Game Theory Repeated Games

Jordi Massó

International Doctorate in Economic Analysis (IDEA) Universitat Autònoma de Barcelona (UAB)

3) 3

• R. Aumann and L. Shapley. "Long Term Competition —A Game Theoretic Analysis," mimeo, The Hebrew University, 1976.

- ∢ ∃ →

- R. Aumann and L. Shapley. "Long Term Competition A Game Theoretic Analysis," mimeo, The Hebrew University, 1976.
- R. Aumann. "Survey of Repeated Games," in *Essays in Game Theory* and *Mathematical Economics* in Honor of Oskar Morgenstern, 1981.

- R. Aumann and L. Shapley. "Long Term Competition —A Game Theoretic Analysis," mimeo, The Hebrew University, 1976.
- R. Aumann. "Survey of Repeated Games," in *Essays in Game Theory* and *Mathematical Economics* in Honor of Oskar Morgenstern, 1981.
- Relationships between players last over time: long-term strategic interaction.

- R. Aumann and L. Shapley. "Long Term Competition A Game Theoretic Analysis," mimeo, The Hebrew University, 1976.
- R. Aumann. "Survey of Repeated Games," in *Essays in Game Theory* and *Mathematical Economics* in Honor of Oskar Morgenstern, 1981.
- Relationships between players last over time: long-term strategic interaction.
- We observe non-equilibrium behavior; for instance, cooperation in interactions like the Prisoners' Dilemma.

- R. Aumann and L. Shapley. "Long Term Competition —A Game Theoretic Analysis," mimeo, The Hebrew University, 1976.
- R. Aumann. "Survey of Repeated Games," in *Essays in Game Theory* and *Mathematical Economics* in Honor of Oskar Morgenstern, 1981.
- Relationships between players last over time: long-term strategic interaction.
- We observe non-equilibrium behavior; for instance, cooperation in interactions like the Prisoners' Dilemma.
 - Diamonds market.

- R. Aumann and L. Shapley. "Long Term Competition —A Game Theoretic Analysis," mimeo, The Hebrew University, 1976.
- R. Aumann. "Survey of Repeated Games," in *Essays in Game Theory* and *Mathematical Economics* in Honor of Oskar Morgenstern, 1981.
- Relationships between players last over time: long-term strategic interaction.
- We observe non-equilibrium behavior; for instance, cooperation in interactions like the Prisoners' Dilemma.
 - Diamonds market.
 - Cartels (like the OPEC).

- R. Aumann and L. Shapley. "Long Term Competition A Game Theoretic Analysis," mimeo, The Hebrew University, 1976.
- R. Aumann. "Survey of Repeated Games," in *Essays in Game Theory* and *Mathematical Economics* in Honor of Oskar Morgenstern, 1981.
- Relationships between players last over time: long-term strategic interaction.
- We observe non-equilibrium behavior; for instance, cooperation in interactions like the Prisoners' Dilemma.
 - Diamonds market.
 - Cartels (like the OPEC).
 - Reputation phenomena.

- R. Aumann and L. Shapley. "Long Term Competition —A Game Theoretic Analysis," mimeo, The Hebrew University, 1976.
- R. Aumann. "Survey of Repeated Games," in *Essays in Game Theory* and *Mathematical Economics* in Honor of Oskar Morgenstern, 1981.
- Relationships between players last over time: long-term strategic interaction.
- We observe non-equilibrium behavior; for instance, cooperation in interactions like the Prisoners' Dilemma.
 - Diamonds market.
 - Cartels (like the OPEC).
 - Reputation phenomena.
 - Conflicts.

- R. Aumann and L. Shapley. "Long Term Competition —A Game Theoretic Analysis," mimeo, The Hebrew University, 1976.
- R. Aumann. "Survey of Repeated Games," in *Essays in Game Theory* and *Mathematical Economics* in Honor of Oskar Morgenstern, 1981.
- Relationships between players last over time: long-term strategic interaction.
- We observe non-equilibrium behavior; for instance, cooperation in interactions like the Prisoners' Dilemma.
 - Diamonds market.
 - Cartels (like the OPEC).
 - Reputation phenomena.
 - Conflicts.
 - Etc.

• Is it possible to sustain non-equilibrium behavior (for instance, cooperation in the Prisoners' Dilemma) as equilibrium of a larger game through out repetition?

- Is it possible to sustain non-equilibrium behavior (for instance, cooperation in the Prisoners' Dilemma) as equilibrium of a larger game through out repetition?
- The goal is to introduce dynamic aspects in the strategic interaction.

- Is it possible to sustain non-equilibrium behavior (for instance, cooperation in the Prisoners' Dilemma) as equilibrium of a larger game through out repetition?
- The goal is to introduce dynamic aspects in the strategic interaction.
- Two basic hypothesis:

- Is it possible to sustain non-equilibrium behavior (for instance, cooperation in the Prisoners' Dilemma) as equilibrium of a larger game through out repetition?
- The goal is to introduce dynamic aspects in the strategic interaction.
- Two basic hypothesis:
 - Perfect monitoring.

- Is it possible to sustain non-equilibrium behavior (for instance, cooperation in the Prisoners' Dilemma) as equilibrium of a larger game through out repetition?
- The goal is to introduce dynamic aspects in the strategic interaction.
- Two basic hypothesis:
 - Perfect monitoring.
 - Only pure strategies.

• Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a finite game in normal form. A_i is the set of player *i*'s actions and $A = \prod_{i \in I} A_i$ is the set of action profiles.

- Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a finite game in normal form. A_i is the set of player *i*'s actions and $A = \prod_{i \in I} A_i$ is the set of action profiles.
- The game G is repeated over time: t = 1, 2, ...

- Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a finite game in normal form. A_i is the set of player *i*'s actions and $A = \prod_{i \in I} A_i$ is the set of action profiles.
- The game G is repeated over time: t = 1, 2, ...
- The duple $(I, (A_i)_{i \in I})$ is a game form.

- Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a finite game in normal form. A_i is the set of player *i*'s actions and $A = \prod_{i \in I} A_i$ is the set of action profiles.
- The game G is repeated over time: t = 1, 2, ...
- The duple $(I, (A_i)_{i \in I})$ is a game form.

• Define, for every
$$t \ge 1$$
, $A^t = \underbrace{A \times \cdots \times A}_{t-\text{times}}$.

- Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a finite game in normal form. A_i is the set of player *i*'s actions and $A = \prod_{i \in I} A_i$ is the set of action profiles.
- The game G is repeated over time: t = 1, 2, ...
- The duple $(I, (A_i)_{i \in I})$ is a game form.

• Define, for every
$$t \ge 1$$
, $A^t = \underbrace{A \times \cdots \times A}_{t-\text{times}}$.

• That is, $(a^1, ..., a^t) \in A^t$, where for every $1 \le s \le t$, $a^s = (a_1^s, ..., a_n^s) \in A$.

• Given the game in normal form $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$, define the super-game form as the game form $(I, (F_i)_{i \in I})$, where for every $i \in I$,

$$F_i = \left\{ f_i = \{ f_i^t \}_{t=1}^{\infty} \mid f_i^1 \in A_i \text{ and } \forall t \ge 1, \ f_i^{t+1} : A^t \longrightarrow A_i \right\}.$$

Image: A matrix of the second seco

3 K K 3 K

• Given the game in normal form $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$, define the super-game form as the game form $(I, (F_i)_{i \in I})$, where for every $i \in I$,

$$\mathcal{F}_i = \left\{ f_i = \{f_i^t\}_{t=1}^\infty \mid f_i^1 \in \mathcal{A}_i ext{ and } orall t \geq 1, \ f_i^{t+1} : \mathcal{A}^t \longrightarrow \mathcal{A}_i
ight\}.$$

• Perfect monitoring: the domain of f_i^{t+1} is A^t .

• Given the game in normal form $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$, define the super-game form as the game form $(I, (F_i)_{i \in I})$, where for every $i \in I$,

$$\mathcal{F}_i = \left\{ f_i = \{f_i^t\}_{t=1}^\infty \mid f_i^1 \in \mathcal{A}_i ext{ and } orall t \geq 1, \ f_i^{t+1}: \mathcal{A}^t \longrightarrow \mathcal{A}_i
ight\}.$$

- Perfect monitoring: the domain of f_i^{t+1} is A^t .
- Pure actions: the range of f_i^{t+1} is a subset of A_i .

• Given the game in normal form $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$, define the super-game form as the game form $(I, (F_i)_{i \in I})$, where for every $i \in I$,

$$\mathcal{F}_i = \left\{ f_i = \{f_i^t\}_{t=1}^\infty \mid f_i^1 \in \mathcal{A}_i ext{ and } orall t \geq 1, \ f_i^{t+1}: \mathcal{A}^t \longrightarrow \mathcal{A}_i
ight\}.$$

- Perfect monitoring: the domain of f_i^{t+1} is A^t .
- Pure actions: the range of f_i^{t+1} is a subset of A_i .

• Notation:
$$F = \prod_{i \in I} F_i$$
.

• Given the game in normal form $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$, define the super-game form as the game form $(I, (F_i)_{i \in I})$, where for every $i \in I$,

$$\mathcal{F}_i = \left\{ f_i = \{f_i^t\}_{t=1}^\infty \mid f_i^1 \in \mathcal{A}_i ext{ and } orall t \geq 1, \ f_i^{t+1}: \mathcal{A}^t \longrightarrow \mathcal{A}_i
ight\}.$$

- Perfect monitoring: the domain of f_i^{t+1} is A^t .
- Pure actions: the range of f_i^{t+1} is a subset of A_i .

• Notation:
$$F = \prod_{i \in I} F_i$$
.

• Given $f = (f_i)_{i \in I} \in F$ we represent the sequence of actions induced by f as

$$\mathbf{a}(f) = \{\mathbf{a}^t(f)\}_{t=1}^{\infty},$$

which is defined recursively as follows:

• Given the game in normal form $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$, define the super-game form as the game form $(I, (F_i)_{i \in I})$, where for every $i \in I$,

$$\mathcal{F}_i = \left\{ f_i = \{f_i^t\}_{t=1}^\infty \mid f_i^1 \in \mathcal{A}_i ext{ and } orall t \geq 1, \ f_i^{t+1}: \mathcal{A}^t \longrightarrow \mathcal{A}_i
ight\}.$$

- Perfect monitoring: the domain of f_i^{t+1} is A^t .
- Pure actions: the range of f_i^{t+1} is a subset of A_i .

• Notation:
$$F = \prod_{i \in I} F_i$$
.

• Given $f = (f_i)_{i \in I} \in F$ we represent the sequence of actions induced by f as

$$\mathsf{a}(f) = \{\mathsf{a}^t(f)\}_{t=1}^\infty$$
 ,

which is defined recursively as follows:

•
$$a^1(f) \in A$$
 is given by $a^1_i(f) = f^1_i$ for all $i \in I$, and

• Given the game in normal form $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$, define the super-game form as the game form $(I, (F_i)_{i \in I})$, where for every $i \in I$,

$$\mathcal{F}_i = \left\{ f_i = \{f_i^t\}_{t=1}^\infty \mid f_i^1 \in \mathcal{A}_i ext{ and } orall t \geq 1, \ f_i^{t+1}: \mathcal{A}^t \longrightarrow \mathcal{A}_i
ight\}.$$

- Perfect monitoring: the domain of f_i^{t+1} is A^t .
- Pure actions: the range of f_i^{t+1} is a subset of A_i .

• Notation:
$$F = \prod_{i \in I} F_i$$
.

• Given $f = (f_i)_{i \in I} \in F$ we represent the sequence of actions induced by f as

$$\mathsf{a}(f) = \{\mathsf{a}^t(f)\}_{t=1}^\infty$$
 ,

which is defined recursively as follows:

- $a^1(f) \in A$ is given by $a^1_i(f) = f^1_i$ for all $i \in I$,and
- for all $t \ge 1$, $a^{t+1}(f) \in A$ is given by $a_i^{t+1}(f) = f_i^{t+1}(a^1(f), ..., a^t(f))$ for all $i \in I$.

Examples of strategies in the Prisoners' Dilemma.

æ

Examples of strategies in the Prisoners' Dilemma.

• "Play always C": $\hat{f}_i^1 = C$ and for all $t \ge 1$ and all $(a^1, ..., a^t) \in A^t$, $\hat{f}_i^{t+1}(a^1, ..., a^t) = C$.

Examples of strategies in the Prisoners' Dilemma.

- "Play always C": $\hat{f}_i^1 = C$ and for all $t \ge 1$ and all $(a^1, ..., a^t) \in A^t$, $\hat{f}_i^{t+1}(a^1, ..., a^t) = C$.
- "Play C during 5 periods and D thereafter": $\overline{f}_i^1 = C$, for all $1 \le t < 5$ and all $(a^1, ..., a^t) \in A^t$, $\overline{f}_i^{t+1}(a^1, ..., a^t) = C$ and for all $t \ge 5$ and all $(a^1, ..., a^t) \in A^t$, $\overline{f}_i^{t+1}(a^1, ..., a^t) = D$.

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

Examples of strategies in the Prisoners' Dilemma.

- "Play always C": $\hat{f}_i^1 = C$ and for all $t \ge 1$ and all $(a^1, ..., a^t) \in A^t$, $\hat{f}_i^{t+1}(a^1, ..., a^t) = C$.
- "Play C during 5 periods and D thereafter": $\overline{f}_i^1 = C$, for all $1 \leq t < 5$ and all $(a^1, ..., a^t) \in A^t$, $\overline{f}_i^{t+1}(a^1, ..., a^t) = C$ and for all $t \geq 5$ and all $(a^1, ..., a^t) \in A^t$, $\overline{f}_i^{t+1}(a^1, ..., a^t) = D$.
- Trigger strategy. "Start playing C and play C as long as the other player has played always C, once the other player has played D play D always": $\tilde{f}_i^1 = C$ and for all $t \ge 1$ and all $(a^1, ..., a^t) \in A^t$,

$$ilde{f}_i^{t+1}(\mathsf{a}^1,...,\mathsf{a}^t) = \left\{egin{array}{c} C & ext{if for all } 1 \leq s \leq t, \ a_{3-i}^s = C \ D & ext{if there exists } 1 \leq s \leq t ext{ such that } a_{3-i}^s = D. \end{array}
ight.$$

イロト 不得下 イヨト イヨト 二日

Examples of strategies in the Prisoners' Dilemma.

- "Play always C": $\hat{f}_i^1 = C$ and for all $t \ge 1$ and all $(a^1, ..., a^t) \in A^t$, $\hat{f}_i^{t+1}(a^1, ..., a^t) = C$.
- "Play C during 5 periods and D thereafter": $\overline{f}_i^1 = C$, for all $1 \leq t < 5$ and all $(a^1, ..., a^t) \in A^t$, $\overline{f}_i^{t+1}(a^1, ..., a^t) = C$ and for all $t \geq 5$ and all $(a^1, ..., a^t) \in A^t$, $\overline{f}_i^{t+1}(a^1, ..., a^t) = D$.
- Trigger strategy. "Start playing C and play C as long as the other player has played always C, once the other player has played D play D always": $\tilde{f}_i^1 = C$ and for all $t \ge 1$ and all $(a^1, ..., a^t) \in A^t$,

$$ilde{f}_i^{t+1}(\mathsf{a}^1,...,\mathsf{a}^t) = \left\{egin{array}{c} C & ext{if for all } 1 \leq s \leq t, \ a_{3-i}^s = C \ D & ext{if there exists } 1 \leq s \leq t ext{ such that } a_{3-i}^s = D. \end{array}
ight.$$

• *Tit-for-tat.* "Start playing *C* and then play the action taken by the other player last period": $\dot{f}_i^1 = C$ and for all $t \ge 1$ and all $(a^1, ..., a^t) \in A^t$, $\dot{f}_i^{t+1}(a^1, ..., a^t) = a_{3-i}^t$.

Sequences of actions generated by some strategy profiles.

2

Sequences of actions generated by some strategy profiles.

•
$$(\hat{f}_1, \dot{f}_2)$$
: For all $t \ge 1$, $a^t(\hat{f}_1, \dot{f}_2) = (C, C)$.

2

Sequences of actions generated by some strategy profiles.

•
$$(\hat{f}_1, \dot{f}_2)$$
: For all $t \ge 1$, $a^t(\hat{f}_1, \dot{f}_2) = (C, C)$.
• $a(\hat{f}_1, \dot{f}_2) = ((C, C), (C, C), \underbrace{\cdots}_{(C, C) \text{ always}})$.

2

Sequences of actions generated by some strategy profiles.

•
$$(\hat{f}_1, \dot{f}_2)$$
: For all $t \ge 1$, $a^t(\hat{f}_1, \dot{f}_2) = (C, C)$.
• $a(\hat{f}_1, \dot{f}_2) = ((C, C), (C, C), \underbrace{\cdots}_{(C, C) \text{ always}})$.

• (\bar{f}_1, \dot{f}_2) : For all $1 \le s \le 5$, $a^s(\bar{f}_1, \dot{f}_2) = (C, C)$, $a^6(\bar{f}_1, \dot{f}_2) = (D, C)$ and for all $t \ge 7$, $a^7(\bar{f}_1, \dot{f}_2) = (D, D)$.
5.2.- Strategies

Sequences of actions generated by some strategy profiles.

•
$$(\hat{f}_1, \dot{f}_2)$$
: For all $t \ge 1$, $a^t(\hat{f}_1, \dot{f}_2) = (C, C)$.
• $a(\hat{f}_1, \dot{f}_2) = ((C, C), (C, C), \underbrace{\cdots}_{(C, C) \text{ always}})$.

• (\bar{f}_1, \dot{f}_2) : For all $1 \le s \le 5$, $a^s(\bar{f}_1, \dot{f}_2) = (C, C)$, $a^6(\bar{f}_1, \dot{f}_2) = (D, C)$ and for all $t \ge 7$, $a^7(\bar{f}_1, \dot{f}_2) = (D, D)$.

•
$$a(\bar{f}_1, \bar{f}_2) = ((C, C), (C, C), (C, C), (C, C), (D, C), (D, D), \underbrace{\dots}_{(D,D) \text{ always}}).$$

イロン イ団と イヨン ト

5.2.- Strategies

Sequences of actions generated by some strategy profiles.

•
$$(\hat{f}_1, \dot{f}_2)$$
: For all $t \ge 1$, $a^t(\hat{f}_1, \dot{f}_2) = (C, C)$.
• $a(\hat{f}_1, \dot{f}_2) = ((C, C), (C, C), \underbrace{\dots}_{(C, C) \text{ always}})$.
• (\bar{f}_1, \dot{f}_2) : For all $1 \le s \le 5$, $a^s(\bar{f}_1, \dot{f}_2) = (C, C)$, $a^6(\bar{f}_1, \dot{f}_2) = (D, C)$
and for all $t \ge 7$, $a^7(\bar{f}_1, \dot{f}_2) = (D, D)$.
• $a(\bar{f}_1, \dot{f}_2) = ((C, C), (C, C), (C, C), (C, C), (D, C), (D, D), \underbrace{\dots}_{(C, C)})$.

(D,D) always

イロト イ理ト イヨト イヨト

•
$$(\tilde{f}_1, \dot{f}_2)$$
: For all $t \ge 1$, $a^t(\tilde{f}_1, \dot{f}_2) = (C, C)$.

5.2.- Strategies

Sequences of actions generated by some strategy profiles.

•
$$(\hat{f}_1, \dot{f}_2)$$
: For all $t \ge 1$, $a^t(\hat{f}_1, \dot{f}_2) = (C, C)$.
• $a(\hat{f}_1, \dot{f}_2) = ((C, C), (C, C), \underbrace{\cdots}_{(C, C) \text{ always}})$.
• (\bar{f}_1, \dot{f}_2) : For all $1 \le s \le 5$, $a^s(\bar{f}_1, \dot{f}_2) = (C, C)$, $a^6(\bar{f}_1, \dot{f}_2) = (D, C)$
and for all $t \ge 7$, $a^7(\bar{f}_1, \dot{f}_2) = (D, D)$.

•
$$a(\bar{f}_1, \dot{f}_2) = ((C, C), (C, C), (C, C), (C, C), (D, C), (D, D), \underbrace{\cdots}_{(D,D) \text{ always}}).$$

•
$$(\tilde{f}_1, \dot{f}_2)$$
: For all $t \ge 1$, $a^t(\tilde{f}_1, \dot{f}_2) = (C, C)$.
• $a(\tilde{f}_1, \dot{f}_2) = ((C, C), (C, C), \underbrace{\cdots}_{(C, C) \text{ always}})$.

Let G = (I, (A_i)_{i∈I}, (h_i)_{i∈I}) be a game in normal form and let T ∈ N. The *finitely* T-times repeated game is the game in normal form G_T = (I, (F_i)_{i∈I}, (H_i^T)_{i∈I}, where (I, (F_i)_{i∈I}) is the super-game form and for each i ∈ I, H_i^T : F → ℝ is defined as follows: for all f ∈ F,

$$H_i^T(f) = rac{1}{T}\sum_{t=1}^T h_i(a^t(f)).$$

Let G = (I, (A_i)_{i∈I}, (h_i)_{i∈I}) be a game in normal form and let T ∈ N. The *finitely* T-times repeated game is the game in normal form G_T = (I, (F_i)_{i∈I}, (H_i^T)_{i∈I}, where (I, (F_i)_{i∈I}) is the super-game form and for each i ∈ I, H_i^T : F → R is defined as follows: for all f ∈ F,

$$H_i^T(f) = rac{1}{T}\sum_{t=1}^l h_i(a^t(f)).$$

 Remark: Since G_T is a game in normal form, we can define F^{*}_T as the set of Nash equilibria of G_T.

Let G = (I, (A_i)_{i∈I}, (h_i)_{i∈I}) be a game in normal form and let T ∈ N. The *finitely* T-times repeated game is the game in normal form G_T = (I, (F_i)_{i∈I}, (H_i^T)_{i∈I}, where (I, (F_i)_{i∈I}) is the super-game form and for each i ∈ I, H_i^T : F → ℝ is defined as follows: for all f ∈ F,

$$H_i^T(f) = rac{1}{T}\sum_{t=1}^l h_i(a^t(f)).$$

- Remark: Since G_T is a game in normal form, we can define F^{*}_T as the set of Nash equilibria of G_T.
- Examples:

Let G = (I, (A_i)_{i∈I}, (h_i)_{i∈I}) be a game in normal form and let T ∈ N. The *finitely* T-times repeated game is the game in normal form G_T = (I, (F_i)_{i∈I}, (H_i^T)_{i∈I}, where (I, (F_i)_{i∈I}) is the super-game form and for each i ∈ I, H_i^T : F → ℝ is defined as follows: for all f ∈ F,

$$H_i^T(f) = \frac{1}{T} \sum_{t=1}^l h_i(a^t(f)).$$

- Remark: Since G_T is a game in normal form, we can define F_T^* as the set of Nash equilibria of G_T .
- Examples:

•
$$T = 10$$
, $H_1^{10}(\bar{f}_1, \dot{f}_2) = \frac{1}{10}(5 \cdot 3 + 4 + 4 \cdot 1) = \frac{23}{10}$.

• Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a game in normal form and let $T \in \mathbb{N}$. The *finitely* T-times repeated game is the game in normal form $G_T = (I, (F_i)_{i \in I}, (H_i^T)_{i \in I}, \text{where } (I, (F_i)_{i \in I}) \text{ is the super-game form and for each } i \in I, H_i^T : F \longrightarrow \mathbb{R}$ is defined as follows: for all $f \in F$,

$$H_i^T(f) = \frac{1}{T} \sum_{t=1}^l h_i(a^t(f)).$$

- Remark: Since G_T is a game in normal form, we can define F_T^* as the set of Nash equilibria of G_T .
- Examples:

•
$$T = 10$$
, $H_1^{10}(\bar{f}_1, \bar{f}_2) = \frac{1}{10}(5 \cdot 3 + 4 + 4 \cdot 1) = \frac{23}{10}$.
• $T = 6$, $H_2^6(\hat{f}_1, \bar{f}_2) = \frac{1}{6}(5 \cdot 3 + 4 \cdot 1) = \frac{19}{6}$.

Let G = (I, (A_i)_{i∈I}, (h_i)_{i∈I}) be a game in normal form and let T ∈ N. The *finitely* T-times repeated game is the game in normal form G_T = (I, (F_i)_{i∈I}, (H_i^T)_{i∈I}, where (I, (F_i)_{i∈I}) is the super-game form and for each i ∈ I, H_i^T : F → ℝ is defined as follows: for all f ∈ F,

$$H_i^T(f) = \frac{1}{T} \sum_{t=1}^l h_i(\mathbf{a}^t(f)).$$

- Remark: Since G_T is a game in normal form, we can define F_T^* as the set of Nash equilibria of G_T .
- Examples:

•
$$T = 10$$
, $H_1^{10}(\bar{f}_1, \bar{f}_2) = \frac{1}{10}(5 \cdot 3 + 4 + 4 \cdot 1) = \frac{23}{10}$.
• $T = 6$, $H_2^6(\hat{f}_1, \bar{f}_2) = \frac{1}{6}(5 \cdot 3 + 4 \cdot 1) = \frac{19}{6}$.

• For any $T \ge 1$, $H_i^T(\tilde{f}_1, \dot{f}_2) = \frac{1}{T}(3 \cdot T) = 3$.

▶ ★ 臣 ▶ ★ 臣 ▶ ...

 Let G = (I, (A_i)_{i∈I}, (h_i)_{i∈I}) be a game in normal form. We say that G is bounded if

 $\sup \{h_i(a) \mid i \in I \text{ and } a \in A\} < \infty.$

イロト イポト イヨト イヨト

 Let G = (I, (A_i)_{i∈I}, (h_i)_{i∈I}) be a game in normal form. We say that G is bounded if

```
\sup \{h_i(a) \mid i \in I \text{ and } a \in A\} < \infty.
```

• Note that if G is finite then G is bounded.

→ Ξ →

 Let G = (I, (A_i)_{i∈I}, (h_i)_{i∈I}) be a game in normal form. We say that G is bounded if

```
\sup \{h_i(a) \mid i \in I \text{ and } a \in A\} < \infty.
```

• Note that if G is finite then G is bounded.

Let G = (I, (A_i)_{i∈I}, (h_i)_{i∈I}) be a bounded game in normal form and let λ ∈ (0, 1). The λ-discounted repeated game is the game in normal form G_λ = (I, (F_i)_{i∈I}, (H^λ_i)_{i∈I}, where (I, (F_i)_{i∈I}) is the super-game form and for each i ∈ I, H^λ_i : F → ℝ is defined as follows: for all f ∈ F,

$$H_i^{\lambda}(f) = (1-\lambda) \sum_{t=1}^{\infty} \lambda^{t-1} h_i(\boldsymbol{a}^t(f)).$$

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト …

• Example:

Jordi Massó

3

・ロト ・四ト ・ヨト ・ヨト

• Example:

Jordi Massó

3

・ロト ・四ト ・ヨト ・ヨト

• Example:

 $H_1^{\lambda}(\bar{f}_1, \dot{f}_2) = (1-\lambda)(3+3\lambda+3\lambda^2+3\lambda^3+3\lambda^4+4\lambda^5+\lambda^6+\lambda^7+\dots$

$$= (1 - \lambda) \left(3\frac{1 - \lambda^5}{1 - \lambda} + 4\lambda^5 + \frac{\lambda^6}{1 - \lambda} \right)$$
$$= 3(1 - \lambda^5) + 4(1 - \lambda)\lambda^5 + \lambda^6$$
$$= 3 + \lambda^5 - 3\lambda^6.$$

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト … 臣

• Example:

 $H_1^{\lambda}(\bar{f}_1, \dot{f}_2) = (1-\lambda)(3+3\lambda+3\lambda^2+3\lambda^3+3\lambda^4+4\lambda^5+\lambda^6+\lambda^7+\dots$

$$= (1-\lambda)\left(3\frac{1-\lambda^5}{1-\lambda}+4\lambda^5+\frac{\lambda^6}{1-\lambda}\right)$$
$$= 3(1-\lambda^5)+4(1-\lambda)\lambda^5+\lambda^6$$

$$= 3 + \lambda^5 - 3\lambda^6.$$

 Since G_λ is a game in normal form, we can define F^{*}_λ as the set of Nash equilibria of G_λ.

3

Remarks on
$$H_i^\lambda(f) = (1-\lambda)\sum_{t=1}^\infty \lambda^{t-1} h_i(a^t(f))$$
:

æ

Remarks on
$$H^\lambda_i(f) = (1-\lambda)\sum_{t=1}^\infty \lambda^{t-1} h_i(a^t(f))$$
:

• $(1 - \lambda)$ is a very useful normalization (remember that h_i is a vNM utility function and $(1 - \lambda)h_i$ is a positive affine transformation); for instance, it assigns x to the constant sequence $\{x^t = x\}_{t=1}^{\infty}$, since $(1 - \lambda)\sum_{t=1}^{\infty} \lambda^{t-1}x = (1 - \lambda)\frac{1}{1-\lambda}x = x$.

Remarks on
$$H_i^\lambda(f) = (1-\lambda)\sum_{t=1}^\infty \lambda^{t-1} h_i(a^t(f))$$
:

- (1λ) is a very useful normalization (remember that h_i is a vNM utility function and $(1 \lambda)h_i$ is a positive affine transformation); for instance, it assigns x to the constant sequence $\{x^t = x\}_{t=1}^{\infty}$, since $(1 \lambda)\sum_{t=1}^{\infty} \lambda^{t-1}x = (1 \lambda)\frac{1}{1-\lambda}x = x$.
- If G is not bounded, the series may be divergent, and therefore H_i^{λ} would not necessarily be well-defined.

イロト イポト イヨト イヨト 二日

Remarks on
$$H_i^\lambda(f) = (1-\lambda)\sum_{t=1}^\infty \lambda^{t-1} h_i(a^t(f))$$
:

- (1λ) is a very useful normalization (remember that h_i is a vNM utility function and $(1 \lambda)h_i$ is a positive affine transformation); for instance, it assigns x to the constant sequence $\{x^t = x\}_{t=1}^{\infty}$, since $(1 \lambda)\sum_{t=1}^{\infty} \lambda^{t-1}x = (1 \lambda)\frac{1}{1-\lambda}x = x$.
- If G is not bounded, the series may be divergent, and therefore H_i^{λ} would not necessarily be well-defined.
- The payoff $H_i^{\lambda}(f)$ can be interpreted as player *i*'s expected payoff of playing *f* when at *t*, the probability of playing the game at t + 1 is equal to λ .

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の Q @

Let G = (I, (A_i)_{i∈I}, (h_i)_{i∈I}) be a bounded game in normal form. The *infinitely repeated game* is the game in normal form
 G_∞ = (I, (F_i)_{i∈I}, (H[∞]_i)_{i∈I}, where (I, (F_i)_{i∈I}) is the super-game form and for each i ∈ I, H[∞]_i : F → ℝ that will be defined later.

- Let G = (I, (A_i)_{i∈I}, (h_i)_{i∈I}) be a bounded game in normal form. The *infinitely repeated game* is the game in normal form
 G_∞ = (I, (F_i)_{i∈I}, (H[∞]_i)_{i∈I}, where (I, (F_i)_{i∈I}) is the super-game form and for each i ∈ I, H[∞]_i : F → ℝ that will be defined later.
- The "natural" payoff function would be: for all $f \in F$,

$$\lim_{T\to\infty}\frac{1}{T}\sum_{t=1}^{T}h_i(a^t(f))=\lim_{T\to\infty}H_i^T(f).$$

- Let G = (I, (A_i)_{i∈I}, (h_i)_{i∈I}) be a bounded game in normal form. The *infinitely repeated game* is the game in normal form
 G_∞ = (I, (F_i)_{i∈I}, (H[∞]_i)_{i∈I}, where (I, (F_i)_{i∈I}) is the super-game form and for each i ∈ I, H[∞]_i : F → ℝ that will be defined later.
- The "natural" payoff function would be: for all $f \in F$,

$$\lim_{T\to\infty}\frac{1}{T}\sum_{t=1}^{T}h_i(a^t(f))=\lim_{T\to\infty}H_i^T(f).$$

• Problem: This limit may not exist (its existence depends on the particular strategies used by players).

・ロト ・四ト ・ヨト ・ヨトー

æ

メロト メポト メヨト メヨト

• Let $\{x_n\}_{n=1}^{\infty}$ be a bounded sequence of real numbers (*i.e.*, $\{x_n\} \in I_{\infty}$).

æ

イロト イポト イヨト イヨト

- Let $\{x_n\}_{n=1}^{\infty}$ be a bounded sequence of real numbers (*i.e.*, $\{x_n\} \in I_{\infty}$).
- We say that x̄ ∈ ℝ is the *limit superior* of {x_n}, lim sup{x_n}, if x̄ is the highest accumulation point of {x_n}; that is,

- Let $\{x_n\}_{n=1}^{\infty}$ be a bounded sequence of real numbers (*i.e.*, $\{x_n\} \in I_{\infty}$).
- We say that $\bar{x} \in \mathbb{R}$ is the *limit superior* of $\{x_n\}$, $\limsup_{n \to \infty} \{x_n\}$, if \bar{x} is the highest accumulation point of $\{x_n\}$; that is,
 - for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all n > N, $x_n < \overline{x} + \varepsilon$ (from N on, the sequence is never above $\overline{x} + \varepsilon$).

- Let $\{x_n\}_{n=1}^{\infty}$ be a bounded sequence of real numbers (*i.e.*, $\{x_n\} \in I_{\infty}$).
- We say that $\bar{x} \in \mathbb{R}$ is the *limit superior* of $\{x_n\}$, $\limsup_{n \to \infty} \{x_n\}$, if \bar{x} is the highest accumulation point of $\{x_n\}$; that is,
 - for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all n > N, $x_n < \overline{x} + \varepsilon$ (from N on, the sequence is never above $\overline{x} + \varepsilon$).
 - for all $\varepsilon > 0$ and all $m \in \mathbb{N}$ there exists n > m such that $x_n > \overline{x} \varepsilon$ (the sequence always goes back to be close to \overline{x}).

- Let $\{x_n\}_{n=1}^{\infty}$ be a bounded sequence of real numbers (*i.e.*, $\{x_n\} \in I_{\infty}$).
- We say that $\bar{x} \in \mathbb{R}$ is the *limit superior* of $\{x_n\}$, $\limsup_{n \to \infty} \{x_n\}$, if \bar{x} is the highest accumulation point of $\{x_n\}$; that is,
 - for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all n > N, $x_n < \overline{x} + \varepsilon$ (from N on, the sequence is never above $\overline{x} + \varepsilon$).
 - for all $\varepsilon > 0$ and all $m \in \mathbb{N}$ there exists n > m such that $x_n > \overline{x} \varepsilon$ (the sequence always goes back to be close to \overline{x}).
- We say that <u>x</u> ∈ ℝ is the *limit inferior* of {x_n}, liminf {x_n}, if <u>x</u> is the smallest accumulation point of {x_n}; that is,

- Let $\{x_n\}_{n=1}^{\infty}$ be a bounded sequence of real numbers (*i.e.*, $\{x_n\} \in I_{\infty}$).
- We say that $\bar{x} \in \mathbb{R}$ is the *limit superior* of $\{x_n\}$, $\limsup_{n \to \infty} \{x_n\}$, if \bar{x} is the highest accumulation point of $\{x_n\}$; that is,
 - for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all n > N, $x_n < \overline{x} + \varepsilon$ (from N on, the sequence is never above $\overline{x} + \varepsilon$).
 - for all $\varepsilon > 0$ and all $m \in \mathbb{N}$ there exists n > m such that $x_n > \overline{x} \varepsilon$ (the sequence always goes back to be close to \overline{x}).
- We say that <u>x</u> ∈ ℝ is the *limit inferior* of {x_n}, liminf {x_n}, if <u>x</u> is the smallest accumulation point of {x_n}; that is,
 - for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all n > N, $x_n > \underline{x} \varepsilon$ (from N on, the sequence is never below $\underline{x} \varepsilon$).

イロン イ団と イヨン ト

- Let $\{x_n\}_{n=1}^{\infty}$ be a bounded sequence of real numbers (*i.e.*, $\{x_n\} \in I_{\infty}$).
- We say that $\bar{x} \in \mathbb{R}$ is the *limit superior* of $\{x_n\}$, $\limsup_{n \to \infty} \{x_n\}$, if \bar{x} is the highest accumulation point of $\{x_n\}$; that is,
 - for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all n > N, $x_n < \overline{x} + \varepsilon$ (from N on, the sequence is never above $\overline{x} + \varepsilon$).
 - for all $\varepsilon > 0$ and all $m \in \mathbb{N}$ there exists n > m such that $x_n > \overline{x} \varepsilon$ (the sequence always goes back to be close to \overline{x}).
- We say that <u>x</u> ∈ ℝ is the *limit inferior* of {x_n}, liminf {x_n}, if <u>x</u> is the smallest accumulation point of {x_n}; that is,
 - for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all n > N, $x_n > \underline{x} \varepsilon$ (from N on, the sequence is never below $\underline{x} \varepsilon$).
 - for all $\varepsilon > 0$ and all $m \in \mathbb{N}$ there exists n > m such that $x_n < \underline{x} + \varepsilon$ (the sequence always goes back to be close to \underline{x}).

- 4 回 ト - 4 回 ト - 4 回 ト

• Remark: for all $\{x_n\} \in I_{\infty}$, $\liminf_{n \to \infty} \{x_n\} = -\limsup_{n \to \infty} \{y_n\}$, where for all $n \ge 1$, $y_n = -x_n$.

æ

Remark: for all {x_n} ∈ I_∞, lim inf_{n→∞} {x_n} = -lim sup_{n→∞} {y_n}, where for all n ≥ 1, y_n = -x_n.
Example: x_n = {
 1 if n is odd
 -1 if n is even
 lim inf_{n→∞} {x_n} = 1 and
 lim inf_{n→∞} {x_n} = -1.

- 4 週 ト - 4 三 ト - 4 三 ト -

- Remark: for all {x_n} ∈ I_∞, lim inf_{n→∞} {x_n} = -lim sup_{n→∞} {y_n}, where for all n ≥ 1, y_n = -x_n.
 Example: x_n = {
 1 if n is odd
 -1 if n is even
 lim inf_{n→∞} {x_n} = 1 and
 lim inf_{n→∞} {x_n} = -1.
- Properties: for all $\{x_n\}, \{y_n\} \in I_{\infty}$,

- Remark: for all {x_n} ∈ I_∞, lim inf_{n→∞} {x_n} = -lim sup_{n→∞} {y_n}, where for all n ≥ 1, y_n = -x_n.
 Example: x_n = {
 1 if n is odd
 -1 if n is even
 lim inf_{n→∞} {x_n} = 1 and
 lim inf_{n→∞} {x_n} = -1.
- Properties: for all $\{x_n\}, \{y_n\} \in I_{\infty}$,
 - if $\lim_{n \to \infty} \{x_n\}$ exists then $\liminf_{n \to \infty} \{x_n\} = \lim_{n \to \infty} \{x_n\} = \limsup_{n \to \infty} \{x_n\}.$

- Remark: for all {x_n} ∈ I_∞, lim inf_{n→∞} {x_n} = -lim sup_{n→∞} {y_n}, where for all n ≥ 1, y_n = -x_n.
 Example: x_n = {
 1 if n is odd
 -1 if n is even
 lim inf_{n→∞} {x_n} = 1 and
 lim inf_{n→∞} {x_n} = -1.
- Properties: for all {x_n}, {y_n} ∈ I_∞,
 if lim_{n→∞} {x_n} exists then liminf_{n→∞} {x_n} = lim_{n→∞} {x_n} = lim_{n→∞} {x_n}.

$$\liminf_{n \to \infty} \{x_n\} + \liminf_{n \to \infty} \{y_n\} \leq \liminf_{n \to \infty} \{x_n + y_n\}$$

 $\leq \liminf_{n\to\infty} \{x_n\} + \limsup_{n\to\infty} \{y_n\}$

$$\leq \lim_{n\to\infty} \sup\{x_n+y_n\}$$

 $\leq \lim_{n\to\infty} \sup\{x_n\} + \limsup_{n\to\infty} \{y_n\}.$

イロン イロン イヨン イヨン 三日
• If G is bounded then, for all $f \in F$, $\left\{\frac{1}{T}\sum_{t=1}^{T}h_i(a^t(f))\right\}_{T=1}^{\infty} \in I_{\infty}.$

- If G is bounded then, for all $f \in F$, $\left\{\frac{1}{T}\sum_{t=1}^{T}h_i(a^t(f))\right\}_{T-1}^{\infty} \in I_{\infty}$.
- Desirable properties for $H_i^{\infty}(f)$.

- If G is bounded then, for all $f \in F$, $\left\{\frac{1}{T}\sum_{t=1}^{T}h_i(a^t(f))\right\}_{T=1}^{\infty} \in I_{\infty}$.
- Desirable properties for $H_i^{\infty}(f)$.

• If $\lim_{n \to \infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t(f))$ exists then $H_i^{\infty}(f)$ should be equal to it.

- If G is bounded then, for all $f \in F$, $\left\{\frac{1}{T}\sum_{t=1}^{T}h_i(a^t(f))\right\}_{T=1}^{\infty} \in I_{\infty}.$
- Desirable properties for $H_i^{\infty}(f)$.

• If
$$\lim_{n \to \infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t(f))$$
 exists then $H_i^{\infty}(f)$ should be equal to it.
• $\liminf_{n \to \infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t(f)) \le H_i^{\infty}(f) \le \limsup_{n \to \infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t(f)).$

- If G is bounded then, for all $f \in F$, $\left\{\frac{1}{T}\sum_{t=1}^{T}h_i(a^t(f))\right\}_{T=1}^{\infty} \in I_{\infty}.$
- Desirable properties for $H_i^{\infty}(f)$.

• If
$$\lim_{n \to \infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t(f))$$
 exists then $H_i^{\infty}(f)$ should be equal to it.
• $\liminf_{n \to \infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t(f)) \le H_i^{\infty}(f) \le \limsup_{n \to \infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t(f)).$

• Note that the later implies the former.

- If G is bounded then, for all $f \in F$, $\left\{\frac{1}{T}\sum_{t=1}^{T}h_i(a^t(f))\right\}_{T=1}^{\infty} \in I_{\infty}$.
- Desirable properties for $H_i^{\infty}(f)$.

• If
$$\lim_{n \to \infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t(f))$$
 exists then $H_i^{\infty}(f)$ should be equal to it.
• $\liminf_{n \to \infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t(f)) \le H_i^{\infty}(f) \le \limsup_{n \to \infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t(f)).$

• Note that the later implies the former.

• Since we will have to check (equilibrium condition) whether $H_i^{\infty}(f) - H_i^{\infty}(g_i, f_{-i}) \ge 0$, we would like that $H_i^{\infty}(f)$ be linear.

$$\liminf_{n\to\infty} \{x_n\} \le H(\{x_n\}) \le \limsup_{n\to\infty} \{x_n\}.$$

3

Proposition There exists a linear function $H : I_{\infty} \longrightarrow \mathbb{R}$ (called a Banach limit) such that for all $\{x_n\} \in I_{\infty}$,

$$\liminf_{n\to\infty} \{x_n\} \le H(\{x_n\}) \le \limsup_{n\to\infty} \{x_n\}.$$

• It follows from the Hahn-Banach Theorem.

- ∢ ∃ →

Proposition There exists a linear function $H : I_{\infty} \longrightarrow \mathbb{R}$ (called a Banach limit) such that for all $\{x_n\} \in I_{\infty}$,

$$\liminf_{n\to\infty} \{x_n\} \le H(\{x_n\}) \le \limsup_{n\to\infty} \{x_n\}.$$

- It follows from the Hahn-Banach Theorem.
- Remarks:

- ∢ ∃ →

$$\liminf_{n\to\infty} \{x_n\} \le H(\{x_n\}) \le \limsup_{n\to\infty} \{x_n\}.$$

- It follows from the Hahn-Banach Theorem.
- Remarks:
 - There are many Banach limits.

$$\liminf_{n\to\infty} \{x_n\} \le H(\{x_n\}) \le \limsup_{n\to\infty} \{x_n\}.$$

- It follows from the Hahn-Banach Theorem.
- Remarks:
 - There are many Banach limits.
 - Results will be invariant with respect to which one we will use.

$$\liminf_{n\to\infty} \{x_n\} \le H(\{x_n\}) \le \limsup_{n\to\infty} \{x_n\}.$$

- It follows from the Hahn-Banach Theorem.
- Remarks:
 - There are many Banach limits.
 - Results will be invariant with respect to which one we will use.
 - It is not known a functional form of a Banach limit.

$$\liminf_{n\to\infty} \{x_n\} \le H(\{x_n\}) \le \limsup_{n\to\infty} \{x_n\}.$$

- It follows from the Hahn-Banach Theorem.
- Remarks:
 - There are many Banach limits.
 - Results will be invariant with respect to which one we will use.
 - It is not known a functional form of a Banach limit.
- End of Parenthesis.

• Choose a Banach limit $H: I_{\infty} \longrightarrow \mathbb{R}$.

3

イロン イヨン イヨン イヨン

- Choose a Banach limit $H: I_{\infty} \longrightarrow \mathbb{R}$.
- Given $f \in F$, construct $\{h_i(a^t(f))\}_{t=1}^{\infty} \in I_{\infty}$ (since G is bounded).

3

5.3.- Payoffs

- Choose a Banach limit $H: I_{\infty} \longrightarrow \mathbb{R}$.
- Given $f \in F$, construct $\{h_i(a^t(f))\}_{t=1}^{\infty} \in I_{\infty}$ (since G is bounded).

• Find
$$\left\{ \frac{1}{T} \sum_{t=1}^{T} h_i(a^t(f)) \right\}_{T=1}^{\infty} \in I_{\infty}$$

2

5.3.- Payoffs

- Choose a Banach limit $H: I_{\infty} \longrightarrow \mathbb{R}$.
- Given $f \in F$, construct $\{h_i(a^t(f))\}_{t=1}^{\infty} \in I_{\infty}$ (since G is bounded).

• Find
$$\left\{ \frac{1}{T} \sum_{t=1}^{T} h_i(a^t(f)) \right\}_{T=1}^{\infty} \in I_{\infty}.$$

Define

$$H_i^{\infty}(f) = H\left(\left\{\frac{1}{T}\sum_{t=1}^T h_i(a^t(f))\right\}_{T=1}^{\infty}\right).$$

2

5.3.- Payoffs

- Choose a Banach limit $H: I_{\infty} \longrightarrow \mathbb{R}$.
- Given $f \in F$, construct $\{h_i(a^t(f))\}_{t=1}^{\infty} \in I_{\infty}$ (since G is bounded).

• Find
$$\left\{ \frac{1}{T} \sum_{t=1}^{T} h_i(a^t(f)) \right\}_{T=1}^{\infty} \in I_{\infty}$$

Define

$$H_i^{\infty}(f) = H\left(\left\{\frac{1}{T}\sum_{t=1}^T h_i(\boldsymbol{a}^t(f))\right\}_{T=1}^{\infty}\right).$$

 Since G_∞ is a game in normal form, we can define F^{*}_∞ as the set of Nash equilibria of G_∞.

3

• Family of results characterizing the set of Nash equilibria or Subgame Perfect equilibria of repeated games (G_T , G_λ and G_∞) and their relationships. For example:

• Family of results characterizing the set of Nash equilibria or Subgame Perfect equilibria of repeated games (G_T , G_λ and G_∞) and their relationships. For example:

• Family of results characterizing the set of Nash equilibria or Subgame Perfect equilibria of repeated games (G_T , G_λ and G_∞) and their relationships. For example:

Proposition Let G be the Prisoners' Dilemma. Then, for every $T \ge 1$ and every $f \in F_T^*$, $a^t(f) = (D, D)$ for all $t \ge 1$.

• Family of results characterizing the set of Nash equilibria or Subgame Perfect equilibria of repeated games (G_T , G_λ and G_∞) and their relationships. For example:

Proposition Let G be the Prisoners' Dilemma. Then, for every $T \ge 1$ and every $f \in F_T^*$, $a^t(f) = (D, D)$ for all $t \ge 1$.

Proof Let $f \in F_T^*$ and assume otherwise; namely, there exists $1 \le t \le T$, $a^t(f) \ne (D, D)$.

くロト (得) (手) (手) (

 Family of results characterizing the set of Nash equilibria or Subgame Perfect equilibria of repeated games (G_T, G_λ and G_∞) and their relationships. For example:

Proposition Let G be the Prisoners' Dilemma. Then, for every $T \ge 1$ and every $f \in F_T^*$, $a^t(f) = (D, D)$ for all $t \ge 1$.

Proof Let $f \in F_T^*$ and assume otherwise; namely, there exists $1 \le t \le T$, $a^t(f) \ne (D, D)$.

• Let $s = \max\{1 \le t \le T \mid a^t(f) \ne (D, D)\}.$

くロト (得) (手) (手) (

• Family of results characterizing the set of Nash equilibria or Subgame Perfect equilibria of repeated games (G_T , G_λ and G_∞) and their relationships. For example:

Proposition Let G be the Prisoners' Dilemma. Then, for every $T \ge 1$ and every $f \in F_T^*$, $a^t(f) = (D, D)$ for all $t \ge 1$.

Proof Let $f \in F_T^*$ and assume otherwise; namely, there exists $1 \le t \le T$, $a^t(f) \ne (D, D)$.

- Let $s = \max\{1 \le t \le T \mid a^t(f) \ne (D, D)\}.$
- Without loss of generality, assume that $a_1^s(f) = C$.

 Family of results characterizing the set of Nash equilibria or Subgame Perfect equilibria of repeated games (G_T, G_λ and G_∞) and their relationships. For example:

Proposition Let G be the Prisoners' Dilemma. Then, for every $T \ge 1$ and every $f \in F_T^*$, $a^t(f) = (D, D)$ for all $t \ge 1$.

Proof Let $f \in F_T^*$ and assume otherwise; namely, there exists $1 \le t \le T$, $a^t(f) \ne (D, D)$.

- Let $s = \max\{1 \le t \le T \mid a^t(f) \ne (D, D)\}.$
- Without loss of generality, assume that $a_1^s(f) = C$.

• Define
$$g_1 = \{g_1^t\}_{t=1}^\infty$$
 as follows:

 Family of results characterizing the set of Nash equilibria or Subgame Perfect equilibria of repeated games (G_T, G_λ and G_∞) and their relationships. For example:

Proposition Let G be the Prisoners' Dilemma. Then, for every $T \ge 1$ and every $f \in F_T^*$, $a^t(f) = (D, D)$ for all $t \ge 1$.

Proof Let $f \in F_T^*$ and assume otherwise; namely, there exists $1 \le t \le T$, $a^t(f) \ne (D, D)$.

• Let
$$s = \max\{1 \le t \le T \mid a^t(f) \ne (D, D)\}.$$

• Without loss of generality, assume that $a_1^s(f) = C$.

• Define
$$g_1 = \{g_1^t\}_{t=1}^\infty$$
 as follows:

• for all $1 \leq t < s$ (if any), $g_1^t = f_1^t$ and

 Family of results characterizing the set of Nash equilibria or Subgame Perfect equilibria of repeated games (G_T, G_λ and G_∞) and their relationships. For example:

Proposition Let G be the Prisoners' Dilemma. Then, for every $T \ge 1$ and every $f \in F_T^*$, $a^t(f) = (D, D)$ for all $t \ge 1$.

Proof Let $f \in F_T^*$ and assume otherwise; namely, there exists $1 \le t \le T$, $a^t(f) \ne (D, D)$.

• Let
$$s = \max\{1 \le t \le T \mid a^t(f) \ne (D, D)\}.$$

• Without loss of generality, assume that $a_1^s(f) = C$.

• Define
$$g_1 = \{g_1^t\}_{t=1}^\infty$$
 as follows:

- for all $1 \leq t < s$ (if any), $g_1^t = f_1^t$ and
- for all $t \ge s$ and all $(a^1, ..., a^{t-1}) \in A^{t-1}$, $g_1^t(a^1, ..., a^{t-1}) = D$.

• By definition of g_1 , $a^t(g_1, f_2) = a^t(f_1, f_2)$ for all $1 \le t < s$ (if any).

æ

イロト イポト イモト イモト

• By definition of g_1 , $a^t(g_1, f_2) = a^t(f_1, f_2)$ for all $1 \le t < s$ (if any). • Hence,

$$\begin{aligned} \mathbf{a}_{2}^{s}(\mathbf{g}_{1}, \mathbf{f}_{2}) &= f_{2}^{s}(\mathbf{a}^{1}(\mathbf{g}_{1}, \mathbf{f}_{2}), ..., \mathbf{a}^{s-1}(\mathbf{g}_{1}, \mathbf{f}_{2})) \\ &= f_{2}^{s}(\mathbf{a}^{1}(\mathbf{f}_{1}, \mathbf{f}_{2}), ..., \mathbf{a}^{s-1}(\mathbf{f}_{1}, \mathbf{f}_{2})) \\ &= \mathbf{a}_{2}^{s}(\mathbf{f}_{1}, \mathbf{f}_{2}). \end{aligned}$$

æ

• By definition of g_1 , $a^t(g_1, f_2) = a^t(f_1, f_2)$ for all $1 \le t < s$ (if any). • Hence,

$$\begin{aligned} a_2^s(g_1, f_2) &= f_2^s(a^1(g_1, f_2), ..., a^{s-1}(g_1, f_2)) \\ &= f_2^s(a^1(f_1, f_2), ..., a^{s-1}(f_1, f_2)) \\ &= a_2^s(f_1, f_2). \end{aligned}$$

Thus,

æ

• By definition of g_1 , $a^t(g_1, f_2) = a^t(f_1, f_2)$ for all $1 \le t < s$ (if any). • Hence,

$$\begin{aligned} a_2^s(g_1, f_2) &= f_2^s(a^1(g_1, f_2), ..., a^{s-1}(g_1, f_2)) \\ &= f_2^s(a^1(f_1, f_2), ..., a^{s-1}(f_1, f_2)) \\ &= a_2^s(f_1, f_2). \end{aligned}$$

Thus,

• for all
$$1 \le t < s$$
 (if any), $h_1(a^t(g_1, f_2)) = h_1(a^t(f_1, f_2))$,

æ

• By definition of g_1 , $a^t(g_1, f_2) = a^t(f_1, f_2)$ for all $1 \le t < s$ (if any). • Hence,

$$\begin{aligned} a_2^s(g_1, f_2) &= f_2^s(a^1(g_1, f_2), ..., a^{s-1}(g_1, f_2)) \\ &= f_2^s(a^1(f_1, f_2), ..., a^{s-1}(f_1, f_2)) \\ &= a_2^s(f_1, f_2). \end{aligned}$$

- Thus,
 - for all $1 \le t < s$ (if any), $h_1(a^t(g_1, f_2)) = h_1(a^t(f_1, f_2))$,
 - for all t > s, $h_1(a^t(g_1, f_2)) \ge 1 = h_1(a^t(f_1, f_2))$,

• By definition of g_1 , $a^t(g_1, f_2) = a^t(f_1, f_2)$ for all $1 \le t < s$ (if any). • Hence,

$$\begin{aligned} a_2^s(g_1, f_2) &= f_2^s(a^1(g_1, f_2), ..., a^{s-1}(g_1, f_2)) \\ &= f_2^s(a^1(f_1, f_2), ..., a^{s-1}(f_1, f_2)) \\ &= a_2^s(f_1, f_2). \end{aligned}$$

Thus,

• for all
$$1 \le t < s$$
 (if any), $h_1(a^t(g_1, f_2)) = h_1(a^t(f_1, f_2))$,
• for all $t > s$, $h_1(a^t(g_1, f_2)) \ge 1 = h_1(a^t(f_1, f_2))$,

and

$$\begin{array}{rcl} h_1(a^s(g_1,f_2)) &=& h_1(D,a_2^s(g_1,f_2)) \\ &>& h_1(C,a_2^s(g_1,f_2)) \\ &=& h_1(C,a_2^s(f_1,f_2)) \\ &=& h_1(a^s(f_1,f_2)). \end{array}$$

2

イロト 不得下 イヨト イヨト

• Therefore,

$$H_1^T(g_1, f_2) = \frac{1}{T} \sum_{t=1}^T h_1(a^t(g_1, f_2))$$

> $\frac{1}{T} \sum_{t=1}^T h_1(a^t(f_1, f_2))$
= $H_1^T(f_1, f_2),$

which contradicts that $(f_1, f_2) \in F_T^*$.

æ

Proposition Let G be the Prisoners' Dilemma. Then, tit-for-tat is an equilibrium of G_{∞} .

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition Let G be the Prisoners' Dilemma. Then, tit-for-tat is an equilibrium of G_{∞} .

Proof Let g_i be the strategy tit-for-tat for player i = 1, 2.
Proposition Let G be the Prisoners' Dilemma. Then, tit-for-tat is an equilibrium of G_{∞} .

Proof Let g_i be the strategy tit-for-tat for player i = 1, 2.

• Then, since for all $t \ge 1$, $a^t(g_1, g_2) = (C, C)$, $H_i^{\infty}(g_1, g_2) = 3$.

- ∢ ∃ →

Proposition Let G be the Prisoners' Dilemma. Then, tit-for-tat is an equilibrium of G_{∞} .

Proof Let g_i be the strategy tit-for-tat for player i = 1, 2.

- Then, since for all $t \ge 1$, $a^t(g_1, g_2) = (C, C)$, $H_i^{\infty}(g_1, g_2) = 3$.
- Let $f_1 \in F_1$ be arbitrary (a symmetric argument works for player 2).

Proposition Let G be the Prisoners' Dilemma. Then, tit-for-tat is an equilibrium of G_{∞} .

Proof Let g_i be the strategy tit-for-tat for player i = 1, 2.

- Then, since for all $t \ge 1$, $a^t(g_1, g_2) = (C, C)$, $H_i^{\infty}(g_1, g_2) = 3$.
- Let $f_1 \in F_1$ be arbitrary (a symmetric argument works for player 2).

Proposition Let G be the Prisoners' Dilemma. Then, tit-for-tat is an equilibrium of G_{∞} .

Proof Let g_i be the strategy tit-for-tat for player i = 1, 2.

- Then, since for all $t \geq 1$, $a^t(g_1, g_2) = (C, C)$, $H_i^{\infty}(g_1, g_2) = 3$.
- Let $f_1 \in F_1$ be arbitrary (a symmetric argument works for player 2). For every $T \ge 1$,

$$\sum_{t=1}^{T} h_1(a^t(f_1, g_2)) = 3 \cdot \# \{ 1 \le t \le T \mid a^t(f_1, g_2) = (C, C) \}$$

+4 \cdot \# \{ 1 \le t \le T \mid a^t(f_1, g_2) = (D, C) \}
+0 \cdot \# \{ 1 \le t \le T \mid a^t(f_1, g_2) = (C, D) \}
+1 \cdot \# \{ 1 \le t \le T \mid a^t(f_1, g_2) = (D, D) \}.

• By the definition of
$$g_2$$
 (tit-for-tat),

$$#\{t \le T \mid a^t(f_1, g_2) = (D, C)\} + \#\{t \le T \mid a^t(f_1, g_2) = (D, D)\}$$

$$= \#\{t \le T \mid a_1^t(f_1, g_2) = D\}$$

$$\le \#\{t \le T \mid a_2^t(f_1, g_2) = D\} + 1$$

$$= \#\{t \mid a^t(f_1, g_2) = (C, D)\} + \#\{t \mid a^t(f_1, g_2) = (D, D)\} + 1.$$

≣ ৩৭.ে 22 / 64

イロン イ理ト イヨト イヨト

• By the definition of
$$g_2$$
 (tit-for-tat),

$$#\{t \le T \mid a^t(f_1, g_2) = (D, C)\} + \#\{t \le T \mid a^t(f_1, g_2) = (D, D)\}$$

$$= \#\{t \le T \mid a_1^t(f_1, g_2) = D\}$$

$$\le \#\{t \le T \mid a_2^t(f_1, g_2) = D\} + 1$$

$$= \#\{t \mid a^t(f_1, g_2) = (C, D)\} + \#\{t \mid a^t(f_1, g_2) = (D, D)\} + 1.$$
• Hence,

$$\#\{t \mid a^{t}(f_{1}, g_{2}) = (D, C)\} \leq \#\{t \mid a^{t}(f_{1}, g_{2}) = (C, D)\} + 1.$$
 (1)

$$\sum_{t=1}^{T} h_1(a^t(f_1, g_2)) = 3 \cdot \# \{ t \le T \mid a^t(f_1, g_2) = (C, C) \} \\ + 3 \cdot \# \{ t \le T \mid a^t(f_1, g_2) = (D, C) \} \\ + 3 \cdot \# \{ t \le T \mid a^t(f_1, g_2) = (C, D) \} \\ + 3 \cdot \# \{ t \le T \mid a^t(f_1, g_2) = (D, D) \} \\ + 1 \cdot \# \{ t \le T \mid a^t(f_1, g_2) = (D, C) \} \\ - 1 \cdot \# \{ t \le T \mid a^t(f_1, g_2) = (C, D) \} \\ - 2 \cdot \# \{ t \le T \mid a^t(f_1, g_2) = (C, D) \} \\ - 2 \cdot \# \{ t \le T \mid a^t(f_1, g_2) = (C, D) \} \\ - 2 \cdot \# \{ t \le T \mid a^t(f_1, g_2) = (D, D) \} \\ \end{bmatrix} \le 1 \text{ by } (1)$$

≣ ৩৭.ে 23 / 64

イロン イヨン イヨン イヨン

$$\sum_{t=1}^{T} h_1(a^t(f_1, g_2)) = 3 \cdot \# \{ t \le T \mid a^t(f_1, g_2) = (C, C) \} \\ + 3 \cdot \# \{ t \le T \mid a^t(f_1, g_2) = (D, C) \} \\ + 3 \cdot \# \{ t \le T \mid a^t(f_1, g_2) = (C, D) \} \\ + 3 \cdot \# \{ t \le T \mid a^t(f_1, g_2) = (D, D) \} \\ + 1 \cdot \# \{ t \le T \mid a^t(f_1, g_2) = (D, C) \} \\ - 1 \cdot \# \{ t \le T \mid a^t(f_1, g_2) = (C, D) \} \\ - 2 \cdot \# \{ t \le T \mid a^t(f_1, g_2) = (C, D) \} \\ - 2 \cdot \# \{ t \le T \mid a^t(f_1, g_2) = (C, D) \} \\ - 2 \cdot \# \{ t \le T \mid a^t(f_1, g_2) = (D, D) \} \\ \} \le 0.$$
Hence,
$$\sum_{t=1}^{T} h_1(a^t(f_1, g_2)) \le 3T + 1.$$

23 / 64

• Thus,

$$\begin{aligned} H_{1}^{\infty}(f_{1},g_{2}) &= H\left(\left\{\frac{1}{T}\sum_{t=1}^{T}h_{1}(a^{t}(f_{1},g_{2}))\right\}_{t=1}^{T}\right) \\ &\leq \limsup_{n \to \infty} \frac{1}{T}\sum_{t=1}^{T}h_{1}(a^{t}(f_{1},g_{2})) \\ &\leq \limsup_{n \to \infty} \frac{1}{T}(3T+1) = 3 \\ &= H_{1}^{\infty}(g_{1},g_{2}). \end{aligned}$$

24 / 64

э.

• Thus,

$$H_1^{\infty}(f_1, g_2) = H\left(\left\{\frac{1}{T}\sum_{t=1}^T h_1(a^t(f_1, g_2))\right\}_{t=1}^T\right)$$

$$\leq \limsup_{n \to \infty} \frac{1}{T}\sum_{t=1}^T h_1(a^t(f_1, g_2))$$

$$\leq \limsup_{n \to \infty} \frac{1}{T}(3T+1) = 3$$

$$= H_1^{\infty}(g_1, g_2).$$

• Therefore, for all $f_1 \in F_1$, $H_1^{\infty}(f_1, g_2) \leq H_1^{\infty}(g_1, g_2)$.

24 / 64

æ

• Thus,

$$\begin{aligned} H_1^{\infty}(f_1,g_2) &= H\left(\left\{\frac{1}{T}\sum_{t=1}^T h_1(a^t(f_1,g_2))\right\}_{t=1}^T\right) \\ &\leq \limsup_{n \to \infty} \frac{1}{T}\sum_{t=1}^T h_1(a^t(f_1,g_2)) \\ &\leq \limsup_{n \to \infty} \frac{1}{T}(3T+1) = 3 \\ &= H_1^{\infty}(g_1,g_2). \end{aligned}$$

• Therefore, for all $f_1 \in F_1$, $H_1^{\infty}(f_1, g_2) \leq H_1^{\infty}(g_1, g_2)$.

• Hence, $(g_1, g_2) \in F_{\infty}^*$.

Image: Image:

< 3 > < 3 >

3

• Thus,

$$H_1^{\infty}(f_1, g_2) = H\left(\left\{\frac{1}{T}\sum_{t=1}^T h_1(a^t(f_1, g_2))\right\}_{t=1}^T\right)$$

$$\leq \limsup_{n \to \infty} \frac{1}{T}\sum_{t=1}^T h_1(a^t(f_1, g_2))$$

$$\leq \limsup_{n \to \infty} \frac{1}{T}(3T+1) = 3$$

$$= H_1^{\infty}(g_1, g_2).$$

- Therefore, for all $f_1 \in F_1$, $H_1^{\infty}(f_1, g_2) \leq H_1^{\infty}(g_1, g_2)$.
- Hence, $(g_1, g_2) \in F_{\infty}^*$.
- Note that this is independent of the particular Banach limit *H* chosen to evaluate sequences of averages.

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• In terms of the payoffs $(h(a))_{a \in A}$ of G.

- In terms of the payoffs $(h(a))_{a \in A}$ of G.
- In general, for $\alpha = T$, λ , ∞ , F_{α}^* is extremely large.

- In terms of the payoffs $(h(a))_{a \in A}$ of G.
- In general, for $\alpha = T$, λ , ∞ , F_{α}^* is extremely large.
- Relationships:

- 4 @ > - 4 @ > - 4 @ > -

- In terms of the payoffs $(h(a))_{a \in A}$ of G.
- In general, for $\alpha = T$, λ , ∞ , F_{α}^* is extremely large.
- Relationships:

•
$$F_{\lambda}^* \xrightarrow[\lambda \to 1]{} F_{\infty}^*$$
 and $F_T^* \xrightarrow[\lambda \to 1]{} F_{\infty}^*$?

- 4 @ > - 4 @ > - 4 @ > -

- In terms of the payoffs $(h(a))_{a \in A}$ of G.
- In general, for $\alpha = T$, λ , ∞ , F_{α}^* is extremely large.
- Relationships:

•
$$F^*_{\lambda} \xrightarrow[\lambda \to 1]{} F^*_{\infty}$$
 and $F^*_{T} \xrightarrow[\lambda \to 1]{} F^*_{\infty}$?

• These collection of results are some times called Aumann-Shapley-Rubinstein Theorems.

• Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a bounded game in normal form.

2

イロン イ理と イヨン イヨン

- Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a bounded game in normal form.
- **Definition** The payoff $x_i \in \mathbb{R}$ is *individually rational* for player $i \in I$ if

$$x_i \geq \inf_{a_{-i} \in A_{-i}} \sup_{a_i \in A_i} h_i(a_i, a_{-i}) \equiv R_i.$$

- ∢ ∃ →

- Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a bounded game in normal form.
- **Definition** The payoff $x_i \in \mathbb{R}$ is *individually rational* for player $i \in I$ if

$$x_i \geq \inf_{a_{-i}\in A_{-i}} \sup_{a_i\in A_i} h_i(a_i, a_{-i}) \equiv R_i.$$

• Remark: If G is bounded, then $R_i = \min_{a_{-i} \in A_{-i}} \max_{a_i \in A_i} h_i(a_i, a_{-i})$.

- Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a bounded game in normal form.
- **Definition** The payoff $x_i \in \mathbb{R}$ is *individually rational* for player $i \in I$ if

$$x_i \geq \inf_{a_{-i}\in A_{-i}} \sup_{a_i\in A_i} h_i(a_i, a_{-i}) \equiv R_i.$$

- Remark: If G is bounded, then $R_i = \min_{a_{-i} \in A_{-i}} \max_{a_i \in A_i} h_i(a_i, a_{-i}).$
- Interpretation: Player i can guarantee R_i by himself.

- Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a bounded game in normal form.
- **Definition** The payoff $x_i \in \mathbb{R}$ is *individually rational* for player $i \in I$ if

$$x_i \geq \inf_{a_{-i}\in A_{-i}} \sup_{a_i\in A_i} h_i(a_i, a_{-i}) \equiv R_i.$$

- Remark: If G is bounded, then $R_i = \min_{a_{-i} \in A_{-i}} \max_{a_i \in A_i} h_i(a_i, a_{-i})$.
- Interpretation: Player i can guarantee R_i by himself.
- Punishment idea: the other players choose their actions and then *i* chooses his best action.

- Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a bounded game in normal form.
- **Definition** The payoff $x_i \in \mathbb{R}$ is *individually rational* for player $i \in I$ if

$$x_i \geq \inf_{a_{-i}\in A_{-i}} \sup_{a_i\in A_i} h_i(a_i, a_{-i}) \equiv R_i.$$

- Remark: If G is bounded, then $R_i = \min_{a_{-i} \in A_{-i}} \max_{a_i \in A_i} h_i(a_i, a_{-i})$.
- Interpretation: Player i can guarantee R_i by himself.
- Punishment idea: the other players choose their actions and then *i* chooses his best action.
- Warning: with mixed strategies, this minimax may be smaller; *i.e.*, there are games for which

$$\inf_{\sigma_{-i}\in \Sigma_{-i}} \sup_{\sigma_i\in \Sigma_i} H_i(\sigma_i, \sigma_{-i}) < \inf_{a_{-i}\in A_{-i}} \sup_{a_i\in A_i} h_i(a_i, a_{-i}).$$

イロン イ理と イヨン イヨン

• Prisoners' Dilemma: $R_i = \min\{\max\{3, 4\}, \max\{0, 1\}\} = 1$.

2

- Prisoners' Dilemma: $R_i = \min\{\max\{3, 4\}, \max\{0, 1\}\} = 1$.
- Battle of Sexes: $R_i = \min\{\max\{3, 0\}, \max\{0, 1\}\} = 1$.

æ

- Prisoners' Dilemma: $R_i = \min\{\max\{3, 4\}, \max\{0, 1\}\} = 1$.
- Battle of Sexes: $R_i = \min\{\max\{3, 0\}, \max\{0, 1\}\} = 1$.
- Coordination Game: $R_i = \min\{\max\{1, 0\}, \max\{0, 2\}\} = 1$.

3

- Prisoners' Dilemma: $R_i = \min\{\max\{3, 4\}, \max\{0, 1\}\} = 1$.
- Battle of Sexes: $R_i = \min\{\max\{3, 0\}, \max\{0, 1\}\} = 1$.
- Coordination Game: $R_i = \min\{\max\{1, 0\}, \max\{0, 2\}\} = 1$.
- Matching Pennies: $R_i = \min\{\max\{1, -1\}, \max\{1, -1\}\} = 1$.

3

- Prisoners' Dilemma: $R_i = \min\{\max\{3, 4\}, \max\{0, 1\}\} = 1$.
- Battle of Sexes: $R_i = \min\{\max\{3, 0\}, \max\{0, 1\}\} = 1$.
- Coordination Game: $R_i = \min\{\max\{1, 0\}, \max\{0, 2\}\} = 1$.
- Matching Pennies: $R_i = \min\{\max\{1, -1\}, \max\{1, -1\}\} = 1$.
- Notation: $C(G) = cl(co\{h(a) \in \mathbb{R}^{\# l} \mid a \in A\})$.

3

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

- Prisoners' Dilemma: $R_i = \min\{\max\{3, 4\}, \max\{0, 1\}\} = 1$.
- Battle of Sexes: $R_i = \min\{\max\{3, 0\}, \max\{0, 1\}\} = 1$.
- Coordination Game: $R_i = \min\{\max\{1, 0\}, \max\{0, 2\}\} = 1$.
- Matching Pennies: $R_i = \min\{\max\{1, -1\}, \max\{1, -1\}\} = 1$.
- Notation: $C(G) = cl(co\{h(a) \in \mathbb{R}^{\# l} \mid a \in A\})$.

• If G is finite,
$$C(G) = co\left\{h(a) \in \mathbb{R}^{\# I} \mid a \in A\right\}$$
.

3

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

28 / 64

2

29 / 64

2

30 / 64

2

31 / 64

2

32 / 64

2

33 / 64

æ

34 / 64

æ

35 / 64

æ

Infinitely Repeated

æ

メロト メポト メヨト メヨト

Theorem

Let G be a bounded game in normal form. Then,

$$\left\{ H^{\infty}(f) \in \mathbb{R}^{\# I} \mid f \in F_{\infty}^* \right\} = \left\{ x \in \mathcal{C}(G) \mid x_i \geq R_i \text{ for all } i \in I
ight\}$$

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

7 / 64

æ

38 / 64

æ

39 / 64

æ

40 / 64

æ

2

Proposition 1 If f is an equilibrium of G_{α} for $\alpha = T, \lambda, \infty$ then, $H_i^{\alpha}(f) \ge R_i$ for all $i \in I$.

Proposition 1 If f is an equilibrium of G_{α} for $\alpha = T, \lambda, \infty$ then, $H_i^{\alpha}(f) \ge R_i$ for all $i \in I$.

Proposition 2 Let $\{a^t\}_{t=1}^{\infty}$ be such that $a^t \in A$ for all $t \ge 1$ and $\liminf_{n\to\infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t) \ge R_i$ for all $i \in I$ then, there exists an $f \in F$ such that (1) f is an equilibrium of G_{∞} and (2) $a^t(f) = a^t$ for all $t \ge 1$.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト …

Proposition 1 If f is an equilibrium of G_{α} for $\alpha = T, \lambda, \infty$ then, $H_i^{\alpha}(f) \ge R_i$ for all $i \in I$.

Proposition 2 Let $\{a^t\}_{t=1}^{\infty}$ be such that $a^t \in A$ for all $t \ge 1$ and $\liminf_{n\to\infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t) \ge R_i$ for all $i \in I$ then, there exists an $f \in F$ such that (1) f is an equilibrium of G_{∞} and (2) $a^t(f) = a^t$ for all $t \ge 1$. **Proposition 3** For every $x \in C(G)$ there exists a sequence $\{a^t\}_{t=1}^{\infty}$ such that $a^t \in A$ for all $t \ge 1$ and for all $i \in I$, $\lim_{T\to\infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t)$ exists and it is equal to x_i .

Proposition 1 If f is an equilibrium of G_{α} for $\alpha = T, \lambda, \infty$ then, $H_i^{\alpha}(f) \ge R_i$ for all $i \in I$.

Proposition 2 Let $\{a^t\}_{t=1}^{\infty}$ be such that $a^t \in A$ for all $t \ge 1$ and $\liminf_{n\to\infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t) \ge R_i$ for all $i \in I$ then, there exists an $f \in F$ such that (1) f is an equilibrium of G_{∞} and (2) $a^t(f) = a^t$ for all $t \ge 1$. **Proposition 3** For every $x \in C(G)$ there exists a sequence $\{a^t\}_{t=1}^{\infty}$ such that $a^t \in A$ for all $t \ge 1$ and for all $i \in I$, $\lim_{T\to\infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t)$ exists and it is equal to x_i .

Proposition 4 For every $f \in F$ and every $\alpha = T$, λ , ∞ , $H^{\alpha}(f) \in C(G)$.

・ロト ・四ト ・ヨト ・ヨトー

Proposition 1: Intuition

æ

メロト メポト メヨト メヨト

Proposition 1: Intuition

Proposition 1 If f is an equilibrium of G_{α} for $\alpha = T, \lambda, \infty$ then, $H_i^{\alpha}(f) \ge R_i$ for all $i \in I$.

æ

Proposition 1: Intuition

Proposition 1 If f is an equilibrium of G_{α} for $\alpha = T, \lambda, \infty$ then, $H_i^{\alpha}(f) \ge R_i$ for all $i \in I$.

• Let $f \in F$ and $i \in I$ be arbitrary. Define recursively $g_i \in F_i$ as follows:

Proposition 1 If f is an equilibrium of G_{α} for $\alpha = T, \lambda, \infty$ then, $H_i^{\alpha}(f) \ge R_i$ for all $i \in I$.

- Let $f \in F$ and $i \in I$ be arbitrary. Define recursively $g_i \in F_i$ as follows:
- Given $a^1(f)$ let $b^1_i \in A_i$ be s.t. $h_i(b^1_i, a^1(f)_{-i}) \ge R_i$; it exists since
 - $R_{i} = \min_{a_{-i} \in A_{-i}} \max_{a_{i} \in A_{i}} h_{i}(a_{i}, a_{-i}) \leq \max_{a_{i} \in A_{i}} h_{i}(a_{i}, a^{1}(f)_{-i}) = h_{i}(b_{i}^{1}, a^{1}(f)_{-i}).$

Then, set $g_i^1 = b_i^1$.

Proposition 1 If f is an equilibrium of G_{α} for $\alpha = T, \lambda, \infty$ then, $H_i^{\alpha}(f) \ge R_i$ for all $i \in I$.

- Let $f \in F$ and $i \in I$ be arbitrary. Define recursively $g_i \in F_i$ as follows:
- Given $a^1(f)$ let $b^1_i \in A_i$ be s.t. $h_i(b^1_i, a^1(f)_{-i}) \ge R_i$; it exists since

$$R_{i} = \min_{a_{-i} \in A_{-i}} \max_{a_{i} \in A_{i}} h_{i}(a_{i}, a_{-i}) \leq \max_{a_{i} \in A_{i}} h_{i}(a_{i}, a^{1}(f)_{-i}) = h_{i}(b_{i}^{1}, a^{1}(f)_{-i}).$$

Then, set $g_i^1 = b_i^1$.

• Assume g_i has been defined up to t. Let $b_i^{t+1} \in A_i$ be s.t. $h_i(b_i^{1+1}, f^{t+1}(a^1(g_i, f_{-i}), ..., a^t(g_i, f_{-i}))_{-i}) \ge R_i$; as before, it also exists. Then, for all $(a^1, ..., a^t) \in A^t$, set

$$g_i^{t+1}(a^1,...,a^t) = \begin{cases} b_i^{t+1} & \text{if } \forall 1 \leq s \leq t, \ a^s = a^s(g_i,f_{-i}) \\ f_i^{t+1}(a^1,...,a^t) & \text{otherwise.} \end{cases}$$

• It is possible to show that, by the definition of g_i ,

 $h_i(a^t(g_i, f_{-i})) \geq R_i.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• It is possible to show that, by the definition of g_i,

 $h_i(a^t(g_i, f_{-i})) \geq R_i.$

• Hence, for all $\alpha = T$, λ , ∞ , $H_i^{\alpha}(g_i, f_{-i}) \ge R_i$.

- ∢ ∃ ▶

• It is possible to show that, by the definition of g_i,

 $h_i(a^t(g_i, f_{-i})) \geq R_i.$

- Hence, for all $\alpha = T$, λ , ∞ , $H_i^{\alpha}(g_i, f_{-i}) \ge R_i$.
- Thus, if for $\alpha = T$, λ , ∞ , $f \in G^*_{\alpha}$ then, it must be the case that

 $H_i^{\alpha}(f) \geq R_i.$

Proposition 2 Let $\{a^t\}_{t=1}^{\infty}$ be such that $a^t \in A$ for all $t \ge 1$ and $\liminf_{n \to \infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t) \ge R_i$ for all $i \in I$ then, there exists an $f \in F$ such that (1) f is an equilibrium of G_{∞} and (2) $a^t(f) = a^t$ for all $t \ge 1$.

Proposition 2 Let $\{a^t\}_{t=1}^{\infty}$ be such that $a^t \in A$ for all $t \ge 1$ and $\liminf_{n \to \infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t) \ge R_i$ for all $i \in I$ then, there exists an $f \in F$ such that (1) f is an equilibrium of G_{∞} and (2) $a^t(f) = a^t$ for all $t \ge 1$.

• For every $i \in I$, there exists $a(i) \in A$ such that $h_i(b_i, a(i)_{-i}) \leq R_i$ for all $b_i \in A_i$. Observe that

$$R_{i} = \min_{a_{-i} \in A_{-i}} \max_{a_{i} \in A_{i}} h_{i}(a_{i}, a_{-i}) = \max_{a_{i} \in A_{i}} h_{i}(a_{i}, a(i)_{-i}) \ge h_{i}(b_{i}, a(i)_{-i})$$

for all $b_i \in A_i$.

Proposition 2 Let $\{a^t\}_{t=1}^{\infty}$ be such that $a^t \in A$ for all $t \ge 1$ and $\liminf_{n \to \infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t) \ge R_i$ for all $i \in I$ then, there exists an $f \in F$ such that (1) f is an equilibrium of G_{∞} and (2) $a^t(f) = a^t$ for all $t \ge 1$.

• For every $i \in I$, there exists $a(i) \in A$ such that $h_i(b_i, a(i)_{-i}) \leq R_i$ for all $b_i \in A_i$. Observe that

$$R_{i} = \min_{a_{-i} \in A_{-i}} \max_{a_{i} \in A_{i}} h_{i}(a_{i}, a_{-i}) = \max_{a_{i} \in A_{i}} h_{i}(a_{i}, a(i)_{-i}) \ge h_{i}(b_{i}, a(i)_{-i})$$

for all $b_i \in A_i$.

• For every
$$j \in I$$
, set $f_j^1 = a_j^1$.

Proposition 2 Let $\{a^t\}_{t=1}^{\infty}$ be such that $a^t \in A$ for all $t \ge 1$ and $\liminf_{n \to \infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t) \ge R_i$ for all $i \in I$ then, there exists an $f \in F$ such that (1) f is an equilibrium of G_{∞} and (2) $a^t(f) = a^t$ for all $t \ge 1$.

• For every $i \in I$, there exists $a(i) \in A$ such that $h_i(b_i, a(i)_{-i}) \leq R_i$ for all $b_i \in A_i$. Observe that

$$R_{i} = \min_{a_{-i} \in A_{-i}} \max_{a_{i} \in A_{i}} h_{i}(a_{i}, a_{-i}) = \max_{a_{i} \in A_{i}} h_{i}(a_{i}, a(i)_{-i}) \ge h_{i}(b_{i}, a(i)_{-i})$$

for all $b_i \in A_i$.

- For every $j \in I$, set $f_j^1 = a_j^1$.
- Take any function $\gamma: 2^{I} \setminus \{\varnothing\} \longrightarrow I$ with the property that for all $J \in 2^{I} \setminus \{\varnothing\}$, $\gamma(J) \in J$.

• Let $(b^1, ..., b^t) \in A^t$ be arbitrary. Let $s = \min\{1 \le r \le t \mid b^r \ne a^r\}$, $J = \{k \in I \mid b_k^s \ne a_k^s\}$ and $i = \gamma(J)$.

3

• Let $(b^1, ..., b^t) \in A^t$ be arbitrary. Let $s = \min\{1 \le r \le t \mid b^r \ne a^r\}$, $J = \{k \in I \mid b_k^s \ne a_k^s\}$ and $i = \gamma(J)$.

Define

$$f_j^{t+1}(b^1,...,b^t) = \left\{egin{array}{cc} a_j^{t+1} & ext{if } orall 1 \leq r \leq t, \ b^r = a^r \ a(i)_j & ext{otherwise.} \end{array}
ight.$$

2

- Let $(b^1, ..., b^t) \in A^t$ be arbitrary. Let $s = \min\{1 \le r \le t \mid b^r \ne a^r\}$, $J = \{k \in I \mid b_k^s \ne a_k^s\}$ and $i = \gamma(J)$.
- Define

$$f_j^{t+1}(b^1,...,b^t) = \left\{egin{array}{cc} a_j^{t+1} & ext{if } orall 1 \leq r \leq t, \ b^r = a^r \ a(i)_j & ext{otherwise.} \end{array}
ight.$$

• It is easy to show that for all $t \ge 1$, $a^t(f) = a^t$ (namely, (ii) is proven).

3

- Let $(b^1, ..., b^t) \in A^t$ be arbitrary. Let $s = \min\{1 \le r \le t \mid b^r \ne a^r\}$, $J = \{k \in I \mid b_k^s \ne a_k^s\}$ and $i = \gamma(J)$.
- Define

$$f_j^{t+1}(b^1,...,b^t) = \left\{egin{array}{cc} a_j^{t+1} & ext{if } orall 1 \leq r \leq t, \ b^r = a^r \ a(i)_j & ext{otherwise.} \end{array}
ight.$$

- It is easy to show that for all $t \ge 1$, $a^t(f) = a^t$ (namely, (ii) is proven).
- For any $g_i \in F_i$ either $a^t(f) = a^t(g_i, f_{-i})$ for all $t \ge 1$, in which case $H_i^{\infty}(f) = H_i(g_i, f_{-i})$ or else there exists $s = \min\{t \ge 1 \mid a^t(g_i, f_{-i}) \neq a^t(f)\}$. Then, $J = \{i\}$ and $\gamma(\{i\}) = i$. Thus,

Proposition 2: Intuition

$$\begin{aligned} H_i^{\infty}(g_i, f_{-i}) &= H\left(\left\{\frac{1}{T}\sum_{t=1}^T h_i(a^t(g_i, f_{-i})\right\}_{T=1}^{\infty}\right) \\ &\leq \limsup_{T \to \infty} \frac{1}{T}\sum_{t=1}^T h_i(a^t(g_i, f_{-i})) \\ &\leq \limsup_{T \to \infty} \frac{1}{T}\left[s\max\{h_i(a) \mid a \in A\} + (T-s)R_i\right] \\ &\leq \limsup_{T \to \infty} \frac{1}{T}S\max\{h_i(a) \mid a \in A\} + \limsup_{T} \frac{1}{T}(T-s)R_i \\ &\leq \limsup_{T \to \infty} \frac{1}{T}TR_i \\ &= R_i \\ &\leq \liminf_{n \to \infty} \frac{1}{T}\sum_{t=1}^T h_i(a^t) \quad \text{by hypothesis} \\ &\leq \liminf_{n \to \infty} \frac{1}{T}\sum_{t=1}^T h_i(a^t(f)) \quad \text{by (ii)} \\ &\leq H_i^{\infty}(f). \end{aligned}$$

46 / 64

æ

メロト メポト メヨト メヨト

Proposition 2: Intuition

$$\begin{aligned} H_i^{\infty}(g_i, f_{-i}) &= H\left(\left\{\frac{1}{T}\sum_{t=1}^T h_i(a^t(g_i, f_{-i})\right\}_{T=1}^{\infty}\right) \\ &\leq \limsup_{T \to \infty} \frac{1}{T}\sum_{t=1}^T h_i(a^t(g_i, f_{-i})) \\ &\leq \limsup_{T \to \infty} \frac{1}{T}\left[s\max\{h_i(a) \mid a \in A\} + (T-s)R_i\right] \\ &\leq \limsup_{T \to \infty} \frac{1}{T}S\max\{h_i(a) \mid a \in A\} + \limsup_{T \to 0} \frac{1}{T}(T-s)R_i \\ &\leq \limsup_{T \to \infty} \frac{1}{T}TR_i \\ &= R_i \\ &\leq \liminf_{n \to \infty} \frac{1}{T}\sum_{t=1}^T h_i(a^t) \quad \text{by hypothesis} \\ &\leq \lim_{n \to \infty} \inf_{T} \frac{1}{T}\sum_{t=1}^T h_i(a^t(f)) \quad \text{by (ii)} \\ &\leq H_i^{\infty}(f). \end{aligned}$$

But since g_i was arbitrary, $f \in F_{\infty}^*$.

46 / 64

2

Proposition 3 For every $x \in C(G)$ there exists a sequence $\{a^t\}_{t=1}^{\infty}$ such that $a^t \in A$ for all $t \ge 1$ and for all $i \in I$, $\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t)$ exists and it is equal to x_i .

→ ∃ →

Proposition 3 For every $x \in C(G)$ there exists a sequence $\{a^t\}_{t=1}^{\infty}$ such that $a^t \in A$ for all $t \ge 1$ and for all $i \in I$, $\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t)$ exists and it is equal to x_i .

Proposition 3 follows (after some work to deal with convex combinations with non-rational coefficients) from the following result which in turn follows from a more general result (Caratheodory Theorem).

Proposition 3 For every $x \in C(G)$ there exists a sequence $\{a^t\}_{t=1}^{\infty}$ such that $a^t \in A$ for all $t \ge 1$ and for all $i \in I$, $\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t)$ exists and it is equal to x_i .

Proposition 3 follows (after some work to deal with convex combinations with non-rational coefficients) from the following result which in turn follows from a more general result (Caratheodory Theorem).

Result Let
$$X = co\{x^1, ..., x^K\} \subseteq \mathbb{R}^n$$
. For every $x \in X$ there exist $y^1, ..., y^{n+1} \in \{x^1, ..., x^K\}$ and $p^1, ..., p^{n+1} \ge 0$ such that $\sum_{j=1}^{n+1} p^j = 1$ with the event of $x + 1$ of x^{n+1}

the property that $x = \sum_{j=1}^{n} p^j y^j$.

イロト イ団ト イヨト イヨト 三日

Proposition 4 For every $f \in F$ and every $\alpha = T$, λ , ∞ , $H^{\alpha}(f) \in C(G)$.

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Proposition 4 For every $f \in F$ and every $\alpha = T$, λ , ∞ , $H^{\alpha}(f) \in C(G)$.

• For $\alpha = T$, ∞ the statement obviously holds.

イロト イポト イヨト イヨト

Proposition 4 For every $f \in F$ and every $\alpha = T$, λ , ∞ , $H^{\alpha}(f) \in C(G)$.

• For $\alpha = T$, ∞ the statement obviously holds.

• For $\alpha = \lambda$, observe that for every $t \ge 1$, $0 \le (1 - \lambda)\lambda^{t-1} \le 1$ and $(1 - \lambda)\sum_{t=1}^{\infty}\lambda^{t-1} = (1 - \lambda)\frac{1}{1-\lambda} = 1$. Thus, each $(1 - \lambda)\lambda^{t-1}$ can be seen as the coefficient of an (infinite) convex combination: Thus, $H^{\lambda}(f) = (1 - \lambda)\sum_{t=1}^{\infty}\lambda^{t-1}h(a^{t}(f)) \in C(G)$.

イロト イ団ト イヨト イヨト 三日

• Proof of the Theorem

3

イロト イポト イヨト イヨト

- Proof of the Theorem
- \subseteq) Let *f* be an equilibrium of G_{α} .

æ

イロト イヨト イヨト イヨト

- Proof of the Theorem
- \subseteq) Let *f* be an equilibrium of G_{α} .
 - By Proposition 1, $H_i^{\alpha}(f) \ge R_i$ for all $i \in I$.

イロト イポト イヨト イヨト

Proof of the Theorem

- \subseteq) Let *f* be an equilibrium of G_{α} .
 - By Proposition 1, $H_i^{\alpha}(f) \ge R_i$ for all $i \in I$.
 - By Proposition 4, $H^{\alpha}(f) \in C(G)$.

- ∢ ∃ →

- \subseteq) Let *f* be an equilibrium of G_{α} .
 - By Proposition 1, $H_i^{\alpha}(f) \ge R_i$ for all $i \in I$.
 - By Proposition 4, $H^{\alpha}(f) \in C(G)$.
 - Hence, $H^{\alpha}(f) \in \{x \in C(G) \mid x_i \ge R_i \text{ for all } i \in I\}.$

Proof of the Theorem

- \subseteq) Let *f* be an equilibrium of G_{α} .
 - By Proposition 1, $H_i^{\alpha}(f) \ge R_i$ for all $i \in I$.
 - By Proposition 4, $H^{\alpha}(f) \in C(G)$.
 - Hence, $H^{\alpha}(f) \in \{x \in C(G) \mid x_i \ge R_i \text{ for all } i \in I\}.$

• \supseteq) Let $x \in C(G)$ and assume $x_i \ge R_i$ for all $i \in I$.

- \subseteq) Let *f* be an equilibrium of G_{α} .
 - By Proposition 1, $H_i^{\alpha}(f) \ge R_i$ for all $i \in I$.
 - By Proposition 4, $H^{\alpha}(f) \in C(G)$.
 - Hence, $H^{\alpha}(f) \in \{x \in C(G) \mid x_i \ge R_i \text{ for all } i \in I\}.$
- \supseteq) Let $x \in C(G)$ and assume $x_i \ge R_i$ for all $i \in I$.
 - By Proposition 3, there exists a sequence $\{a^t\}_{t=1}^{\infty}$ such that $a^t \in A$ for all $t \ge 1$ and for all $i \in I$, $\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t) = x_i$.

- \subseteq) Let *f* be an equilibrium of G_{α} .
 - By Proposition 1, $H_i^{\alpha}(f) \ge R_i$ for all $i \in I$.
 - By Proposition 4, $H^{\alpha}(f) \in C(G)$.
 - Hence, $H^{\alpha}(f) \in \{x \in C(G) \mid x_i \ge R_i \text{ for all } i \in I\}.$
- \supseteq) Let $x \in C(G)$ and assume $x_i \ge R_i$ for all $i \in I$.
 - By Proposition 3, there exists a sequence $\{a^t\}_{t=1}^{\infty}$ such that $a^t \in A$ for all $t \ge 1$ and for all $i \in I$, $\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t) = x_i$.
 - By Proposition 2, there exists $f \in F$ such that (1) f is an equilibrium of G_{∞} and (2) $a^{t}(f) = a^{t}$ for all $t \geq 1$.

- \subseteq) Let *f* be an equilibrium of G_{α} .
 - By Proposition 1, $H_i^{\alpha}(f) \ge R_i$ for all $i \in I$.
 - By Proposition 4, $H^{\alpha}(f) \in C(G)$.
 - Hence, $H^{\alpha}(f) \in \{x \in C(G) \mid x_i \ge R_i \text{ for all } i \in I\}.$
- \supseteq) Let $x \in C(G)$ and assume $x_i \ge R_i$ for all $i \in I$.
 - By Proposition 3, there exists a sequence $\{a^t\}_{t=1}^{\infty}$ such that $a^t \in A$ for all $t \ge 1$ and for all $i \in I$, $\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} h_i(a^t) = x_i$.
 - By Proposition 2, there exists $f \in F$ such that (1) f is an equilibrium of G_{∞} and (2) $a^{t}(f) = a^{t}$ for all $t \geq 1$.

• Hence, for all
$$i \in I$$
,

$$H_i^{\infty}(f) = H\left(\left\{\frac{1}{T}\sum_{t=1}^T h_i(a^t(f))\right\}_{T=1}^{\infty}\right) = \lim_{T \to \infty} \frac{1}{T}\sum_{t=1}^T h_i(a^t) = x_i.$$

- \subseteq) Let *f* be an equilibrium of G_{α} .
 - By Proposition 1, $H_i^{\alpha}(f) \ge R_i$ for all $i \in I$.
 - By Proposition 4, $H^{\alpha}(f) \in C(G)$.
 - Hence, $H^{\alpha}(f) \in \{x \in C(G) \mid x_i \ge R_i \text{ for all } i \in I\}.$
- \supseteq) Let $x \in C(G)$ and assume $x_i \ge R_i$ for all $i \in I$.
 - By Proposition 3, there exists a sequence {a^t}_{t=1}[∞] such that a^t ∈ A for all t ≥ 1 and for all i ∈ I, lim_{T→∞} 1/T ∑_{t=1}^T h_i(a^t) = x_i.
 - By Proposition 2, there exists $f \in F$ such that (1) f is an equilibrium of G_{∞} and (2) $a^{t}(f) = a^{t}$ for all $t \geq 1$.

• Hence, for all
$$i \in I$$
,

$$H_{i}^{\infty}(f) = H\left(\left\{\frac{1}{T}\sum_{t=1}^{T}h_{i}(a^{t}(f))\right\}_{T=1}^{\infty}\right) = \lim_{T \to \infty} \frac{1}{T}\sum_{t=1}^{T}h_{i}(a^{t}) = x_{i}.$$
• Thus, $x \in \left\{H^{\infty}(f) \in \mathbb{R}^{\#I} \mid f \text{ is an equilibrium of } G_{\infty}\right\}$;

Discounted Repeated

Theorem

For every $x \in C(G)$ such that $x_i > R_i$ for all $i \in I$, there exists $\underline{\lambda} \in (0, 1)$ such that for all $\lambda \in (\underline{\lambda}, 1)$ there exists $f \in F_{\lambda}^*$ with the property that $H^{\lambda}(f) = x$.

Theorem

Benoît and Krishna (1987) Assume that for every $i \in I$ there exists $a^*(i) \in A^*$ such that $h_i(a^*(i)) > R_i$. Then, for all $x \in C(G)$ such that $x_i > R_i$ for all $i \in I$ and for every $\varepsilon > 0$ there exists $\hat{T} \in \mathbb{N}$ such that for all $T > \hat{T}$ there exists $f \in F_T^*$ such that $||H^T(f) - x|| < \varepsilon$.

Theorem

Benoît and Krishna (1987) Assume that for every $i \in I$ there exists $a^*(i) \in A^*$ such that $h_i(a^*(i)) > R_i$. Then, for all $x \in C(G)$ such that $x_i > R_i$ for all $i \in I$ and for every $\varepsilon > 0$ there exists $\hat{T} \in \mathbb{N}$ such that for all $T > \hat{T}$ there exists $f \in F_T^*$ such that $||H^T(f) - x|| < \varepsilon$.

 Benoît, J.P. and V. Krisnha. "Nash Equilibria of Finitely Repeated Games," International Journal of Game Theory 16, 1987.

Finitely Repeated: Intuition

æ

メロト メポト メヨト メヨト

• Terminal phase: for $Q \in \mathbb{N}$,

æ

イロト イポト イヨト イヨト

• Terminal phase: for $Q \in \mathbb{N}$,

• Observe that for all $i \in N$, $h_i(a^*(i)) > R_i$ and $h_i(a^*(j)) \ge R_i$ for all $j \in N$.

• Terminal phase: for $Q \in \mathbb{N}$,

- Observe that for all $i \in N$, $h_i(a^*(i)) > R_i$ and $h_i(a^*(j)) \ge R_i$ for all $j \in N$.
- Average payoffs in the terminal phase: for all $i \in N$,

$$y_i = \frac{1}{Qn} Q \sum_{j=1}^n h_i(a^*(j)) = \frac{1}{n} \sum_{j=1}^n h_i(a^*(j)) > R_i.$$

• Terminal phase: for $Q \in \mathbb{N}$,

- Observe that for all $i \in N$, $h_i(a^*(i)) > R_i$ and $h_i(a^*(j)) \ge R_i$ for all $j \in N$.
- Average payoffs in the terminal phase: for all $i \in N$,

$$y_i = rac{1}{Qn} Q \sum_{j=1}^n h_i(a^*(j)) = rac{1}{n} \sum_{j=1}^n h_i(a^*(j)) > R_i.$$

• Given $x \in C(G)$ such that $x_i > R_i$ for all $i \in N$, choose Q with the property that for all $i \in N$,

$$x_i + Qy_i > \sup_{a \in A} h_i(a) + QR_i.$$

Given ε > 0, choose T ∈ ℕ such that there exists a cycle {a^t} of length T − Qn such that

$$\left\|\frac{1}{T-Qn}\sum_{t=1}^{T-Qn}h(a^t)-x\right\|<\varepsilon.$$

3

イロト イポト イヨト イヨト

Given ε > 0, choose T ∈ ℕ such that there exists a cycle {a^t} of length T − Qn such that

$$\left\|\frac{1}{T-Qn}\sum_{t=1}^{T-Qn}h(a^t)-x\right\|<\varepsilon.$$

• Define $f \in F_T$: for $i \in N$,

- ∢ ∃ ▶

Given ε > 0, choose T ∈ ℕ such that there exists a cycle {a^t} of length T − Qn such that

$$\left\|\frac{1}{T-Qn}\sum_{t=1}^{T-Qn}h(a^t)-x\right\|<\varepsilon.$$

• Define $f \in F_T$: for $i \in N$,

• for $1 \leq t \leq T - Qn$.

 $f_{i}^{t}(\cdot) = \begin{cases} a^{t} & \text{if all players follow the cycle } \{a^{t}\}\\ a(j)_{i} & \text{if } j \text{ has deviated,} \end{cases}$

where a(j) is such that $h_j(b_j, a(j)_{-j}) \leq R_j$ for all $b_j \in A_j$.

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

• Given $\varepsilon > 0$, choose $T \in \mathbb{N}$ such that there exists a cycle $\{a^t\}$ of length T - Qn such that

$$\left\|\frac{1}{T-Qn}\sum_{t=1}^{T-Qn}h(a^t)-x\right\|<\varepsilon.$$

• Define $f \in F_T$: for $i \in N$,

• for $1 \leq t \leq T - Qn$.

 $f_i^t(\cdot) = \begin{cases} a^t & \text{if all players follow the cycle } \{a^t\}\\ a(j)_i & \text{if } j \text{ has deviated,} \end{cases}$

where a(j) is such that $h_j(b_j, a(j)_{-j}) \le R_j$ for all $b_j \in A_j$. • for $T - Qn + 1 \le t < T$.

 $f_i^t(\cdot) =$ terminal phase of Nash equilibria.

・ロト ・四ト ・ヨト ・ヨトー

• It is possible to show that for all T sufficiently large, all $i \in N$, and all $g_i \in F_i$,

$$H_i^T(f) \geq H_i^T(g_i, f_{-i});$$

namely, $f \in F_T^*$.

イロト イポト イヨト イヨト

• It is possible to show that for all T sufficiently large, all $i \in N$, and all $g_i \in F_i$,

$$H_i^T(f) \geq H_i^T(g_i, f_{-i});$$

namely, $f \in F_T^*$.

• Moreover, for sufficiently large T,

$$\left\| H^{T}(f) - x \right\| < \varepsilon;$$

namely, the weight of the terminal phase vanishes.

- 4 同 ト - 4 日 ト

• Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a game in normal form.

- Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a game in normal form.
- For every $t \geq 1$ and $i \in I$ define the mapping

$$s_i: F_i \times A^t \longrightarrow F_i,$$

where, for every $(f_i, (a^1, ..., a^t)) \in F_i \times A^t$, $s(f_i, (a^1, ..., a^t))_i \in F_i$ is obtained as follows:

- Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a game in normal form.
- For every $t \ge 1$ and $i \in I$ define the mapping

$$s_i: F_i \times A^t \longrightarrow F_i,$$

where, for every $(f_i, (a^1, ..., a^t)) \in F_i \times A^t$, $s(f_i, (a^1, ..., a^t))_i \in F_i$ is obtained as follows:

• $s(f_i, (a^1, ..., a^t))_i^1 = f_i^{t+1}(a^1, ..., a^t)$ and

イロト イポト イヨト イヨト 二日

- Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a game in normal form.
- For every $t \geq 1$ and $i \in I$ define the mapping

$$s_i: F_i \times A^t \longrightarrow F_i,$$

where, for every $(f_i, (a^1, ..., a^t)) \in F_i \times A^t$, $s(f_i, (a^1, ..., a^t))_i \in F_i$ is obtained as follows:

• $s(f_i, (a^1, ..., a^t))_i^1 = f_i^{t+1}(a^1, ..., a^t)$ and

• for all
$$r \ge 1$$
 and all $(b^1, ..., b^r) \in A^r$,
 $s(f_i, (a^1, ..., a^t))_i^{r+1}(b^1, ..., b^r) = f_i^{t+r+1}(a^1, ..., a^t, b^1, ..., b^r).$

イロト イ理ト イヨト イヨト 二日

- Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a game in normal form.
- For every $t \geq 1$ and $i \in I$ define the mapping

$$s_i: F_i \times A^t \longrightarrow F_i,$$

where, for every $(f_i, (a^1, ..., a^t)) \in F_i \times A^t$, $s(f_i, (a^1, ..., a^t))_i \in F_i$ is obtained as follows:

- $s(f_i, (a^1, ..., a^t))_i^1 = f_i^{t+1}(a^1, ..., a^t)$ and • for all $r \ge 1$ and all $(b^1, ..., b^r) \in A^r$, $s(f_i, (a^1, ..., a^t))_i^{r+1}(b^1, ..., b^r) = f_i^{t+r+1}(a^1, ..., a^t, b^1, ..., b^r)$.
- Notation: for every $(f, (a^1, ..., a^t)) \in F \times A^t$, set $s(f, (a^1, ..., a^t)) \equiv (s(f_i, (a^1, ..., a^t))_i)_{i \in I}$.

Definition Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a game in normal form. An strategy $f \in F$ is a Subgame Perfect Equilibrium (SPE) of G_{α} , for $\alpha = \infty, \lambda$, if for every $t \ge 1$ and every $(a^1, ..., a^t) \in A^t$, $s(f, (a^1, ..., a^t))$ is a Nash equilibrium of G_{α} .

Definition Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a game in normal form. An strategy $f \in F$ is a Subgame Perfect Equilibrium (SPE) of G_{α} , for $\alpha = \infty, \lambda$, if for every $t \ge 1$ and every $(a^1, ..., a^t) \in A^t$, $s(f, (a^1, ..., a^t))$ is a Nash equilibrium of G_{α} .

Theorem

Aumann, Shapley, Rubinstein. Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a bounded game in normal form. Then,

$$\left\{H^{\infty}(f) \in \mathbb{R}^{\#I} \mid f \text{ is a SPE of } G_{\infty}\right\} = \left\{x \in C(G) \mid x_i > R_i \text{ for all } i \in I\right\}$$

Definition Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a game in normal form. An strategy $f \in F$ is a Subgame Perfect Equilibrium (SPE) of G_{α} , for $\alpha = \infty, \lambda$, if for every $t \ge 1$ and every $(a^1, ..., a^t) \in A^t$, $s(f, (a^1, ..., a^t))$ is a Nash equilibrium of G_{α} .

Theorem

Aumann, Shapley, Rubinstein. Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a bounded game in normal form. Then,

$$\left\{H^{\infty}(f) \in \mathbb{R}^{\#I} \mid f \text{ is a SPE of } G_{\infty}\right\} = \left\{x \in C(G) \mid x_i > R_i \text{ for all } i \in I\right\}$$

Theorem

Friedman (1971) Let $a^* \in A^*$ be such that $h(a^*) = e$. Then, for every $x \in C(G)$ such that $x_i > e_i$ for all $i \in I$, there exists $\underline{\lambda} \in (0, 1)$ such that for all $\lambda \in (\underline{\lambda}, 1)$ there exists a SPE f of G_{λ} with $H^{\lambda}(f) = x$.

Theorem

Fudenberg and Maskin (1986) Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a bounded game in normal form and assume dim(C(G)) = n. Then, for all $x \in C(G)$ such that $x_i > R_i$ for all $i \in I$, there exists $\underline{\lambda} \in (0, 1)$ such that for all $\lambda \in (\underline{\lambda}, 1)$ there exists a SPE f of G_{λ} with $H^{\lambda}(f) = x$.

Theorem

Benoît and Krishna (1985) Let $G = (I, (A_i)_{i \in I}, (h_i)_{i \in I})$ be a bounded game in normal form and assume that for each $i \in I$ there exist $a^*(i), \tilde{a}(i) \in A^*$ such that $h_i(a^*(i)) > h_i(\tilde{a}(i))$ and that $\dim(C(G)) = n$. Then, for every $x \in C(G)$ such that $x_i > R_i$ for all $i \in I$ and every $\varepsilon > 0$ there exists $\hat{T} \in \mathbb{N}$ such that for all $T > \hat{T}$ there exists a SPE $f \in F$ of G_T such that $||H^T(f) - x|| < \varepsilon$.

3

くロト (過) (語) (語)

• Friedman, J. "A Non-cooperative Equilibrium for Supergames," *The Review of Economic Studies* 38, 1971.

Image: Image:

ヨト イヨト
- Friedman, J. "A Non-cooperative Equilibrium for Supergames," *The Review of Economic Studies* 38, 1971.
- Benoît, J.P. and V. Krisnha. "Finitely Repeated Games," Econometrica 53, 1985.

- Friedman, J. "A Non-cooperative Equilibrium for Supergames," *The Review of Economic Studies* 38, 1971.
- Benoît, J.P. and V. Krisnha. "Finitely Repeated Games," Econometrica 53, 1985.
- Fudenberg, D. and E. Maskin. "The Folk Theorem in Repeated Games with Discounting or with Incomplete Information," *Econometrica* 54, 1986.

Final Remarks

•
$$F_{\lambda}^* \xrightarrow[\lambda \to 1]{} F_{\infty}^*$$
?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Final Remarks

•
$$F_{\lambda}^* \xrightarrow[\lambda \to 1]{} F_{\infty}^*$$
?

• NO in general.

3

イロト イ団ト イヨト イヨト

5.4.- "Folk" Theorems Final Remarks

•
$$F_{\lambda}^* \xrightarrow[\lambda \to 1]{} F_{\infty}^*$$
?

- NO in general.
- YES for the Prisoners' Dilemma.

æ

イロト イヨト イヨト イヨト

5.4.- "Folk" Theorems Final Remarks

•
$$F_{\lambda}^* \xrightarrow[\lambda \to 1]{} F_{\infty}^*$$
?

- NO in general.
- YES for the Prisoners' Dilemma.
- Often YES.

æ

イロト イヨト イヨト イヨト

Final Remarks

•
$$F_{\lambda}^* \xrightarrow[\lambda \to 1]{} F_{\infty}^*$$
?

- NO in general.
- YES for the Prisoners' Dilemma.
- Often YES.

•
$$F_T^* \xrightarrow[T \to \infty]{} F_\infty^*?$$

æ

イロト イヨト イヨト イヨト

5.4.- "Folk" Theorems Final Remarks

•
$$F_{\lambda}^* \xrightarrow[\lambda \to 1]{} F_{\infty}^*?$$

- NO in general.
- YES for the Prisoners' Dilemma.
- Often YES.

•
$$F_T^* \xrightarrow[T \to \infty]{} F_\infty^*?$$

• NO for the Prisoners' Dilemma.

Image: Image:

æ

Final Remarks

•
$$F_{\lambda}^* \xrightarrow[\lambda \to 1]{} F_{\infty}^*$$
?

- NO in general.
- YES for the Prisoners' Dilemma.
- Often YES.

•
$$F_T^* \xrightarrow[T \to \infty]{} F_\infty^*?$$

- NO for the Prisoners' Dilemma.
- YES for games with a suboptimal Nash equilibrium.

э

- ∢ ∃ →

Final Remarks

•
$$F_{\lambda}^* \xrightarrow[\lambda \to 1]{} F_{\infty}^*$$
?

- NO in general.
- YES for the Prisoners' Dilemma.
- Often YES.

•
$$F_T^* \xrightarrow[T \to \infty]{} F_\infty^*?$$

- NO for the Prisoners' Dilemma.
- YES for games with a suboptimal Nash equilibrium.
- Bounded rationality (finite automata).

Final Remarks

•
$$F_{\lambda}^* \xrightarrow[\lambda \to 1]{} F_{\infty}^*$$
?

- NO in general.
- YES for the Prisoners' Dilemma.
- Often YES.

•
$$F_T^* \xrightarrow[T \to \infty]{} F_\infty^*?$$

- NO for the Prisoners' Dilemma.
- YES for games with a suboptimal Nash equilibrium.
- Bounded rationality (finite automata).
- Large set of players ;-)

Final Remarks

•
$$F_{\lambda}^* \xrightarrow[\lambda \to 1]{} F_{\infty}^*$$
?

- NO in general.
- YES for the Prisoners' Dilemma.
- Often YES.

•
$$F_T^* \xrightarrow[T \to \infty]{} F_\infty^*?$$

- NO for the Prisoners' Dilemma.
- YES for games with a suboptimal Nash equilibrium.
- Bounded rationality (finite automata).
- Large set of players ;-)
- Evolution of behavior.

• L. Shapley. "Stochastic Games," *Proceedings of the National Academy of Sciences* 39, 1953.

3

→ ∢ ∃ →

- L. Shapley. "Stochastic Games," *Proceedings of the National Academy of Sciences* 39, 1953.
- The game that players face over time is not always the same.

- L. Shapley. "Stochastic Games," *Proceedings of the National Academy of Sciences* 39, 1953.
- The game that players face over time is not always the same.
- Present actions may influence future opportunities. For example:

- L. Shapley. "Stochastic Games," *Proceedings of the National Academy of Sciences* 39, 1953.
- The game that players face over time is not always the same.
- Present actions may influence future opportunities. For example:
 - fishing in a lake,

- L. Shapley. "Stochastic Games," *Proceedings of the National Academy of Sciences* 39, 1953.
- The game that players face over time is not always the same.
- Present actions may influence future opportunities. For example:
 - fishing in a lake,
 - timber industry,

- L. Shapley. "Stochastic Games," *Proceedings of the National Academy of Sciences* 39, 1953.
- The game that players face over time is not always the same.
- Present actions may influence future opportunities. For example:
 - fishing in a lake,
 - timber industry,
 - cost-reducing investment decisions,

- L. Shapley. "Stochastic Games," *Proceedings of the National Academy of Sciences* 39, 1953.
- The game that players face over time is not always the same.
- Present actions may influence future opportunities. For example:
 - fishing in a lake,
 - timber industry,
 - cost-reducing investment decisions,
 - industry where firms enter and leave (endogenously),

- L. Shapley. "Stochastic Games," *Proceedings of the National Academy of Sciences* 39, 1953.
- The game that players face over time is not always the same.
- Present actions may influence future opportunities. For example:
 - fishing in a lake,
 - timber industry,
 - cost-reducing investment decisions,
 - industry where firms enter and leave (endogenously),
 - etc.

- L. Shapley. "Stochastic Games," *Proceedings of the National Academy of Sciences* 39, 1953.
- The game that players face over time is not always the same.
- Present actions may influence future opportunities. For example:
 - fishing in a lake,
 - timber industry,
 - cost-reducing investment decisions,
 - industry where firms enter and leave (endogenously),
 - etc.
- Idea: several games may be played, with a transition probability that may depend on the profile of actions.

- ∢ ∃ ▶

• A stochastic game consists of a finite set of games in normal form $\{G_1, ..., G_K\}$ and a probability distribution p, where for every k = 1, ..., K:

- ∢ ∃ ▶

- A stochastic game consists of a finite set of games in normal form $\{G_1, ..., G_K\}$ and a probability distribution p, where for every k = 1, ..., K:
 - $G_k = (I, (A^k_i)_{i \in I}, (h^k_i)_{i \in I})$ is a finite game in normal form,

- A stochastic game consists of a finite set of games in normal form $\{G_1, ..., G_K\}$ and a probability distribution p, where for every k = 1, ..., K:
 - $G_k = (I, (A_i^k)_{i \in I}, (h_i^k)_{i \in I})$ is a finite game in normal form,
 - without loss of generality, assume $A_i^k \cap A_i^{k'} = \emptyset$ for all $i \in I$ and $k \neq k'$ (and define $A_i = \bigcup_{k=1}^{K} A_i^k$),

- A stochastic game consists of a finite set of games in normal form $\{G_1, ..., G_K\}$ and a probability distribution p, where for every k = 1, ..., K:
 - $G_k = (I, (A_i^k)_{i \in I}, (h_i^k)_{i \in I})$ is a finite game in normal form,
 - without loss of generality, assume $A_i^k \cap A_i^{k'} = \emptyset$ for all $i \in I$ and $k \neq k'$ (and define $A_i = \bigcup_{k=1}^{K} A_i^k$),
 - G₁ is the initial game;

- A stochastic game consists of a finite set of games in normal form $\{G_1, ..., G_K\}$ and a probability distribution p, where for every k = 1, ..., K:
 - $G_k = (I, (A_i^k)_{i \in I}, (h_i^k)_{i \in I})$ is a finite game in normal form,
 - without loss of generality, assume $A_i^k \cap A_i^{k'} = \emptyset$ for all $i \in I$ and $k \neq k'$ (and define $A_i = \bigcup_{k=1}^{K} A_i^k$),
 - G1 is the initial game;
 - for every $a^k \in A^k$, $p(a^k)$ is a probability distribution on $\{G_1, ..., G_K\}$ (*i.e.*, $p(a^k) \in \Delta^K$), where for all k' = 1, ..., K,

- A stochastic game consists of a finite set of games in normal form $\{G_1, ..., G_K\}$ and a probability distribution p, where for every k = 1, ..., K:
 - $G_k = (I, (A_i^k)_{i \in I}, (h_i^k)_{i \in I})$ is a finite game in normal form,
 - without loss of generality, assume $A_i^k \cap A_i^{k'} = \emptyset$ for all $i \in I$ and $k \neq k'$ (and define $A_i = \bigcup_{k=1}^{K} A_i^k$),
 - G1 is the initial game;
 - for every $a^k \in A^k$, $p(a^k)$ is a probability distribution on $\{G_1, ..., G_K\}$ (*i.e.*, $p(a^k) \in \Delta^K$), where for all k' = 1, ..., K,
 - $p(a^k)_{k'}$ is the probability of moving to game $G_{k'}$ if players are at game G_k and choose action $a^k \in A^k$.

For every t ≥ 1, denote by D^t the set of histories of length t that are consistent with the probability distribution p.

- For every t ≥ 1, denote by D^t the set of histories of length t that are consistent with the probability distribution p.
- A strategy for player *i* is a sequence $f = \{f_i^t\}_{t=1}^{\infty}$ where for all $i \in I$,

- For every t ≥ 1, denote by D^t the set of histories of length t that are consistent with the probability distribution p.
- A strategy for player *i* is a sequence $f = \{f_i^t\}_{t=1}^{\infty}$ where for all $i \in I$,

•
$$f_i^1 \in A_i^1$$
, and

- For every t ≥ 1, denote by D^t the set of histories of length t that are consistent with the probability distribution p.
- A strategy for player *i* is a sequence $f = \{f_i^t\}_{t=1}^{\infty}$ where for all $i \in I$,
 - $f_i^1 \in A_i^1$, and
 - for all $t \ge 1$, $f_i^{t+1} : D^t \longrightarrow A_i^1 \times \cdots \times A_i^K$ with the property that for all $(d^1, ..., d^t) \in D^t$, $f_i^{t+1}(d^1, ..., d^t) = (a_i^1, ..., a_i^K)$ specifies an action of player *i* for each possible game G_k .

- For every t ≥ 1, denote by D^t the set of histories of length t that are consistent with the probability distribution p.
- A strategy for player *i* is a sequence $f = \{f_i^t\}_{t=1}^{\infty}$ where for all $i \in I$,
 - $f_i^1 \in A_i^1$, and
 - for all $t \ge 1$, $f_i^{t+1} : D^t \longrightarrow A_i^1 \times \cdots \times A_i^K$ with the property that for all $(d^1, ..., d^t) \in D^t$, $f_i^{t+1}(d^1, ..., d^t) = (a_i^1, ..., a_i^K)$ specifies an action of player *i* for each possible game G_k .
- A stationary strategy for player *i* is a function $s_i : \{G_1, ..., G_K\} \longrightarrow A_i$ such that for all k = 1, ..., K, $s_i(G_k) \in A_i^k$.

(ロ) (聞) (目) (ヨ)

- For every t ≥ 1, denote by D^t the set of histories of length t that are consistent with the probability distribution p.
- A strategy for player *i* is a sequence $f = \{f_i^t\}_{t=1}^{\infty}$ where for all $i \in I$,
 - $f_i^1 \in A_i^1$, and
 - for all $t \ge 1$, $f_i^{t+1} : D^t \longrightarrow A_i^1 \times \cdots \times A_i^K$ with the property that for all $(d^1, ..., d^t) \in D^t$, $f_i^{t+1}(d^1, ..., d^t) = (a_i^1, ..., a_i^K)$ specifies an action of player *i* for each possible game G_k .
- A stationary strategy for player *i* is a function $s_i : \{G_1, ..., G_K\} \longrightarrow A_i$ such that for all k = 1, ..., K, $s_i(G_k) \in A_i^k$.
- Definition of payoffs accordingly:

イロト イロト イヨト イヨト 二耳

- For every t ≥ 1, denote by D^t the set of histories of length t that are consistent with the probability distribution p.
- A strategy for player *i* is a sequence $f = \{f_i^t\}_{t=1}^{\infty}$ where for all $i \in I$,
 - $f_i^1 \in A_i^1$, and
 - for all $t \ge 1$, $f_i^{t+1} : D^t \longrightarrow A_i^1 \times \cdots \times A_i^K$ with the property that for all $(d^1, ..., d^t) \in D^t$, $f_i^{t+1}(d^1, ..., d^t) = (a_i^1, ..., a_i^K)$ specifies an action of player *i* for each possible game G_k .
- A stationary strategy for player *i* is a function $s_i : \{G_1, ..., G_K\} \longrightarrow A_i$ such that for all k = 1, ..., K, $s_i(G_k) \in A_i^k$.
- Definition of payoffs accordingly:
 - finitely repeated,

イロト イロト イヨト イヨト 二耳

- For every t ≥ 1, denote by D^t the set of histories of length t that are consistent with the probability distribution p.
- A strategy for player *i* is a sequence $f = \{f_i^t\}_{t=1}^{\infty}$ where for all $i \in I$,
 - $f_i^1 \in A_i^1$, and
 - for all $t \ge 1$, $f_i^{t+1} : D^t \longrightarrow A_i^1 \times \cdots \times A_i^K$ with the property that for all $(d^1, ..., d^t) \in D^t$, $f_i^{t+1}(d^1, ..., d^t) = (a_i^1, ..., a_i^K)$ specifies an action of player *i* for each possible game G_k .
- A stationary strategy for player *i* is a function $s_i : \{G_1, ..., G_K\} \longrightarrow A_i$ such that for all k = 1, ..., K, $s_i(G_k) \in A_i^k$.
- Definition of payoffs accordingly:
 - finitely repeated,
 - infinitely repeated with discounting,

・ロン ・聞と ・ヨン ・ヨン … ヨ

- For every t ≥ 1, denote by D^t the set of histories of length t that are consistent with the probability distribution p.
- A strategy for player *i* is a sequence $f = \{f_i^t\}_{t=1}^{\infty}$ where for all $i \in I$,
 - $f_i^1 \in A_i^1$, and
 - for all $t \ge 1$, $f_i^{t+1} : D^t \longrightarrow A_i^1 \times \cdots \times A_i^K$ with the property that for all $(d^1, ..., d^t) \in D^t$, $f_i^{t+1}(d^1, ..., d^t) = (a_i^1, ..., a_i^K)$ specifies an action of player *i* for each possible game G_k .
- A stationary strategy for player *i* is a function $s_i : \{G_1, ..., G_K\} \longrightarrow A_i$ such that for all k = 1, ..., K, $s_i(G_k) \in A_i^k$.
- Definition of payoffs accordingly:
 - finitely repeated,
 - infinitely repeated with discounting,
 - infinitely repeated without discounting.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣
Theorem

Theorem

Shapley (1953) Let $\{G_1, ..., G_K\}$ and p be an stochastic game with the property that #I = 2 and for all k = 1, ..., K, G_k is zero sum. Then, the infinitely repeated game with discounting has a value.

• The proof is not constructive (it uses a fix-point argument).

Theorem

- The proof is not constructive (it uses a fix-point argument).
- An important part of this literature has tried to show existence of equilibria with stationary strategies for general settings.

Theorem

- The proof is not constructive (it uses a fix-point argument).
- An important part of this literature has tried to show existence of equilibria with stationary strategies for general settings.
- Lokwood (1990)'s characterization with discounting

Theorem

- The proof is not constructive (it uses a fix-point argument).
- An important part of this literature has tried to show existence of equilibria with stationary strategies for general settings.
- Lokwood (1990)'s characterization with discounting

•
$$p(a^k) > 0$$
 for all $k = 1, ..., K$ and all $a^k \in A^k$.

Theorem

Shapley (1953) Let $\{G_1, ..., G_K\}$ and p be an stochastic game with the property that #I = 2 and for all k = 1, ..., K, G_k is zero sum. Then, the infinitely repeated game with discounting has a value.

- The proof is not constructive (it uses a fix-point argument).
- An important part of this literature has tried to show existence of equilibria with stationary strategies for general settings.
- Lokwood (1990)'s characterization with discounting

•
$$p(a^k) > 0$$
 for all $k = 1, ..., K$ and all $a^k \in A^k$.

• Massó and Neme (1996)'s characterization with

Theorem

Shapley (1953) Let $\{G_1, ..., G_K\}$ and p be an stochastic game with the property that #I = 2 and for all k = 1, ..., K, G_k is zero sum. Then, the infinitely repeated game with discounting has a value.

- The proof is not constructive (it uses a fix-point argument).
- An important part of this literature has tried to show existence of equilibria with stationary strategies for general settings.
- Lokwood (1990)'s characterization with discounting

• $p(a^k) > 0$ for all k = 1, ..., K and all $a^k \in A^k$.

• Massó and Neme (1996)'s characterization with

• $p(a^k)_{k'} \in \{0,1\}$ for all k, k' = 1, ..., K and all $a^k \in A^k$,

Theorem

Shapley (1953) Let $\{G_1, ..., G_K\}$ and p be an stochastic game with the property that #I = 2 and for all k = 1, ..., K, G_k is zero sum. Then, the infinitely repeated game with discounting has a value.

- The proof is not constructive (it uses a fix-point argument).
- An important part of this literature has tried to show existence of equilibria with stationary strategies for general settings.
- Lokwood (1990)'s characterization with discounting

• $p(a^k) > 0$ for all k = 1, ..., K and all $a^k \in A^k$.

- Massó and Neme (1996)'s characterization with
 - $p(a^k)_{k'} \in \{0,1\}$ for all k, k' = 1, ..., K and all $a^k \in A^k$,
 - infinitely repeated without discounting.

Theorem

Shapley (1953) Let $\{G_1, ..., G_K\}$ and p be an stochastic game with the property that #I = 2 and for all k = 1, ..., K, G_k is zero sum. Then, the infinitely repeated game with discounting has a value.

- The proof is not constructive (it uses a fix-point argument).
- An important part of this literature has tried to show existence of equilibria with stationary strategies for general settings.
- Lokwood (1990)'s characterization with discounting

• $p(a^k) > 0$ for all k = 1, ..., K and all $a^k \in A^k$.

- Massó and Neme (1996)'s characterization with
 - $p(a^k)_{k'} \in \{0,1\}$ for all k, k' = 1, ..., K and all $a^k \in A^k$,
 - infinitely repeated without discounting.
 - based on connected stationary strategies,

・ロン ・聞と ・ ほと ・ ほと

Theorem

Shapley (1953) Let $\{G_1, ..., G_K\}$ and p be an stochastic game with the property that #I = 2 and for all k = 1, ..., K, G_k is zero sum. Then, the infinitely repeated game with discounting has a value.

- The proof is not constructive (it uses a fix-point argument).
- An important part of this literature has tried to show existence of equilibria with stationary strategies for general settings.
- Lokwood (1990)'s characterization with discounting

• $p(a^k) > 0$ for all k = 1, ..., K and all $a^k \in A^k$.

- Massó and Neme (1996)'s characterization with
 - $p(a^k)_{k'} \in \{0,1\}$ for all k, k' = 1, ..., K and all $a^k \in A^k$,
 - infinitely repeated without discounting.
 - based on connected stationary strategies,
 - the set of equilibrium payoffs is not convex, and SPE⊊NE.

• Lockwood, B. "The Folk Theorem in Stochastic Games with and without Discounting," *Birkbeck College Discussion Paper in Economics* 18, 1990.

- Lockwood, B. "The Folk Theorem in Stochastic Games with and without Discounting," *Birkbeck College Discussion Paper in Economics* 18, 1990.
- Massó, J. and A. Neme. "Equilibrium Payoffs of Dynamic Games," International Journal of Game Theory 25, 1996.