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Abstract. The Multiple Partners assignment game is a natural extension of the
Shapley and Shubik Assignment Game (Shapley and Shubik, 1972) to the case
where the participants can form more than one partnership.

In Sotomayor (1992) the existence of stable outcomes was proved. For the
sake of completeness the proof is reproduced in Appendix I. In this paper we
show that, as in the Assignment Game, stable payo¨s form a complete lattice
and hence there exists a unique optimal stable payo¨ for each side of the
market. We also observe a polarization of interests between the two sides of
the matching, within the whole set of stable payo¨s. Our proofs di¨er techni-
cally from the Shapley and Shubik's proofs since they depend on a central
result (Theorem 1) which has no parallel in the Assignment model.
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1. Introduction

The multiple partners assignment game of our title is one of the models for a
two-sided matching market presented in Sotomayor (1992). The participants
belong to two ®nite and disjoint sets, which will be denoted by F and W. For
each pair � fi;wj� in FxW there is a non-negative number, aij , representing the
gain that the coalition f fi;wjg can get if fi and wj form a partnership. Each
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player has a quota, that is, a positive integer number representing the maxi-
mum number of partnerships he/she can enter. An outcome for this game
is any set of partnerships � fi;wj� which do not violate the quotas of the
players (a matching), together with some splitting uij and vij of the gain aij .
Thus, uij � vij � aij if fi and wj form a partnership.

Imagine an economic scenario in which the sets F and W are sets of ®rms
and workers, respectively. The amount of income which fi and wj can gener-
ate if they work together is aij. The problem is then to split aij among fi and
wj. That is, if ®rm fi hires worker wj at a salary vij it will receive a pro®t of
uij � aij ÿ vij.

The natural questions are then:

A) Which partnerships will be formed?
B) If a partnership is formed, how will the gain, aij, be divided between the

partners fi and wj?

The answers to these questions involve the choice of an appropriate con-
cept of equilibrium that in this class of games is called stability. Stability re-
quires that if fi and wj are not partners then the sum of any payo¨ of fi with
any payo¨ of wj is not less than aij. The interpretation of this condition is
the natural one. If it is not satis®ed, that is, if uiq � vpj < aij , for some wq and
fp, then fi and wj can break their current partnerships with wq and fp, re-
spectively, and form a new one together, because this could give them each a
higher total payo¨. In Sotomayor (1992) it was proved that this concept of
stability (pairwise-stability) is not equivalent to the core concept. The set of
stable outcomes is contained in the core and it may be a proper subset of the
core.

A well-known special case of our model is the assignment game of Shapley
and Shubik (1972), where the only restriction is that each participant can form
at most one partnership. The main result of Shapley and Shubik's paper is
that stable outcomes always exist and they form a convex and compact lattice.
Roughly speaking, if A and B are two stable outcomes then it might be that
some workers (resp. ®rms) will get more income under A than under B and
others will get more under B than under A. The lattice theorem is that there is
a stable outcome, C, which gives each worker (resp. ®rm) the larger of the two
amounts and also one, D, which gives each of them the smaller amount. This
is of interest because, together with the compactness of the set of stable pay-
o¨s, it shows that among all stable payo¨s there is one (and only one) which is
worker optimal (resp. ®rm optimal), meaning that all workers (resp. ®rms) get
as much income under it as under any other stable payo¨.

It is also shown in Shapley and Shubik's paper that there is an opposition
of interests between the two sides of the market with respect to the stable
outcomes. According to this property, if A and B are two stable outcomes,
then all workers (resp. ®rms) prefer A to B if and only if all ®rms (resp.
workers) prefer B to A. Consequently, the optimal stable payo¨ for the
workers (resp. ®rms) is the worst for the ®rms (resp. workers).

As for the multiple partners assignment game the existence of stable out-
comes is proved in Sotomayor (1992) in two di¨erent ways. The ®rst way uses
the Linear Programming Equilibrium Theorem and the other way is based
on a replication of the players with a convenient income matrix. For the sake
of completeness we reproduce the proof which uses linear programming in
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Appendix I. In Sotomayor (1992) we also show the existence, but not the
uniqueness, of an optimal stable payo¨ for each side of the market. In the
present paper we show the (to us) rather unexpected result that, again, stable
payo¨s form a convex and compact lattice and consequently there exists a
unique optimal stable payo¨ for each side of the market (Theorems 3 and 4).
The polarization of interests between the two sides within the whole set of
stable outcomes does not carry over to our model, when we compare the total
payo¨s of the players (see Example 3 of Sotomayor (1992)). However we
prove here that this result holds when we compare the individual payo¨s of
the players in some convenient way (Proposition 3).

Indeed, to prove the results above, we face the problem that the uij's and
vij 's are indexed according to the current matching, which may di¨er from one
stable outcome to the other. Thus a player with a quota greater than one may
face the problem of comparing two unordered sets of payo¨s!

In shirt, it is not clear how to solve the following di½culties:

a ± How to make a convex combination of two unordered sets?
b ± In what topological space should the set of stable payo¨s be immersed?

The solution is obtained here via Theorem 1. This result has no parallel in
the special case of Shapley and Shubik, since its conclusions are addressed to
the players who form more than one partnership. Its statement makes use of
the following terminology: a matching is called optimal if it maximizes the
gain of the whole set of players; a partnership � fi;wj� is called nonessential if
it occurs in some but not all optimal matchings and essential if it occurs in all
optimal matchings. Therefore two matchings di¨er only by their nonessential
partnerships. Theorem 1 states that:

(i) In every stable outcome a player gets the same payo¨ in any nonessential
partnership; furthermore this payo¨ is less than or equal to any other payo¨
the player gets under the same outcome.

(ii) Given a stable outcome �u; v; x� and a di¨erent optimal matching x 0, we can
reindex the uij 's and vij 's according to x 0 and still get a stable outcome.

Equipped with Theorem 1 it is possible to represent an unordered set of
payo¨s of a player by a vector in some Euclidean space. The ®rst coordinates
of such a vector are the payo¨s that the given player gets from his essential
partners (if any), following some given ordering. The remaining coordinates
(if any) are equal to a number which represents the payo¨ the player gets from
all his nonessential partners. A partial order relation in the set of stable pay-
o¨s can then be de®ned in the obvious way. Having an appropriate partial
order relation the desired results are proved straightforwardly.

A corollary of independent interest in the context of the assignment games
is that: If a player has some un®lled position under some stable outcome, then he
will get zero payo¨ with some partner under every stable outcome. (See Roth
and Sotomayor (1990) for a detailed description of such properties for the
one-to-one case).

The last result concerns situations in which, given two stable outcomes, all
players on a given side have to choose the partnerships corresponding to their
highest payo¨s, respecting their quotas. Then a third outcome is formed. The
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non-obvious result is that the matching obtained in this way is not only feasi-
ble, but optimal. Moreover, the resulting outcome gives to the players of the
opposite side their lowest payo¨s. In this case the proof is not so straightfor-
ward as the previous proofs, instead it makes use of a sort of decomposition of
the set of nonessential partnerships (Lemma 3).

This paper is organized as follows: Section 2 describes the model; section 3
gives the proof of Theorem 1; the results about the algebraic structure of the
set of stable payo¨s are proved in section 4. An illustrative example of the
results of the paper is presented at the end of section 4. In Appendix I we
prove two important results for the present work which were already proved
in Sotomayor (1992). In Appendix II we discuss the robustness of the con-
clusions of Theorem 1.

2. Description of the model

There are two disjoint and ®nite sets of players, F � f f0; f1; . . . ; fmÿ1g and
W � fw0;w1; . . . ;wnÿ1g, where f0 and w0 are dummy players. Each player
from a given set is allowed to form partnerships with the players from the
opposite set. Each player fi A F may form at most ri partnerships and each
player wj A W may form at most sj partnerships. For each pair � fi;wj� there is
a non-negative number, aij, representing the gain that fi and wj can generate if
they work together. If a partnership � fi;wj� is formed, fi will receive a payo¨
uij V 0 and wj will receive a payo¨ vij � aij ÿ uij V 0. The dummy players are
included for technical convenience. We assume that ai0 � a0j � 0 for all fi A F
and wj A W . As for the quotas, a dummy player can form as many partner-
ships as needed to ®ll up the quotas of the non-dummy players. Thus, for ex-
ample, if player fi A F has 5 un®lled positions, then fi forms 5 partnerships
with w0. This market is denoted by M�F ;W ; a; r; s� or simply by M�a�.

A feasible matching is a set of partnerships of the kind � fi;wj�; � fi;w0� or
� f0;wj�, for � fi;wj� in FxW , Which do not violate the quotas of the players.
Formally:

De®nition 1. A feasible matching x is an m� n matrix xij of positive integer
numbers, de®ned for all pairs � fi;wj� A FxW , such that if i 0 0 and j 0 0 then

xij A f0; 1g. Furthermore, x00 � 0;
P

wj AW xij � ri, for all i 0 0 and
P

fi AF xij �
sj , for all j 0 0.

If xij > 0 (resp. xij � 0) it means that fi and wj are (resp. are not) matched
at x. The set of all fi's partners at x, with xi0 repetitions of w0, is denoted
by C� fi; x�. Thus, C� fi; x� � fw1;w2;w3;w0;w0g denotes that player fi, with
quota ri � 5, has partners w1;w2 and w3 under the matching x and has two
positions un®lled. C�wj; x� is similarly de®ned for all wj A W . We will repre-
sent by jAj the number of elements, including the repetitions, of the set A.
Under this notation jC� fi; x�j � ri and jC�wj; x�j � sj, for all non-dummy
players fi A F and wj A W .

An outcome for this market will be determined by specifying a matching
and the way in which the income within each partnership is divided among its
members. That is:
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De®nition 2. A feasible outcome, denoted by �u; v; x�, is a feasible matching x,

and an array of numbers uij , with fi A F and wj A C� fi; x�, and vij, with wj A W
and fi A C�wj; x�, such that uij � vij � aij; uij V 0 and vij V 0. Consequently
ui0 � u0j � vi0 � v0j � 0 in case these payo¨s are de®ned.

If �u; v; x� is a feasible outcome, we say that the matching x is compatible
with the payo¨ �u; v� or that �u; v; x� is an outcome with matching x. We
call the set fuij ; wj A C� fi; x�g (resp. fvij; fi A C�wj; x�g� the set of payo¨s
of player fi (resp. wj). The fi's total payo¨ under the outcome �u; v; x� is
denoted by si; that is, si �

P
wj AC� fi ;x� uij . Similarly, we de®ne the wj's total

payo¨ tj . Therefore we can write:X
fi AF

si �
X

wj AW

tj �
X

� fi ;wj� AFxW

aijxij �A�

De®nition 3. Given a feasible outcome �u; v; x� de®ne mi�minfuij ; wj A C� fi; x�g
and nj 1minfvij ; fi A C�wj; x�g.

As we de®ned in the Introduction, a feasible outcome is stable if, for all fi

and wj who are not partners, the sum of any payo¨ of fi with any payo¨ of wj

is not less than aij . This is equivalent to:

De®nition 4. The feasible outcome �u; v; x� is stable if mi�nj V aij for all � fi;wj�
with xij � 0.

If there is a pair � fi;wj� such that mi � nj < aij we say that � fi;wj� causes an
instability in x.

The proof of Proposition 1 below, from Sotomayor (1992), is reproduced
in Appendix I.

De®nition 5. We say that the feasible matching x is optimal if
P
� fi ;wj� AFxW aijxij

V
P
� fi ;wj� AFxW aijx

0
ij , for every feasible matching x 0.

Proposition 1. Let �u; v; x� be a stable outcome. Then x is an optimal matching.

3. Structure of the stable outcomes

In this section we will prove our key result. For its statement and proof
we de®ne M 1 f� fi;wj� A FxW ; xij 0 0g and M 01 f� fi;wj� A FxW ; x 0ij 0 0g.
We also use the following abbreviations: C� fi; x�1C� fi�; C� fi; x

0�1C 0� fi�;
C�wj; x�1C�wj� and C�wj; x

0�1C 0�wj�.

Theorem 1. Let �u; v; x� be a stable outcome. Let x 0 be an optimal matching.
Then

a) uij � mi and vij � nj for all � fi;wj� A M ÿM 0.
b) There exists a stable outcome �u 0; v 0; x 0� such that m 0i � mi and n 0j � nj and

u 0ij � uij and v 0ij � vij for all � fi;wj� A M XM 0.
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Proof: If x � x 0 then the result is trivially true. Thus suppose that x0 x 0. We
can write:X

� fi ;wj� AFxW

aijxij �
X

� fi ;wj� AMÿM 0
aij �

X
� fi ;wj� AMXM 0

aij

�
X

� fi ;wj� AMÿM 0
�uij � vij� �

X
� fi ;wj� AMXM 0

aij:

Here, the second equality is due to the feasibility of �u; v; x�. ButX
� fi ;wj� AMÿM 0

�uij � vij� �
X
fi AF

X
wj AC� fi�ÿC 0� fi�

uij �
X

wj AW

X
fi AC�wj�ÿC 0�wj�

vij

V
X
fi AF

X
wj AC� fi�ÿC 0� fi�

mi �
X

wj AW

X
fi AC�wj�ÿC 0�wj�

nj �1�

�
X
fi AF

jC� fi� ÿ C 0� fi�jmi �
X

wj AW

jC�wj� ÿ C 0�wj�jnj

�
X
fi AF

jC 0� fi� ÿ C� fi�jmi �
X

wj AW

jC 0�wj� ÿ C�wj�jnj

�
X

� fi ;wj� AM 0ÿM

�mi � nj�

V
X

� fi ;wj� AM 0ÿM

aij �2�

where inequality (1) follows from the de®nitions mi � min uij and nj � min vij

and inequality (2) follows from the stability of �u; v; x�. Therefore,X
� fi ;wj� AFxW

aijxij V
X

� fi ;wj� AM 0ÿM

aij �
X

� fi ;wj� AMXM 0
aij

�
X

� fi ;wj� AFxW

aijx
0
ij �3�

However since x 0 is an optimal matching we must have equality in (3)
hence equality in (1) and (2). From (2) we have that mi � nj � aij for all � fi;wj�
A M 0 ÿM and from (1) we have that uij � mi and vij � nj for all � fi;wj� A
M ÿM 0, so mi � nj � aij for all � fi;wj� A M ÿM 0.

Now de®ne the outcome �u 0; v 0; x 0� by u 0ij � uij, v 0ij � vij for � fi;wj� A M X
M 0 and u 0ij � mi, v 0ij � nj for � fi;wj� A M 0 ÿM. Hence m 0i � mi and n 0j � nj and
�u 0; v 0; x 0� is clearly stable. 9

For the rest of the paper we need the following terminology:
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De®nition 6. Given fi 0 f0 and wj 0w0, we say that � fi;wj� is a nonessential

partnership if there exist two optimal matchings, x and x 0, with xij � 1 and x 0ij �
0. If � fi;wj� occurs in every optimal matching we say that it is an essential
partnership. For unmatched players we say that � fi; f0� (resp. �w0;wj�) is a
nonessential partnership if it occurs in some optimal matching.

The following result is an immediate consequence of Theorem 1 and
Proposition 1.

Corollary. Let �u; v; x� and �u 0; v 0; x 0� two stable outcomes with x0 x 0. Suppose
player fi completes his quota under �u; v; x� and has one un®lled position under
�u 0; v 0; x 0�. Let wj (resp. wk) be a nonessential partner of fi under x (resp. x 0).
Then uij � u 0ik � 0.

4. Mathematical structure of the set of stable payo¨s

It is easy to see that the set of stable payo¨s for a given matching x forms
a lattice. That is, if �u; v; x� and �u 0; v 0; x� are stable outcomes, and if u�ij �
maxfuij ; u

0
ijg and v�ij � minfvij ; v

0
ijg, for all matched pairs � fi;wj�, then

�u�; v�; x� is stable and, symmetrically, so is �u�; v�; x�.
If �u; v� and �u 0; v 0� are associated to di¨erent matchings then there is no

meaning to consider supfu; u 0g or inffu; u 0g, since u and u 0 are de®ned on
di¨erent sets of indices. However, by using Theorem 1, we can represent the
set of stable payo¨s of a player as a vector in a Euclidean space, whose
dimension is the quota of the given player. This representation is independent
of the matching. By ordering the players in F (resp. W), we can immerse the
set of stable payo¨s for these players in a Euclidean space, whose dimensions
is the sum of the quotas of all players in F (resp. W). Then the natural partial
order of this Euclidean space induces a partial order in the set of stable
payo¨s. Now it makes sense to ask if the set of stable payo¨s is a compact and
convex lattice.

Before proceeding, let us pause to consider what we have learned from
Theorem 1. Consider a stable outcome �u; v; x�. If player fi has quota 5 and
forms partnerships with w1;w2;w3;w4 and w5, then the set of payo¨s of fi

is given by fui1; ui2; ui3; ui4; ui5g. In case all partnerships are essential, we can
®x any ordering we want and represent all sets of payo¨s of player fi by vec-
tors in the same Euclidean space. Recall that part (a) of Theorem 1 assures
that under a given stable outcome all the nonessential partners of a player
contribute with the same payo¨. Therefore, for instance, if the only essential
partners of player fi are w1 and w2, we can choose the following ordering for
the 5-tuples of uij's: �ui1; ui2; mi; mi; mi�, where mi � mi3 � mi4 � mi5. Thus under
any other stable outcome �u 0; v 0; x 0� the vector of payo¨s of player fi can be
represented by �u 0i1; u 0i2; m 0i ; m 0i ; m 0i �. Moreover, if �u 0; v 0; x 0� is the outcome as-
sociated with �u; v; x� by Theorem 1-b, u 0i1 � ui1; u

0
i2 � ui2 and m 0i � mi. That

is, whatever optimal matching is being considered, the vector of payo¨s for
player fi under �u; v; x� is the same as under �u 0; v 0; x 0�.

From now on the arrays of numbers u and v will be represented by a pair
of vectors, still denoted by u and v. Thus we will keep the same notation
�u; v; x� of the outcome under the new representation. Theorem 1 has now the
desired meaning:
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If �u; v; x� is a stable outcome and x 0 is an optimal matching, then �u; v; x 0� is
also stable.

De®nition 7. We say that the payo¨ vector �u; v� is stable if there is some fea-
sible matching x such that �u; v; x� is a stable outcome. In this case x is said to
be compatible with �u; v� and vice-versa.

Hence if �u; v� is a stable payo¨ then it is compatible with any optimal
matching. This is an important property which is also shared with the assign-
ment game of Shapley and Shubik. However, it is not characteristic of all one-
to-one matching models. (See Demange and Gale (1985)). Two consequences
of this fact are Propositions 2 and 3, below.

Proposition 2. The set of stable payo¨s is compact and convex.

Proof: The set of stable payo¨s is the same for any optimal matching. Let x be
an optimal matching. The set of stable payo¨s is the solution of a system of
linear non strict inequalities associated with x, so it is closed and convex. That
it is bounded follows from the fact that for all matched pairs � fi;wj� under x,

0U uij U aij and 0U vij U aij :

Hence the set of stable payo¨s is convex and compact. 9

Proposition 3 proves that there is a polarization of interests between the
two sides of the market within the whole set of stable payo¨s. That is, the
``best'' for one side is the ``worst'' for the other side. We need:

Lemma 1. Let �u; v� and �u 0; v 0� be stable payo¨s. Then:

a) If � fi;wj� is an essential partnership, uij > u 0ij if and only if vij < v 0ij
b) If � fi;wj� is a nonessential partnership, mi > m 0i if and only if nj < n 0j .

Proof: The result follows easily from the fact that if � fi;wj� is essential then
uij � vij � aij � u 0ij � v 0ij , and if � fi;wj� is nonessential then �u; v� and �u 0; v 0�
are compatible with any optimal matching, so mi � nj � aij � m 0i � n 0j . 9

Observe that Lemma 1-a) does not require the existence of more than one
optimal matching.

Proposition 3. Let �u; v� and �u 0; v 0� be stable payo¨s. Then uV u 0 if and only if
v 0V v.

Proof: In order to compare two vectors we have to compare its coordenates.
By Lemma 1-a

uij V u 0ij , v 0ij V vij; if � fi;wj� is essential: �1�
By Lemma 1-b

mi V m 0i , n 0j V nj; if � fi;wj� is nonessential: �2�
Now use (1) and (2) to conclude the result. 9
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Given the stable payo¨s �u; v� and �u 0; v 0�, de®ne �u�; v�� and �u�; v�� as
follows: For all essential partnerships � fi;wj�:

u�ij � maxfuij; u
0
ijg; u�ij � minfuij; u

0
ijg;

v�ij � maxfvij; v
0
ijg; and v�ij � minfvij ; v

0
ijg:

For all fi A F and wj A W :

m�i � maxfmi; m
0
ig; m�i � minfmi; m

0
ig;

n�j � maxfmj; n
0
jg and n�j � minfnj; n

0
jg:

It is clear that u�ij V m�i , u�ij V m�i, v�ij V n�j and v�ij V n�j, for all � fi;wj�.
It now makes sense to ask: If �u; v� and �u 0; v 0� are stable payo¨s, are

�u�; v�� and �u�; v�� also stable payo¨s? The answer is a½rmative:

Theorem 2. Let �u; v� and �u 0; v 0� be stable payo¨s. Then the payo¨s �u�; v��
and �u�; v��, as de®ned above, are stable.

Proof: We will show that �u�; v�� is stable; the other assertion follows dually.
Let x be some optimal matching. We already know that �u; v� and �u 0; v 0� are
compatible with x. To see that there is no pair causing instabilities, we have to
show that m�i � n�j V aij , for all fi A F and wj A W with xij � 0. Due to the
stability of �u; v� and �u 0; v 0� the only cases we have to check are those where

m�i � mi and n�j � n 0j or m�i � m 0i and n�j � nj:

We have either:

m�i � n�j � mi � n 0j V m 0i � n 0j V aij or m�i � n�j � m 0i � nj V mi � nj V aij :

Since the payo¨s are clearly non-negative, it remains to show that if xij 0 0
the gain of � fi;wj� is aij . But it is immediate from Lemma 1-a that, if � fi;wj� is
essential, then

u�ij � v�ij � uij � vij � aij or u�ij � v�ij � u 0ij � v 0ij � aij:

Finally, if � fi;wj� is nonessential, it follows from Lemma 1-b that:

m�i � n�j � mi � nj � aij or m�i � n�j � m 0i � n 0j � aij : 9

Given two stable payo¨s �u; v� and �u 0; v 0�, the construction of the payo¨s
�u�; v�� and �u�; v�� leads naturally to the following relations:

�u; v�VF �u 0; v 0� , uV u 0 and �u; v�VW �u 0; v 0� , vV v 0:

The relations VF and VW are clearly partial orders. From Proposition 3
it follows that one partial order is the dual of the other and �u�; v�� �
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supFf�u; v�; �u 0; v 0�g � infWf�u; v�; �u 0; v 0�g and �u�; v�� � infFf�u; v�; �u 0; v 0�g
� supWf�u; v�; �u 0; v 0�g.

Theorem 3. The set of stable payo¨s is a convex and complete lattice under the
partial orders VF and VW .

Proof: By Theorem 2 it follows that, if �u; v� and �u 0; v 0� are stable pay-
o¨s, then �u�; v�� � supFf�u; v�; �u 0; v 0�g and �u�; v�� � infFf�u; v�; �u 0; v 0�g
are stable payo¨s. Thus the set of stable payo¨s is a lattice under VF . By
Proposition 2, the set of stable payo¨s is convex and compact, thus it is a
convex and complete lattice under VF . Now use the duality of the partial
orders to show the other assertion. 9

It is clear from the de®nition of VF that if �u; v�VF �u 0; v 0� then si V s 0i for
all fi A F . (Recall that si is the i 's total payo¨ under �u; v; x�). So, every player
in F weakly prefers �u; v� to �u 0; v 0�. However, it can be easily seen that si V
s 0i , for all fi A F , does not imply �u; v�VF �u 0; v 0�. Consequently our partial
order does not always coincide with the preferences of the players in F. When
one of the stable payo¨s that is being compared is the maximal element of the
lattice under VF , Theorem 4 shows that this partial order agrees with the
preferences of the players in F. This fact implies that the maximal element of
the lattice under VF is the only stable payo¨ which is weakly preferred by all
players in F to any other stable payo¨. This payo¨ is called the F-optimal
stable payo¨. Formally we have:

De®nition 8. A stable payo¨ is called an F-optimal stable payo¨ if every player
in F weakly prefers it to any other stable payo¨. (That is, the F-optimal stable
payo¨ gives to each player in F the maximum total payo¨ among all stable
payo¨s). Similarly we de®ne a W-optimal stable payo¨.

Theorem 4. There exists one and only one F (resp. W)-optimal stable payo¨.
Furthermore, every wj A W (resp. fi A F) weakly prefers every stable payo¨ the
F (resp. W)-optimal stable payo¨.

Proof: We will show that a stable payo¨ is the maximal element of the lattice
under VF if and only if it is an F-optimal stable payo¨. Since every complete
lattice has one and only one maximal element, we will have proved the exis-
tence and uniqueness of the F-optimal stable payo¨. The other assertion will
follow dually. Then let �u�; vÿ� be the maximal element of the lattice under
VF . Let �u; v� be any F-optimal stable payo¨. The maximality of �u�; vÿ�
implies that �u�; vÿ�VF �u; v�, so

(1) u�ij V uij for all essential partnerships � fi;wj� and

(2) m�i V mi for all fi A F . Hence
(3) s�i V si for all fi A F .

However since �u; v� is an F-optimal stable payo¨ we must have equality in
(3) hence equality in (1) and (2). From (1) and (2) we have that �u�; vÿ� �
�u; v�. To see that every wj A W weakly prefers every stable payo¨ to the
F-optimal stable payo¨, take �u; v� stable and use Proposition 3 to get that
vV vÿ. Then nj V nÿj for al wj A W . 9
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Our last result is related to situations in which all the players on a given
side have to choose the partnerships corresponding to their highest payo¨s,
respecting their quotas, among those presented to them by two stable out-
comes. It is not obvious that the resulting set of partnerships will be feasible
and also an optimal matching. Furthermore, this matching gives to the play-
ers of the opposite side their partners corresponding to their lowest payo¨s.
We need the following:

Lemma 2. Let �u; v� and �u 0; v 0� be stable payo¨s. Set S i � fwj A W ;
� fi;wj� is nonessentialg and Sj � f fi A F ; � fi;wj� is nonessentialg. Let F 1 �
f fi A F ; mi > m 0i and S i 0 fg;F 2 � f fi A F ; m 0i > mi and S i 0 fg;F 0 � f fi AF ;

mi � m 0i and S i 0 fg. De®ne W 1;W 2 and W 0 analogously. It then follows:

a) F 1 �6Sj, for wj A W 2 and W 2 �6S i, for fi A F 1.

b) F 2 �6Sj, for wj A W 1 and W 1 �6S i, for fi A F 2.

c) F 0 �6Sj, for wj A W 0 and W 0 �6S i, for fi A F 0.

Proof: From Lemma 1, if � fi;wj� is nonessential then
fi A F 1 , mi > m 0i , nj < n 0j , wj A W 2,
fi A F 2 , mi < m 0i , nj > n 0wj , wj A W 1 and
fi A F 0 , mi � m 0i , nj � n 0j , wj A W 0.
The result is then immediate. 9

Note that Lemma 2 asserts that F 1 (resp. F 2;F 0) is the set of nonessential
partners of the players in W 2 (resp. W 1;W 0) under any optimal matching.
Therefore there is a decomposition of the set of nonessential partnerships
into three disjoint sets: A, B and C. That is, AWBWC is the set of all non-
essential partnerships, where A � fnonessential partnerships � fi;wj�; fi A F 1g,
B � fnonessential partnerships � fi;wj�; fi A F 2g and C � fnonessential par-
tnershipsg � fi;wj�; fi A F 0g.

Theorem 5. Let �u; v; x� and �u 0; v 0; x 0� be stable outcomes. Let F 1 be as in
Lemma 2. Then, the matchings x� and x�, de®ned by x�ij � xij if fi A F 1 and
x�ij � x 0ij otherwise and x�ij � x 0ij if fi A F 1 and x�ij � xij otherwise; are opti-

mal. (Observe that for all essential partnerships � fi;wj�; x�ij � x�ij � xij � x 0ij).

Proof: We will prove that x� is optimal. The other assertion follows dually.
Then, by Proposition 1 it is enough to show that �u�; v�; x�� is a stable out-
come.

First observe that C� fi; x
�� � C� fi;x� if fi A F 1 and C� fi; x

�� � C� fi; x
0�

if fi B F 1. Thus jC� fi; x
��j � ri for all fi. By the construction of x� it follows

that all essential partners of wj A W are also matched to wj under x�. From
Lemma 2 it follows that all nonessential partners of wj A W 2 (resp. wj B W 2�
are in F 1 (resp. F 2 WF 0�, so wj is matched at x� according to x (resp. x 0).
Hence jC�wj; x

��j � jC�wj; x�j � sj (resp. jC�wj; x
��j � jC�wj; x

0�j � sj) and so
x� is feasible.

To see that �u�; v�; x�� is feasible use the de®nition of x� and �u�; v�� to
get that the gain of the pair � fi;wj� is aij when x�ij > 0. (One can consider the
cases i) � fi;wj� is essential, ii) � fi;wj� is nonessential with fi A F 1 and iii)
� fi;wj� is nonessential with fi B F 1).
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Now observe that if x�i0 > 0 then � fi;w0� is nonessential with fi B F 1. This
is because if fi A F 1 then mi > 0, from which follows that fi has ®lled his quota
under x, so 0 < x�i0 0 xi0 � 0, which contradicts the de®nition of x�. Hence, if
x�i0 > 0 then x 0i0 > 0 and 0 � m 0i V mi V 0, which implies that m�i � 0. Similarly,
if x�0j > 0 then n�j � 0. Hence is �u�; v�; x�� is feasible.

For the stability, since �u; v� and �u 0; v 0� are compatible with both match-
ings, x and x 0, it follows from Theorem 2 that �u�; v�; x� and �u�; v�; x 0� are
stable outcomes. Then use the de®nition of x� to see that there is no pair
causing instabilities in x�, Hence the proof is complete. 9

To see what we have learned with the results presented here, consider the
following example:

Example. Let F � f f0; f1; f2; f3g, W � fw0;w1; . . . ;w5g, r1 � 3; r2 � 1;
r3 � 2; s2 � 2, s1 � s3 � s4 � s5 � 1. The matrix �aij� with i � 0; 1; . . . ; 3 and
j � 0; 1; . . . ; 5 is given by:

a �
0 0 0 0 0 0

0 2 5 3 1 2

0 0 4 0 0 0

0 6 0 7 5 6

0BBB@
1CCCA

There are three optimal matchings:

x �

0 0 0 0 0 0

0 1 1 1 0 0

0 0 1 0 0 0

0 0 0 0 1 1

0BBBB@
1CCCCA x 0 �

0 0 0 0 0 0

0 0 1 0 1 1

0 0 1 0 0 0

0 1 0 1 0 0

0BBBB@
1CCCCA

x 00 �

0 0 0 0 0 0

0 0 1 1 1 0

0 0 1 0 0 0

0 1 0 0 0 1

0BBBB@
1CCCCA

We can compute that
P
� fi ;wj� AFxW aijxij � P

� fi ;wj� AFxW aijx
0
ij �P

� fi ;wj� AFxW aijx
00
ij � 25. The essential partnerships are:

� f1;w2� and � f2;w2�. The nonessential partnerships are: � f1;w1�; � f1;w3�;
� f3;w4�; � f3;w5� under the matching x,
� f1;w4�; � f1;w5�; � f3;w1�; � f3;w3� under the matching x 0 and
� f1;w3�; � f1;w4�; � f3;w1�; � f3;w5� under the matching x 00.

From Theorem 1 we can conclude that any outcome �u; v; x� with u11 0
u13, or u34 0 u35, or u11 > u12, for example, is unstable. We can verify the
conclusions of Theorem 1 in the following stable outcomes: �u; v; x�; �u 0; v 0; x 0�
and �u 00; v 00; x 00�, where the payo¨s are given by:
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u12 � 3; u11 � 1; u13 � 1; u22 � 2; u34 � 5; u35 � 5

u 012 � 5; u 014 � 0; u 015 � 0; u 022 � 4; u 031 � 4; u 033 � 4

u 0012 � 0; u 0013 � 0; u 0014 � 0; u 0022 � 3; u 0031 � 4; u 0035 � 4

v11 � 1; v12 � 2; v22 � 2; v13 � 2; v34 � 0; v35 � 1

v 031 � 2; v 012 � 0; v 022 � 0; v 033 � 3; v 014 � 1; v 015 � 2

v 0031 � 2; v 0012 � 5; v 0022 � 1; v 0013 � 3; v 0014 � 1; v 0035 � 2

Thus, since � f1;w4� and � f1;w5� are nonessential partnerships under x 0,
and � f1;w2� is essential, u 014 � u 015 � 0 < u 012 � 5.

Theorem 1-b asserts that we can reindex the payo¨s of these three stable
outcomes according to any one of the optimal matchings. Using the repre-
sentation given by:

u � �u12 � 3; m1 � 1; m1 � 1; u22 � 2; m3 � 5; m3 � 5�;

u 0 � �u 012 � 5; m 01 � 0;m 01 � 0; u 022 � 4; m 03 � 4; m 03 � 4�;

u 00 � �u 0012 � 0; m 001 � 0; m 001 � 0; u 0022 � 3; m 003 � 4; m 003 � 4�;

v � �n1 � 1; v12 � 2; v22 � 2; n3 � 2; n4 � 0; n5 � 1�;

v 0 � �n 01 � 2; v 012 � 0; v 022 � 0; n 03 � 3; n 04 � 1; n 05 � 2�;

v 00 � �n 001 � 2; v 0012 � 5; v 0022 � 1; n 003 � 3; n 004 � 1; n 005 � 2�;

Theorem 1 implies that �u; v�; �u 0; v 0� and �u 00; v 00� are all compatible with the
matchings x; x 0 and x 00.

Under the vectorial representation, the set of payo¨s for player f1 is
represented by the vector �3; 1; 1� in the ®rst outcome, by �5; 0; 0� in the
second outcome and by �0; 0; 0� in the third one. In this way p1 can ®nd
the supremum and the in®mum of two of these vectors by comparing each
coordinate.

With Theorem 2 we learned to construct new stable payo¨s: �u1; v1� �
supFf�u; v�; �u 0; v 0�g, where u1 � �u1

12 � 5; m1
1 � 1; m1

1 � 1; u1
22 � 4; m1

3 � 5;

m1
3 � 5� and v1 � �n1

1 � 1; v1
12 � 0; v1

22 � 0; n1
3 � 2; n1

4 � 0; n1
5 � 1�; �u2; v2� �

infFf�u; v�; �u 0; v 0�g, where u2 � �u2
12 � 3; m2

1 � 0; m2
1 � 0; u2

22 � 2; m2
3 � 4;

m2
3 � 4� and v2 � �n2

1 � 2; v2
12 � 2; v2

22 � 2; n2
13 � 3; n2

4 � 1; n2
5 � 2�.

Theorem 4 guarantees the existence and uniqueness of the F- and W-
optimal stable payo¨s. The F-optimal stable payo¨s is given by u� � �u�12 � 5;
m�1 � 1; m�1 � 1; u�22 � 4; m�3 � 5; m�3 � 5� and v� � �n�1 � 1; v�12 � 0 v�22 � 0
n�13 � 2 n�4 � 0 n�5 � 1� and the W-optimal stable payo¨ is u� � �u�12 � 0;
m�1 � 0; m�1 � 0; u�22 � 0; m�3 � 4; m�3 � 4� and v� � �n�1 � 2; v�12 � 5; v�22 �
4; n�13 � 3; n�4 � 1; n�5 � 2�.
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Theorem 5 asserts that the players can also choose their best partnerships.
By comparing �u; v� with �u 0; v 0� the players in F will choose the matching x;
the best partners for the players in W will form the matching x 0.

To see the decomposition in the set of nonessential partnerships given by
Lemma 2, consider �u; v� and �u 0; v 0�. Then
F 1 � f fi A F ; mi > m 0i and S i 0 fg � f f1; f3g;
W 2 � fwj A W ; n 0j > v 0j and Sj 0 fg�fw1;w3;w4;w5g and
F 2 � f and W 1 � f because S2 � f and S2 � f:
Note that any nonessential partnership is formed with players in F 1 and
W 2. Now consider �u 0; v 0� and �u 00; v 00�. We can see that
F 0 � f fi A F ; m 00i � m 0i and S i 0 fg � f f1; f3g and
W 0 � fwj A W ; n 00j � n 0j and Sj 0 fg � fw1;w3;w4;w5g: 9

Appendix I

In this section we reproduce the proofs of the existence of stable outcomes and
of Proposition 1. Both results appear in Sotomayor (1992).

Set F 0 � F ÿ f f0g, W 0 �W ÿ fw0g. Then jF 0j � mÿ 1 and jW 0j � nÿ 1.
Consider the primal linear programming problem �P1� of ®nding a matrix
�x�ij� which

(a) maximizes
P
� fi ;wj� A FxW aijx

�
ij

subject to:

(b)
P

wj AW 0 x�ij U ri, for all fi A F 0,
(c)

P
fi AF 0 x

�
ij U sj , for all wj A W 0 and

(d) 0U x�ij U 1, for all � fi;wj� A F 0xW 0.

The dual problem �P�1 � is to ®nd an �mÿ 1�-vector �y�, an �nÿ 1�-vector �z�
and an �mÿ 1�x�nÿ 1� matrix �wij� which

(a)* minimizes
P

fi AF 0 ri yi �
P

wj AW 0 sjzj �
P
� fi ;wj� AF 0xW 0 wij

subject to:

(b)* yi � zj � wij V aij , for all � fi;wj� A F 0xW 0 and
(c)* yi V 0. zj V 0;wij V 0 for all � fi;wj� A F 0xW 0.

By the Duality Theorem there is a solution of �P1� and �P1�� such that �a� �
�a�� � P�F 0WW 0�, the payo¨ of the coalition F 0WW 0. Furthermore, it can
be shown that there is a matrix �x�ij� with integer entries which is an optimal
solution of �P1�. Any such solution will be called an optimal assignment. It is
easy to check that if

P
� fi ;wj� AF 0xW 0 aijx

�
ij V

P
� fi ;wj� AF 0xW 0 aijx

�0
ij for all feasible

assignments x�0, then x� is an optimal assignment.
If �x�ij� is any optimal assignment, then by the Linear Programming Equi-

librium Theorem (see Gale, 1960), �y; z� is an optimal dual vector if and only
if
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(A)
P

wj AW 0 x�ij < ri implies yi � 0,

(B)
P

fi AF 0 x
�
ij < sj implies zj � 0,

(C) x�ij � 0 implies yi � zj V aij and
(D) x�ij � 1 implies yi � zj V aij.

Furthermore, if �y; z;w� is any solution of �P�1 �, wij � aij ÿ �yi � zj�, if x�ij � 1

and wij � 0, if x�ij � 0 from (a)*, (b)*, (A) and (B). Hence
P
� fi ;wj� AF 0xW 0 �

�yi � zj � wij�x�ij �
P
� fi ;wj� AF 0xW 0 aijx

�
ij .

It is clear that any optimal assignment x� can be extended to an optimal
matching x for M�F ;W ; a; r; s� such that: xij � x�ij , for all � fi;wj� A F 0xW 0,
x00 � 0,

P
wj AW xij � ri for all fi 0 f0 and

P
fi AF xij � sj for all wj 0 0.

Theorem 1*. The set of stable outcomes for M�F ;W ; a; r; s� is non-empty.

Proof: Take any optimal dual vector �y; z� for �P�1 �. De®ne, for all fi A F 0 and
wj A W 0, vij � zj, uij � aij ÿ zj if xij � 1 and ui0 � u0j � vi0 � v0j � 0, where
x � �xij� is any optimal matching. Then, uij � vij � aij if xij > 0. Clearly vij V
0 and uij � aij ÿ zj V yi V 0, by (D), if xij � x�ij � 1. Then �u; v; x� is feasible.

To prove stability, suppose xij � 0. We have that mi � uik for some wk A
C� fi; x� and nj � zj. Then, mi � nj � uik � zj V yi � zj V aij , where the ®rst

inequality follows from the de®nition of uik and (D) and the last inequality
follows from (C). 9

It remains to prove Proposition 1. We need lemmas A and B below.

Lemma A. The feasible outcome �u; v; x� is stable if and only if for all feasible
matchings x 0 and all fi A F we have that

si V
X

wj AW

�aij ÿ v 0ij�x 0ij ���

where v 0ij � nj if xij � 0 and v 0ij � vij if xij > 0. Symmetrical result applies to
every wj A W .

Proof: Let fi A F . Let x 0 be any feasible matching. If �u; v; x� is stable, for
every new partnership � fi;wk� under x 0 (i.e., x 0ik > 0 and xik � 0) there is
some old partnership dissolved � fi;wj� under x (i.e., xij > 0 and x 0ij � 0), for
quota maintenance. To see that ��� holds use the fact that (i) the number of
new partnerships is equal to the number of old partnerships dissolved, for a
given fi; (ii) uij V aij ÿ nj � aij ÿ v 0ij , by stability, if � fi;wj� is dissolved and

� fi;wk� is created, and (iii) uij � aij ÿ vij � aij ÿ v 0ij , if � fi;wj� is maintained.
Conversely, suppose that ��� is true for all feasible matchings x 0 and all fi A F .
If �u; v; x� were not stable then there would be some pair � fi;wj� with xij � 0

and such that uik < aij ÿ vpj � aij ÿ nj for some wk A C� fi; x� and some
fp A C�wj ; x�. Let x 0 be a feasible matching such that x 0ij � 1 and x 0iq � xiq for

all q0 k, x 0tj � xtj for all t0 p. It is clear that si <
P

wq0wj
�aiq ÿ viq�xiq�

�aij ÿ nj�. Thus ��� would not hold for player fi and x 0. Hence �u; v; x� is stable
and the proof is complete. 9
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Lemma B. Let �u; v; x� be a stable outcome. Let RJF , S JW and x 0 be any
feasible matching such that if x 0ij � 1 then fi A R if and only if wj A S. ThenP

fi AR si �
P

wj AS tj V
P
� fi ;wj� ARxS aijx

0
ij .

Proof: Adding up in Lemma A yields:P
fi AR si V

P
fi AR

P
wj AS�aij ÿ v 0ij�x 0ij V

P
� fi ;wj� ARxS aijx

0
ij ÿ

P
� fi ;wj� ARxS v 0ijx

0
ij

� P
� fi ;wj� ARxS aijx

0
ij ÿ

P
wj AS

P
fi AF v 0ijx

0
ij V

P
� fi ;wj� ARxS aijx

0
ij ÿ

P
wj AS �

�Pfi AF vijxij� �
P
� fi ;wj� ARxS aijx

0
ij ÿ

P
wj AS tj. Then,

P
fi AR si �

P
wj AS tj VP

� fi ;wj� ARxS aijx
0
ij , which completes the proof. 9

Proof of Proposition 1: Take R � F . S �W in Lemma B. NowP
� fi ;wj� AFxW aijxij �

P
fi AF si �

P
wj AW tj V

P
� fi ;wj� AFxW aijx

0
ij for all feasible

matchings x 0. 9

Appendix II. The robustness of the conclusions of Theorem 1

Our conclusions for several optimal matchings are not less robust than our
conclusions for only one optimal matching. This fact is clari®ed below:

Theorem 2*. Let �u; v; x� be some stable outcome. Let x 0 be some feasible

matching so that
P
� fi ;wj� AFxW aijxij V

P
� fi ;wj� AFxW aijx

0
ij V

P
� fi ;wj� AFxW aijx

00
ij

for all feasible matchings x 000 x. (That is, x 0 is a ``second'' optimal matching).
Suppose

P
� fi ;wj� AFxW aijxij ÿ

P
� fi ;wj� AFxW aijx

0
ij � l. If fi A F and C� fi; x�0

C� fi; x
0�, then uij ÿ uik U l for all wj A C� fi; x� ÿ C� fi; x

0� and all k A C� fi; x�.
Symmetrical results apply to any wj A W .

Proof: If l � 0 then x and x 0 are optimal matchings and the result follows
from Theorem 1. Suppose l > 0. Assume that wj A C� fi; x� ÿ C� fi; x

0� and
uij > uik � l for some k A C� fi; x�. Set u 0ij � uij ÿ l and u 0tm � utm for all
� ft;wm�0 � fi;wj�, with xtm > 0. Then,

u 0ij > u 0ik: �1�

It is a matter of veri®cation to see that �u 0; v; x� is stable for M�a 0�,
where a 0ij � aij ÿ l and a 0tm � atm for all � ft;wm�0 � fi;wj�. Using that wj A
C� fi; x� ÿ C� fi; x

0� we get for all feasible x 00 that:
P
� fi ;wm� AFxW a 0tmxtm �P

� fi ;wm� AFxW atmxtm ÿ l �P� ft;wm� AFxW atmx 0tm V
P
� ft;wm� AFxW atmx 00tm VP

� ft;wm� AFxW a 0tmx 00tm.

Hence x and x 0 are optimal matchings for M�a 0�. Therefore Theorem 1
implies that u 0ij U u 0ik, which contradicts (1). Consequently uij ÿ uik U l. For
the last assertion use the symmetry of the model. 9

When there are several optimal matchings for the market M�a�, we can
obtain a market, M�a 0�, by changing the matrix �aij� so that M�a 0� has only
one optimal matching x. Theorem 2* implies that when a 0 is obtained by a
small perturbation of the matrix a, by taking a very small l; uij cannot be
``very di¨erent'' from uik, when � fi;wj� and � fi;wk� are nonessential partner-
ships at x. (That is, juij ÿ uikj < l). Furthermore, if � fi;wq� is an essential
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partnership and � fi;wj� is nonessential, then uiq cannot be ``much smaller''
than uij. (That is, uij ÿ uiq U l).
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