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Abstract

We study the distributive and consistency properties of the Uniform Alloca-
tion Rule for solving the division problem with single-peaked preferences studied by
Sprumont (1991). We show that under e±ciency, strategy-proofness and anonymity
can be replaced by Lorenz dominance. We also characterize the Uniform Allocation
Rule as the unique solution satisfying e±ciency, consistency and the Upper-Bound
Rationing property for two agents.

Resumen

En este trabajo estudiamos las propiedades distributivas y de consistencia de la
Regla de Asignaci¶on Uniforme caracterizada por Sprumont (1991) como soluci¶on a
los problemas de divisi¶on con preferencias unimodales. Demostramos que bajo el
supuesto de e¯ciencia, los axiomas de anonimidad y de no manipulabilidad pueden
ser reemplazados por el axioma de dominaci¶on en el sentido de Lorenz. Tambi¶en
demostramos que dicha regla es la ¶unica soluci¶on que satisface e¯ciencia, consistencia
y una cierta propiedad de acotaci¶on en el racionamiento para dos agentes.
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1. Introduction

We study the problem of allocating an in¯nitely divisible good among a group of agents
whose preferences are single-peaked. Each agent has a preferred consumption level; if
he moves away from it he will be worse o®, but the sum of the individual preferred
consumptions may be greater (smaller) than the amount to be divided. The question is
how to achieve a division taking into account the agents' preferences.

This model was initially considered by Sprumont[13]. He o®ered the two following
interpretations. The ¯rst one is distribution of goods at disequilibrium prices: consider
an economy with two commodities which are allocated via prices. However, prices are
not necessarily in equilibrium. If distribution must take place, a rationing rule has to
be de¯ned. When preferences are strictly convex, then, they become single-peaked, when
restricted to the budget constraints. The second interpretation is that of a group of agents
who must supply a quantity of labor in order to complete some task. If workers are paid
an hourly wage and their disutility of labor is concave, then their induced preferences on
the labor they supply are single-peaked. There are many other situations that ¯t with
this model, for example, the allocation of a commodity when preferences become satiated
at some point and free disposal is not allowed. A common characteristic of all these
examples is that the preferred shares may not be compatible: they might add up to more
or less than the total amount required or needed.

Within this framework Sprumont established the existence of a unique e±cient, anony-
mous and strategy-proof solution which he named the Uniform Allocation Rule. It gives
to everyone his preferred share within the limits of an upper and a lower bound deter-
mined by the feasibility condition that the shares add up to one. He also proved that the
anonymity axiom may be replaced by the no-envy one.

The Uniform Allocation Rule has also been broadly studied by Thomson[14] from the
normative or axiomatic viewpoint. His main results are two. He ¯rst showed that the
Uniform Allocation Rule is the unique solution satisfying non-envy, e±ciency, consistency
and continuity to changes in the amount to be divided. He also showed that non-envy
may be replaced by individual rationality from equal division. He states that the Uniform
Allocation Rule can wholeheartedly be advocated as the best solution to the problem of
fair allocation in economies with single-peaked preferences.

Here our focus is also normative. We would like to understand, in Sprumont's model,
the powerful distributive implications of the strategy-proofness axiom. Indeed, this axiom
helps to single out the Uniform Allocation Rule, when combined with anonymity and
e±ciency, which seem very weak in distributive terms. Several examples have shown
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that there exists a tension, on taking collective choices, between e±ciency and strategy-
proofness. Multidimensional voting schemes and exchange economies are good examples
of it.1 We found this division problem interesting because it allows to meet both properties
simultaneously. Our ¯rst result (Theorem 3.1) is that one can replace strategy-proofness
and anonymity, under e±ciency, by the axiom of Lorenz dominance which has a clear
distributive content. This axiom states that the solution should select the allocation that
Lorenz dominates all the other e±cient allocations. We want to emphasize that even
though Lorenz dominance is a partial order, we obtain a maximal element in this case.
This is related with the Egalitarian Solution proposed by Dutta and Ray[6].

We consider a "characteristic-like" function derived from the division problem and
using this cooperative framework we show that the Uniform Allocation Rule coincides
with the Egalitarian Solution. We say "characteristic-like" function to warn the reader
that we do not obtain a cooperative game with transferable utility for two reasons. First,
coalitions cannot make treats, they do not have the power to get away and block proposed
allocations. Second, the good that agents can transfer among themselves is time units
of work of which they may be satiated. In this "characteristic-like" function the value of
a coalition, given a preference pro¯le, will indicate the smallest amount of work that a
coalition can guarantee in any e±cient allocation. The cooperative game de¯ned by this
characteristic function is convex and its core coincides with the set of e±cient allocations.
Surprisingly, in a recent paper, Otten, Peters and Volij [10] prove that the Uniform Alloca-
tion Rule coincides with the Lexicographic Egalitarian Solution of an auxiliary bargaining
problem.

Our next set of results shows, using also this cooperative framework, that the Uniform
Allocation Rule has strong consistency properties. It is consistent under all possible
de¯nitions of reduced game. Moreover, it satis¯es the converse consistency property. We
show that consistency, e±ciency and the Upper-Bound Rationing property for two agents
single out the Uniform Allocation Rule.

The paper is organized as follows. Section 2 contains the main de¯nitions for the
division problem. Section 3 provides the main results related to the distributive aspects
of the Uniform Allocation Rule. Finally, Section 4 contains those related to the consistency
axiom.

2. The Division Problem and the Uniform Allocation Rule

The model, and much of the notation, follow Sprumont[13]. There are M units of some
perfectly divisible good that has to be allocated among a set N = f1; :::; ng of agents.
The preference of every agent i 2 N is represented by a complete preordering on [0;M ] ;

1See, for instance, Barberµa, Sonnenschein and Zhou[5], Barberµa, Gul and Stacchetti[2], Barberµa, Mass¶o
and Neme[4] and Barberµa and Jackson[3].
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denoted Ri: These preference relations are assumed to be single-peaked: for each i, there
is x¤i 2 [0;M ] such that for all x; x; 2 [0;M ] if x; < x · x¤i or x¤i ¸ x > x; then xPix; (Pi
denotes the strict preference relation associated with Ri): We call x

¤
i the peak of Ri and

often, to emphasize the dependence upon the preference preordering, we write x¤(Ri):
The symbol R = (Ri)i2N denotes the vector of announced preferences, and x¤(R) stands
for the vector of peaks associated with R. The set of all single-peaked preferences on
[0;M ] will be denoted by R and its elements will be called preference pro¯les.

A division problem will be a pair (R;M) where R = (R1; :::; Rn) is the vector of
announced single-peaked preferences, and M is the amount to be shared. From now on,
and except in Section 4, we will normalize M to one.

A feasible allocation is a vector x = (xi)i2N 2 <n+ such that
P
i2N xi = 1: Therefore,

the set of feasible allocations is the n-dimensional simplex, denoted by 4n:

A solution is a mapping © which assigns to every admissible preference pro¯le R a
unique feasible allocation, ©(R); that is, © : Rn !4n:

A solution is called "tops-only" if it is constant on pro¯les having the same peak;
that is, if R and R0 are such that x¤(Ri) = x¤(R0i) for every i 2 N; then ©(R) = ©(R0):
Therefore if © is tops-only we can associate to it a function ¤ : [0; 1]n ! 4n having the
property that ¤(x¤(R)) = ©(R) for every R:

The main result of Sprumont is that the properties of strategy-proofness, e±ciency,
and anonymity together characterize a unique allocation rule. In the present context,
e±ciency simply requires that if the preferred shares add up to more (less) than one, then
no agent should get more (less) than his preferred share. He also shows that, alternatively,
the anonymity axiom may be replaced by non-envy. This unique rule is the Uniform
Allocation Rule. The formal de¯nitions are taken from Sprumont[13] and they are as
follows.

E±ciency: A solution © is e±cient if for all R 2 Rn;

[
P
i2N x¤(Ri) · 1] =) [©i(R) ¸ x¤(Ri) for all i 2 N ]; and

[
P
i2N x¤(Ri) ¸ 1] =) [©i(R) · x¤(Ri) for all i 2 N ]:2

Anonymity: A solution © is anonymous if for all permutations ¦ of N; all R 2 Rn;
©i(R

¦) = ©¦(i)(R); where R
¦ = (R¦(i))i2N :

Strategy-proofness: A solution © is strategy-proof if for all R 2 Rn; all i 2 N; and all
R0i 2 R; ©i(Ri; R¡i)Ri©i(R0i; R¡i):

2It is immediate to see that this de¯nition coincides with Pareto E±ciency under single-peakedness.

3



De¯nition 2.1. (Sprumont[13]) The Uniform Allocation Rule ©¤ is de¯ned as follows:

©¤i (R) =

(
minfx¤(Ri); ¸(R)g if

P
i2N x¤(Ri) ¸ 1

maxfx¤(Ri); ¹(R)g if
P
i2N x¤(Ri) · 1 ;

for all i 2 N , where ¸(R) solves the equation P
i2N minfx¤(Ri); ¸(R)g = 1 and ¹(R)

solves the equation
P
i2N maxfx¤(Ri); ¹(R)g = 1:

From the de¯nition it is clear that the Uniform Allocation Rule gives full satisfaction
to some of the agents (those with low preferred contributions if

P
i2N x¤(Ri) ¸ 1 and

those with high preferred contributions if
P
i2N x¤(Ri) · 1) at the expense of the others.

It is clear, too, that it is a tops-only rule.

3. A Characterization with a Distributive Axiom

The main distributive concern is equality. Two criteria have been widely accepted as
embodying a set of minimal ethical judgments that "should" be made in carrying out
inequality comparisons. They are the leximin and the Lorenz criteria. The distributive
concern, together with e±ciency, implies that the outcome of the rule should be either the
Lorenz or the leximin dominant element from within the set of e±cient shares. We show
in this section that, under e±ciency, the Lorenz criterion chooses the allocation selected
by the Uniform Allocation Rule.3

The Lorenz dominance criterion has been applied by Dutta and Ray[6] and [7] to de¯ne
the so called Egalitarian Solution. This is a solution concept for transferable utility games
which marries commitment for egalitarianism and promotion of individual interests in a
consistent manner. They show that, in convex games, this allocation Lorenz dominates
every other point in the core.

Before formally stating the axiom, we need the following de¯nitions. Suppose agents
have the pro¯le R: The set of e±cient allocations only depends on the associated vector
of preferred contributions x¤ = x¤(R): We denote this set by Eff(x¤), that is,

Eff(x¤) =

(
y 2 4n

¯̄̄̄
¯ If

P
i2N x¤i · 1 then yi ¸ x¤i for all i 2 N

If
P
i2N x¤i ¸ 1 then yi · x¤i for all i 2 N

)
.

Given a vector y 2 4n, denote by by the vector obtained by rearranging the coordinates
of y in decreasing order.

Given two vectors y; z 2 4n, we say that y Lorenz dominates z; y >L z; if
Pk
j=1 byj ·

3Recall that Lorenz domination implies leximin domination.
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Pk
j=1 bzj for every k = 1; :::; n; with at least one strict inequality.4
Notice that >L is a partial order. It is clear that e = (1=n; :::; 1=n) Lorenz dominates

every vector in 4nne:
Formally the axiom we consider is the following.

Lorenz dominance: A solution © is Lorenz dominant if for all R 2 Rn, ©(R) >L y for
every y 2 Eff(x¤(R)) n ©(R):
Our main result can be stated as follows:

Theorem 3.1. A solution © is e±cient and Lorenz dominant if and only if © is the
Uniform Allocation Rule.

Proof: To show that the Uniform Allocation Rule is e±cient and Lorenz dominant is
immediate. Assume that © is an e±cient and Lorenz dominant solution. We will show
that it has to be the Uniform Allocation Rule.
Let R be given and let x¤ be the corresponding tops. Denote by x the allocation proposed
by ©: By e±ciency we can divide the population among those who get what they want
and those who get more ( if

Pn
i=1 x

¤
i < 1), or less ( if

Pn
i=1 x

¤
i > 1) of what they want. IfPn

i=1 x
¤
i = 1, e±ciency requires the uniform distribution, which coincides with the Uniform

Allocation Rule. Since both cases are symmetric we only provide the details for the casePn
i=1 x

¤
i > 1:

Anybody who gets rationed (by receiving more or less than its preferred contribution)
must get the same. Suppose not, i.e., let us assume that there exists i; j 2 N such that
xi < xj and xi < x¤i , xj < x¤j : Then, (x1; :::; xi + ²; :::; xj ¡ ²; :::; xn) is also e±cient for
su±ciently small ² > 0, and it Lorenz dominates the original (x1; :::; xn): Hence, x = ©(R)
has the property that there exists a q such that either xi = x¤i or xi = q: Denote by S
the set of rationed agents, i.e., S = fi 2 N j xi = qg. It only remains to be shown that x
has the property that q > xj for all j such that q 6= xj . Assume not, i.e., q < xj for some
j =2 S. Then, there exist q0 > q and y such that yj = q0, yi = q0 for i 2 S, and yi = xi for
i 62 S [ j. Then y is e±cient and Lorenz dominates the original allocation. But this is
the allocation chosen by the Uniform Allocation Rule.

The remainder of Section 3 is devoted to present an alternative proof of Theorem 3.1.
We do that for two reasons. First, we ¯nd this alternative proof interesting since it allows
to relate the Uniform Allocation Rule with the Ray and Dutta Egalitarian Solution for
cooperative games. Second, in this proof we construct a cooperative game that will be
used in Section 4 to study the consistency properties of the rule in terms of its reduced
game properties.

4In this de¯nition we follow Dutta and Ray[6] in arranging the vectors in decreasing order. Some
authors de¯ne the Lorenz curves by arranging the vectors in increasing order.
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Following Aumann and Maschler[1], we will associate to every division problem some-
thing that "looks like" a characteristic function. We can apply to the division prob-
lem what Aumann and Maschler say for the bankruptcy problem: "As it stands, the
bankruptcy problem considered here is not a game; coalitions do not appear explicitly in
its formulation." As they did we have found a natural way to associate a game with the
division problem. We obtain a "division cooperative game" where the set of players will
be the agents involved in the distribution problem and the value of a coalition will be
the smallest amount of work that its members will have to contribute to in any e±cient
allocation. This amount will depend on whether the vector of preferred contributions is
bigger or smaller than the total required. If it is bigger, the value of a coalition will be the
remainder amount of work after ful¯lling the preferred contributions of the members of
the complementary coalition; if it is smaller, the value will just be the sum of the preferred
contributions of its members, since, at least, that will be the smallest amount they will
jointly work in any e±cient allocation.

De¯nition 3.2. Let x¤ =(x¤1; :::x
¤
n) be a vector of preferred contributions. The Division

Cooperative Game is de¯ned as a pair (N; vx¤) whereN = f1; :::; ng is the set of individuals
involved in the division problem and vx¤ is the characteristic function de¯ned as follows:

(a) If
Pn
i=1 x

¤
i ¸ 1 then vx¤(S) = maxf0; 1¡

P
i2N=S x¤i g for every S µ N:

(b) If
Pn
i=1 x

¤
i · 1 then vx¤(S) =

( P
i2S x¤i if S ½ N
1 if S = N

¢

We want to emphasize that v(S) is a number that measures time units of work and that
agents, in contrast with the common transferable utility cooperative game interpretation,
may become satiated by this good. When it is clear from the context, as in this case, we
will omit x¤ in vx¤: We will denote by ¡ the family of division cooperative games. Let us
illustrate this de¯nition with the help of two examples.

Consider case (a) ¯rst. Assume there are two agents with preferred contributions
0.4 and 0.7. In this case we will have v(1) = 0:3 and v(2) = 0:6 with v(12) = 1: By
e±ciency the shares have to be y1 · 0:4 and y2 · 0:7 while feasibility implies y1+ y2 = 1:
Therefore, it follows that y1 ¸ 0:3 and y2 ¸ 0:6: The characteristic function assigns to
every player (in general coalitions) the smallest contribution of all possible "equilibrium"
binding agreements in the sense of Ray and Vohra[12].

Next consider case (b). Using the same v; namely v(S) = maxf0; 1 ¡P
i2N=S x¤ig for

every S µ N; the interpretation would be di®erent: it would give the highest amount of
work that S would do in any e±cient allocation, and not the smallest one as in case (a).
Consider, for instance, two agents with preferred contributions 0.2 and 0.6. By e±ciency
the shares have to be y1 ¸ 0:2 and y2 ¸ 0:6: Therefore, we have v(1) = 0:2; v(2) = 0:6
and v(12) = 1: In this case, contrary to the previous one, the smallest e±cient allocation
is the one that gives highest satisfaction.
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This cooperative game has good properties; for instance, it is convex, and therefore,
has a nonempty core. From now on we ¯x a vector of preferred contributions, x¤; from
which we obtain a division cooperative game. We will focus on solution concepts for this
game and on the relationship with the solutions of the original division problem. For
example, the core of this game coincides with the set of e±cient allocations of the division
problem.

De¯nition 3.3. The core of a division cooperative game (N; v) is the following set:

C(N; v) = fy 2 4n jX
i2S
yi ¸ v(S) for all S ½ Ng:

Lemma 3.4. Eff(x¤) = C(N; vx¤) for every x¤:

Proof: Let y 2 Eff(x¤) and suppose y =2 C(N; vx¤):Without loss of generality we assume
that

P
i2N x¤i ¸ 1: Since y =2 C(N; vx¤) there must exist S ½ N; S 6= N; such thatP

i2S yi < v(S) = 1 ¡
P
j2SC x¤j : Therefore

P
i2S yi +

P
j2SC x¤j < 1 =

P
i2S yi +

P
j2SC yj :

This implies that there exists j 2 SC such that x¤j < yj , but this contradicts e±ciency.
Assume now y 2 C(N; vx¤). IfPi x

¤
i · 1 then yi ¸ v(i) = x¤i ; and henceforth it is e±cient.

If
P
i2N x¤i ¸ 1, we have that

P
i2S yi ¸ v(S) for all S µ N in particular for the coalitions

with n ¡ 1 members. This implies that for every j 2 N , 1 ¡ yj = P
i6=j yi ¸ v(Nnj) =

maxf0; 1¡ x¤jg ¸ 1¡ x¤j . Therefore, x¤j ¸ yj for all j 2 N .

In what follows we describe an algorithm to construct a feasible imputation »¤ 2 4n

from a division game. This imputation, as we will see, coincides with the selected by the
Uniform Allocation Rule. Besides, in Lemma 3.7, we will show that it Lorenz dominates
any other imputation in the core. This result implies that it coincides with the Egalitarian
Solution of Dutta and Ray[6]. This fact will be the clue to prove Theorem 3.1.

For any characteristic function v 2 ¡; the algorithm works as follows.

Step 1: For any coalition S µ N; de¯ne w1(S; v) = v(S)

jSj , so that w1(S; v) is the average
worth of S under v: Let T1 be the largest coalition with the highest average worth. Then

»¤i = w1(T1; v) for all i 2 T1: Note that if T1 = N then »¤i =
1

n
for all i:

Step 2: Consider all the coalitions S such that S ¾ T1; and de¯ne

w2(S; v) =
v(S)¡P

i2T1 »
¤
i

jSj ¡ jT1j =
v(S)¡ v(T1)
jSj ¡ jT1j ¢

Let us denote by T2 the largest coalition with the highest w2(S; v): Then »
¤
i = w2(T2; v)

for all i 2 T2 n T1:
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Step k: Consider all the coalitions S such that S ¾ Tk¡1; and de¯ne

wk(S; v) =
v(S)¡P

i2Tk¡1 »
¤
i

jSj ¡ jTk¡1j =
v(S)¡ v(Tk¡1)
jSj ¡ jTk¡1j ¢

We denote by Tk the largest coalition with the highest wk(S; v), then »
¤
i = wk(Tk; v) for

all i 2 Tk n Tk¡1:
Clearly, at some step K, smaller than n, we will have that the grand coalition is the

largest with the highest wK(S; v): Hence, at this step, »
¤
j = wK(N; v) for all j 2 N nTK¡1,

and thus the algorithm stops.

Lemma 3.5. »¤ = ©¤(x¤):

Proof: We will distinguish between two cases:
Case (a):

P
i2N x¤i ¸ 1.

Pick an arbitrary i 2 N . If i 2 T1, then »¤i =
v(T1)

jT1j : Let us denote by ® the average

worth of T1, that is, ® =
v(T1)

jT1j =
1¡P

j2TC1 x
¤
j

jT1j ¢ If i =2 T1; then »¤i =
v(Tk)¡ v(Tk¡1)
jTkj ¡ jTk¡1j for

the ¯rst k such that Tk contains i: Since v(Tl) ¸ v(Tl¡s) for every s = 1; :::; l ¡ 1; and
v(T1) > 0; we have that

v(Tk)¡ v(Tk¡1)
jTkj ¡ jTk¡1j =

P
j2Tk=Tk¡1 x

¤
j

jTkj ¡ jTk¡1j ¢

From the de¯nition of Tk it follows that for every j 2 Tk n Tk¡1

»¤j =
v(Tk)¡ v(Tk¡1)
jTkj ¡ jTk¡1j ¸ v(Tk¡1 [ fjg)¡ v(Tk¡1) = x¤j :

Since
PK
k=2

P
j2Tk=Tk¡1 »

¤
j = 1¡

P
j2T1 »

¤
j =

PK
k=2

P
j2Tk=Tk¡1 x

¤
j ; and since »

¤
j ¸ x¤j for every

j 2 Tk n Tk¡1 and every k > 1; we can conclude that »¤i = x¤i whenever i =2 T1: Therefore
»¤i = minfx¤i ; ®g; which is ©¤i (x¤) since ® is such that

P
i2N minfx¤i ; ®g = 1:

Case (b):
P
i2N x¤i · 1:

Pick an arbitrary i 2 N: If i 2 T1 and jT1j < n then »¤i =
v(T1)

jT1j =

P
j2T1 x

¤
j

jT1j = x¤i : If

i =2 T1 then »¤i =
v(Tk)¡ v(Tk¡1)
jTkj ¡ jTk¡1j for the ¯rst k such that Tk contains i:

From the de¯nition of Tk it follows that for every j 2 Tk n Tk¡1

»¤j =
v(Tk)¡ v(Tk¡1)
jTkj ¡ jTk¡1j = ¸ ¸ v(Tk¡1 [ fjg)¡ v(Tk¡1) = x¤j :

Since
P
j2N »¤j = 1; and

P
j2T1 »

¤
j =

P
j2T1 x

¤
j then »

¤
j ¸ x¤j 8j =2 T1 with at least one strict

inequality. Therefore »¤i = maxfx¤i ; ¸g = ©¤i (x¤) for all i 2 N:
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Remark 3.6. »¤ is a core imputation by Lemmas 3.4 and 3.5.

Let us illustrate this algorithm with the help of two examples.

Example 1: Let n = 3 and x¤ = (0:16; 0:25; 0:66): From these preferred contributions
we can derive the following division game: v(1) = 0:083; v(2) = 0:166; v(3) = 0:583;
v(12) = 0:333; v(23) = 0:833; v(13) = 0:75 and v(123) = 1: In a ¯rst step T1 = f3g and
w1(f3g; v) = 0:583; therefore »¤3 = 0:583: In a second step T2 = f23g and w2(f23g; v) =
v(23) ¡ 0:583 = 0:25; therefore »¤2 = 0:25: Finally, »¤1 = 0:16: That is, »¤ =©¤(x¤) =
(0:16; 0:25; 0:583):

Example 2: Let n = 3 and x¤ = (0:1; 0:3; 0:5): From these preferred contributions we
can derive the following division game: v(1) = 0:1; v(2) = 0:3; v(3) = 0:5; v(12) = 0:4;
v(23) = 0:8; v(13) = 0:6; and v(123) = 1. In a ¯rst step T1 = f3g and w1(f3g; v) = 0:5:
Next, T2 = f23g and w2(f23g; v) = v(23)¡0:5 = 0:3; therefore »¤2 = 0:3: Finally, »¤1 = 0:2:
Hence, »¤ =©¤(x¤) = (0:2; 0:3; 0:5):

Next lemma shows that the imputation constructed by the algorithm is Lorenz domi-
nant among the imputations in the core of the division game.

Lemma 3.7. »¤ >L y for every y 2 C(N; v)n»¤:

Proof: The proof is by contradiction. Assume, without loss of generality that »¤ = b»¤. Let
y 2 C(N; v)n»¤ be such that »¤ does not Lorenz dominates it. This implies that there exists
k (the smallest one) such that

Pk
j=1 »̂

¤
j >

Pk
j=1 byj : Let Tl be the smallest coalition used in

the algorithm to obtain »¤ such that jTlj ¸ k: Let us de¯ne jTlj = W: Notice that since
»¤ is a vector with decreasing components it is the case that

PW
j=1 »̂

¤
j =

P
j2Tl »

¤
j = v(Tl):

Since for every k < j · W; »̂¤j = »̂¤k and byj · byk; then PW
j=1 »̂

¤
j =

P
j2Tl »

¤
j >

PW
j=1 byj :

Also, since by is a vector with decreasing components we have that PW
j=1 byj ¸ P

j2S yj for
every S ½ N with jSj = W: In particular, for S = Tl: Thus, we have Pj2Tl »

¤
j = v(Tl) >PW

j=1 byj ¸ P
j2Tl yj: This contradicts the assumption y 2 C(N; v)n»¤.

With the help of the above lemmas, we now provide the proof of our main result.

Proof of Theorem 3.1: .We ¯rst prove necessity. E±ciency follows from Theorem 1 in
Sprumont. The property of Lorenz dominance follows from Lemmas 3.4, 3.5 and 3.7.
To prove su±ciency let © be an e±cient and Lorenz dominant allocation rule. We want to
show that ©(R) = ©¤(x¤) for every R 2 Rn where x¤ = x¤(R): Let R be given. Since © is
Lorenz dominant we have that ©(R) >L y for every y 2 Eff(x¤) n ©(R): By Lemma 3.4
if y 2 Eff(x¤) then y 2 C(N; v): Appealing to Theorems 2 and 3 in Dutta and Ray[6] we
know that in convex games there exists a unique imputation that Lorenz dominates every
other imputation in the core. Therefore, Lemmas 3.5 and 3.7 imply that ©(R) = ©¤(x¤):
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4. A Characterization with a Consistency Axiom

Consider a group of people playing a cooperative game. Assume that players live in
a society that believes in a point-valued solution concept £: The consistency principle
means the following: If a subset S of players gather together and observe what they have
received under £; they will decide that they have no motivation to defect, because what
they have received is the payo® vector of the solution £ for "their own game" or "their
reduced game". This principle can be thought of as a stability requirement. If £ is not
a consistent solution then there will be games with payo® x = £(N; v) and coalitions
S whose members will disagree with x claiming that for their own game the solution £
yields a payo® vector di®erent from xS; the restriction of x to S:

We ¯rst show, by considering the division game, that the Uniform Allocation Rule is
consistent under the main de¯nitions of reduced game properties; this is not the case of
the Nucleolus, or the Shapley value, for instance.

De¯nition 4.1. A solution £ is consistent (has the reduced game property, RGP) if for
all coalitions S and for every payo® x it satis¯es the following:

If x = £(N; v) then (xi)i2S = £(S; vx;S):

(S; vx;S) is called the "reduced game on S", and consistency is also called "having the
reduced game property". The question is how to de¯ne the reduced game (S; vx;S):

Two de¯nitions have so far proved fruitful.

De¯nition 4.2. (Peleg [11]) Let (N; v) be a game, let S ½ N;S 6= ;; and let x = £(N; v):
The reduced game RG1 with respect to S and x is the game (S; v

1
x;S) where

v1x;S(T ) =

(
x(S) if T = S

maxR2SC fv(T [R)¡ x(R)g if T ½ S :

De¯nition 4.3. (Hart and Mas-Colell[9]) Let (N; v) be a game, let S ½ N;S 6= ;; and
let x = £(N; v): The reduced game RG2 with respect to S and x is the game (S; v

2
x;S)

where

v2x;S(T ) =

(
x(S) if T = S

v(T [ SC)¡P
i2SC £i(T [ SC ; v) if T ½ S :

The solution £ has the RGPk if it is consistent with respect to the RGk; for k = 1; 2:

The intrinsic di®erence between the de¯nitions above is the way the subcoalitions, the
subsets T ½ S ½ N; interpret their own game. In 1 they choose the "best partners",
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while in 2 they go with all the others. In 1 they pay them their original payo®, while in
2 they "¯gure out" that a new game will be played (T [ SC ; v) and SC will take homeP
i2SC £i(T [ SC ; v):
One of the most fascinating results in cooperative game theory is the characteriza-

tion of its main solutions by means of the axioms of anonymity and zero-independence
combined with some of these consistency properties. For instance, RGP1; anonymity and
zero-independence characterize the Nucleolus; RGP2; anonymity and zero-independence
characterize the Shapley value.

De¯nition 4.4. (Peleg[11]) Let £ be a solution. It has the converse reduced game prop-
erty (CRGP) if for every x 2 <n and for every S 2 ¦(N); ¦(N) = fS µ N j jSj = 2g ; if
xS = £(S; v1x) then x = £(N; v):

Next proposition shows that the Uniform Allocation Rule is consistent under the above
de¯nitions of reduced game properties and that it does also satisfy the CRGP: Since the
de¯nition of this rule is based on the division problem and not on the game, we will make
use of the results in Section 3 to prove the Proposition.

Proposition 4.5. ©¤ satis¯es the RGPk for k = 1; 2: Moreover, ©¤ satis¯es the CRGP:

Proof: From Dutta [8] it is known that the Egalitarian Solution satis¯es RGP1; RGP2 and
CRGP for convex games. Hence, the Uniform Allocation Rule will also satisfy them, since
in Section 3 we showed that division games are convex and that the Uniform Allocation
Rule coincides with the Egalitarian Solution for these games.

Remark 4.6. Since ©¤ is anonymous and satis¯es the RGP1 and the RGP2; it does not
have the zero-independence property.

We now focus on the characterization of the Uniform Allocation Rule by means of the
RGP1 and two other axioms (Individual Rationality and the Unanimity Sharing Bounds)
to hold only for the two-players case.

De¯nition 4.7. Let £ be a solution in the class of games ¡. It is Individually Rational
for two players (IR2) if £i(N; v) ¸ v(i) for all i 2 N; whenever jN j = 2:

De¯nition 4.8. Let £ be a solution in the class of games ¡. It has the Unanim-
ity Sharing Bound property for two players (USB2) if it satis¯es that £i(f1; 2g ; v)·
max

(
v(12)

2
; v(i)

)
for i = 1; 2:
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Proposition 4.9. The Uniform Allocation Rule is the unique solution that satis¯es
RGP1, IR

2and USB2.

Proof: One direction is immediate. For the other one, assume µ satis¯es the three prop-
erties. Then, we have to show that it coincides with the Uniform Allocation Rule, that
is, µ = ©¤: Let n = 2. By USB2 and IR2 if v(1) = v(2) then µ1 = ©¤1 = ©¤2 =

µ2 =
v(12)

2
=
1

2
: If v(1) < v(2); by USB2; we have that µ1 · max

(
v(12)

2
; v(1)

)
and

µ2 · max
(
v(12)

2
; v(2)

)
: We distinguish two cases:

Case (a): max

(
v(12)

2
; v(2)

)
=
v(12)

2
: In this case, ©¤1 = ©¤2 =

v(12)

2
=
1

2
: Let

µ2 = v(2)+®: By IR
2 we know that ® ¸ 0: Assume that µ2 =v(2)+® < v(12)

2
¢ E±ciency

implies that µ1 >
v(12)

2
; but this contradicts that µ satis¯es the USB2 property since by

hypothesis v(1) < v(2) <
v(12)

2
. Therefore µ2 = µ1 =

v(12)

2
¢

Case (b): max

(
v(12)

2
; v(2)

)
= v(2): Since in this case »¤2 = v(2), it is su±cient to show

that µ2 = v(2): But this follows immediately since USB2 and IR2 together imply that
µ2 = v(2):
Now let x = µ(N; v): By the RGP1 we know that x

S = µ(S; vx) for every S 2 ¦(N): Hence
xS = ©¤(S; vx) for every S 2 ¦(N): But since ©¤ has the CRGP then x = ©¤(N; v):

Remark 4.10. The characterization is tight. The Nucleolus is an example of a value that
satis¯es all the properties of the Theorem except USB2. The equal split is an example
of a value that satis¯es USB2 and RGP1, but fails to satisfy IR

2. A solution composed
by a mixture of the Nucleolus and the Uniform Allocation Rule (it applies the Nucleolus
whenever v(N) ¸ P

i2N(v(N) ¡ v(N n i)) and the Uniform Allocation Rule whenever
v(N) · P

i2N(v(N)¡ v(N n i))) satis¯es all the properties, but the RGP1:

Before stating the Theorem it will be useful to interpret the axioms in terms of the
original division problem. IR2 states that the solution has to be e±cient. USB2 imposes
an upper bound on the "rationing". We will refer to this property as the Upper-Bound
Rationing property. RGP1 is, under e±ciency, equivalent to the consistency axiom used
in Thomson[14] (this claim is proved in Lemma 4.13). Therefore, we can rewrite for the
original setting the characterization obtained in the cooperative framework as follows:
the Uniform Allocation Rule is the unique solution satisfying e±ciency, consistency, and
the Upper-Bound Rationing property for two players. We will also see that e±ciency
and the Upper-Bound Rationing property imply the Median Voter property, which is the
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Uniform Allocation Rule for two players; that is, what player 1 gets is the median among

his preferred contribution (x¤1), what player 2 concedes to him (1¡x¤2) and
1

2
¢ The formal

de¯nitions are the following.

De¯nition 4.11. Let © be a solution of the division problem. We say that © satis¯es
the Upper-Bound Rationing property for two players if it satis¯es the following condition:

-If preferences are such that x¤1(R) + x
¤
2(R) ¸ 1; then ©i(R) · max

½
1¡ x¤j ;

1

2

¾
:

-If preferences are such that x¤1(R) + x
¤
2(R) · 1; then ©i(R) · max

½
x¤i ;

1

2

¾
¢

De¯nition 4.12. Let © be a solution of the division problem de¯ned on the pairs (R;M)
such that

P
i2N ©i(R;M) =M: Then © is consistent if©i(R;M) = ©i((R)S;

P
i2S ©i(R;M))

for every i 2 S and every S ½ N .

Lemma 4.13. Let © be an e±cient solution of the division problem. For every R 2Rn;
denote by µ(N; v¤x) the allocation ©(R), where x

¤ = x¤(R): Then, © is consistent if and
only if µ satis¯es the RGP1:

Proof: Let © be an e±cient solution and let R 2Rn be such that Pi2N x¤i ¸ 1; where
x¤ = x¤(R):
For every S µ N; S 6= ;; de¯ne the restricted characteristic function uS(T ) as follows:
uS(T ) = maxf0;Pj2S ©j(R;M) ¡

P
j2SnT x¤jg; for all T µ S: Since consistency means

that ©i(R;M) = ©i((R)
S;
P
i2S ©i(R;M)); and since the RGP1 of µ implies µi(S; vx) =

µi(S; v
1
x;S) for all i 2 S; then to prove the lemma, i.e., to show that µi(S; v1x;S) = µi(S; uS);

it is su±cient to show that v1x;S(T ) = uS(T ) for all T µ S; where

v1x;S(T ) =

( P
j2T ©j(R;M) if T = S;

maxQµSC
n
v(T [Q)¡P

i2Q©i(R;M)
o
if T ½ S:

Let x = ©(R;M): Following the proof of Lemma 6.2 in Aumann and Maschler[1]
consider the three possible cases:

(i) Let T = S; in this case we have v1x;S(T ) =
P
j2T xj = uS(T ):

(ii) Let T = ;; the e±ciency of © implies that uS(;) = 0, and we also have that

v1x;S(T ) = maxQ2SC
n
max f0;M ¡P

j2QC x¤jg ¡
P
j2Q xj

o
:

Letting Q = ; we get v1x;S(T ) = maxQ2SCf max f¡
P
j2Q xj ;

P
j2QC xj ¡

P
j2QC x¤jgg = 0:

(iii) Let T ½ S; and let Q ½ SC be such that v1x;S(T ) = v(T [Q)¡
P
j2Q xj.

Then, v1x;S(T ) = max f0;M¡
P
j2(T[Q)C x¤jg¡

P
j2Q xj ·max f0;M¡

P
j2QC x¤j¡

P
j2Q xjg
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= max f0;Pj2S xj +
P
j2SC xj ¡ [

P
j2SnT x¤j ¡

P
j2Q x¤j +

P
j2SC x¤j ]¡

P
j2Q xjg

= max f0;Pj2S xj ¡
P
j2SnT x¤j +

P
j2NnS[Q xj ¡

P
j2NnS[Q x¤jg

· max f0;Pj2S xj ¡
P
j2SnT x¤jg = uS(T ): Hence, we have v1x;S(T ) · uS(T ):

On the other hand, letting Q = N n S; we have that
v1x;S(T ) ¸ v(T [ (N n S))¡

P
j2NnS xj =max f0;M ¡P

j2(T[(NnS))C x¤jg ¡
P
j2NnS xj

¸M¡Pj2SnT x¤j ¡ (M ¡P
j2S xj) =

P
j2S xj ¡

P
j2SnT x¤j .

Also, letting Q = ;; we have v1x;S(T ) ¸ max f0;M ¡P
j2NnT x¤jg ¸ 0:

Therefore, we get that v1x;S(T ) ¸ max f0;Pj2S xj ¡
P
j2SnT x¤jg = uS(T ): Hence,

v1x;S(T ) = uS(T ) for T µ S:
Assume now that R 2 Rn is such that

P
i2N x¤i < M , where x¤ = x¤(R): For every

S µ N; S 6= ;; de¯ne the restricted characteristic function uS(T ) as follows:

uS(T ) =

( P
j2S ©j(R) if T = S;P
j2T x¤j if T ½ S:

Let x = ©(R;M): To show that v1x;S(T ) = uS(T ) for all T µ S; we have to consider
the three possible cases:

(i) Let T = S; in this case we have v1x;S(T ) =
P
j2T xj = uS(T ):

(ii) Let T = ;; from the de¯nition of the reduced game and for Q = ; we have that

v1x;S(T ) = max
QµSC

8<:v(Q)¡X
j2Q

xj

9=; = max
QµSC

fX
j2Q

x¤j ¡
X
j2Q

xjg = 0:

Therefore, v1x;S(T ) = uS(;) = 0.
(iii) Let T ½ S and let Q µ SC be such that

v1x;S(T ) = v(T [Q)¡
X
j2Q

xj =
X

j2(T[Q)
x¤j ¡

X
j2Q

xj ·
X
j2T
x¤j = uS(T ):

Now, letting Q = ;; we get v1x;S(T ) ¸ v(T ) =
P
j2T x¤j = uS(T ):

Theorem 4.14. The Uniform Allocation Rule is the unique solution that satis¯es con-
sistency, e±ciency and the upper bound rationing property.

Proof: The proof follows immediately from the previous Proposition and Lemma.

Before ¯nishing this Section we comment about some related work. We showed in
Section 3 that the Uniform Allocation Rule coincides with the Egalitarian Solution of
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Dutta and Ray[6]. This solution has been axiomatized over the class of convex games by
Dutta[8]. He shows that the Egalitarian Solution, and henceforth the Uniform Allocation
Rule, is the only solution satisfying any one of the two reduced game properties, RGP1 or
RGP2; and agreeing with the Egalitarian Solution for two-person games. Our result here
shows the axioms that characterize this solution for two-person games: IR2 and USB2.
He also shows that there is no solution satisfying symmetry, individual rationality and
a monotonicity condition for two-person games that also satis¯es the two reduced game
properties. In this context, we conjecture that the the Uniform Allocation Rule is the only
solution that satis¯es RGP1, RGP2 and that for two-person games it is a core selection,
and has the Equal Treatment Property.
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