiency measure associated to the VAR specification used is close to zero. Only in

that case the VAR evidence can support or reject the theory. If, on the other side, the measure

is large, the VAR specification is inappropriate.

Validation should therefore be performed through the following steps.

1. Consider a calibrated/estimated DSGE model and its linear equilibrium representation

as in (5)-(6) or (1). Select the shock of interest uit.
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2. Explore different VAR specifications (including variables represented in the model) by

computing δi. Choose a specification whose δi is smaller than a pre-specified threshold

(e.g. 0.05).

3. Estimate the VAR and verify whether the theoretical impulse response function lie within

the VAR confidence bands. If they do, the model is validated. If they do not, there is

something wrong either in the values of the parameters or in the model itself.

We have already explored in the previous Section the values of δi for the news shock for

several VAR specifications. As we have seen, specifications S3 and S10 are good and therefore

we use them for our validation exercise.

We use US quarterly data on Total Factor Productivity, real per-capita GDP, real per-

capita consumption of nondurables and services, real per-capita investment, per-capita hours

worked, the federal funds rate and the inflation rate. The sample span is 1954Q3-2015Q2.

Further details about the data and their treatment are provided in Appendix B.

All VAR estimates are Bayesian estimates with diffuse prior. Data are taken in levels. The

number of lags is 4. Point estimates of the impulse response functions are obtained as averages

of the posterior distribution across 500 draws. Identification of the news shock is obtained as

explained in subsection 4.4.

Let us anticipate that neither S3 nor S10 reject the model. Before considering S3 and S10

in more detail, however, let us see what happens if, ignoring deficiency, we use instead S1 or

S2, which have a large δi. Figure 5 shows the VAR results for the news shock obtained with

real data. The top panels refer to S1 while the bottom panels refer to S2. The black solid lines

are the empirical impulse response functions to unit-variance shocks. The blue dashed lines

are the theoretical impulse response functions to unit-variance shocks. According to S1, the

theoretical model should be rejected, because the effects of news shocks are largely overstated.

According to S2, the theoretical model should again be rejected, but for the opposite reason:

the effect of news is understated. Both conclusions are misleading.

5.2 Validating the theory

Let us come now to specifications S3 and S10. Figure 6 plots the results for the four-variable

specification. As before, the solid black line is the average of the posterior distribution, the dark

and light gray areas represent the 68% and 90% probability intervals, respectively and the blue

dashed line is the impulse response function of the economic model. For both specifications,

the theoretical impulse response functions have the correct signs and lie within the 90% bands

for all variables. However, the sudden reaction of TFP at lag 4 is clearly at odds with the

VAR estimates, where the empirical impulse response function increases gradually, according
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to a typical S-shape. Moreover, its long-run effect is much larger than the theoretical one. The

reaction of ours worked is anticipated with respect to the empirical one, whereas the converse

is true for the interest rate.

Figure 7 plots the results for the seven-variable specification. The above results are con-

firmed. The long-run reaction of TFP is now very close to the lower bound of the 68% posterior

probability interval. The reaction of GDP is almost identical to the empirical one. Notice how-

ever that, were the long-run effect on TFP be larger, the effect on GDP and consumption would

likely be overstated by the model.

Let us now focus on investment and inflation, two variables not present in specification S3.

The signs of the impulse response functions are correct. However, the reaction of investment

is understated by the model in the short run. Moreover, the effect on inflation predicted by

the model at horizon 30 is zero, whereas the empirical one is positive.

Our overall evaluation is that the model performs reasonably well but clearly understates

the long-run effects of technology news on TFP.

6 Conclusions

Structural VARs are well and alive. Existing validity conditions for structural VAR analysis

are unnecessarily restrictive. A single shock of interest can be recovered, either exactly or with

good approximation, even if the true model is non-fundamental and the Poor Man’s Condition

does not hold, and even if the number of variables is smaller than the number of structural

shocks driving the macroeconomy.

For the validity of a VAR, the relevant question is not whether we have fundamentalness

or not, but whether the VAR conveys enough information to recover the shock of interest and

the related impulse response functions. VAR deficiency for a given shock can be measured by

δi, i.e. the fraction of unexplained variance of the linear projection of the i-th shock onto the

VAR information set.

If a VAR is used to validate a macroeconomic model, δi can be used as a guidance for the

choice of the VAR specification. If δi is large, the VAR specification in inappropriate; if δi is

small, the VAR can provide a reliable assessment of the models.

For DSGE models including news or foresight shocks, non-fundamentalness is endemic.

Such models are often regarded as incompatible with VARs, in that a VAR representation in

the structural shocks does not exist. Hence we illustrate our ideas by conducting a validation

exercise with a news shock DSGE model. We show that a few VAR specifications exhibit a

deficiency very close to zero, despite non-fundamentalness. We find that the DSGE model

performs reasonably well in fitting the impulse response functions derived from US data.
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Appendix A: The DSGE model

The model follows closely Blanchard, L’Huillier and Lorenzoni (2013). The preferences of the

representative household are given by the utility function:

Et

[ ∞∑
t=0

βt
(

log (Ct − hCt−1)−
1

1 + ς

∫ 1

0
N1+ς
jt dj

)]
,

Ct is consumption, the term hCt−1 captures internal habit formation, and Njt is the supply of

specialized labor of type j. The household budget constraint is

PtCt + PtIt + Tt +Bt + PtC(Ut)K̄t−1 = Rt−1Bt−1 + Yt +

∫ 1

0
WjtNjtdj +RktKt,

where Pt is the price level, Tt is a lump sum tax, Bt are holdings of one period bonds, Rt is

the one period nominal interest rate, Yt are aggregate profits, Wjt is the wage of specialized

labor of type j, Njt. R
k
t is the capital rental rate.

Households choose consumption, bond holdings, capital utilization, and investment each

period so as to maximize their expected utility subject to the budget constraint and a standard

no-Ponzi condition. Nominal bonds are in zero net supply, so market clearing in the bonds

market requires Bt = 0.

The capital stock K̄t is owned and rented by the representative household and the capital

accumulation equation is

K̄t = (1− δ)K̄t−1 +Dt [1−G(It/It−1)] It,

where δ is the depreciation rate, Dt is a stochastic investment-specific technology parameter,

and G is a quadratic adjustment cost in investment

G(It/It−1) = χ(It/It−1 − Γ)2/2,

where Γ is the long-run gross growth rate of TFP. The model features variable capacity utiliza-

tion: the capital services supplied by the capital stock K̄t−1 are Kt = UtK̄t−1, where Ut is the

degree of capital utilization and the cost of capacity utilization, in terms of current production,

is C(Ut)K̄t−1 , where C(Ut) = U1+ζ
t /(1 + ζ).

The investment-specific shock dt = logDt follows the stochastic process:

dt = ρddt−1 + εdt.

εdt and all the variables denoted with ε from now on are i.i.d. shocks.
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Consumption and investment are in terms of a final good which is produced by competitive

final good producers using the CES production function

Yt =

(∫ 1

0
Y

1
1+µpt

jt dj

)1+µpt

which employs a continuum of intermediate inputs. Yjt is the quantity of input j employed

and µpt captures a time-varying elasticity of substitution across goods, where log(1 + µpt) =

log(1 + µp) +mpt and mpt follows the process mpt = ρpmpt−1 + εpt − ψpεpt−1.
The production function for intermediate good j is

Yjt = (Kjt)
α (AtLjt)

1−α ,

where Kjt and Ljt are, respectively, capital and labor services employed. The technology

parameter at = log(At) follows the process

at = at−1 + εt−4 + (1− L)Tt (30)

Tt = ρTt−1 + vt, (31)

where εt is a news shock that is known to agents at time t, but will be reflected in at at time

t+ 4 and the part Tt is a persistent, but temporary, surprise technology shock.

BLL (2013) treat explicitly the constant term in TFP growth by letting At = Γteat , but

calibrate Γ = 1.

Intermediate good prices are sticky with price adjustment as in Calvo, 1983. Each period

intermediate good firm j can freely set the nominal price Pjt with probability 1− θp and with

probability θp is forced to keep it equal to Pjt−1. These events are purely idiosyncratic, so θp

is also the fraction of firms adjusting prices each period.

Labor services are supplied to intermediate good producers by competitive labor agencies

that combine specialized labor of types in [0, 1] using the technology

Nt =

[∫ 1

0
N

1
1+µwt
jt dj

]1+µwt
,

where log(1 + µwt) = log(1 + µw) +mwt and mwt follows the process mwt = ρwmwt−1 + εwt −
ψwεwt−1.

The presence of differentiated labor introduces monopolistic competition in wage setting

as in Erceg, Henderson and Levin, 2000. Specialized labor wages are also sticky and set by the

household. For each type of labor j, the household can freely set the price Wjt with probability

1− θw and has to keep it equal to Wjt−1 with probability θw.

Market clearing in the final good market requires

Ct + It + C(Ut)K̄t−1 +Gt = Yt.
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Market clearing in the market for labor services requires
∫
Ljtdj = Nt.

Government spending is set as a fraction of output and the ratio of government spending

to output is Gt/Yt = ψ + gt, where gt follows the stochastic process

gt = ρggt−1 + εgt.

Monetary policy follows the interest rate rule

rt = ρrrt−1 + (1− ρr) (γππt + γyŷt) + qt,

where rt = logRt − logR and πt = logPt − logPt−1 − π, π is the inflation target, ŷt is defined

below and qt follows the process

qt = ρqt−1 + εqt.

The model is solved and a log-linear approximation around a deterministic steady-state is

computed.

Given that TFP is non-stationary, some variables need to be normalized to ensure station-

arity. We define ĉt as

ĉt = log(Ct/At)− log(C/A),

where C/A denotes the value of Ct/At in the deterministic version of the model in which At

grows at the constant growth rate Γ. Analogous definitions apply to the quantities ŷt, k̂t, k̂t, ı̂t.

The quantities Nt and Ut are already stationary, so nt = logNt − logN , and similarly for

ut. For nominal variables, it is necessary to take care of non-stationarity in the price level,

so: ŵt = log(Wt/(AtPt)) − log(W/(AP )), rkt = log(Rkt /Pt) − log(Rk/P ),mt = log(Mt/Pt) −
log(M/P ), rt = logRt − logR, πt = log(Pt/Pt−1)− π.

Finally, for the Lagrange multipliers: λ̂t = log(ΛtAt) − log(ΛA), φ̂t = log(ΦtAt/Pt) −
log(ΦA/P ). Φt is the Lagrange multiplier on the capital accumulation constraint. The hat is

only used for variables normalized by At.

The first order conditions can be log-linearized to yield

λ̂t =
hβΓ

(Γ− hβ)(Γ− h)
Etĉt+1 −

Γ2 + h2β

(Γ− hβ)(Γ− h)
ĉt +

hΓ

(Γ− hβ)(Γ− h)
ĉt−1 +

+
hβΓ

(Γ− hβ)(Γ− h)
Et[∆at+1]−

hΓ

(Γ− hβ)(Γ− h)
∆at

λ̂t = rt + Et[λ̂t+1 −∆at+1 − πt+1]

φ̂t = (1− δ)βΓ−1Et[φ̂t+1 −∆at+1] + (1− (1− δ)βΓ−1)Et[λ̂t+1 −∆at+1 + rkt+1]
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λ̂t = φ̂t + dt − χΓ2 (̂ıt − ı̂t−1 + ∆at) + βχΓ2Et (̂ıt+1 − ı̂t + ∆at+1)

rkt = ζut

mt = αrkt + (1− α)ŵt

rkt = ŵt − k̂t + nt

Log-linearizing the accumulation equation for capital and the equation for capacity utilization,

yields

k̂t = ut + ˆ̄kt−1 −∆at
ˆ̄kt = (1− δ)Γ−1

(
ˆ̄kt −∆at

)
+
(
1− (1− δ)Γ−1

)
dt + ı̂t.

Approximating and aggregating the intermediate goods production function over producers

and using the final good production function yields

ŷt = αk̂t + (1− α)nt

Market clearing in the final good market yields

(1− ψ)ŷt =
C

Y
ĉt +

I

Y
ı̂t +

RkK

PY
ut + gt

C/Y , I/Y and RkK/(PY ) are all equilibrium ratios in the deterministic version of the

model in which At grows at the constant rate Γ.

Aggregating individual optimality conditions for price setters yields the Phillips curve

πt = βEtπt+1 + κmt + κmpt

where κ = (1− θpβ)(1− θp)/θp.
Finally, aggregating individual optimality conditions for wage setters yields

ŵt =
1

1 + β
ŵt−1 +

β

1 + β
Etŵt+1 −

1

1 + β
(πt + ∆at) +

β

1 + β
Et(πt+1 + ∆at+1)−

−κw
(
ŵt − ζnt + λ̂t + κwmwt

)
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where κw = (1−θwβ)(1−θw)
θw(1+β)

(
1+ζ

(
1+ 1

µw

)) .

The log-linear model is estimated using Bayesian methods. Some parameters were cali-

brated using the mean values estimated in BLL. Table 4 reports the calibrated parameters.

Variables used in the estimation are the growth rates of output, consumption, investment

and real wages, hours, the inflation rate and the federal funds rate (for details, see Appendix

B). The choice of priors is very similar to the one used by BLL. Exception is made for the

AR coefficients of the shocks, assumed here to be Normal with mean equal to 0 and standard

deviation equal to 0.5 (0.4 for the coefficient ρ related to the transitory technology component)

and for σd assumed here to be distributed as an Inverse Gamma with mean equal to 5 and

standard deviation equal to 1.5.

We use an adaptive MCMC random walk Metropolis-Hastings algorithm (Haario et al.,

2001) to obtain the posterior distribution. Table 5 summarizes the priors and the posterior

estimates of the parameters.
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Appendix B: Data and data treatment

The data set includes US quarterly data on Total Factor Productivity, real per-capita GDP,

real per-capita consumption of non-durables and services, real per-capita investment, real

wages, per-capita hours worked, the federal funds rate and the inflation rate. The time span is

1954Q3-2015Q2, so that we have 243 time observations. TFP data are taken from the website

of the Federal reserve Bank of San Francisco. The series is adjusted for capital utilization.

Since data are provided in quarter-on-quarter growth rates, we took the cumulated sum to get

level data. All other data are taken from the FRED data base. The original GDP series is

real GDP in billions of chained 2009 dollars. Consumption is obtained as the sum of nominal

personal consumption expenditures for services, divided by its implicit price deflator, and

nominal personal consumption expenditures for nondurable goods, divided by its implicit price

deflator. Investment is the sum of nominal private fixed investment, divided by its implicit

price deflator, and nominal personal consumption expenditures for durable goods, divided by its

implicit price deflator. The real wage is obtained from the BLS series “nonfarm business sector:

compensation per hour”, divided by the GDP deflator. Hours worked are the BLS series named

“nonfarm business sector: hours of all persons”. We divided GDP, consumption, investment

and hours by civilian noninstitutional population (aged 16 years or more) to get per-capita

figures, took the logs and multiplied by 100 so that the numbers appearing on the vertical axis

are quarter-on-quarter variations expressed in percentage points. The federal funds rate is the

monthly effective federal funds rate; we averaged monthly figures to get quarterly frequency

and transformed the data to get quarterly rates in percentage points (25 log(1 + rt/100)).

Inflation is the first difference of the log of the GDP implicit price deflator multiplied by 100

to get figures expressed in percentage points.
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Tables and Figures

Horizon 0 1 4 16

yt, median estimate 0.00 0.10 0.12 0.12

yt, true 0.00 0.11 0.12 0.12

rt, median estimate 0.41 0.45 0.45 0.45

rt, true 0.86 0.48 0.45 0.45

Table 1: Fraction of forecast error variance accounted for by the monetary policy shock in the

empirical simulation of Example 1.

Shocks of interest δ(1) δ(4) δ(1000)

Demand shock, dt 0.8904 0.8889 0.8889

Monetary shock vt 0.0000 0.0000 0.0000

Table 2: The measure of informational deficiency δ for Example 1.

Shocks of interest δ(1) δ(4) δ(1000)

Shock εt 0.0347 0.0344 0.0342

Shock dt 0.9732 0.9687 0.9653

Shock et 0.4891 0.2558 0.0899

Table 3: The measure of informational deficiency δ for Example 2.
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Calibrated parameters

ζ (elasticity of k utilization) 2.07

χ (I adj. cost) 5.5

h (habit persistence) 0.53

ς (inverse Frish elast.) 3.98

θw (W stickiness) 0.87

θp (P stickiness) 0.88

γπ (π in Taylor rule) 1.003

γy (Y gap in Taylor rule) 0.0044

µp (SS P markup) 0.3

µw (SS W markup) 0.05

α (coeff. in prod. function) 0.19

Γ (TFP growth) 1

ψ (G/Y) 0.22

δ (K depreciation) 0.025

β (discount factor) 0.99

Table 4: Calibrated parameters. We use the posterior mean values estimated by BLL.
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Estimated parameters

Parameter Prior Mean

ρr (i smoothing) Beta(0.5, 0.2) 0.57
[0.51 0.62]

ρ (temp. technology) N (0.0 , 0.4) 0.96
[0.95 0.97]

ρq (monetary) N (0.0 , 0.5) 0.19
[0.09 0.29]

ρd (I specific) N (0.0, 0.5) 0.68
[0.60 0.76]

ρp (P markup) N (0.0, 0.5) 0.81
[0.74 0.87]

ρw (W markup) N (0.0, 0.5) 0.95
[0.91 0.98]

ρg (G) N (0.0, 0.5) 0.98
[0.97 0.99]

ψp (MA in P mkup) Beta(0.5, 0.2) 0.49
[0.30 0.65]

ψw (MA in W mkup) Beta(0.5, 0.2) 0.96
[0.94 0.98]

σε (permanent tech.) IΓ(0.5, 1.0) 0.98
[0.90 1.06]

σv (temporary tech.) IΓ(1.0, 1.0) 1.28
[1.18 1.39]

σq (monetary) IΓ(0.15, 1.0) 0.26
[0.24 0.28]

σd (I specific) IΓ(5.0, 1.5) 4.84
[4.06 5.67]

σp (p markup) IΓ(0.15, 1.0) 0.14
[0.12 0.17]

σw (w markup) IΓ(0.15, 1.0) 0.40
[0.36 0.43]

σg (gov exp.) IΓ(0.5, 1.0) 0.52
[0.48 0.56]

Posterior value at mean -1424

Table 5: Parameter estimates - mean. In brackets, the 5% and the 95% percentile of the

posterior distribution.
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specification shocks

news temp. tech. price mkup wage mkup gov’t exp. inv. spec. mon. pol.

S1 0.298 0.143 0.968 1.000 0.981 1.000 0.813

S2 0.957 0.357 0.984 1.000 0.996 0.127 0.983

S3 0.007 0.004 0.869 1.000 0.224 0.847 0.209

S4 0.006 0.003 0.812 0.431 0.191 0.840 0.199

S5 0.265 0.124 0.144 0.405 0.191 0.839 0.779

S6 0.703 0.271 0.788 0.205 0.362 0.029 0.206

S7 0.705 0.263 0.190 0.418 0.479 0.877 0.000

S8 0.690 0.258 0.175 0.161 0.349 0.023 0.000

S9 0.000 0.000 0.781 0.175 0.000 0.007 0.194

S10 0.000 0.000 0.101 0.132 0.000 0.004 0.000

Table 6: The measure of informational deficiency δi, for each shock i = 1, . . . , 7, for the VAR

specifications S1-S10 listed in Section 5.

specification δ(1) δ(2) δ(4) δ(12) δ(1000)

S3 0.3349 0.0213 0.0204 0.0135 0.0072

S4 0.3332 0.0211 0.0198 0.0127 0.0062

S9 0.3220 0.0148 0.0139 0.0069 0.0003

S10 0.3178 0.0140 0.0132 0.0067 0.0001

Table 7: The measure of informational deficiency δ(K), K = 1, 2, 4, 12, 1000, for the news

shock, specifications S3,S4, S9, S10 in Section 5.
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Figure 1: Impulse response functions of model (23) with α = 3, γ = 0.4, β = 1 and standard normal shocks.

Red solid lines: true impulse response functions. Black dashed lines: median of estimated impulse response

functions. Grey area contains the 90% confidence interval computed from the Monte Carlo simulations. Lower

panels report the distributions of the correlation coefficients between the estimated shocks and the true shocks

(demand shock, dt: left column; monetary policy shock, vt: right column).
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Figure 2: Impulse response functions of model (27) with β = 0.99, α = 0.5, γ = 20, θ = 0.5 and standard

normal shocks. Red solid lines: true impulse response functions. Black dashed lines: median of estimated

impulse response functions. Grey area contains the 90% confidence interval computed from the Monte Carlo

simulations. Lower panels report the distributions of the correlation coefficients between the estimated shocks

and the true shocks (εt, technology shock: left column; dt, temporary shock to prices: right column).
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Figure 3: Impulse responses of the Bayesian VAR, specification S3, estimated with artificial data generated

from the economic model. The blue dashed lines are the theoretical impulse response functions. The red thick

solid lines are obtained with 5000 time observations and 12 lags. The green dotted lines are obtained with 5000

time observations and 4 lags. The black thin solid lines are obtained with 243 time observations and 4 lags. The

dark gray and light gray areas are the 68% and 90% confidence bands obtained with 4 lags and 243 observations.
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Figure 4: Impulse responses of the Bayesian VAR, specification S10, estimated with artificial data generated

from the economic model. The blue dashed lines are the theoretical impulse response functions. The red thick

solid lines are obtained with 5000 time observations and 12 lags. The green dotted lines are obtained with 5000

time observations and 4 lags. The black thin solid lines are obtained with 243 time observations and 4 lags. The

dark gray and light gray areas are the 68% and 90% confidence bands obtained with 4 lags and 243 observations.

40



Figure 5: Impulse responses of the Bayesian VAR with US data, for specification S1 (TFP and investment,

top panels) and specification S2 (TFP and consuption, bottom panels). The dashed lines are the theoretical

impulse response functions. The black solid lines are averages of the posterior distribution (500 draws). The

dark gray and light gray areas are the 68% and 90% confidence bands.
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Figure 6: Impulse responses of the Bayesian VAR, specification S3, estimated with real US data. The dashed

lines are the theoretical impulse response functions. The black solid lines are the empirical impulse response

functions (averages of the posterior distribution, 500 draws). The dark gray and light gray areas are the 68%

and 90% confidence bands.
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Figure 7: Impulse responses of the Bayesian VAR, specification S10, estimated with real US data. The dashed

lines are the theoretical impulse response functions. The black solid lines are the empirical impulse response

functions (averages of the posterior distribution, 500 draws). The dark gray and light gray areas are the 68%

and 90% confidence bands.
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