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5.1.- Introduction

R. Aumann and L. Shapley. �Long Term Competition �A Game
Theoretic Analysis,�mimeo, The Hebrew University, 1976.

R. Aumann. �Survey of Repeated Games,� in Essays in Game Theory
and Mathematical Economics in Honor of Oskar Morgenstern, 1981.

Relationships between players last over time: long-term strategic
interaction.

We observe non-equilibrium behavior; for instance, cooperation in
interactions like the Prisoners�Dilemma.

Diamonds market.

Cartels (like the OPEC).

Reputation phenomena.

Con�icts.

Etc.
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5.1.- Introduction

Is it possible to sustain non-equilibrium behavior (for instance,
cooperation in the Prisoners�Dilemma) as equilibrium of a larger
game through out repetition?

The goal is to introduce dynamic aspects in the strategic interaction.

Two basic hypothesis:

Perfect monitoring.

Only pure strategies.

Jordi Massó (International Doctorate in Economic Analysis (IDEA) Universitat Autònoma de Barcelona (UAB))Game Theory: Repeated Games 3 / 64



5.1.- Introduction

Is it possible to sustain non-equilibrium behavior (for instance,
cooperation in the Prisoners�Dilemma) as equilibrium of a larger
game through out repetition?

The goal is to introduce dynamic aspects in the strategic interaction.

Two basic hypothesis:

Perfect monitoring.

Only pure strategies.

Jordi Massó (International Doctorate in Economic Analysis (IDEA) Universitat Autònoma de Barcelona (UAB))Game Theory: Repeated Games 3 / 64



5.1.- Introduction

Is it possible to sustain non-equilibrium behavior (for instance,
cooperation in the Prisoners�Dilemma) as equilibrium of a larger
game through out repetition?

The goal is to introduce dynamic aspects in the strategic interaction.

Two basic hypothesis:

Perfect monitoring.

Only pure strategies.

Jordi Massó (International Doctorate in Economic Analysis (IDEA) Universitat Autònoma de Barcelona (UAB))Game Theory: Repeated Games 3 / 64



5.1.- Introduction

Is it possible to sustain non-equilibrium behavior (for instance,
cooperation in the Prisoners�Dilemma) as equilibrium of a larger
game through out repetition?

The goal is to introduce dynamic aspects in the strategic interaction.

Two basic hypothesis:

Perfect monitoring.

Only pure strategies.

Jordi Massó (International Doctorate in Economic Analysis (IDEA) Universitat Autònoma de Barcelona (UAB))Game Theory: Repeated Games 3 / 64



5.1.- Introduction

Is it possible to sustain non-equilibrium behavior (for instance,
cooperation in the Prisoners�Dilemma) as equilibrium of a larger
game through out repetition?

The goal is to introduce dynamic aspects in the strategic interaction.

Two basic hypothesis:

Perfect monitoring.

Only pure strategies.

Jordi Massó (International Doctorate in Economic Analysis (IDEA) Universitat Autònoma de Barcelona (UAB))Game Theory: Repeated Games 3 / 64



5.1.- Introduction

Let G = (I , (Ai )i2I , (hi )i2I ) be a �nite game in normal form. Ai is
the set of player i�s actions and A = ∏

i2I
Ai is the set of action pro�les.

The game G is repeated over time: t = 1, 2, ...

The duple (I , (Ai )i2I ) is a game form.

De�ne, for every t � 1, At = A� � � � � A| {z }
t�times

.

That is, (a1, ..., at ) 2 At , where for every 1 � s � t,
as = (as1, ..., a

s
n) 2 A.
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5.2.- Strategies

Given the game in normal form G = (I , (Ai )i2I , (hi )i2I ), de�ne the
super-game form as the game form (I , (Fi )i2I ), where for every i 2 I ,

Fi =
�
fi = ff ti g∞

t=1 j f 1i 2 Ai and 8t � 1, f t+1i : At �! Ai
	
.

Perfect monitoring: the domain of f t+1i is At .

Pure actions: the range of f t+1i is a subset of Ai .

Notation: F = ∏
i2I
Fi .

Given f = (fi )i2I 2 F we represent the sequence of actions induced
by f as

a(f ) = fat (f )g∞
t=1,

which is de�ned recursively as follows:

a1(f ) 2 A is given by a1i (f ) = f 1i for all i 2 I ,and
for all t � 1, at+1(f ) 2 A is given by at+1i (f ) = f t+1i (a1(f ), ..., at (f ))
for all i 2 I .
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5.2.- Strategies

Examples of strategies in the Prisoners�Dilemma.

�Play always C�: f̂ 1i = C and for all t � 1 and all (a1, ..., at ) 2 At ,
f̂ t+1i (a1, ..., at ) = C .

�Play C during 5 periods and D thereafter�: f̄ 1i = C , for all
1 � t < 5 and all (a1, ..., at ) 2 At , f̄ t+1i (a1, ..., at ) = C and for all
t � 5 and all (a1, ..., at ) 2 At , f̄ t+1i (a1, ..., at ) = D.

Trigger strategy. �Start playing C and play C as long as the other
player has played always C , once the other player has played D play
D always�: f̃ 1i = C and for all t � 1 and all (a1, ..., at ) 2 At ,

f̃ t+1i (a1, ..., at ) =
�
C if for all 1 � s � t, as3�i = C
D if there exists 1 � s � t such that as3�i = D.

Tit-for-tat. �Start playing C and then play the action taken by the
other player last period�: ḟ 1i = C and for all t � 1 and all
(a1, ..., at ) 2 At , ḟ t+1i (a1, ..., at ) = at3�i .
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5.2.- Strategies
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(C ,C ) always

).
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a(f̄1, ḟ2) =
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5.3.- Payo¤s

Let G = (I , (Ai )i2I , (hi )i2I ) be a game in normal form and let
T 2 N. The �nitely T�times repeated game is the game in normal
form GT = (I , (Fi )i2I , (HTi )i2I , where (I , (Fi )i2I ) is the super-game
form and for each i 2 I , HTi : F �! R is de�ned as follows: for all
f 2 F ,

HTi (f ) =
1
T

T

∑
t=1
hi (at (f )).

Remark: Since GT is a game in normal form, we can de�ne F �T as the
set of Nash equilibria of GT .

Examples:

T = 10, H101 (f̄1, ḟ2) =
1
10 (5 � 3+ 4+ 4 � 1) =

23
10 .

T = 6, H62 (f̂1, f̄2) =
1
6 (5 � 3+ 4 � 1) =

19
6 .

For any T � 1, HTi (f̃1, ḟ2) =
1
T (3 � T ) = 3.
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5.3.- Payo¤s

Let G = (I , (Ai )i2I , (hi )i2I ) be a game in normal form. We say that
G is bounded if

sup fhi (a) j i 2 I and a 2 Ag < ∞.

Note that if G is �nite then G is bounded.

Let G = (I , (Ai )i2I , (hi )i2I ) be a bounded game in normal form and
let λ 2 (0, 1). The λ�discounted repeated game is the game in
normal form Gλ = (I , (Fi )i2I , (Hλ

i )i2I , where (I , (Fi )i2I ) is the
super-game form and for each i 2 I , Hλ

i : F �! R is de�ned as
follows: for all f 2 F ,

Hλ
i (f ) = (1� λ)

∞

∑
t=1

λt�1hi (at (f )).
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5.3.- Payo¤s

Example:

Hλ
1 (f̄1, ḟ2) = (1� λ)(3+ 3λ+ 3λ2 + 3λ3 + 3λ4 + 4λ5 + λ6 + λ7 + ...

= (1� λ)

 
3
1� λ5

1� λ
+ 4λ5 +

λ6

1� λ

!

= 3(1� λ5) + 4(1� λ)λ5 + λ6

= 3+ λ5 � 3λ6.

Since Gλ is a game in normal form, we can de�ne F �λ as the set of
Nash equilibria of Gλ.
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5.3.- Payo¤s

Remarks on Hλ
i (f ) = (1� λ)

∞

∑
t=1

λt�1hi (at (f )):

(1� λ) is a very useful normalization (remember that hi is a vNM
utility function and (1� λ)hi is a positive a¢ ne transformation); for
instance, it assigns x to the constant sequence fx t = xg∞

t=1, since

(1� λ)
∞

∑
t=1

λt�1x = (1� λ) 1
1�λx = x .

If G is not bounded, the series may be divergent, and therefore Hλ
i

would not necessarily be well-de�ned.

The payo¤ Hλ
i (f ) can be interpreted as player i�s expected payo¤ of

playing f when at t, the probability of playing the game at t + 1 is
equal to λ.
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5.3.- Payo¤s

Let G = (I , (Ai )i2I , (hi )i2I ) be a bounded game in normal form. The
in�nitely repeated game is the game in normal form
G∞ = (I , (Fi )i2I , (H∞

i )i2I , where (I , (Fi )i2I ) is the super-game form
and for each i 2 I , H∞

i : F �! R that will be de�ned later.

The �natural�payo¤ function would be: for all f 2 F ,

lim
T!∞

1
T

T

∑
t=1
hi (at (f )) = lim

T!∞
HTi (f ).

Problem: This limit may not exist (its existence depends on the
particular strategies used by players).
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and for each i 2 I , H∞
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5.3.- Payo¤s [Parenthesis]

Let fxng∞
n=1 be a bounded sequence of real numbers (i.e., fxng 2 l∞).

We say that x̄ 2 R is the limit superior of fxng, lim sup
n!∞

fxng, if x̄ is
the highest accumulation point of fxng; that is,

for all ε > 0 there exists N 2 N such that for all n > N, xn < x̄ + ε
(from N on, the sequence is never above x̄ + ε).

for all ε > 0 and all m 2 N there exists n > m such that xn > x̄ � ε
(the sequence always goes back to be close to x̄).

We say that x 2 R is the limit inferior of fxng, lim inf
n!∞

fxng, if x is the
smallest accumulation point of fxng; that is,

for all ε > 0 there exists N 2 N such that for all n > N, xn > x � ε
(from N on, the sequence is never below x � ε).

for all ε > 0 and all m 2 N there exists n > m such that xn < x + ε
(the sequence always goes back to be close to x).
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5.3.- Payo¤s [Parenthesis]

Remark: for all fxng 2 l∞, lim inf
n!∞

fxng = �lim sup
n!∞

fyng, where for all
n � 1, yn = �xn.

Example: xn =
�
1 if n is odd
�1 if n is even

. Then, lim sup
n!∞

fxng = 1 and

lim inf
n!∞

fxng = �1.

Properties: for all fxng, fyng 2 l∞,

if lim
n!∞

fxng exists then lim infn!∞
fxng = lim

n!∞
fxng = lim sup

n!∞
fxng.

lim inf
n!∞

fxng+ lim infn!∞
fyng � lim inf

n!∞
fxn + yng

� lim inf
n!∞

fxng+ lim sup
n!∞

fyng

� lim sup
n!∞

fxn + yng

� lim sup
n!∞

fxng+ lim sup
n!∞

fyng.
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5.3.- Payo¤s [Parenthesis]

If G is bounded then, for all f 2 F ,
(
1
T

T

∑
t=1
hi (at (f ))

)∞

T=1

2 l∞.

Desirable properties for H∞
i (f ).

If lim
n!∞

1
T

T

∑
t=1

hi (at (f )) exists then H∞
i (f ) should be equal to it.

lim inf
n!∞

1
T

T

∑
t=1

hi (at (f )) � H∞
i (f ) � lim supn!∞

1
T

T

∑
t=1

hi (at (f )).

Note that the later implies the former.

Since we will have to check (equilibrium condition) whether
H∞
i (f )�H∞

i (gi , f�i ) � 0, we would like that H∞
i (f ) be linear.
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5.3.- Payo¤s [Parenthesis]

Proposition There exists a linear function H : l∞ �! R (called a
Banach limit) such that for all fxng 2 l∞,

lim inf
n!∞

fxng � H(fxng) � lim sup
n!∞

fxng.

It follows from the Hahn-Banach Theorem.

Remarks:

There are many Banach limits.

Results will be invariant with respect to which one we will use.

It is not known a functional form of a Banach limit.

End of Parenthesis.
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5.3.- Payo¤s

Choose a Banach limit H : l∞ �! R.

Given f 2 F , construct fhi (at (f ))g∞
t=1 2 l∞ (since G is bounded).

Find

(
1
T

T

∑
t=1
hi (at (f ))

)∞

T=1

2 l∞.

De�ne

H∞
i (f ) = H

 (
1
T

T

∑
t=1
hi (at (f ))

)∞

T=1

!
.

Since G∞ is a game in normal form, we can de�ne F �∞ as the set of
Nash equilibria of G∞.
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5.4.- �Folk�Theorems

Family of results characterizing the set of Nash equilibria or Subgame
Perfect equilibria of repeated games (GT , Gλ and G∞) and their
relationships. For example:

Proposition Let G be the Prisoners�Dilemma. Then, for every T � 1
and every f 2 F �T , at (f ) = (D,D) for all t � 1.
Proof Let f 2 F �T and assume otherwise; namely, there exists
1 � t � T , at (f ) 6= (D,D).

Let s = maxf1 � t � T j at (f ) 6= (D,D)g.

Without loss of generality, assume that as1(f ) = C .

De�ne g1 = fg t1g∞
t=1 as follows:

for all 1 � t < s (if any), g t1 = f t1 and
for all t � s and all (a1, ..., at�1) 2 At�1, g t1 (a1, ..., at�1) = D.
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5.4.- �Folk�Theorems

By de�nition of g1, at (g1, f2) = at (f1, f2) for all 1 � t < s (if any).

Hence,

as2(g1, f2) = f s2 (a
1(g1, f2), ..., as�1(g1, f2))

= f s2 (a
1(f1, f2), ..., as�1(f1, f2))

= as2(f1, f2).

Thus,

for all 1 � t < s (if any), h1(at (g1, f2)) = h1(at (f1, f2)),
for all t > s, h1(at (g1, f2)) � 1 = h1(at (f1, f2)),
and

h1(a
s (g1, f2)) = h1(D, a

s
2(g1, f2))

> h1(C , a
s
2(g1, f2))

= h1(C , a
s
2(f1, f2))

= h1(a
s (f1, f2)).
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5.4.- �Folk�Theorems

Therefore,

HT1 (g1, f2) =
1
T

T

∑
t=1
h1(at (g1, f2))

>
1
T

T

∑
t=1
h1(at (f1, f2))

= HT1 (f1, f2),

which contradicts that (f1, f2) 2 F �T . �
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5.4.- �Folk�Theorems

Proposition Let G be the Prisoners�Dilemma. Then, tit-for-tat is an
equilibrium of G∞.

Proof Let gi be the strategy tit-for-tat for player i = 1, 2.

Then, since for all t � 1, at (g1, g2) = (C ,C ), H∞
i (g1, g2) = 3.

Let f1 2 F1 be arbitrary (a symmetric argument works for player 2).
For every T � 1,

T

∑
t=1
h1(at (f1, g2)) = 3 �#f1 � t � T j at (f1, g2) = (C ,C )g

+4 �#f1 � t � T j at (f1, g2) = (D,C )g
+0 �#f1 � t � T j at (f1, g2) = (C ,D)g
+1 �#f1 � t � T j at (f1, g2) = (D,D)g.
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5.4.- �Folk�Theorems

By the de�nition of g2 (tit-for-tat),

#ft � T j at (f1, g2) = (D,C )g+#ft � T j at (f1, g2) = (D,D)g

= #ft � T j at1(f1, g2) = Dg

� #ft � T j at2(f1, g2) = Dg+ 1

= #ft j at (f1, g2) = (C ,D)g+#ft j at (f1, g2) = (D,D)g+ 1.

Hence,

#ft j at (f1, g2) = (D,C )g � #ft j at (f1, g2) = (C ,D)g+ 1. (1)
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T

∑
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+3 �#ft � T j at (f1, g2) = (D,C )g
+3 �#ft � T j at (f1, g2) = (C ,D)g
+3 �#ft � T j at (f1, g2) = (D,D)g

9>>>>>=>>>>>;
= 3T

+1 �#ft � T j at (f1, g2) = (D,C )g
�1 �#ft � T j at (f1, g2) = (C ,D)g

�
� 1 by (1)

�2 �#ft � T j at (f1, g2) = (C ,D)g
�2 �#ft � T j at (f1, g2) = (D,D)g

�
� 0.

Hence,
T

∑
t=1
h1(at (f1, g2)) � 3T + 1.
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5.4.- �Folk�Theorems

Thus,

H∞
1 (f1, g2) = H

0@( 1
T

T

∑
t=1
h1(at (f1, g2))

)T
t=1

1A
� lim sup

n!∞

1
T

T

∑
t=1
h1(at (f1, g2))

� lim sup
n!∞

1
T
(3T + 1) = 3

= H∞
1 (g1, g2).

Therefore, for all f1 2 F1, H∞
1 (f1, g2) � H∞

1 (g1, g2).

Hence, (g1, g2) 2 F �∞. �

Note that this is independent of the particular Banach limit H chosen
to evaluate sequences of averages.
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5.4.- �Folk�Theorems

Objective: To describe, for every bounded game in normal form G , the set
of equilibrium payo¤s of Gα for α = T ,λ,∞.

In terms of the payo¤s (h(a))a2A of G .

In general, for α = T ,λ,∞, F �α is extremely large.

Relationships:

F �λ �!λ!1
F �∞ and F �T �!λ!1

F �∞?

These collection of results are some times called
Aumann-Shapley-Rubinstein Theorems.
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5.4.- �Folk�Theorems

Let G = (I , (Ai )i2I , (hi )i2I ) be a bounded game in normal form.

De�nition The payo¤ xi 2 R is individually rational for player i 2 I
if

xi � inf
a�i2A�i

sup
ai2Ai

hi (ai , a�i ) � Ri .

Remark: If G is bounded, then Ri = min
a�i2A�i

max
ai2Ai

hi (ai , a�i ).

Interpretation: Player i can guarantee Ri by himself.

Punishment idea: the other players choose their actions and then i
chooses his best action.

Warning: with mixed strategies, this minimax may be smaller; i.e.,
there are games for which

inf
σ�i2Σ�i

sup
σi2Σi

Hi (σi , σ�i ) < inf
a�i2A�i

sup
ai2Ai

hi (ai , a�i ).
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5.4.- �Folk�Theorems

Examples:

Prisoners�Dilemma: Ri = minfmaxf3, 4g,maxf0, 1gg = 1.
Battle of Sexes: Ri = minfmaxf3, 0g,maxf0, 1gg = 1.
Coordination Game: Ri = minfmaxf1, 0g,maxf0, 2gg = 1.
Matching Pennies: Ri = minfmaxf1,�1g,maxf1,�1gg = 1.

Notation: C (G ) = cl
�
co
�
h(a) 2 R#I j a 2 A

	�
.

If G is �nite, C (G ) = co
n
h(a) 2 R#I j a 2 A

o
.
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5.4.- �Folk�Theorems
In�nitely Repeated

Theorem
Let G be a bounded game in normal form. Then,n

H∞(f ) 2 R#I j f 2 F �∞
o
= fx 2 C (G ) j xi � Ri for all i 2 Ig .
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5.4.- �Folk�Theorems

Let G = (I , (Ai )i2I , (hi )i2I ) be a �nite game in normal form.

Proposition 1 If f is an equilibrium of Gα for α = T ,λ,∞ then,
Hα
i (f ) � Ri for all i 2 I .
Proposition 2 Let fatg∞

t=1 be such that a
t 2 A for all t � 1 and

lim inf
n!∞

1
T

T

∑
t=1
hi (at ) � Ri for all i 2 I then, there exists an f 2 F such that

(1) f is an equilibrium of G∞ and (2) at (f ) = at for all t � 1.
Proposition 3 For every x 2 C (G ) there exists a sequence fatg∞

t=1

such that at 2 A for all t � 1 and for all i 2 I , lim
T!∞

1
T

T

∑
t=1
hi (at ) exists

and it is equal to xi .

Proposition 4 For every f 2 F and every α = T ,λ,∞, Hα(f ) 2 C (G ).
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5.4.- �Folk�Theorems
Proposition 1: Intuition

Proposition 1 If f is an equilibrium of Gα for α = T ,λ,∞ then,
Hα
i (f ) � Ri for all i 2 I .

Let f 2 F and i 2 I be arbitrary. De�ne recursively gi 2 Fi as follows:
Given a1(f ) let b1i 2 Ai be s.t. hi (b1i , a1(f )�i ) � Ri ; it exists since

Ri = min
a�i2A�i

max
ai2Ai

hi (ai , a�i ) � max
ai2Ai

hi (ai , a1(f )�i ) = hi (b1i , a
1(f )�i ).

Then, set g1i = b
1
i .

Assume gi has been de�ned up to t. Let bt+1i 2 Ai be s.t.
hi (b1+1i , f t+1(a1(gi , f�i ), ..., at (gi , f�i ))�i ) � Ri ; as before, it also
exists. Then, for all (a1, ..., at ) 2 At , set

g t+1i (a1, ..., at ) =
�
bt+1i if 81 � s � t, as = as (gi , f�i )
f t+1i (a1, ..., at ) otherwise.
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5.4.- �Folk�Theorems
Proposition 1: Intuition

It is possible to show that, by the de�nition of gi ,

hi (at (gi , f�i )) � Ri .

Hence, for all α = T ,λ,∞, Hα
i (gi , f�i ) � Ri .

Thus, if for α = T ,λ,∞, f 2 G �α then, it must be the case that

Hα
i (f ) � Ri .
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5.4.- �Folk�Theorems
Proposition 2: Intuition

Proposition 2 Let fatg∞
t=1 be such that a

t 2 A for all t � 1 and

lim inf
n!∞

1
T

T

∑
t=1
hi (at ) � Ri for all i 2 I then, there exists an f 2 F such that

(1) f is an equilibrium of G∞ and (2) at (f ) = at for all t � 1.

For every i 2 I , there exists a(i) 2 A such that hi (bi , a(i)�i ) � Ri for
all bi 2 Ai . Observe that

Ri = min
a�i2A�i

max
ai2Ai

hi (ai , a�i ) = max
ai2Ai

hi (ai , a(i)�i ) � hi (bi , a(i)�i )

for all bi 2 Ai .
For every j 2 I , set f 1j = a1j .
Take any function γ : 2I nf?g �! I with the property that for all
J 2 2I nf?g, γ(J) 2 J.
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5.4.- �Folk�Theorems
Proposition 2: Intuition

Let (b1, ..., bt ) 2 At be arbitrary. Let s = minf1 � r � t j br 6= arg,
J = fk 2 I j bsk 6= askg and i = γ(J).

De�ne

f t+1j (b1, ..., bt ) =
�
at+1j if 81 � r � t, br = ar
a(i)j otherwise.

It is easy to show that for all t � 1, at (f ) = at (namely, (ii) is
proven).

For any gi 2 Fi either at (f ) = at (gi , f�i ) for all t � 1, in which case
H∞
i (f ) = Hi (gi , f�i ) or else there exists
s = minft � 1 j at (gi , f�i ) 6= at (f )g. Then, J = fig and
γ(fig) = i . Thus,
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5.4.- �Folk�Theorems
Proposition 2: Intuition

H∞
i (gi , f�i ) = H

��
1
T

T
∑
t=1
hi (at (gi , f�i )

�∞

T=1

�
� lim supT!∞

1
T ∑T

t=1 hi (a
t (gi , f�i )

� lim supT!∞
1
T [s maxfhi (a) j a 2 Ag+ (T � s)Ri ]

� lim sup 1
T s maxfhi (a) j a 2 Ag+ lim sup

1
T (T � s)Ri

� lim supT!∞
1
T TRi

= Ri
� lim inf

n!∞
1
T ∑T

t=1 hi (a
t ) by hypothesis

� lim inf
n!∞

1
T ∑T

t=1 hi (a
t (f )) by (ii)

� H∞
i (f ).

But since gi was arbitrary, f 2 F �∞.
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5.4.- �Folk�Theorems
Proposition 3: Intuition

Proposition 3 For every x 2 C (G ) there exists a sequence fatg∞
t=1

such that at 2 A for all t � 1 and for all i 2 I , lim
T!∞

1
T

T

∑
t=1
hi (at ) exists

and it is equal to xi .

Proposition 3 follows (after some work to deal with convex combinations
with non-rational coe¢ cients) from the following result which in turn
follows from a more general result (Caratheodory Theorem).

Result Let X = cofx1, ..., xK g � Rn. For every x 2 X there exist

y1, ..., yn+1 2 fx1, ..., xK g and p1, ..., pn+1 � 0 such that
n+1

∑
j=1

pj = 1 with

the property that x =
n+1

∑
j=1

pjy j .
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5.4.- �Folk�Theorems
Proposition 4: Intuition

Proposition 4 For every f 2 F and every α = T ,λ,∞, Hα(f ) 2 C (G ).

For α = T ,∞ the statement obviously holds.

For α = λ, observe that for every t � 1, 0 � (1� λ)λt�1 � 1 and

(1� λ)
∞

∑
t=1

λt�1 = (1� λ) 1
1�λ = 1. Thus, each (1� λ)λt�1 can be

seen as the coe¢ cient of an (in�nite) convex combination: Thus,

Hλ(f ) = (1� λ)
∞

∑
t=1

λt�1h(at (f )) 2 C (G ).
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5.4.- �Folk�Theorems

Proof of the Theorem

�) Let f be an equilibrium of Gα.

By Proposition 1, Hα
i (f ) � Ri for all i 2 I .

By Proposition 4, Hα(f ) 2 C (G ).
Hence, Hα(f ) 2 fx 2 C (G ) j xi � Ri for all i 2 Ig.

�) Let x 2 C (G ) and assume xi � Ri for all i 2 I .

By Proposition 3, there exists a sequence fatg∞
t=1 such that a

t 2 A for

all t � 1 and for all i 2 I , lim
T!∞

1
T

T
∑
t=1

hi (at ) = xi .

By Proposition 2, there exists f 2 F such that (1) f is an equilibrium
of G∞ and (2) at (f ) = at for all t � 1.
Hence, for all i 2 I ,

H∞
i (f ) = H

 �
1
T

T
∑
t=1

hi (at (f ))
�∞

T=1

!
= lim
T!∞

1
T

T
∑
t=1

hi (at ) = xi .

Thus, x 2
n
H∞(f ) 2 R#I j f is an equilibrium of G∞

o
. �
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5.4.- �Folk�Theorems
Discounted Repeated

Theorem
For every x 2 C (G ) such that xi > Ri for all i 2 I , there exists λ2 (0, 1)
such that for all λ 2 (λ, 1) there exists f 2 F �λ with the property that
Hλ(f ) = x .
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5.4.- �Folk�Theorems
Finitely Repeated

Theorem
Benoît and Krishna (1987) Assume that for every i 2 I there exists
a�(i) 2 A� such that hi (a�(i)) > Ri . Then, for all x 2 C (G ) such that
xi > Ri for all i 2 I and for every ε > 0 there exists T̂ 2 N such that for
all T > T̂ there exists f 2 F �T such that

HT (f )� x < ε.

Benoît, J.P. and V. Krisnha. �Nash Equilibria of Finitely Repeated
Games,� International Journal of Game Theory 16, 1987.
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5.4.- �Folk�Theorems
Finitely Repeated: Intuition

Terminal phase: for Q 2 N,

a�(1), ..., a�(n)| {z }
n periods

, ..., a�(1), ..., a�(n)| {z }
n periods| {z }

Q -times=Qn periods

.

Observe that for all i 2 N, hi (a�(i)) > Ri and hi (a�(j)) � Ri for all
j 2 N.
Average payo¤s in the terminal phase: for all i 2 N,

yi =
1
Qn
Q

n
∑
j=1
hi (a�(j)) =

1
n

n
∑
j=1
hi (a�(j)) > Ri .

Given x 2 C (G ) such that xi > Ri for all i 2 N, choose Q with the
property that for all i 2 N,

xi +Qyi > sup
a2A

hi (a) +QRi .
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property that for all i 2 N,

xi +Qyi > sup
a2A

hi (a) +QRi .
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5.4.- �Folk�Theorems
Finitely Repeated: Intuition

Given ε > 0, choose T 2 N such that there exists a cycle fatg of
length T �Qn such that 1

T �Qn
T�Qn

∑
t=1

h(at )� x
 < ε.

De�ne f 2 FT : for i 2 N,

for 1 � t � T �Qn.

f ti (�) =
�
at if all players follow the cycle fatg
a(j)i if j has deviated,

where a(j) is such that hj (bj , a(j)�j ) � Rj for all bj 2 Aj .
for T �Qn+ 1 � t < T .

f ti (�) = terminal phase of Nash equilibria.
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5.4.- �Folk�Theorems
Finitely Repeated: Intuition

It is possible to show that for all T su¢ ciently large, all i 2 N, and all
gi 2 Fi ,

HTi (f ) � HTi (gi , f�i );
namely, f 2 F �T .

Moreover, for su¢ ciently large T ,HT (f )� x < ε;

namely, the weight of the terminal phase vanishes.
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5.4.- �Folk�Theorems: SPE

Let G = (I , (Ai )i2I , (hi )i2I ) be a game in normal form.

For every t � 1 and i 2 I de�ne the mapping

si : Fi � At �! Fi ,

where, for every (fi , (a1, ..., at )) 2 Fi � At , s(fi , (a1, ..., at ))i 2 Fi is
obtained as follows:

s(fi , (a1, ..., at ))1i = f
t+1
i (a1, ..., at ) and

for all r � 1 and all (b1, ..., br ) 2 Ar ,

s(fi , (a
1, ..., at ))r+1i (b1, ..., br ) = f t+r+1i (a1, ..., at , b1, ..., br ).

Notation: for every (f , (a1, ..., at )) 2 F � At , set

s(f , (a1, ..., at )) � (s(fi , (a1, ..., at ))i )i2I .
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5.4.- �Folk�Theorems: SPE

De�nition Let G = (I , (Ai )i2I , (hi )i2I ) be a game in normal form. An
strategy f 2 F is a Subgame Perfect Equilibrium (SPE) of Gα, for
α = ∞,λ, if for every t � 1 and every (a1, ..., at ) 2 At , s(f , (a1, ..., at )) is
a Nash equilibrium of Gα.

Theorem
Aumann, Shapley, Rubinstein. Let G = (I , (Ai )i2I , (hi )i2I ) be a bounded
game in normal form. Then,n
H∞(f ) 2 R#I j f is a SPE of G∞

o
= fx 2 C (G ) j xi > Ri for all i 2 Ig .

Theorem
Friedman (1971) Let a� 2 A� be such that h(a�) = e. Then, for every
x 2 C (G ) such that xi > ei for all i 2 I , there exists λ2 (0, 1) such that
for all λ 2 (λ, 1) there exists a SPE f of Gλ with Hλ(f ) = x .
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5.4.- �Folk�Theorems: SPE

Theorem
Fudenberg and Maskin (1986) Let G = (I , (Ai )i2I , (hi )i2I ) be a bounded
game in normal form and assume dim(C (G )) = n. Then, for all x 2 C (G )
such that xi > Ri for all i 2 I , there exists λ2 (0, 1) such that for all
λ 2 (λ, 1) there exists a SPE f of Gλ with Hλ(f ) = x .

Theorem
Benoît and Krishna (1985) Let G = (I , (Ai )i2I , (hi )i2I ) be a bounded
game in normal form and assume that for each i 2 I there exist
a�(i), ã(i) 2 A� such that hi (a�(i)) > hi (ã(i)) and that dim(C (G )) = n.
Then, for every x 2 C (G ) such that xi > Ri for all i 2 I and every ε > 0
there exists T̂ 2 N such that for all T > T̂ there exists a SPE f 2 F of
GT such that

HT (f )� x < ε.

Jordi Massó (International Doctorate in Economic Analysis (IDEA) Universitat Autònoma de Barcelona (UAB))Game Theory: Repeated Games 57 / 64



5.4.- �Folk�Theorems

Friedman, J. �A Non-cooperative Equilibrium for Supergames,�The
Review of Economic Studies 38, 1971.

Benoît, J.P. and V. Krisnha. �Finitely Repeated Games,�
Econometrica 53, 1985.

Fudenberg, D. and E. Maskin. �The Folk Theorem in Repeated
Games with Discounting or with Incomplete Information,�
Econometrica 54, 1986.
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5.4.- �Folk�Theorems
Final Remarks

F �λ �!
λ!1

F �∞?

NO in general.

YES for the Prisoners�Dilemma.

Often YES.

F �T �!
T!∞

F �∞?

NO for the Prisoners�Dilemma.

YES for games with a suboptimal Nash equilibrium.

Bounded rationality (�nite automata).

Large set of players ;-)

Evolution of behavior.
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5.5.- Stochastic Games

L. Shapley. �Stochastic Games,�Proceedings of the National
Academy of Sciences 39, 1953.

The game that players face over time is not always the same.

Present actions may in�uence future opportunities. For example:

�shing in a lake,

timber industry,

cost-reducing investment decisions,

industry where �rms enter and leave (endogenously),

etc.

Idea: several games may be played, with a transition probability that
may depend on the pro�le of actions.
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5.5.- Stochastic Games

A stochastic game consists of a �nite set of games in normal form
fG1, ...,GK g and a probability distribution p, where for every
k = 1, ...,K :

Gk = (I , (Aki )i2I , (h
k
i )i2I ) is a �nite game in normal form,

without loss of generality, assume Aki \ Ak
0
i = ? for all i 2 I and

k 6= k 0 (and de�ne Ai =
KS
k=1

Aki ),

G1 is the initial game;

for every ak 2 Ak , p(ak ) is a probability distribution on fG1, ...,GK g
(i.e., p(ak ) 2 ∆K ), where for all k 0 = 1, ...,K ,

p(ak )k 0 is the probability of moving to game Gk 0 if players are at game
Gk and choose action ak 2 Ak .
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5.5.- Stochastic Games

For every t � 1, denote by Dt the set of histories of length t that are
consistent with the probability distribution p.

A strategy for player i is a sequence f = ff ti g∞
t=1 where for all i 2 I ,

f 1i 2 A1i , and
for all t � 1, f t+1i : Dt �! A1i � � � � � AKi with the property that for
all (d1, ..., d t ) 2 Dt , f t+1i (d1, ..., d t ) = (a1i , ..., a

K
i ) speci�es an action

of player i for each possible game Gk .

A stationary strategy for player i is a function
si : fG1, ...,GK g �! Ai such that for all k = 1, ...,K , si (Gk ) 2 Aki .

De�nition of payo¤s accordingly:

�nitely repeated,

in�nitely repeated with discounting,

in�nitely repeated without discounting.
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5.5.- Stochastic Games

Theorem
Shapley (1953) Let fG1, ...,GK g and p be an stochastic game with the
property that #I = 2 and for all k = 1, ...,K, Gk is zero sum. Then, the
in�nitely repeated game with discounting has a value.

The proof is not constructive (it uses a �x-point argument).

An important part of this literature has tried to show existence of
equilibria with stationary strategies for general settings.

Lokwood (1990)�s characterization with discounting

p(ak ) > 0 for all k = 1, ...,K and all ak 2 Ak .

Massó and Neme (1996)�s characterization with

p(ak )k 0 2 f0, 1g for all k, k 0 = 1, ...,K and all ak 2 Ak ,
in�nitely repeated without discounting.
based on connected stationary strategies,
the set of equilibrium payo¤s is not convex and SPE(NE.
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5.5.- Stochastic Games
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