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Abstract

This paper analyzes the impact on tax revenue of a change in the tax rate
when the individuals have at their disposal two alternative methods for re-
ducing their tax liabilities: tax evasion and tax avoidance. We Þnd that
this impact takes the shape of a Laffer curve when the Þxed cost associated
with tax avoidance is small enough. We also examine more accurately the
case of a isoelastic utility function in order to obtain stronger results on the
existence of such a Laffer curve. Finally, we explore the role played by the
distribution of income by considering a discrete distribution.
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1. Introduction

To pay taxes is viewed as an unpleasant obligation and, consequently, many tax-
payers try to reduce their tax liabilities. Most of the literature has concentrated
on tax evasion as a way of achieving such a reduction. However, this method im-
plies that the taxpayers bear some risk since, if they are discovered underreporting
their true income, they are punished with a penalty. The growing complexity of
the tax code has given rise to tax avoidance as an alternative method of reducing
the payment of taxes. We mean by tax avoidance the set of actions which allow
taxpayers to enjoy a legal reduction in their tax liabilities. In general these actions
are riskless but costly.1 Usual practices of taking full advantage of the tax code
include, for instance, income splitting, postponement of taxes, and tax arbitrage
across income facing different tax treatments.2 On the other hand, the emer-
gence of certain countries, called tax heavens, where the income is lower-taxed or
non-taxed at all, has encouraged to a great extent tax avoidance activities. For
example, it is well known that some taxpayers have their Þscal residence located
in a tax heaven in order to pay less taxes while their productive activities are
located in a country exhibiting much higher tax rates.3 In this paper, we will
concentrate on the analysis of tax avoidance associated with the existence of tax
heavens. Therefore, we will assume that tax avoidance is linked to the source of
income so that, when an individual becomes avoider, he shelters all his income
from that source.

The behavior of the taxpayer geared towards minimizing their tax bill has
evident implications for the government revenues. Even if the exact measurement
of both tax evasion and tax avoidance activities is, by deÞnition, difficult to
achieve, some estimations have been performed. For instance, the US Internal
Revenue Service has estimated in 1994 an overall compliance rate of 87%, which
may seem quite high in relative terms but, if we translated this rate into dollar
terms, we would see that each 1% increase in compliance translates into USD
7-10 billion in terms of government revenues (see Lyons, 1996).

The aim of this paper is to analyze the relationship between the tax rate and
the tax revenue raised by the government when agents choose between evading
and avoiding as two alternatives ways of reducing their tax liabilities. If the tax
rate affects the attitude of individuals towards tax compliance, then any change
in the tax rate affects the tax revenue in two ways. On the one hand, for a given

1In some cases these actions encompass some uncertainty. This happens when the avoidance
strategies depend on uncertain events or when the hoopholes in the tax law are exploited until
the margin.

2For more details see Stiglitz (1985).
3This is a very common practice for Þrms in Netherlands, since the Netherlands Antilles is

considered a tax heaven jurisdiction. Other tax heavens, located in Europe, are for example
Andorra and Monaco, which usually shelter a few rich individuals.
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level of tax compliance, collected taxes increase with the tax rate. On the other
hand, an increase in the tax rate may increase the set of taxpayers who avoid their
taxes, and this diminishes the tax revenue obtained by the government. When
the former effect is stronger for low tax rates and weaker for high tax rates, we
will be facing the typical Laffer curve relating the government revenue with the
tax rate, that is, this relationship will exhibit an inverted U shape.

The government can achieve a larger tax revenue by increasing the tax rate
until its largest feasible value, when the revenue-tax rate relationship is increasing.
However, when this relationship has the shape of a Laffer curve, as a consequence
of tax evasion and tax avoidance activities, the maximum tax revenue is achieved
by selecting a tax rate strictly lower than 100%. Therefore, governments seeking
to maximize its revenue will never Þnd optimal to extract all the income from
the private sector by setting arbitrarily large tax rates even if the income of each
individual is unaffected by the tax rate.

Some authors have analyzed taxpayer behavior using a representative agent
approach when both avoidance and evasion are jointly chosen. These authors
study the implications that this choice has on some traditional results of the tax
evasion literature but disregard the analysis of the behavior of the government
revenue as a function of the tax rate. In fact, the comparative statics is imme-
diate in the previous analysis when the Þnes are proportional to evaded income:
revenues increase with the tax rate as there is less evaded income.4 It should
be noticed that these authors emphasize the aspects of complementarity between
these two activities. We consider instead a framework where the individuals only
choose one of the two alternatives. Therefore, we are treating tax evasion and tax
avoidance as substitutive strategies and, thus, we are somewhat following the idea
of polarization between evaders and shelters proposed by Cowell (1990). Accord-
ing to this author, by choosing to shelter income, an individual draws attention
to himself and therefore becomes a prime target for investigation and, thus, it is
inadvisable to try evading and avoiding at the same time. The presence of legal
tax shelters induces thus a polarization between evaders and avoiders.

In our work, we dispense with the assumption of a representative agent, since
we consider that all the individuals have a different exogenous income even though
their preferences are represented by a common utility function. This means that
not all the individuals select the same method for paying less taxes. We will as-
sume that the income distribution is uniform. We will also explore the robustness
of our results in an example with a discrete income distribution. Such a discrete
distribution will allow us to discuss the implications of income polarization con-
cerning the characterization of the revenue-tax rate relationship.5 Notice that

4See, for example Cross and Shaw (1982) and Alm (1988) who analyze both the individual
and government behavior when avoidance and evasion are jointly selected, under the assumption
that avoidance is not a risky activity. See also Alm and Mccallin (1990) who carry out a mean-
variance analysis when both evasion and avoidance are considered as risky assets.

5Waud (1988) has studied the existence of a Laffer curve for the government revenue in
a context where both tax evasion and tax avoidance take place. This author establishes the
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in our model individuals are indexed by different levels of income but both the
aggregate income and the distribution of income among individuals will remain
unaltered when the tax rate changes. Thus, our analysis focuses exclusively on
the contribution of the tax code and the tax enforcement policy to the revenue-
tax rate relationship and then it disregards the effects of tax compliance on labor
supply and other macroeconomic variables.

We show in this paper that the Laffer curve could emerge in all the scenarios
we consider. In order to get such an existence result we need to assume that the
cost of avoidance is sufficiently low so as to allow almost all the individuals to
avoid their income for high values of the tax rate. The robustness of this result
indicates that in our context a policy of high marginal tax rates might not be
the appropriate strategy when the objective of the government is to maximize its
revenue.

The paper is organized as follows. Section 2 presents a description of the
individual behavior both when the taxpayer is an evader and when he is an
avoider. The tax revenue function of the government is presented in Section 3.
Section 4 provides the analysis of the tax rate-tax revenue relationship both when
the non-avoiders are honest and when they evade. In Section 5 we carry out a
more detailed analysis on the existence of the Laffer curve when a isoelastic utility
function is assumed. Section 6 characterizes the Laffer curve when the income
distribution function is not uniform but discrete. Finally, the main conclusions
and extensions of the paper are presented in Section 7. Most of the formal proofs
are relegated to the Appendix.

2. Individual behavior

Let us consider an economy with a continuum of agents who are indexed by their
income y. Each individual receives an idiosyncratic exogenous income y drawn

from an uniform distribution on
h
0, Y

i
. The preferences of agents are represented

by a common Von Neumann-Morgenstein utility function U(·) deÞned on after-
tax income I. The Þrst and second derivatives U 0 and U 00 exist and are continuous
with U 0 > 0 and U 00 < 0. Therefore, agents are risk averse. Moreover, we assume
that the utility function U(·) satisÞes the Inada condition: limI→0 U 0(I) =∞.

In this economy agents are supposed to pay proportional taxes with a ßat-rate
tax τ ∈ [0, 1]. However, agents have two alternative ways of reducing their tax
bill. On the one hand, they can misreport part of their income (tax evasion) and,
on the other hand, they can avoid the tax payments using legal methods (tax
avoidance). Tax evasion is a risky activity because if the individual is inspected,
he has to pay the evaded taxes plus a penalty. Although we will assume that tax

existence a Laffer curve for the expected tax revenue in a partial equilibrium context with a
representative agent. See also Waud (1986) who studied the appearance of the Laffer curve
of the tax revenue when tax evasion and tax avoidance appear simultaneously in a classical
supply-side model.
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avoidance is a riskless action, there are positive costs associated with it. In our
model, taxpayers can be classiÞed on one of two categories: evaders or avoiders.
The case of honest taxpayers also arises as a corner solution of the evaders problem
and will also be studied.

2.1. Tax evaders

Let us consider the standard Allingham and Sadmo (1972) model based on a
portfolio approach. In what follows, we will adopt the variation of such a model
presented by Yitzhaki (1974). The individual declares an amount of income equal
to x and he will be audited by the tax authorities with probability p. The true
income y is always discovered by the inspection. Therefore, agents reduce their
tax payments by τ(y − x) whenever inspection does not occur. If an individual
is caught evading, he has to pay a proportional Þne s > 0 on evaded taxes.
We assume that overreporting is never rewarded. Therefore we can restrict the
declared income x to be no greater than y.6. On the other hand, x is no lower than
zero since the tax code does not feature a loss-offset, that is, negative declared
income is viewed by the tax authorities as equivalent to zero declared income.
We deÞne the evaded income as e = y−x where e ∈ [0, y]. Then, the random net
income of an evader with true income y and evaded income e is equal to7

y − τy + τe, if the individual is not inspected,

and
y − τy − sτe, if the individual is inspected.

We assume that the parameters deÞning the tax inspection policy, p and s, are
given exogenously throughout the paper.

Each taxpayer chooses the amount e of evaded income in order to maximize
his expected utility

E [U (I)] = (1− p)U(y − τy + τe) + pU(y − τy − sτe) ≡ u(e). (2.1)

The Þrst order condition for an interior solution of the maximization of (2.1) is

(1− p)U 0 (y − τy + τe) τ − pU 0 (y − τy − sτe) sτ = 0. (2.2)

The corresponding second-order condition is automatically satisÞed because of
the assumption of concavity of the utility function.

The following lemma shows the solutions for the maximization problem (2.1):

Lemma 2.1. The optimal evaded income e (τ, y) as a function of the tax rate τ
and the individual income y is:

6When an individual declares more than his true income, he will only receive the excess tax
contribution if he is audited. Therefore, sτ = 1 whenever x > y.

7Note that y − τy + τe = y − τx.
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(a) if τ(1 + s) < 1,

e (τ, y) =



0 for s ≥ 1−p
p

be(τ, y) for
³
1−p
p

´
U 0(y)

U 0(y−τy−sτy) < s <
1−p
p

y for s ≤
³
1−p
p

´
U 0(y)

U 0(y−τy−sτy) ,

(b) if τ(1 + s) ≥ 1,

e (τ, y) =


0 for s ≥ 1−p

p

be(τ, y) for s < 1−p
p ,

where be(τ, y) is the solution to equation (2.2) for the evaded income e.
Proof. See the Appendix.

Lemma 2.1 states the intuitive result that an evader taxpayer will declare
less than his actual income if the penalty s is small enough, whereas the amount
declared is positive whenever s is large enough. Note that when s ≥ 1−p

p taxpayers
become honest.

Finally, substituting e (τ, y) into the expected utility we have

V (τ, y) = (1− p)U (y − τy + τe(τ, y)) + pU (y − τy − sτe(τ, y)) , (2.3)

which is the maximum value achieved by the expected utility, i.e., the indirect
utility function.

2.2. Tax avoiders

The structure of the tax system may offer some ways of reducing the tax bill of the
agents. This implies that they will pay less taxes since the avoided income will be
taxed at a lower tax rate. To simplify the analysis, let us assume that the avoided
income is taxed at a zero tax rate.8 Moreover, we consider that tax avoidance
takes the form of sheltering a source of income in a tax heaven. Since we assume
that individuals have only a source of income (typically associated with a single
economic activity), when an individual decides to become an avoider, he shelters
his total income.

There exist positive costs associated with the tax avoidance activity given by
the function C(y). These costs include, for example, the cost of obtaining the
relevant information about the tax clauses, or the payment to a tax advisor, or
the necessary amount to create a Þrm in order to declare the personal income

8This analysis can easily be modiÞed to accommodate a positive tax rate for avoided income.
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as corporate income, which in some countries is lower-taxed. We assume that
C(y) = cy + k, where k is a positive Þxed cost and c ∈ (0, 1) is a proportional
cost per unit of avoided income. Note that the existence of a Þxed cost will
prevent the poorest individuals from avoiding since they can not afford it. The
utility achieved by an avoider is thus U(y − cy − k). Observe that if there is an
individual who wants to be an avoider then the following two conditions must
hold simultaneously: (i) τ > c and (ii) k ≤ (1− c)Y . Condition (i) eliminates the
values of the tax rate for which tax avoidance never takes place, since for τ ≤ c an
individual obtains more utility being honest than being an avoider.9 Condition
(ii) ensures that at least the richest individual will be an avoider for τ > c. In
order to simplify the analysis, we will assume that condition (ii) holds in what
follows.

3. The Government

The government obtains resources from the taxes paid by the individuals who
are not avoiders and from the Þnes that individuals must pay if they are caught
evading. Since the government inspects each individual with probability p, a
fraction p of individuals is inspected in this large economy. For the sake of
simplicity we assume that there are no costs associated with tax inspection.10

Note that the density function f(y) of a uniform distribution of income on
h
0, Y

i
is

f(y) =


1
Y

for 0 ≤ y ≤ Y

0 elsewhere

.

Therefore, the total government tax revenue per capita is given by the following
Lebesgue integral

G(τ) =

Z
A(τ)

[(1− p)τ (y − e(τ, y)) + pτ (y + se(τ, y))] 1
Y
dy, (3.1)

where A (τ) is the Lebesgue measurable subset of incomes in
h
0, Y

i
for which

the individuals are non-avoiders when the tax rate is τ. Obviously, G (τ) is a
continuous function on [0, 1] . Note that avoiders do not pay taxes so that evaders
are the only individuals who pay taxes, although possibly less than what they

9The utlity achieved by a honest tax payer is U (y − τy). Since the utility function is mono-
tonically increasing and τ ≤ c, we have

U (y − τy) ≥ U (y − cy) > U (y − cy − k) .

10Note that the assumption of a zero inspection cost does not affect the present analysis if the
government is unable to identify ex-ante who is an evader and who is an avoider. In this case,
under a constant probability p of inspection, the total inspection cost will be unaffected by the
proportion of evaders and avoiders and, thus, it will be independent of the tax rate.
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should. Note also that the tax rate τ affects G (τ) through its effects both on
e (τ, y) and on the set A (τ). Then, our objective will be to analyze the behavior
of the government tax revenue G (τ) when the tax rate changes. The next section
provides the corresponding analysis.

4. The Laffer curve

In this section we will analyze whether the relationship between the tax rate and
the government revenue can be described by a Laffer curve. There exist several
deÞnitions of the Laffer curve. In particular we will consider only two of them.
The weakest one involves a non-monotone relationship between G(τ) and τ . A
stronger deÞnition of the Laffer curve requires the existence of a single maximum
for G(τ) in the open interval (0, 1). In this case the Laffer curve displays the
typical inverted U shape. Laffer curves conforming the different previous two
deÞnitions will be found throughout the paper.

To carry out the analysis we need to separate the case where non-avoiders
are honest from the case where they are strict evaders. In the former case un-
certainty vanishes since individuals declare their true income, while in the latter
case individuals hide part of their true income and they face up to a potential
inspection which will reduce their net income.

4.1. Honest behavior

In this case the individuals who are not avoiders report their true income so
that e (τ, y) = 0. Following Lemma 2.1 this occurs when s ≥ 1−p

p . To study
how the total tax revenue is modiÞed when τ increases, we need to know which
individuals become avoiders. This decision depends on the difference between
the cost of being honest and the cost of being an avoider. For example, if either
the costs associated with tax avoidance are high or the tax rate is low, poor
individuals will prefer paying their corresponding taxes. Thus, for an individual
with income y, avoiding is optimal whenever11

U(y − τy) ≤ U(y − cy − k). (4.1)

Solving (4.1) for τ, we obtain that

τ(y) ≥ c+ k
y
.

Therefore, for τ < c + k
y the individual with income y will prefer being honest

rather than avoider. In particular, we can Þnd the tax rate that leaves the richest
individual indifferent between avoiding and being honest, that is,

τ(Y ) = c+
k

Y
. (4.2)

11We adopt the innocuous convention that when an individual is indifferent between being
honest and avoiding, he is honest.
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Observe that τ(Y ) is greater than the proportional cost of avoiding c if the Þxed

cost k is strictly positive. Hence, for τ < τ
³
Y
´
all the individuals will pay their

corresponding taxes. Obviously, τ(Y ) < 1 for k < (1− c)Y .
Now we need to know how many individuals will be honest for each possible

value of the tax rate above τ
³
Y
´
. It turns out that, for τ ∈

h
τ(Y ), 1

i
there exists a

threshold level of income y∗H(τ) ∈
³
0, Y

´
making an individual indifferent between

being honest and avoiding. In particular, y∗H(τ) is the value of y satisfying (4.1)
with equality. Formally,

y∗H(τ) =
k

τ − c. (4.3)

Therefore, the individuals having incomes lower than y∗H(τ) will tell the truth,
while the individuals with higher incomes will be avoiders. Note that when k = 0,
y∗H(τ) = 0. Hence, all the individuals become either honest or avoiders. Note also
that y∗H(τ) decreases with τ so that, if the tax rate increases, the lower income
individuals will also beneÞt from avoidance.12 Hence, for τ

³
Y
´
< τ ≤ 1 only the

individuals who can afford the Þxed cost will be avoiders. In this case, the tax
revenue is given by the total taxes paid for the individuals who are honest.

The following Lemma gives us the expression for the total tax revenue func-
tion:

Lemma 4.1. Let s ≥ 1−p
p . Then, the total tax revenue will be given by the

following two-part function:

G(τ) =


τY
2 if 0 ≤ τ ≤ τ

³
Y
´

τ
2Y

³
k
τ−c

´2
if τ

³
Y
´
< τ ≤ 1

Proof. See the Appendix.

The next proposition characterizes the behavior of G(τ) with respect to the
tax rate.

Proposition 4.2. Assume that s ≥ 1−p
p . Then, the total tax revenue G(τ) is

a continuous function on [0, 1] that achieves its unique maximum value when

τ = τ
³
Y
´
.

Proof. See the Appendix.

The intuition of this result is quite obvious. When the tax rate of the economy

is lower than τ
³
Y
´
, all the individuals pay their corresponding taxes and the

12Observe that y∗H(τ
¡
Y
¢
) = Y and, thus, the threshold level y∗H(τ) will be lower than Y for

τ ∈
¡
τ
¡
Y
¢
, 1
¤
, since y∗H(τ) decreases with τ.
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tax revenue is increasing in the tax rate. On the other hand, when the tax rate

is higher than τ
³
Y
´
, two different effects take place. The Þrst one is the same as

before since higher tax rates have a positive effect on the tax revenue. However,
there exists now an additional effect since an increase in the tax rate implies
that some individuals (the richest ones) prefer now becoming avoiders and, in
consequence, they do not pay taxes any longer. This effect has a clear negative

impact on the tax revenue. As the Proposition 4.2 shows, for τ > τ
³
Y
´
the

negative effect outweighs the positive one and the tax revenue becomes decreasing
in the tax rate. Note that the Laffer curve obtained in this subsection conforms
with the stronger deÞnition of such a curve, that is, the curve has a unique
maximum on (0, 1) .

As an illustration of Proposition 4.2, Figure 1 displays the total tax revenue
as a function of the tax rate when c = 0.1, Y = 100, k = 1. In this case we obtain

a standard Laffer curve with a maximum at τ
³
Y
´
= 0.11

[Insert Figure 1 about here]

4.2. Tax Evasion

When s < 1−p
p . program (2.1) yields a strictly positive amount of evaded income,

e(τ, y) > 0. The decision of being either an avoider or an evader will depend on the
individual income and the values of the parameters of the model. For τ ≤ c all the
individuals will prefer evading, since the avoidance activity is only attractive for
tax rates strictly greater than c. Therefore, for 0 < τ ≤ c the government obtains
some positive revenue at least from the Þnes collected by the inspection.13

For τ > c, tax avoidance can appear. Thus, an individual prefers avoiding to
evading when V (τ, y) < U(y − cy − k), and vice versa. Hence, given p, s, c, and
k, we can deÞne y∗(τ) as the income that leaves an individual indifferent between
evading and avoiding when the tax rate is τ, that is,

V (τ, y∗(τ)) = U(y∗(τ)− cy∗(τ)− k), (4.4)

where the function V (τ, y) is deÞned in (2.3) . The following lemma establishes
the existence of such a threshold income level y∗(τ) :

Lemma 4.3. Assume that s < 1−p
p , and (1 + s) τ > 1 + sc. Then there exists

an income y∗(τ) > 0 such that all the individuals having an income lower than
y∗(τ) are evaders, while all those with an income higher than y∗(τ) are avoiders.

Proof. See the Appendix.

13The government does not know if the individuals will prefer evading all their income or
evading only a part of it. Note that the Þnes collected include the amount of evaded taxes plus
the penalty paid as a punishment to evasion.
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As we expected, the previous results tell us that the richest individuals avoid
the payment of their taxes while the poorest ones choose the evasion as a way of
reducing their tax liabilities. This is so because the poorest individuals can not
afford the Þxed cost k of avoiding. Notice that assuming that (1 + s) τ > 1 + sc,
implies that (1 + s) τ > 1, which ensures that the problem (2.1) has an interior
solution.14 In other words, Lemma 4.3 only applies for 0 < e(τ, y) < y. This fact
does not constitute a very restrictive assumption since the available data about
tax evasion shows that tax evasion takes place in a partial way.

The next proposition summarizes the main result concerning the existence of
the Laffer curve in this context:

Proposition 4.4. Assume s < (1−p)
p . If the Þxed cost k is sufficiently small,

then the total tax revenue G(τ) is non-monotonic in τ, for τ ∈ [0, 1] .

Proof. See the Appendix.

Note that, when tax evasion occurs and the Þxed cost of avoidance is low, we
are only able to make a characterization of the Laffer curve in the weakest sense.
To ensure that almost all individuals are avoiders when the tax rate is converging
to one, we need to assume that the Þxed cost is small enough. Therefore, the
tax revenue will take a low value because only the poorest individuals pay taxes.
On the contrary, in the absence of tax evasion (see subsection 4.1), we were able
to make a stronger characterization which embodied the existence of a single
maximum of the revenue function without any additional assumption about the
Þxed cost.

The importance of Proposition 4.4 is evident since a higher tax rate does
not mean a higher tax revenue if individuals can avoid their income taxes. For
instance, if individuals did not have the possibility of avoiding, an increase in
the tax rate implies an increase in the tax revenue under decreasing absolute risk
aversion.15 This is so because, when the Þne is proportional to the amount of
evaded taxes, an increase in the tax rate translates into a rise in the amount
that the taxpayer has to pay as a penalty. This induces less evasion since the
substitution effect has been eliminated as a consequence of imposing penalties on
evaded taxes and not on evaded income. Therefore, the Þnal outcome will be an
increase in the tax revenue.16

14See Yitzhaki (1974).
15A sufficient condition to ensure that nobody wants to avoid is k > (1− c)Y .
16If tax avoidance is not allowed, then the tax revenue is given by

G(τ ) =

Z Y

0

[(1− p)τ (y − e(τ, y)) + pτ (y + se(τ, y))] 1
Y
dy.

Calculating the derivative of G(τ) respect to the tax rate we have

dG(τ )

dτ
=

Z Y

0

·
(1− p)

µ
y − e(τ, y)− τ ∂e(τ, y)

∂τ

¶
+ py + ps

µ
e(τ, y) + τ

∂e(τ, y)

∂τ

¶¸
1

Y
dy.
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It is important to remark the important role that tax avoidance costs play
in the analysis that we have just carried out. First, the Þxed cost is necessary
to guarantee that not everybody beneÞts from avoidance. Second, if the costs
associated with the tax avoidance are too high, nobody wants to avoid and the
tax revenue function will become increasing in the tax rate.

In the next section, we examine exhaustively an example with an isoelastic
utility function which will allow us a more precise characterization of the revenue
function G (τ) .

5. An example: the isoelastic case

The isoelastic utility function has been widely used in several instances of eco-
nomic analysis ranging from Þnancial economics to macroeconomics. Let us only
consider the interesting case where the evasion takes places (i.e. s < 1−p

p ) since
the honest case has been fully characterized in Section 4.1 without using any
speciÞc functional form.

The optimal evasion when the utility function is U(C) = C1−γ
1−γ , with γ > 0,

becomes the following:

e(τ, y) =


y if τ ≤ τ∗h
(A−1)(1−τ)
τ(1+As)

i
y if τ > τ∗.

(5.1)

where A =

µ
ps

1− p
¶− 1

γ

, and τ∗ ∈ (0, 1) is the tax rate which separates full from
partial evasion. Notice that A > 1 since s < 1−p

p . The value of τ
∗ is

τ∗ =
1−

³
sp
1−p

´ 1
γ

1 + s
, (5.2)

which is obtained rearranging the condition for e < y given by Lemma 2.1. We
can observe that the optimal evasion is a constant proportion φ(τ) ∈ [0, 1] of the
true income y, where φ(τ) can be expressed as

φ(τ ) =


1 if τ ≤ τ∗

(A−1)(1−τ)
τ(1+As) if τ > τ∗.

(5.3)

The decision to be a full or a partial evader depends on the level of the tax
rate. When the tax rate is small enough, individuals decide to evade all their
income because, if they are inspected, the penalty that they must pay is not

It can be seen that dG(τ)
dτ

> 0 since ∂e(τ,y)
∂τ

< 0 under the assumption of decreasing absolute

risk (see Yitzhaki, 1974) and s < (1−p)
p
.
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very large. Nevertheless, when the tax rate increases the Þne paid becomes also
higher and this discourages individuals from evading all their income. Note that
φ (1) = 0. This means that the optimal evasion is equal to zero when τ = 1 as a
consequence of the assumption limI→0 U 0(I) =∞.

To see if the tax revenue displays the shape of a Laffer curve, we need to know
how the individuals modify their behavior when the tax rate changes. Obviously,
if individuals become avoiders, they do not pay taxes any longer and this fact
has a signiÞcative impact on the tax revenue. Basically, we will consider two
different values for the tax rate which imply qualitative changes in the individuals�
behavior. On the one hand, we have the value τ∗ of the tax rate which separates
full from partial evasion. This value depends on the policy inspection parameters,
s and p, and the parameter γ of the utility function. On the other hand, we
have the proportional cost c of avoidance which affects the decision of becoming
avoider. In this framework, we consider two possible scenarios: τ∗ ≤ c and τ∗ > c.
The main difference between these two cases is that when τ∗ ≤ c the taxpayers
are only full evaders for very low values of the tax rate (τ ≤ τ∗) , while they are
full evaders for a larger range larger of tax rates whenever τ ∗ > c.

5.1. CASE 1: τ∗ ≤ c
The Þrst step is to calculate the different components of the tax revenue function
G (τ). If 0 ≤ τ ≤ τ∗, everybody prefers evading since τ∗ < c. Furthermore,
as τ ≤ τ∗ all the individuals will choose to be full evaders, that is, e (τ, y) = y .
Hence, the tax revenue will be only composed by the penalties paid by the con-
sumers who are caught evading.

When the tax rate is higher than τ∗, evaders choose to declare only a part of
their true income, that is, e(τ, y) < y.On the other hand, all the individuals prefer
being evaders for all τ ∈ [0, c] . Therefore, we need to know if some individual
prefers becoming avoider in the interval τ ∈ (c, 1]. Observe that for an individual
with income y we can Þnd the value of the tax rate which leaves him indifferent
between evading and avoiding. More precisely, this value is such that satisÞes the
following equality:

(1− p)
·
y − τy + τ (A− 1) (1− τ)

τ(1 +As)
y

¸1−γ
+

p

·
y − τy − sτ (A− 1) (1− τ)

τ(1 +As)
y

¸1−γ
= (y − cy − k)1−γ . (5.4)

Solving for τ we get17

bτ (y) = 1− ·(1− c)
D

− k

Dy

¸
, (5.5)

17We adopt the innocuous convention that when an individual is indifferent between evading
and avoiding, he evades.
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where

D ≡
·µ

1 + s

1 +As

¶³
(1− p)A1−γ + p

´ 1
1−γ

¸
. (5.6)

Observe that bτ (y) is decreasing in y and this means that for high income levelsbτ (y) will be small because the rich individuals can meet the cost of avoidance
more easily. In particular, the Þrst potential avoider is the richest individual, i.e.,
the one with y = Y . Therefore, we can Þnd which is the tax rate that leaves the
richest individual indifferent between evading or avoiding by substituting y = Y
into the expression (5.5). Thus, we get

bτ(Y ) = 1− ·(1− c)
D

− k

DY

¸
. (5.7)

The following Lemma ensures that bτ ³Y ´ ∈ (c, 1) :
Lemma 5.1. Assume s < 1−p

p , then
(a) D > 1.

(b) bτ ³Y ´ ∈ (c, 1) .
Proof. See the Appendix.

Note that the value bτ ³Y ´ is greater than c because the richest individual
prefers being an evader when τ = c. This implies that, if τ∗ ≤ τ ≤ bτ ³Y ´ , all the
individuals prefer evading. Thus, as the evasion takes place only partially, the
tax revenue comes both from the taxes voluntarily paid and from the Þnes paid
by the inspected individuals.

Finally, when bτ ³Y ´ < τ ≤ 1, it is no longer true that the best option for

all individuals is to become evaders. As the tax rate is growing the individuals
who enjoy higher incomes will tend to prefer avoiding. Therefore, there exists an
income y∗P (τ) that makes an individual indifferent between being a partial evader
and being avoider for a given tax rate. We can calculate explicitly this threshold
level since y∗P (τ) is such that (5.4) holds. The value of y∗P (τ) is given by

y∗P (τ) =
k

(1− c)− (1− τ)D. (5.8)

Note that τ ∈
³
τ
³
Y
´
, 1
i
ensures that y∗P (τ) < Y . Thus, in this case the tax

revenue is only composed by the payments collected from the individuals who do
not avoid.

The following Lemma gives us the expression of the function G(τ) :
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Lemma 5.2. Let s < 1−p
p and τ∗ ≤ c. Then, the total tax revenue will be given

by the following three-part function:

G(τ) =



1
2pτ (1 + s)Y if 0 ≤ τ ≤ τ∗

1
2τ (1− φ(τ) + p (1 + s)φ(τ ))Y if τ∗ < τ ≤ bτ ³Y ´
1
2Y
τ (1− φ(τ) + p (1 + s)φ(τ)) (y∗P (τ))2 if bτ ³Y ´ < τ ≤ 1

Proof. See the Appendix.

The next proposition describes the Laffer curve.

Proposition 5.3. Assume that τ∗ ≤ c and s < 1−p
p . Then, the total tax revenue

G(τ) is strictly increasing on
h
0, bτ ³Y ´´ and strictly decreasing on ³bτ ³Y ´ , 1i .

Proof. See the Appendix.

We can illustrate the previous proposition by evaluating the tax rates bτ(Y )
given in expression (5.7) and τ∗ given in expression (5.2) at p = 0.1, s = 3,

c = 0.15, Y = 100, γ = 2 and k = 1. We get τ∗ = 0.10566 and bτ ³Y ´ = 0.19376.
Observe that in this case s < 1−p

p , τ
∗ < c and bτ ³Y ´ > c. Figure 2 shows the tax

revenue for these values.

[Insert Figure 2 about here]

Note that the function G(τ) is increasing in τ ∈
³
0, bτ ³Y ´´ , since all the indi-

viduals prefer being evaders when τ < bτ ³Y ´. This means that a higher tax rate
implies a higher tax revenue as a consequence of two positive effects. First, the
increase in the tax rate causes a raise of the tax revenue accruing from declared
income. Second, the individuals declare a higher part of their true income since

evaded income is decreasing in τ . When τ > bτ ³Y ´ not all the individuals want
to be evaders. In particular, only the individuals with an income greater than
y∗P (τ) will evade. Thus, in this case we can distinguish two different effects on
tax revenue. On the one hand, there is a positive effect due to the fact that a
higher tax rate implies that the individuals who are evaders pay more taxes. On
the other hand, we have a negative effect, since an increase of the tax rate causes
a decrease on y∗P (τ) which implies that less people pays taxes. As it has been
proved, the second effect offsets the Þrst one and the tax revenue is decreasing in

τ for τ ∈
³bτ ³Y ´ , 1i . Therefore, the maximum value of the government revenue

is reached at the tax rate bτ ³Y ´ .
14



Finally, let us point out that for the case τ∗ < c we have been able to ob-
tain a Laffer curve in its strongest sense under isoelastic preferences, while this
characterization was not available without such a parametrization of the utility
function (see Proposition 4.4). Moreover, we have dispensed with the more vague
assumption of �sufficiently� low Þxed avoidance cost required in Proposition 4.4.

5.2. CASE 2: τ∗ > c

Like in case 1 we will calculate the multi-part tax revenue function. We know
that if τ < τ ∗ , the evader individuals are full evaders, that is, they evade all their
true income. Moreover, all the individuals prefer evading rather than avoiding
if τ ≤ c. Therefore, we need to know which will be the behavior of the richest
individual when τ = τ∗. If he prefers being full evader, all the individuals will be
full evaders. This situation would be similar as the one analyzed in the case 1.
On the other hand, the richest individual could prefer being avoider at τ = τ∗.
The following lemma establishes the condition under which such a circumstance
occurs:

Lemma 5.4. The richest individual of this economy strictly prefers being an
avoider to being a full evader at τ = τ∗ if and only if

k < Y

·
(1− c)−

h
(1− p) + pAγ−1

i 1
1−γ

¸
. (5.9)

Proof. See the Appendix.

Observe that the fulÞllment of this condition requires small values for both
the Þxed cost k and the proportional cost c since this makes easy for the richest
individual to become avoider at τ = τ∗.

Assume from now that condition (5.9) holds. In consequence, we can en-
sure that there exists a tax rate smaller than τ∗ leaving the richest individual
indifferent between being full evader and avoiding. In particular, this tax rate
satisÞes:

(1− p)
h
Y
i1−γ

+ p
h
Y − τY − sτY

i1−γ
=
³
Y − cY − k

´1−γ
. (5.10)

Solving for τ we obtain

eτ ³Y ´ = 1−
·
1
p

³
1− c− k

Y

´1−γ − (1−p)
p

¸ 1
1−γ

1 + s
. (5.11)

Note that condition (5.9) guarantees that eτ ³Y ´ ∈ (c, τ∗) .Then, for 0 ≤ τ ≤ eτ ³Y ´
we have that all the individuals are full evaders. Therefore, the tax revenue will
be equal to the penalties paid by full evaders which have been inspected.
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When eτ ³Y ´ ≤ τ ≤ τ∗ it is not longer true that everybody prefers evading
to avoiding. We deÞne y∗T (τ) as the income for which an individual is indifferent
between evading all his true income and avoiding. The value of y∗T (τ) is18

y∗T (τ) =
k

(1− c)− ((1− p) + p(1− τ − τs)1−γ) 1
1−γ

.

Observe that k ∈
³
0, (1− c)Y

´
and τ ∈

³eτ ³Y ´ , τ∗i ensure that y∗T (τ) ∈ ³0, Y ´ .
Hence, the tax revenue is only composed by the penalties paid by the inspected
individuals who prefer being full evaders.

Finally, if τ∗ < τ ≤ 1, the evaded income is lower than the true income since
for τ > τ∗ the full evaders become partial evaders.19 In this case the tax revenue
collected by the tax authorities comes both from the taxes voluntarily paid and
from the penalties paid by the inspected partial evaders.

The following Lemma gives us the expression of the function G(τ) :

Lemma 5.5. Let s < 1−p
p and τ∗ > c. Then, the total tax revenue will be given

by the following three-part function:

G(τ) =



1
2pτ (1 + s)Y if 0 ≤ τ ≤ eτ ³Y ´
1
2Y
pτ (1 + s) (y∗T (τ))

2 if eτ ³Y ´ < τ ≤ τ∗
1
2Y
τ (1− φ(τ) + p (1 + s)φ(τ)) (y∗P (τ))2 if τ ∗ < τ ≤ 1.

Proof. See the Appendix.

The following proposition gives us the results obtained concerning the exis-
tence of the Laffer curve:

Proposition 5.6. Assume τ∗ > c and s < 1−p
p . The total tax revenue G(τ) is

non monotonic in τ , for τ ∈ [0, 1] if k < (1− c)Ypc (1− φ(c) + p (1 + s)φ(c)).
Proof. See the Appendix.

In order to illustrate this result we evaluate the expressions (5.11) and (5.2) at
p = 0.1, s = 1.5, c = 0.1, Y = 100, γ = 2, k = 1. Thus, we have τ∗ = 0.10566 andbτ ³Y ´ = 0.19376. Figure 3 shows the tax revenue function G (τ) for the previous
parameters values:

[Insert Figure 3 about here]

18The threshold y∗T (τ ) is obtained equating the utility from full evasion to the utility from
avoiding.
19Note that y∗T (τ) = y

∗
P (τ ) for τ = τ

∗.
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When τ∗ > c we only are able to make a characterization of the Laffer curve in
the weakest sense like in the general case (see subsection 4.2). However, we do
not invoke the assumption of �sufficiently� low Þxed avoidance cost to obtain the
Laffer curve since in this particular case we have found an explicit formula for
the threshold Þxed cost of avoidance below which a Laffer curve is obtained.

6. A discrete distribution of income

In the previous setup, we have assumed that the income distribution of the indi-
viduals of the economy was uniform. However, we can ask if the previous results
about the existence of a Laffer curve relating tax revenues with tax rates would
change if the income distribution is modiÞed. Since it is impossible to address
such a question with enough generality, in this section we consider a simple dis-
crete income distribution with only three income classes y1, y2 and y3, where
y1 < y2 < y3. Individuals are distributed into these three classes according to the
proportions {α1,α2,α3} respectively, where α1+α2+α3 = 1. In order to simplify
the exposition we assume, without loss of generality, that y1 = 0, y2 = m and
y3 = 1, where 0 < m < 1. The combination of the proportions α1,α2, and α3 as
well as the size of m, will allow us to analyze different types of discrete income
distributions. Observe that this distribution corresponds to an economy with a
high degree of income polarization whereas such a polarization was absent under
a uniform distribution. For simplicity we adopt the isoelastic utility function
taken in Section 5. The present analysis will be divided into two parts: Þrst we
assume that τ∗ ≤ c holds and we then will examine the case where c < τ∗.

6.1. CASE 1: τ∗ ≤ c
Like in Section 5 we will Þnd the different parts of the tax revenue function.
Hence, for τ ∈ [0, τ∗] all the individuals evade all their income, and then the tax
revenue is given by the penalties paid by the inspected evaders. In this context
the individuals with income y1 = 0 do not contribute to the tax revenue because
although they declare all their true income, the taxes paid are zero.20

When the current tax rate is greater than τ∗, partial evasion takes place.
Moreover, for τ ≤ c all the individuals will want to be evaders. However, when
the tax rate is greater than c, the advantage of evasion over avoidance only comes
from the Þxed cost associated to avoidance. Similarly to the case with an uniform
distribution of income, we can Þnd which is the tax rate that leaves the richest
individuals indifferent between avoiding and evading. Formally, we obtain this
value substituting the value of y3 into the expression (5.5). This yields

bτy3 = 1− ·(1− c)− kD

¸
. (6.1)

20Note from (5.1) that the individuals with y1 = 0 do not evade.
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For τ ∈ (τ∗, bτy3 ] everybody is a partial evader. In this case, the tax revenue is
composed both by the taxes voluntary paid and by the penalties from inspected
individuals. Note that there exists a discontinuity at τ = bτy3 since the richest
agents stop paying taxes and the tax revenue then falls. The magnitude of this
jump depends on the proportion α3, since a proportion very large of rich individ-
uals implies that a large fraction of people does not pay their taxes any longer
and this fact causes a dramatic decrease of the tax revenue. Hence, for τ > bτy3
only the individuals who have income y2 continue paying taxes. However, as the
tax rate raises the beneÞt obtained from evading becomes smaller since a high
tax rate diminishes the expected utility of an evader. Then, from expression (5.5)
the value of the tax rate that will leave the individuals with income y2 indifferent
between evading and avoiding is

bτy2 = 1− ·(1− c)D
− k

Dm

¸
. (6.2)

Then, bτy2 is as the maximum value of the tax rate that has associated a positive
value of the tax revenue since for τ > bτy2 the tax revenue becomes zero. Therefore,
for τ ∈ (bτy3 , bτy2 ] the tax revenue is equal to the taxes voluntarily paid by the
individuals with income y2 and to the Þnes paid by the inspected ones.

Observe from expression (6.2) that bτy2 < 1 if k < (1− c)m. This is so because
when the Þxed cost is large enough, the individuals with income y2 never resort
to avoidance and thus, they pay taxes until τ = 1. Obviously, for τ > bτy2 all
the individuals except the ones who have income y1 prefer avoiding and, as a
consequence, the tax revenue becomes zero.

The next Lemma gives us the expression of the function G(τ).

Lemma 6.1. Let s < 1−p
p and τ∗ ≤ c. Then, the total tax revenue will be given

by the following four-part function:

G(τ) =



pτ (1 + s) (α2m+ α3) if 0 ≤ τ ≤ τ∗

(α2m+ α3) [τ (1− φ(τ) + p (1 + s)φ(τ))] if τ∗ < τ ≤ bτy3
α2m [τ (1− φ(τ ) + p (1 + s)φ(τ))] if bτy3 < τ ≤ bτy2
0 if bτy2 < τ ≤ 1.

Proof. See the Appendix.

The following proposition summarizes the results concerning the existence of
the Laffer curve when different assumptions on the proportions αi when i = 1, 2, 3
are imposed.

Proposition 6.2. Assume that s < 1−p
p and k ∈ (0,m(1− c)).
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(a) if α3 ≥ α2, then the tax revenue function G(τ) has a single maximum at
τ = bτy3 ,

(b) if the proportion α3 of rich individuals is small enough, the tax revenue
function G(τ) has a single maximum at τ = bτy2 .
Proof. See the Appendix.

The intuition of result (a) relies on the fact that, if α3 is large enough, when
the tax rate is equal to bτy3 many rich individuals stop paying taxes because they
prefer avoiding their income. This constitutes a very signiÞcant reduction of the
collected taxes since the great source of revenues comes from the rich individuals.
Although the tax rate rises, the tax revenue can not recover the previous value
achieved when τ = bτy3 . This is so because the individuals with income y2, which
are the only ones who pay taxes, have not enough income to offset the loss that
the avoidance of the rich individuals brings about. Observe that the assumption
about the size of the Þxed cost k allows the individuals with income y2 to avoid his
income for τ > bτy2 , since otherwise when k ∈ (m(1− c), (1− c)) those individuals
never beneÞt from avoidance for τ ∈ (0, 1).

Figure 4 shows the behavior of the tax revenue described in part (a) of Proposi-
tion 6.1. The parameters values considered are: p = 0.1, s = 3, γ = 0.5, α1 = 0.4,
α2 = 0.2, α3 = 0.4, m = 0.7, c = 0.25, and k = 0.25.

[Insert Figure 4 about here] .

On the other hand, the part (b) of the previous proposition says us that
when α3 is quite small there is almost no difference between G2(τ) and G3(τ).
Although rich individuals are avoiders, their weight on the total income is very
small, and the tax revenue quickly offsets the loss caused by the avoidance of the
rich individuals. Note that if α3 < α2 but α3 and α2 are close enough, we get the
same results as in part (a) of Proposition 6.2.

Figure 5 illustrates, the behavior of the tax revenue described by part (b) of
Proposition 6.1 when p = 0.1, s = 3, γ = 0.5, α1 = 0.1, α2 = 0.8, α3 = 0.1,
m = 0.7, c = 0.25, and k = 0.25.

[Insert Figure 5 about here] .

Observe that, even if the results stated in Proposition 6.2 do not depend
explicitly on the value of m, this value plays an important role in the analysis of
the behavior of the government revenue under alternative income distributions.
An increase of m, for given values of α1, α2, and α3, gives rise to two opposite
effects on the government revenues. On the one hand, if the value of the parameter
m increases, then the individuals having an income equal to y2 become richer and,
therefore, they pay more taxes and contribute more to the revenues raised by the
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government. On the other hand, from inspection of (6.2) we can check that the
value of the tax rate that will leave the individuals with income y2 indifferent
between evading and avoiding decreases as m increases. This implies in turn that
the government is not going to get revenues for lower values of the tax rate.

In order to get a more precise intuition on the role played by the parameterm,
let us consider an income distribution where α1 and α3 are small and α2 is large.
In this context, whenm is close enough to zero one obtains an income distribution
where a vast majority of individuals is poor. In this case, the government could
set very high tax rates since poor individuals will keep paying taxes since they
could not afford the avoidance costs. This kind of Þscal policy ends up being very
regressive since the individuals that contribute to the increase in government
revenues are just the ones having lower income. However, when m is close to 1
and the vast majority of individuals is thus quite rich, the government should set
tax rates not very high so as to prevent individuals from avoiding. Obviously,
since now the individuals enjoy a higher income, the value of the government
revenue is generically higher than in the previous case displaying high tax rates
with poor individuals.

Finally, observe that when the income distribution function is discrete, the
existence of the Laffer curve in the weak sense is always guaranteed by the non-
continuity of the function G(τ).

6.2. CASE 2: τ∗ > c

The results obtained in this case will depend on the behavior that individuals
adopt at τ = τ∗. More speciÞcally, we will have the following scenarios according
to the values of the parameters:

Scenario A
0 < c < eτy3 < eτy2 < τ∗ < 1 when k < mΦ

Scenario B
0 < c < eτy3 < τ∗ < bτy2 < 1 when mΦ < k < Φ,

where

Φ =

·
1− c−

³
1− p+ pAγ−1

´ 1
1−γ

¸
,

eτy3 = 1−
£
1
p
(1−c−k)1−γ− (1−p)

p

¤ 1
1−γ

1+s ,

and

eτy2 = 1−
h
1
p(1−c− k

m)
1−γ− (1−p)

p

i 1
1−γ

1+s . (6.3)
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The values of eτy3 and eτy2 have been obtained substituting y3 = 1 and y2 = m in
expression (5.11) .

Scenario A presents a situation where the Þxed cost k is low enough to induce
both the richest individuals and the individuals with income m to prefer avoiding
at τ = τ∗. Using the same arguments as in Sections 5 it is easy to see that for
τ ∈ [0, eτy3 ] all individuals are full evaders. For τ ∈ (eτy3 , eτy2 ] the richest individuals
avoid their income while the rest of the individuals still are full evaders. Finally,
nobody pays taxes for τ ∈ (eτy2 , 1]. Hence, the tax revenue function is given by

G(τ) =



pτ (1 + s) (α2m+ α3) if 0 ≤ τ ≤ eτy3
pτ (1 + s)α2m if eτy3 < τ ≤ eτy2
0 if eτy2 < τ ≤ 1.

In scenario B, the Þxed cost is not low enough for allowing the individuals
with income m to avoid their income when τ = τ∗, then they evade all their true
income. Then, using the arguments seen in the previous sections it is easy to see
that for τ ∈ [0, eτy3 ] everybody will evade. For τ ∈ (eτy3, τ∗] the richest individuals
(with income y3) are avoiders and the individuals with income m are full evaders,
for τ ∈ (τ∗, bτy2] the individuals with income m still being evaders but now they
are partial evaders. Finally, the tax revenue is zero for τ ∈ (bτy2 , 1] because the
only individuals who do not avoid their income (individuals with income y1) do
not even pay taxes. Summarizing, we have that the tax revenue function is the
following four-part function:

G(τ) =



pτ (1 + s) (α2m+ α3) if 0 ≤ τ ≤ eτy3
pτ (1 + s)α2m if eτy3 < τ ≤ τ∗
α2m [τ (1− φ(τ) + p (1 + s)φ(τ))] if τ∗ < τ ≤ bτy2
0 if bτy2 < τ ≤ 1.

The main result concerning the existence of the Laffer curve both in scenario A
and in scenario B is that the Laffer curve always exists, and its speciÞc form
depends on the values taken by the proportions α1, α2 and by the income m.
Next proposition summarizes the main results about the Laffer curve under the
two scenarios considered above:

Proposition 6.3. Assume that s < 1−p
p . Then,

(a) if k < mΦ and the income m is large enough, the tax revenue function
achieves its unique maximum at τ = eτy3 ,

(b) if k < mΦ and the proportion α3 is small enough, the tax revenue function
achieves its unique maximum at τ = eτy2 ,

21



(c) if mΦ < k < Φ and the proportion α3 is large enough, the tax revenue
function achieves its unique maximum at τ = eτy3 ,

(d) if mΦ < k < Φ and the proportion α3 is small enough, the tax revenue
function achieves its unique maximum at τ = bτy2 .
Proof. See the Appendix.

The intuition behind the statement (a) is quite clear because, if m is close to
one, it means that the individuals with income y2 are rather rich and in con-
sequence they will resort to tax avoidance almost for the same tax rates as
the richest individuals. Thus, the tax revenue becomes zero for τ > eτy2 wheneτy2 ∈ (eτy3 , eτy3 + ε (m)) , where ε is decreasing in m and lim

m→1 ε (m) = 0. Hence,
for m large enough we will have that the tax revenue will be zero before the
penalties paid by the inspected individuals with income y2, can offset the loss in
the tax revenue caused by the richest individuals. The intuition of the statements
(b), (c) and (d) is supported by the role that the proportion α3 of richest indi-
viduals plays. If α3 is large enough the loss in the tax revenue can not be offset
by the resources obtained from the individuals with income m. When α3 is small
enough, the previous argument works in the opposite direction since the loss due
to the tax avoidance by the richest individuals is very small and it can be offset
by the payments made by the individuals with income y2.

Finally, we have to point out that the scenarios considered when τ∗ > c do not
constitute a good approach of the situation in the real world since the available
data of tax evasion reveals that tax evasion takes place in a partial way, i.e.,
e < y.

7. Conclusions and extensions

We have shown that the possibility of choosing between avoiding and evading
brings about a tax revenue function exhibiting the shape of a Laffer curve. That
is, the relationship between tax rates and government revenue is non-monotonic.
We have carried out the analysis in a partial equilibrium context where the in-
dividuals have the same utility function but differ in their incomes. In all the
scenarios studied we have found that the tax revenue always displays a Laffer
curve under some conditions. This fact has to be taken into account when the
different governments design the Þscal policies because, when the tax avoidance
phenomenon is present, raising the tax rate might not result in an increase of the
tax revenue. Moreover, when the costs associated with tax avoidance are low, to
set high tax rates and to implement a strong anti-evasion policy is not only inef-
fective but also regressive because all the rich individuals will avoid their incomes
and will pay no taxes. Under this policy only the poorest individuals will pay
taxes (and/or penalties associated with tax evasion) since they cannot afford the
cost of avoidance. In fact, a government could reduce the negative impact on tax
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revenues accruing from the possibility of tax avoidance by implementing the kind
of policies analyzed by Chu (1990). He proposes a new policy called FATOTA
which allows a target group of corporations to choose between two options: to
pay a Þxed amount of taxes set by the tax authorities and thus to be exempted
from tax inspection, or to pay only an amount chosen by the corporation but be
subject to a positive probability of being audited. This type of policies would
become effective provided the Þxed amount to be paid by the potential avoiders
were smaller than the costs associated with avoidance.

Some extensions of the present work are possible. We comment on some of
them. We could introduce a progressive tax function in our framework and to
analyze the effects on government tax revenue of a modiÞcation in the progres-
siveness of the tax function. The result one should expect is that a higher degree
of progressiveness will stimulate the avoidance of rich individuals and, therefore,
the decreasing part of the Laffer curve will appear at lower average tax rates.

We could also consider other continuous income distributions, like the lognor-
mal or the Pareto ones, which could better Þt the empirical income distributions.
Nevertheless, such functional form would prevent us from getting explicit results
and we should rely instead on simulations.

Finally, in our model all the individuals have the same utility function and
they only differ in their income. It could be interesting to consider heteroge-
nous preferences. To this end, we could assume a distribution on the relevant
parameters characterizing the indexes of risk aversion of the individuals.

23



A. Appendix

Proof of Lemma 2.1. Since the function u(e) deÞned in (2.1) is strictly concave,
we obtain the corner solution e = 0 whenever u0(0) ≤ 0. This weak inequality is
in fact equivalent to s ≥ 1−p

p . Notice that when τ(1 + s) ≥ 1, it is impossible
to have e = y since, then, the income of an inspected individual y − τ(1 + s)y
cannot be non-positive as follows from the Inada condition. For τ(1 + s) < 1, to
obtain the corner solution e = y, we need that u0(y) ≥ 0. This inequality becomes

s ≤
µ
1− p
p

¶
U 0(y)

U 0(y − τy − sτy) .

Proof of Lemma 4.1. For 0 ≤ τ ≤ τ
³
Y
´
the tax revenue is composed by the

taxes that all the individuals pay. This revenue is

G1(τ) =

Z Y

0
τy 1

Y
dy.

For τ
³
Y
´
< τ ≤ 1 the tax revenue is given by the total taxes paid for the

individuals who are honest. This revenue is,

G2(τ ) =

Z k
τ−c

0
τy 1

Y
dy.

Performing the integrals Gi (τ) where i = 1, 2, we obtain the expression ap-
pearing in the statement of the Lemma.

Proof of Proposition 4.2. Differentiating G1 (τ) respect to τ we have
dG1
dτ = Y

2
which is unambiguously positive. On the other hand, differentiating G2 (τ) re-

spect to τ we obtain dG2
dτ = − k2(τ+c)

2Y (τ−c)3 , which is unambiguously negative. Obvi-

ously, the maximum value achieved by G(τ) is just the kink point τ = c+
k

Y
.

Proof of Lemma 4.3. The proof adapts some of the arguments in Chu (1990).

Step 1. We will prove that V (τ, y) and U(y − cy − k) intersect at least once.
As when the true income tends to zero, the optimal evasion also tends to zero,

we have that at least for y < k
τ−c , U(y − cy − k) < V (τ, y), since k is positive

and by assumption τ > c. Then, we only have to see that there exists an income
level such that U(y − cy − k) > V (τ, y) for a given τ. Consider the level evasion
e0 (τ, y) =

(1−τ)y
τs , which is less than y since we were assuming that (1 + s) τ > 1

holds. It can be seen that

y − τy + τe0 = (1 + s) (1− τ) y
s
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and

y − τy − τse0 = 0.
Therefore, we get that

u0(e0) = (1− p)U 0
µ
(1 + s)(1− τ)y

s

¶
τ − pU 0 (0) sτ.

Since, by assumption, limI→0U 0(I) =∞ we have

lim
I→0

u0(e0) = −∞,

which implies that be (τ, y) < e0 (τ, y) , where be (τ, y) is the optimal evasion given
in Lemma 2.1. Obviously, this means that

y − τy + τbe (τ, y) < y − τy + τe0 (τ, y) . (A.1)

Now deÞne y0 as the income that makes equal the net income of avoiding with
the net income of evading for e0 (τ, y) when the inspection does not occurs. By
deÞnition we have

y0 − cy0 − k = y0 − τy0 + τe0 (τ, y0) .
After rearranging terms we have that the value y0 becomes

y0 =
sk

s(1− c)− (s+ 1)(1− τ) .

Condition (1 + s) τ > 1 + sc guarantees that y0 > 0. Then, for y > y0 we get

y

·
(1− c)− (s+ 1) (1− τ)

s

¸
> y0

·
(1− c)− (s+ 1) (1− τ)

s

¸
= k.

Hence, we have

y (1− c)− k > y (s+ 1) (1− τ)
s

= y − τy + τe0 (τ, y) .

Finally by (A.1) it holds that

y (1− c)− k > y − τy + τbe (τ, y) .
Therefore for y > y0 the following inequality must also hold:

y (1− c)− k > y − τy + τbe (τ, y) > V (τ, y).
Summarizing, we have that the individuals with income y > y0 prefer avoiding
to evading while the individuals with an income y small enough prefer evading.
This guarantees then, that V (τ, y) and U(y − cy − k) intersect at least once.
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Step 2. We will prove that V (τ, y) and U(y − cy − k) intersect only once.
Let be y∗ any intersection of V (τ, y) and U(y − cy − k). This implies that

V (τ, y∗) = U(y∗ − cy∗ − k) and consequently we have that

y∗ − τy∗ − sτbe (τ, y∗) < y∗ − cy∗ − k < y∗ − τy∗ + τbe (τ, y∗)
must hold. This inequality implies that

U 0 (y∗ − cy∗ − k) > U 0 (y∗ − τy∗ + τbe (τ, y∗)) , (A.2)

since the function U(·) is concave. By the envelop theorem we get that

∂V (τ, y∗)
∂y

= (1− p)U 0 (y∗ − τy∗ + τbe (τ, y∗)) +
pU 0 (y∗ − τy∗ − sτbe (τ, y∗)) (1− τ − τs) ,

which can be simpliÞed using (2.2) as

∂V (τ, y∗)
∂y

=

µ
(1− p)(1 + s)(1− τ)

s

¶
U 0 (y∗ − τy∗ + τbe (τ, y∗)) . (A.3)

The condition (1 + s) τ > 1+ sc, implies that (1 + s) τ > 1 also holds, and this is

a sufficient condition for ensuring that
³
(1−p)(1+s)(1−τ)

s

´
< 1. Thus, using (A.2)

and (A.3) we get that

U 0 (y∗ − cy∗ − k) > V 0 (τ, y∗) . (A.4)

It is immediate to check that V (τ, y) is a concave function, then the inequality
(A.4) means that U(·) and V (·) intersect once at most.

Proof of Proposition 4.4. When the tax rate is zero the tax revenue is also zero
because the government can not collect neither taxes nor Þnes. For τ ∈ (0, c] all
the individuals prefer being evaders, therefore the government gets some revenue
at least from the Þnes collected by the inspection. Moreover, for τ ∈ (0, c], G(τ)
is increasing in τ since the optimal evasion is decreasing in τ (see Yitzhaki, 1974).
In particular evaluating the tax revenue function given by (3.1) at τ = c, we have
that G(c) > 0. Nevertheless, we do not know which is the exact value of G(c)
because, although all the individuals are evaders, we ignore if they evade all his
income or only a part of it. This decision depends on the own income, the tax
rate and the values of p and s. Our proof leans on showing that G(c) > G(1),
because this implies that the tax revenue function can not be monotonic. Let us
Þrst investigate what happens with the optimal evasion when τ = 1. From the
expression (2.2) , we have that

U 0 (y − τy − sτe(τ, y)) = (1− p)
ps

U 0 (y − τy + τe (τ, y)) .
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We know that y − τy + τe (τ, y) > 0 for τ ∈ (0, 1) so that condition limI→0 U 0(I) =∞
implies that

y − τy − sτe (τ, y) > 0.
Rearranging the last inequality we have that

0 ≤ e (τ, y) < (1− τ) y
τs

. (A.5)

Therefore,

0 ≤ lim
τ→1 e (τ, y) ≤ limτ→1

y(1− τ)
τs

= 0.

We see that when the tax rate tends to one the optimal tax evasion tends to zero
or, in other words, the individuals tell the truth independently of their respective
incomes. This result allows us to say that only the individuals who can not face up
to the Þxed cost of avoidance will pay taxes, whereas the others will be avoiders.
Thus, the tax revenue when τ = 1 will be

G(1) = lim
τ→1

Z y∗(τ)

0
[(1− p)τ (y − e (τ, y)) + pτ (y + se (τ, y))] 1

Y
dy

=

Z k
1−c

0
y
1

Y
dy =

k2

2Y (1− c)2 ,

since lim
τ→1 y

∗(τ) =lim
τ→1 y

∗
H(τ) =

k

(1− c) when e (τ, y) = 0. Note that limτ→1 y
∗(τ) ∈³

0, Y
´
whenever k ∈

³
0, (1− c)Y

´
. As G(c) does not depend on k, we can make

G(c) > G(1) for a small enough value of k.

Proof of Lemma 5.1.
(a) Fix γ and then consider D deÞned in (5.6) as a function of s and p, D(s, p).
After tedious differentiation, it can be proved that ∂D∂s = 0 and

∂D
∂p = 0 only when

s = 1−p
p . Moreover, the Hessian of D(s, p) evaluated at s =

1−p
p is

H(s, p) =

Ã
p3

γ(1−p)
p

γ(1−p)
p

γ(1−p)
1

γp(1−p)

!
,

which is positive semi-deÞnite. Finally, we get thatD(s, p) = 1 whenever s = 1−p
p .

We conclude thus that D(s, p) > 1 for all s 6= 1−p
p . In particular, D > 1 for

ps < 1− p.

(b) To see that c < bτ ³Y ´ < 1 we only have to prove that 0 < h (1−c)D − k
DY

i
< 1.

The assumption that k ∈
³
0, (1− c)Y

´
ensures that

h
(1−c)
D − k

DY

i
> 0, while the

part (a) of this lemma implies that
h
(1−c)
D − k

DY

i
< 1.
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Proof of Lemma 5.2. For 0 ≤ τ ≤ τ∗ the tax revenue is only composed by the
Þnes paid by the inspected individuals. This revenue is

G1(τ) =

Z Y

0
pτ (1 + s) y

1

Y
dy

For τ∗ ≤ τ ≤ bτ ³Y ´ the tax revenue is given by the taxes and penalties paid for
all the individuals. This revenue is

G2(τ) =

Z Y

0
[(1− p)τ(1− φ(τ)) + pτ (1 + sφ(τ))] y 1

Y
dy

=
Z Y

0
[τ(1− φ(τ)) + pτ (1 + s)φ(τ)] y 1

Y
dy.

Finally, for bτ ³Y ´ < τ ≤ 1 the tax revenue is
G3(τ) =

Z y∗P (τ)

0
[(1− p)τ(1− φ(τ)) + pτ (1 + sφ(τ ))] y 1

Y
dyZ y∗P (τ)

0
[τ(1− φ(τ)) + pτ (1 + s)φ(τ)] y 1

Y
dy,

since the tax authorities can only collect payments from the individuals who do
not avoid.

Performing the integrals Gi (τ) where i = 1, 2, 3 we obtain the expression
appearing in the statement of the Lemma.

Proof of Proposition 5.3. We prove the proposition by stating two claims.

Claim 1: dG1(τ)dτ > 0 for (0, τ∗] and dG2(τ)
dτ > 0 for

³
τ∗, bτ ³Y ´i .

Calculating dG1(τ)
dτ we have

dG1(τ)

dτ
=
p(1 + s)Y

2
> 0,

which is unambiguously positive. In a similar way, we obtain

dG2(τ)

dτ
=
Y

2

·
(1− φ(τ) + p (1 + s)φ(τ)) + τ (p (1 + s)− 1) dφ(τ)

dτ

¸
. (A.6)

From expression (5.3) we have dφ(τ)
dτ = −α 1

τ2
< 0, where α > 0 is given by

α =
(A− 1)
(1 +As)

. (A.7)

Note that the Þrst term inside the square brackets of (A.6) is positive since
the parameters satisfy the interior condition s < 1−p

p . On the other hand, the
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second term inside the square brackets is also positive since dφ(τ)
dτ < 0 and

(p (1 + s)− 1) < 0. Then, G2(τ) is also increasing in the tax rate.

Claim 2: dG3(τ)dτ < 0 for
³bτ ³Y ´ , 1i .

We have the following derivative:

dG3(τ)

dτ
=
1

Y

·
(τ (1− φ(τ)) + τp (1 + s)φ(τ)) dy

∗
P (τ)

dτ
y∗(τ)

¸
+

1

Y

·
1

2
(y∗(τ))2

µ
1− φ(τ) + p (1 + s)φ(τ) + τ (p (1 + s)− 1) dφ(τ)

dτ

¶¸
. (A.8)

To evaluate the sign of the previous expression we need to calculate dy
∗(τ)
dτ . Using

expression (5.8) , we get
dy∗P (τ)
dτ

= −D
E
y∗P (τ), (A.9)

where E = [(1− c)− (1− τ)D] . Since y∗P (τ) > 0, D > 0 and E > 0 for τ ≥bτ ³Y ´ , we can conclude that dy∗P (τ)
dτ < 0. Then, plugging (A.9) in (A.8) and

rearranging terms, we have

dG3(τ)

dτ
=
(y∗P (τ))

2

Y

·
[τ (1 + α (1− p (1 + s)))− α (1− p (1 + s))]

µ−D
E

¶¸
+

(y∗P (τ ))
2

Y

·
1

2
(1 + α (1− p (1 + s)))

¸
.

Note that the sign of the previous derivative depends only on the sign of the
expression into the brackets. DeÞne

F ≡ (τ (1 + α (1− p (1 + s)))− α (1− p (1 + s)))
µ−D
E

¶
+
1

2
(1 + α (1− p (1 + s))) ,

which can be rewritten as

F =
−D [1− α(1− ps) + τ (1 + α (1− p (1 + s)))] + (1− c) (1 + α (1− p (1 + s)))

2E

The sign of F is the same as that of its numerator since E > 0 for τ ≥ bτ ³Y ´ .
Therefore if our objective is to prove that dG3(τ)dτ < 0, we have to prove that the
following inequality holds:

D [1− α (1− p (1 + s)) + τ (1 + α (1− p (1 + s)))] >

(1− c) (1 + α (1− p (1 + s))) . (A.10)
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Note that the tax revenue G3(τ ) is obtained when the tax rate moves betweenbτ ³Y ´ < τ ≤ 1. Then, if
D [1− α(1− p (1 + s)) + bτ (1 + α (1− p (1 + s)))] >

(1− c) (1 + α (1− p (1 + s))) , (A.11)

we can guarantee that inequality (A.10) also holds for τ ∈
hbτ ³Y ´ , 1i since the

left term of inequality (A.10) is increasing in τ. Thus, substituting

bτ ³Y ´ = 1 + k

DY
− (1− c)

D

into (A.11) we get

D

·
1− α (1− p (1 + s)) +

µ
1 +

k

DY
− (1− c)

D

¶
(1 + α (1− p (1 + s)))

¸
>

(1− c) (1 + α (1− p (1 + s))) .
Rearranging and simplifying, we obtain

2D +
k

Y
(1 + α (1− p (1 + s))) > 2(1− c) (1 + α (1− p (1 + s))) . (A.12)

According to lemma 5.1, D > 1. Hence,

(1− c) (1 + α(1− ps) (1− p (1 + s))) < 1, (A.13)

becomes a sufficient condition for (A.12) . Rearranging the inequality (A.13) we
have

α(1− c)− αp (1 + s) (1− c)− c < 0. (A.14)

It is easy to see that inequality (A.14) holds if

c >
α

1 + α
. (A.15)

Using (5.2) and (A.7) and rearranging terms, we get that the sufficient condition
(A.15) becomes simply c > τ∗, and that is always true by assumption. Hence, it
follows that dG3(τ)dτ < 0.

Proof of Lemma 5.4. The richest individual wants to be avoider if the utility
from avoidance is greater than the expected indirect utility from full evasion at
τ = τ∗. This is

(1− p)
h
Y
i1−γ

+ p
h
Y − τ∗Y − sτ∗Y

i1−γ
<
³
Y − cY − k

´1−γ
. (A.16)
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Rearranging the previous inequality we obtain that k
Y
< (1−c)−£(1− p) + pAγ−1¤ 1

1−γ

has to hold for getting (A.16) .

Proof of Lemma 5.5. For 0 ≤ τ ≤ eτ ³Y ´ the tax revenue is only composed by
the Þnes paid by the inspected individuals. This revenue is

G1(τ) =

Z Y

0
pτ (1 + s) y

1

Y
dy.

For eτ ³Y ´ ≤ τ ≤ τ∗ the tax revenue is given by the penalties paid for the
individuals which prefer being full evaders rather avoiders. This revenue is

G2(τ) =

Z y∗T (τ)

0
p (1 + s) y

1

Y
dy.

Finally, for τ∗ < τ ≤ 1 the tax revenue collected by the tax authorities comes
both from the taxes voluntarily paid and from the penalties paid by the inspected
partial evaders, that is,

G3(τ) =

Z y∗P (τ)

0
[(1− p)τ(1− φ(τ)) + pτ (1 + sφ(τ ))] y 1

Y
dyZ y∗P (τ)

0
[τ(1− φ(τ)) + pτ (1 + s)φ(τ)] y 1

Y
dy.

Performing the integrals Gi (τ) where i = 1, 2, 3 we obtain the expression appear-
ing in the statement of the Lemma.

Proof of Proposition 5.6. We know that G(0) = 0 and then, we only have to
prove that G(1) is less than some positive value taken by the function G(τ) on
(0, 1) . Computing the value of G(1) we obtain

G(1) =
1

2Y

k2

(1− c)2 > 0,

that can be as small as we want, taking values of k low enough. Similarly,
evaluating the tax revenue function G(τ) at τ = c, we have

G(c) =
1

2
c (1− φ(c) + p (1 + s)φ(c))Y > 0.

Thus, it is easy to check thatG(c) > G(1), for k < (1−c)Ypc (1− φ(c) + p (1 + s)φ(c)).
Proof of Lemma 6.1. For τ ∈ [0, τ∗] all the individuals evade all their income,
and then the tax revenue is given by the penalties paid by the evaders inspected.
Formally, this revenue is given by

G1(τ) = α1pτ (1 + s) y1 + α2pτ (1 + s) y2 + α3pτ (1 + s) y3.
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Simplifying the last expression we have

G1(τ) = pτ (1 + s) (α2m+ α3) .

For τ ∈ (τ∗, bτy3 ] everybody is a partial evader. In this case, the tax revenue is
composed both by the taxes voluntary paid and by the penalties from inspected
individuals. After rearranging the terms the tax revenue is given by

G2(τ) = (α2m+ α3) [τ (1− φ(τ) + p (1 + s)φ(τ))] .
Finally for τ ∈ (bτy3 , bτy2 ] the tax revenue is equal to the taxes voluntarily paid by
the individuals with income y2 and to the Þnes paid by the inspected ones. This
revenue is

G3(τ) = α2m [τ (1− φ(τ) + p (1 + s)φ(τ))] .

Proof of Proposition 6.2
(a)We need to prove that G(bτy3) is the maximum value that the tax revenue

function G(τ) can achieve. Computing dG1(τ)
dτ we have

dG1(τ)

dτ
= p (1 + s) (α2m+ α3) > 0.

Similarly differentiating G2(τ), we obtain after rearranging the terms

dG2(τ)

dτ
= (α2m+ α3)

·
1 +

(A− 1) (1− p (1 + s))
1 + sA

¸
,

which is unambiguously positive. Then, for τ ∈ [0, bτy3), we have that G2(bτy3) is
the highest value of the tax revenue.

On the other hand, if we compute dG3(τ)
dτ we obtain that

dG3(τ)

dτ
= α2m

·
1 +

(A− 1) (1− p (1 + s))
1 + sA

¸
> 0.

Then, we only have to prove thatG2(bτy3) > G3(bτy2). Evaluating these expressions,
we get

G2(bτy3) = (α2m+ α3)Ψ (bτy3) ,
and

G3(bτy2) = α2mΨ (bτy2) ,
where Ψ (τ) = [τ (1− φ (τ)) + pτ (1 + s)φ (τ)] . Comparing these two expressions
is straightforward to see that, if α3 ≥ α2 we only have to prove that"

m (Ψ (bτy2)−Ψ (bτy3))
Ψ (bτy3)

#
< 1, (A.17)
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to show that G2(bτy3) > G3(bτy2). Then, taking expressions (6.1) and (6.2) and
plugging then into Ψ (τ) , the inequality (A.17) becomes

D −B(1− c) + kBm
D

> 0, (A.18)

where D =

·µ
1 + s

1 +As

¶ ¡
(1− p)A1−γ + p¢ 1

1−γ
¸
, and B = 1 + α (1− p (1 + s)) .

Lemma 5.1 and condition (A.13) ensure that D − B(1 − c) > 0 so that the
inequality (A.18) holds.

(b) Following the proof of (a), it is straightforward to see that the proof of
(b) reduces to check when

α3 < α2

"
m (Ψ (bτy2)−Ψ (bτy3))

Ψ (bτy3)
#
, (A.19)

holds. Since inequality (A.17) holds, we need a small enough value of α3 to ensure
the fulÞllment of (A.19) .

Proof of Proposition 6.3.
(a) It is immediate to see that dG1(τ)

dτ > 0 and dG2(τ)
dτ > 0, where G1(τ) =

pτ (1 + s) (α2m+ α3) and G2(τ) = pτ (1 + s)α2m. Then, we only have to prove
that G1 (eτy3) > G2 (eτy2), which is equivalent to prove that

α3 < α2m

"eτy2 − eτy3eτy3
#
, (A.20)

after substituting the corresponding values of the tax rate. The expression (6.3)
tells us how eτy2 depends on m. Then, we get

lim
m→1

"
α2m

Ãeτy2 − eτy3eτy3
!#

= 0.

In consequence we can conclude that for am sufficiently close to one, the inequal-
ity (A.20) will hold.

(b) Following the proof of (a), it is straightforward to see that the proof of (b)
reduces to check when

α3 < α2m

"eτy2 − eτy3eτy3
#
, (A.21)

holds. Obviously, a value of α3 small enough ensures that (A.21) holds.

(c) It is immediate to see that dG1(τ)
dτ > 0, dG2(τ)dτ > 0 and dG3(τ)

dτ > 0, where
G1(τ) = pτ (1 + s) (α2m+ α3), G2(τ) = pτ (1 + s)α2m and G3(τ) = α2mΨ (τ)
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with Ψ (τ) = [τ (1− φ (τ)) + pτ (1 + s)φ (τ)] . Then, we only have to prove that
G1 (eτy3) > G3 (bτy2) since G2(τ) and G3(τ) are continuous on their respective
domains. The last inequality is equivalent to

α3 > α2m

"bτy2 − eτy3eτy3
#
. (A.22)

Thus, when the proportion α3 is large enough, inequality (A.22) holds.

(d) Following the proof of (c), it is straightforward to see that the proof of (d)
reduces to check when the following inequality is satisÞed:

α3 < α2m

"bτy2 − eτy3eτy3
#
.

Obviously, such an inequality holds for a small enough value of α3.
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Figure 1. The function G(τ ) when the individuals are honest,
using logarithmic scale (c = 0.1, Y = 100, k = 1).
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Figure 2. The function G(τ ) when the evasion takes place
and τ ∗ ≤ c, using logarithmic scale (p = 0.1, s = 3, c = 0.15,
Y = 100, k = 1, γ = 2).
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Figure 3. The function G(τ ) when the evasion takes place
and τ ∗ > c, using logarithmic scale (p = 0.1, s = 1.5, c = 0.1,
Y = 100, k = 1, γ = 2).
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Figure 4. The function G(τ ) when the income distribution
is discrete and α3 > α2 (p = 0.1, s = 3, c = 0.25, k = 0.25,
γ = 0.5, α1 = 0.4, α2 = 0.2, α3 = 0.4, m = 0.7).
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Figure 5. The function G(τ ) when the income distribution
is discrete and α3 < α2 (p = 0.1, s = 3, c = 0.25, k = 0.25,
γ = 0.5, α1 = 0.1, α2 = 0.8, α3 = 0.1, m = 0.7).


