Game Theory
 Repeated Games

Jordi Massó

International Doctorate in Economic Analysis (IDEA)
Universitat Autònoma de Barcelona (UAB)

5.1.- Introduction

- R. Aumann and L. Shapley. "Long Term Competition - A Game Theoretic Analysis," mimeo, The Hebrew University, 1976.

5.1.- Introduction

- R. Aumann and L. Shapley. "Long Term Competition - A Game Theoretic Analysis," mimeo, The Hebrew University, 1976.
- R. Aumann. "Survey of Repeated Games," in Essays in Game Theory and Mathematical Economics in Honor of Oskar Morgenstern, 1981.

5.1.- Introduction

- R. Aumann and L. Shapley. "Long Term Competition - A Game Theoretic Analysis," mimeo, The Hebrew University, 1976.
- R. Aumann. "Survey of Repeated Games," in Essays in Game Theory and Mathematical Economics in Honor of Oskar Morgenstern, 1981.
- Relationships between players last over time: long-term strategic interaction.

5.1.- Introduction

- R. Aumann and L. Shapley. "Long Term Competition - A Game Theoretic Analysis," mimeo, The Hebrew University, 1976.
- R. Aumann. "Survey of Repeated Games," in Essays in Game Theory and Mathematical Economics in Honor of Oskar Morgenstern, 1981.
- Relationships between players last over time: long-term strategic interaction.
- We observe non-equilibrium behavior; for instance, cooperation in interactions like the Prisoners' Dilemma.

5.1.- Introduction

- R. Aumann and L. Shapley. "Long Term Competition - A Game Theoretic Analysis," mimeo, The Hebrew University, 1976.
- R. Aumann. "Survey of Repeated Games," in Essays in Game Theory and Mathematical Economics in Honor of Oskar Morgenstern, 1981.
- Relationships between players last over time: long-term strategic interaction.
- We observe non-equilibrium behavior; for instance, cooperation in interactions like the Prisoners' Dilemma.
- Diamonds market.

5.1.- Introduction

- R. Aumann and L. Shapley. "Long Term Competition - A Game Theoretic Analysis," mimeo, The Hebrew University, 1976.
- R. Aumann. "Survey of Repeated Games," in Essays in Game Theory and Mathematical Economics in Honor of Oskar Morgenstern, 1981.
- Relationships between players last over time: long-term strategic interaction.
- We observe non-equilibrium behavior; for instance, cooperation in interactions like the Prisoners' Dilemma.
- Diamonds market.
- Cartels (like the OPEC).

5.1.- Introduction

- R. Aumann and L. Shapley. "Long Term Competition - A Game Theoretic Analysis," mimeo, The Hebrew University, 1976.
- R. Aumann. "Survey of Repeated Games," in Essays in Game Theory and Mathematical Economics in Honor of Oskar Morgenstern, 1981.
- Relationships between players last over time: long-term strategic interaction.
- We observe non-equilibrium behavior; for instance, cooperation in interactions like the Prisoners' Dilemma.
- Diamonds market.
- Cartels (like the OPEC).
- Reputation phenomena.

5.1.- Introduction

- R. Aumann and L. Shapley. "Long Term Competition - A Game Theoretic Analysis," mimeo, The Hebrew University, 1976.
- R. Aumann. "Survey of Repeated Games," in Essays in Game Theory and Mathematical Economics in Honor of Oskar Morgenstern, 1981.
- Relationships between players last over time: long-term strategic interaction.
- We observe non-equilibrium behavior; for instance, cooperation in interactions like the Prisoners' Dilemma.
- Diamonds market.
- Cartels (like the OPEC).
- Reputation phenomena.
- Conflicts.

5.1.- Introduction

- R. Aumann and L. Shapley. "Long Term Competition - A Game Theoretic Analysis," mimeo, The Hebrew University, 1976.
- R. Aumann. "Survey of Repeated Games," in Essays in Game Theory and Mathematical Economics in Honor of Oskar Morgenstern, 1981.
- Relationships between players last over time: long-term strategic interaction.
- We observe non-equilibrium behavior; for instance, cooperation in interactions like the Prisoners' Dilemma.
- Diamonds market.
- Cartels (like the OPEC).
- Reputation phenomena.
- Conflicts.
- Etc.

5.1.- Introduction

- Is it possible to sustain non-equilibrium behavior (for instance, cooperation in the Prisoners' Dilemma) as equilibrium of a larger game through out repetition?

5.1.- Introduction

- Is it possible to sustain non-equilibrium behavior (for instance, cooperation in the Prisoners' Dilemma) as equilibrium of a larger game through out repetition?
- The goal is to introduce dynamic aspects in the strategic interaction.

5.1.- Introduction

- Is it possible to sustain non-equilibrium behavior (for instance, cooperation in the Prisoners' Dilemma) as equilibrium of a larger game through out repetition?
- The goal is to introduce dynamic aspects in the strategic interaction.
- Two basic hypothesis:

5.1.- Introduction

- Is it possible to sustain non-equilibrium behavior (for instance, cooperation in the Prisoners' Dilemma) as equilibrium of a larger game through out repetition?
- The goal is to introduce dynamic aspects in the strategic interaction.
- Two basic hypothesis:
- Perfect monitoring.

5.1.- Introduction

- Is it possible to sustain non-equilibrium behavior (for instance, cooperation in the Prisoners' Dilemma) as equilibrium of a larger game through out repetition?
- The goal is to introduce dynamic aspects in the strategic interaction.
- Two basic hypothesis:
- Perfect monitoring.
- Only pure strategies.

5.1.- Introduction

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a finite game in normal form. A_{i} is the set of player i 's actions and $A=\prod_{i \in I} A_{i}$ is the set of action profiles.

5.1.- Introduction

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a finite game in normal form. A_{i} is the set of player i 's actions and $A=\prod_{i \in I} A_{i}$ is the set of action profiles.
- The game G is repeated over time: $t=1,2, \ldots$

5.1.- Introduction

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a finite game in normal form. A_{i} is the set of player i 's actions and $A=\prod_{i \in I} A_{i}$ is the set of action profiles.
- The game G is repeated over time: $t=1,2, \ldots$
- The duple $\left(I,\left(A_{i}\right)_{i \in I}\right)$ is a game form.

5.1.- Introduction

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a finite game in normal form. A_{i} is the set of player i 's actions and $A=\prod_{i \in I} A_{i}$ is the set of action profiles.
- The game G is repeated over time: $t=1,2, \ldots$
- The duple $\left(I,\left(A_{i}\right)_{i \in I}\right)$ is a game form.
- Define, for every $t \geq 1, A^{t}=\underbrace{A \times \cdots \times A}_{t-\text { times }}$.

5.1.- Introduction

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a finite game in normal form. A_{i} is the set of player i 's actions and $A=\prod_{i \in I} A_{i}$ is the set of action profiles.
- The game G is repeated over time: $t=1,2, \ldots$
- The duple $\left(I,\left(A_{i}\right)_{i \in I}\right)$ is a game form.
- Define, for every $t \geq 1, A^{t}=\underbrace{A \times \cdots \times A}_{t-\text { times }}$.
- That is, $\left(a^{1}, \ldots, a^{t}\right) \in A^{t}$, where for every $1 \leq s \leq t$, $a^{s}=\left(a_{1}^{s}, \ldots, a_{n}^{s}\right) \in A$.

5.2.- Strategies

- Given the game in normal form $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$, define the super-game form as the game form $\left(I,\left(F_{i}\right)_{i \in I}\right)$, where for every $i \in I$,

$$
F_{i}=\left\{f_{i}=\left\{f_{i}^{t}\right\}_{t=1}^{\infty} \mid f_{i}^{1} \in A_{i} \text { and } \forall t \geq 1, f_{i}^{t+1}: A^{t} \longrightarrow A_{i}\right\} .
$$

5.2.- Strategies

- Given the game in normal form $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$, define the super-game form as the game form $\left(I,\left(F_{i}\right)_{i \in I}\right)$, where for every $i \in I$,

$$
F_{i}=\left\{f_{i}=\left\{f_{i}^{t}\right\}_{t=1}^{\infty} \mid f_{i}^{1} \in A_{i} \text { and } \forall t \geq 1, f_{i}^{t+1}: A^{t} \longrightarrow A_{i}\right\} .
$$

- Perfect monitoring: the domain of f_{i}^{t+1} is A^{t}.

5.2.- Strategies

- Given the game in normal form $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$, define the super-game form as the game form $\left(I,\left(F_{i}\right)_{i \in I}\right)$, where for every $i \in I$,

$$
F_{i}=\left\{f_{i}=\left\{f_{i}^{t}\right\}_{t=1}^{\infty} \mid f_{i}^{1} \in A_{i} \text { and } \forall t \geq 1, f_{i}^{t+1}: A^{t} \longrightarrow A_{i}\right\} .
$$

- Perfect monitoring: the domain of f_{i}^{t+1} is A^{t}.
- Pure actions: the range of f_{i}^{t+1} is a subset of A_{i}.

5.2.- Strategies

- Given the game in normal form $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$, define the super-game form as the game form $\left(I,\left(F_{i}\right)_{i \in I}\right)$, where for every $i \in I$,

$$
F_{i}=\left\{f_{i}=\left\{f_{i}^{t}\right\}_{t=1}^{\infty} \mid f_{i}^{1} \in A_{i} \text { and } \forall t \geq 1, f_{i}^{t+1}: A^{t} \longrightarrow A_{i}\right\} .
$$

- Perfect monitoring: the domain of f_{i}^{t+1} is A^{t}.
- Pure actions: the range of f_{i}^{t+1} is a subset of A_{i}.
- Notation: $F=\prod_{i \in I} F_{i}$.

5.2.- Strategies

- Given the game in normal form $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$, define the super-game form as the game form $\left(I,\left(F_{i}\right)_{i \in I}\right)$, where for every $i \in I$,

$$
F_{i}=\left\{f_{i}=\left\{f_{i}^{t}\right\}_{t=1}^{\infty} \mid f_{i}^{1} \in A_{i} \text { and } \forall t \geq 1, f_{i}^{t+1}: A^{t} \longrightarrow A_{i}\right\} .
$$

- Perfect monitoring: the domain of f_{i}^{t+1} is A^{t}.
- Pure actions: the range of f_{i}^{t+1} is a subset of A_{i}.
- Notation: $F=\prod_{i \in I} F_{i}$.
- Given $f=\left(f_{i}\right)_{i \in I} \in F$ we represent the sequence of actions induced by f as

$$
a(f)=\left\{a^{t}(f)\right\}_{t=1}^{\infty}
$$

which is defined recursively as follows:

5.2.- Strategies

- Given the game in normal form $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$, define the super-game form as the game form $\left(I,\left(F_{i}\right)_{i \in I}\right)$, where for every $i \in I$,

$$
F_{i}=\left\{f_{i}=\left\{f_{i}^{t}\right\}_{t=1}^{\infty} \mid f_{i}^{1} \in A_{i} \text { and } \forall t \geq 1, f_{i}^{t+1}: A^{t} \longrightarrow A_{i}\right\} .
$$

- Perfect monitoring: the domain of f_{i}^{t+1} is A^{t}.
- Pure actions: the range of f_{i}^{t+1} is a subset of A_{i}.
- Notation: $F=\prod_{i \in I} F_{i}$.
- Given $f=\left(f_{i}\right)_{i \in I} \in F$ we represent the sequence of actions induced by f as

$$
a(f)=\left\{a^{t}(f)\right\}_{t=1}^{\infty}
$$

which is defined recursively as follows:

- $a^{1}(f) \in A$ is given by $a_{i}^{1}(f)=f_{i}^{1}$ for all $i \in I$, and

5.2.- Strategies

- Given the game in normal form $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$, define the super-game form as the game form $\left(I,\left(F_{i}\right)_{i \in I}\right)$, where for every $i \in I$,

$$
F_{i}=\left\{f_{i}=\left\{f_{i}^{t}\right\}_{t=1}^{\infty} \mid f_{i}^{1} \in A_{i} \text { and } \forall t \geq 1, f_{i}^{t+1}: A^{t} \longrightarrow A_{i}\right\} .
$$

- Perfect monitoring: the domain of f_{i}^{t+1} is A^{t}.
- Pure actions: the range of f_{i}^{t+1} is a subset of A_{i}.
- Notation: $F=\prod_{i \in I} F_{i}$.
- Given $f=\left(f_{i}\right)_{i \in I} \in F$ we represent the sequence of actions induced by f as

$$
a(f)=\left\{a^{t}(f)\right\}_{t=1}^{\infty}
$$

which is defined recursively as follows:

- $a^{1}(f) \in A$ is given by $a_{i}^{1}(f)=f_{i}^{1}$ for all $i \in I$, and
- for all $t \geq 1, a^{t+1}(f) \in A$ is given by $a_{i}^{t+1}(f)=f_{i}^{t+1}\left(a^{1}(f), \ldots, a^{t}(f)\right)$ for all $i \in I$.

5.2.- Strategies

Examples of strategies in the Prisoners' Dilemma.

5.2.- Strategies

Examples of strategies in the Prisoners' Dilemma.

- "Play always $C^{\prime \prime}: \hat{f}_{i}^{1}=C$ and for all $t \geq 1$ and all $\left(a^{1}, \ldots, a^{t}\right) \in A^{t}$, $\hat{f}_{i}^{t+1}\left(a^{1}, \ldots, a^{t}\right)=C$.

5.2.- Strategies

Examples of strategies in the Prisoners' Dilemma.

- "Play always $C^{\prime \prime}: \hat{f}_{i}^{1}=C$ and for all $t \geq 1$ and all $\left(a^{1}, \ldots, a^{t}\right) \in A^{t}$, $\hat{f}_{i}^{t+1}\left(a^{1}, \ldots, a^{t}\right)=C$.
- "Play C during 5 periods and D thereafter": $\bar{f}_{i}^{1}=C$, for all $1 \leq t<5$ and all $\left(a^{1}, \ldots, a^{t}\right) \in A^{t}, \bar{f}_{i}^{t+1}\left(a^{1}, \ldots, a^{t}\right)=C$ and for all $t \geq 5$ and all $\left(a^{1}, \ldots, a^{t}\right) \in A^{t}, \bar{f}_{i}^{t+1}\left(a^{1}, \ldots, a^{t}\right)=D$.

5.2.- Strategies

Examples of strategies in the Prisoners' Dilemma.

- "Play always $C^{\prime \prime}: \hat{f}_{i}^{1}=C$ and for all $t \geq 1$ and all $\left(a^{1}, \ldots, a^{t}\right) \in A^{t}$, $\hat{f}_{i}^{t+1}\left(a^{1}, \ldots, a^{t}\right)=C$.
- "Play C during 5 periods and D thereafter": $\bar{f}_{i}^{1}=C$, for all $1 \leq t<5$ and all $\left(a^{1}, \ldots, a^{t}\right) \in A^{t}, \bar{f}_{i}^{t+1}\left(a^{1}, \ldots, a^{t}\right)=C$ and for all $t \geq 5$ and all $\left(a^{1}, \ldots, a^{t}\right) \in A^{t}, \bar{f}_{i}^{t+1}\left(a^{1}, \ldots, a^{t}\right)=D$.
- Trigger strategy. "Start playing C and play C as long as the other player has played always C, once the other player has played D play D always" : $\tilde{f}_{i}^{1}=C$ and for all $t \geq 1$ and all $\left(a^{1}, \ldots, a^{t}\right) \in A^{t}$,

$$
\tilde{f}_{i}^{t+1}\left(a^{1}, \ldots, a^{t}\right)= \begin{cases}C & \text { if for all } 1 \leq s \leq t, a_{3-i}^{s}=C \\ D & \text { if there exists } 1 \leq s \leq t \text { such that } a_{3-i}^{s}=D .\end{cases}
$$

5.2.- Strategies

Examples of strategies in the Prisoners' Dilemma.

- "Play always C ": $\hat{f}_{i}^{1}=C$ and for all $t \geq 1$ and all $\left(a^{1}, \ldots, a^{t}\right) \in A^{t}$, $\hat{f}_{i}^{t+1}\left(a^{1}, \ldots, a^{t}\right)=C$.
- "Play C during 5 periods and D thereafter": $\bar{f}_{i}^{1}=C$, for all $1 \leq t<5$ and all $\left(a^{1}, \ldots, a^{t}\right) \in A^{t}, \bar{f}_{i}^{t+1}\left(a^{1}, \ldots, a^{t}\right)=C$ and for all $t \geq 5$ and all $\left(a^{1}, \ldots, a^{t}\right) \in A^{t}, \bar{f}_{i}^{t+1}\left(a^{1}, \ldots, a^{t}\right)=D$.
- Trigger strategy. "Start playing C and play C as long as the other player has played always C, once the other player has played D play D always" : $\tilde{f}_{i}^{1}=C$ and for all $t \geq 1$ and all $\left(a^{1}, \ldots, a^{t}\right) \in A^{t}$,

$$
\tilde{f}_{i}^{t+1}\left(a^{1}, \ldots, a^{t}\right)= \begin{cases}C & \text { if for all } 1 \leq s \leq t, a_{3-i}^{s}=C \\ D & \text { if there exists } 1 \leq s \leq t \text { such that } a_{3-i}^{s}=D .\end{cases}
$$

- Tit-for-tat. "Start playing C and then play the action taken by the other player last period": $\dot{f}_{i}^{1}=C$ and for all $t \geq 1$ and all $\left(a^{1}, \ldots, a^{t}\right) \in A^{t}, \dot{f}_{i}^{t+1}\left(a^{1}, \ldots, a^{t}\right)=a_{3-i}^{t}$.

5.2.- Strategies

Sequences of actions generated by some strategy profiles.

5.2.- Strategies

Sequences of actions generated by some strategy profiles.

- $\left(\hat{f}_{1}, \dot{f}_{2}\right):$ For all $t \geq 1, a^{t}\left(\hat{f}_{1}, \dot{f}_{2}\right)=(C, C)$.

5.2.- Strategies

Sequences of actions generated by some strategy profiles.

- $\left(\hat{f}_{1}, \dot{f}_{2}\right):$ For all $t \geq 1, a^{t}\left(\hat{f}_{1}, \dot{f}_{2}\right)=(C, C)$.
- $a\left(\hat{f}_{1}, \dot{f}_{2}\right)=((C, C),(C, C), \underbrace{\ldots}_{(C, C) \text { always }})$.

5.2.- Strategies

Sequences of actions generated by some strategy profiles.

- $\left(\hat{f}_{1}, \hat{f}_{2}\right)$: For all $t \geq 1, a^{t}\left(\hat{f}_{1}, \hat{f}_{2}\right)=(C, C)$.

$$
\text { - } a\left(\hat{f}_{1}, \dot{f}_{2}\right)=((C, C),(C, C), \underbrace{\ldots}_{(C, C) \text { always }}) .
$$

- $\left(\bar{f}_{1}, \dot{f}_{2}\right)$: For all $1 \leq s \leq 5, a^{5}\left(\bar{f}_{1}, \dot{f}_{2}\right)=(C, C), a^{6}\left(\bar{f}_{1}, \dot{f}_{2}\right)=(D, C)$ and for all $t \geq 7, a^{7}\left(\bar{f}_{1}, \dot{f}_{2}\right)=(D, D)$.

5.2.- Strategies

Sequences of actions generated by some strategy profiles.

- $\left(\hat{f}_{1}, \dot{f}_{2}\right):$ For all $t \geq 1, a^{t}\left(\hat{f}_{1}, \dot{f}_{2}\right)=(C, C)$.

$$
\text { - } a\left(\hat{f}_{1}, \dot{f}_{2}\right)=((C, C),(C, C), \underbrace{\ldots}_{(C, C) \text { always }}) .
$$

- $\left(\bar{f}_{1}, \dot{f}_{2}\right)$: For all $1 \leq s \leq 5, a^{s}\left(\bar{f}_{1}, \dot{f}_{2}\right)=(C, C), a^{6}\left(\bar{f}_{1}, \dot{f}_{2}\right)=(D, C)$ and for all $t \geq 7, a^{7}\left(\bar{f}_{1}, \dot{f}_{2}\right)=(D, D)$.

$$
\begin{aligned}
& \text { - a(} \left.\bar{f}_{1}, \dot{f}_{2}\right)= \\
& \quad((C, C),(C, C),(C, C),(C, C),(C, C),(D, C),(D, D), \underbrace{\ldots}_{(D, D) \text { always }}) \text {. }
\end{aligned}
$$

5.2.- Strategies

Sequences of actions generated by some strategy profiles.

- $\left(\hat{f}_{1}, \dot{f}_{2}\right):$ For all $t \geq 1, a^{t}\left(\hat{f}_{1}, \dot{f}_{2}\right)=(C, C)$.

$$
\text { - } a\left(\hat{f}_{1}, \dot{f}_{2}\right)=((C, C),(C, C), \underbrace{\ldots}_{(C, C) \text { always }}) .
$$

- $\left(\bar{f}_{1}, \dot{f}_{2}\right)$: For all $1 \leq s \leq 5, a^{s}\left(\bar{f}_{1}, \dot{f}_{2}\right)=(C, C), a^{6}\left(\bar{f}_{1}, \dot{f}_{2}\right)=(D, C)$ and for all $t \geq 7, a^{7}\left(\bar{f}_{1}, \dot{f}_{2}\right)=(D, D)$.

$$
\begin{aligned}
& \text { - a(} \left.\bar{f}_{1}, \dot{f}_{2}\right)= \\
& \quad((C, C),(C, C),(C, C),(C, C),(C, C),(D, C),(D, D), \underbrace{\ldots}_{(D, D) \text { always }})
\end{aligned}
$$

- $\left(\tilde{f}_{1}, \dot{f}_{2}\right):$ For all $t \geq 1, a^{t}\left(\tilde{f}_{1}, \dot{f}_{2}\right)=(C, C)$.

5.2.- Strategies

Sequences of actions generated by some strategy profiles.

- $\left(\hat{f}_{1}, \dot{f}_{2}\right):$ For all $t \geq 1, a^{t}\left(\hat{f}_{1}, \dot{f}_{2}\right)=(C, C)$.

$$
\text { - } a\left(\hat{f}_{1}, \dot{f}_{2}\right)=((C, C),(C, C), \underbrace{\ldots}_{(C, C) \text { always }}) .
$$

- $\left(\bar{f}_{1}, \dot{f}_{2}\right)$: For all $1 \leq s \leq 5, a^{s}\left(\bar{f}_{1}, \dot{f}_{2}\right)=(C, C), a^{6}\left(\bar{f}_{1}, \dot{f}_{2}\right)=(D, C)$ and for all $t \geq 7, a^{7}\left(\bar{f}_{1}, \dot{f}_{2}\right)=(D, D)$.

$$
\begin{aligned}
& \text { - a(} \left.\bar{f}_{1}, \dot{f}_{2}\right)= \\
& \quad((C, C),(C, C),(C, C),(C, C),(C, C),(D, C),(D, D), \underbrace{\ldots}_{(D, D) \text { always }}) .
\end{aligned}
$$

- $\left(\tilde{f}_{1}, \dot{f}_{2}\right):$ For all $t \geq 1, a^{t}\left(\tilde{f}_{1}, \dot{f}_{2}\right)=(C, C)$.

$$
\text { - } a\left(\tilde{f}_{1}, \dot{f}_{2}\right)=((C, C),(C, C), \underbrace{\ldots}_{(C, C) \text { always }}) .
$$

5.3.- Payoffs

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a game in normal form and let $T \in \mathbb{N}$. The finitely T-times repeated game is the game in normal form $G_{T}=\left(I,\left(F_{i}\right)_{i \in I},\left(H_{i}^{T}\right)_{i \in I}\right.$, where $\left(I,\left(F_{i}\right)_{i \in I}\right)$ is the super-game form and for each $i \in I, H_{i}^{T}: F \longrightarrow \mathbb{R}$ is defined as follows: for all $f \in F$,

$$
H_{i}^{T}(f)=\frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)
$$

5.3.- Payoffs

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a game in normal form and let $T \in \mathbb{N}$. The finitely T-times repeated game is the game in normal form $G_{T}=\left(I,\left(F_{i}\right)_{i \in I},\left(H_{i}^{T}\right)_{i \in I}\right.$, where $\left(I,\left(F_{i}\right)_{i \in I}\right)$ is the super-game form and for each $i \in I, H_{i}^{T}: F \longrightarrow \mathbb{R}$ is defined as follows: for all $f \in F$,

$$
H_{i}^{T}(f)=\frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)
$$

- Remark: Since G_{T} is a game in normal form, we can define F_{T}^{*} as the set of Nash equilibria of G_{T}.

5.3.- Payoffs

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a game in normal form and let $T \in \mathbb{N}$. The finitely T-times repeated game is the game in normal form $G_{T}=\left(I,\left(F_{i}\right)_{i \in I},\left(H_{i}^{T}\right)_{i \in I}\right.$, where $\left(I,\left(F_{i}\right)_{i \in I}\right)$ is the super-game form and for each $i \in I, H_{i}^{T}: F \longrightarrow \mathbb{R}$ is defined as follows: for all $f \in F$,

$$
H_{i}^{T}(f)=\frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)
$$

- Remark: Since G_{T} is a game in normal form, we can define F_{T}^{*} as the set of Nash equilibria of G_{T}.
- Examples:

5.3.- Payoffs

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a game in normal form and let $T \in \mathbb{N}$. The finitely T-times repeated game is the game in normal form $G_{T}=\left(I,\left(F_{i}\right)_{i \in I},\left(H_{i}^{T}\right)_{i \in I}\right.$, where $\left(I,\left(F_{i}\right)_{i \in I}\right)$ is the super-game form and for each $i \in I, H_{i}^{T}: F \longrightarrow \mathbb{R}$ is defined as follows: for all $f \in F$,

$$
H_{i}^{T}(f)=\frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)
$$

- Remark: Since G_{T} is a game in normal form, we can define F_{T}^{*} as the set of Nash equilibria of G_{T}.
- Examples:

$$
\text { - } T=10, H_{1}^{10}\left(\bar{f}_{1}, \dot{f}_{2}\right)=\frac{1}{10}(5 \cdot 3+4+4 \cdot 1)=\frac{23}{10} .
$$

5.3.- Payoffs

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a game in normal form and let $T \in \mathbb{N}$. The finitely T-times repeated game is the game in normal form $G_{T}=\left(I,\left(F_{i}\right)_{i \in I},\left(H_{i}^{T}\right)_{i \in I}\right.$, where $\left(I,\left(F_{i}\right)_{i \in I}\right)$ is the super-game form and for each $i \in I, H_{i}^{T}: F \longrightarrow \mathbb{R}$ is defined as follows: for all $f \in F$,

$$
H_{i}^{T}(f)=\frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)
$$

- Remark: Since G_{T} is a game in normal form, we can define F_{T}^{*} as the set of Nash equilibria of G_{T}.
- Examples:
- $T=10, H_{1}^{10}\left(\bar{f}_{1}, \dot{f}_{2}\right)=\frac{1}{10}(5 \cdot 3+4+4 \cdot 1)=\frac{23}{10}$.
- $T=6, H_{2}^{6}\left(\hat{f}_{1}, \bar{f}_{2}\right)=\frac{1}{6}(5 \cdot 3+4 \cdot 1)=\frac{19}{6}$.

5.3.- Payoffs

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a game in normal form and let $T \in \mathbb{N}$. The finitely T-times repeated game is the game in normal form $G_{T}=\left(I,\left(F_{i}\right)_{i \in I},\left(H_{i}^{T}\right)_{i \in I}\right.$, where $\left(I,\left(F_{i}\right)_{i \in I}\right)$ is the super-game form and for each $i \in I, H_{i}^{T}: F \longrightarrow \mathbb{R}$ is defined as follows: for all $f \in F$,

$$
H_{i}^{T}(f)=\frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)
$$

- Remark: Since G_{T} is a game in normal form, we can define F_{T}^{*} as the set of Nash equilibria of G_{T}.
- Examples:
- $T=10, H_{1}^{10}\left(\bar{f}_{1}, \dot{f}_{2}\right)=\frac{1}{10}(5 \cdot 3+4+4 \cdot 1)=\frac{23}{10}$.
- $T=6, H_{2}^{6}\left(\hat{f}_{1}, \bar{f}_{2}\right)=\frac{1}{6}(5 \cdot 3+4 \cdot 1)=\frac{19}{6}$.
- For any $T \geq 1, H_{i}^{T}\left(\tilde{f}_{1}, \dot{f}_{2}\right)=\frac{1}{T}(3 \cdot T)=3$.

5.3.- Payoffs

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a game in normal form. We say that G is bounded if

$$
\sup \left\{h_{i}(a) \mid i \in I \text { and } a \in A\right\}<\infty .
$$

5.3.- Payoffs

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a game in normal form. We say that G is bounded if

$$
\sup \left\{h_{i}(a) \mid i \in I \text { and } a \in A\right\}<\infty .
$$

- Note that if G is finite then G is bounded.

5.3.- Payoffs

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a game in normal form. We say that G is bounded if

$$
\sup \left\{h_{i}(a) \mid i \in I \text { and } a \in A\right\}<\infty .
$$

- Note that if G is finite then G is bounded.
- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a bounded game in normal form and let $\lambda \in(0,1)$. The λ-discounted repeated game is the game in normal form $G_{\lambda}=\left(I,\left(F_{i}\right)_{i \in I},\left(H_{i}^{\lambda}\right)_{i \in I}\right.$, where $\left(I,\left(F_{i}\right)_{i \in I}\right)$ is the super-game form and for each $i \in I, H_{i}^{\lambda}: F \longrightarrow \mathbb{R}$ is defined as follows: for all $f \in F$,

$$
H_{i}^{\lambda}(f)=(1-\lambda) \sum_{t=1}^{\infty} \lambda^{t-1} h_{i}\left(a^{t}(f)\right)
$$

5.3.- Payoffs

- Example:

5.3.- Payoffs

- Example:

5.3.- Payoffs

- Example:

$$
\begin{aligned}
H_{1}^{\lambda}\left(\bar{f}_{1}, \dot{f}_{2}\right) & =(1-\lambda)\left(3+3 \lambda+3 \lambda^{2}+3 \lambda^{3}+3 \lambda^{4}+4 \lambda^{5}+\lambda^{6}+\lambda^{7}+\ldots\right. \\
& =(1-\lambda)\left(3 \frac{1-\lambda^{5}}{1-\lambda}+4 \lambda^{5}+\frac{\lambda^{6}}{1-\lambda}\right) \\
& =3\left(1-\lambda^{5}\right)+4(1-\lambda) \lambda^{5}+\lambda^{6} \\
& =3+\lambda^{5}-3 \lambda^{6} .
\end{aligned}
$$

5.3.- Payoffs

- Example:

$$
\begin{aligned}
H_{1}^{\lambda}\left(\bar{f}_{1}, \dot{f}_{2}\right) & =(1-\lambda)\left(3+3 \lambda+3 \lambda^{2}+3 \lambda^{3}+3 \lambda^{4}+4 \lambda^{5}+\lambda^{6}+\lambda^{7}+\ldots\right. \\
& =(1-\lambda)\left(3 \frac{1-\lambda^{5}}{1-\lambda}+4 \lambda^{5}+\frac{\lambda^{6}}{1-\lambda}\right) \\
& =3\left(1-\lambda^{5}\right)+4(1-\lambda) \lambda^{5}+\lambda^{6} \\
& =3+\lambda^{5}-3 \lambda^{6}
\end{aligned}
$$

- Since G_{λ} is a game in normal form, we can define F_{λ}^{*} as the set of Nash equilibria of G_{λ}.

5.3.- Payoffs

Remarks on $H_{i}^{\lambda}(f)=(1-\lambda) \sum_{t=1}^{\infty} \lambda^{t-1} h_{i}\left(a^{t}(f)\right)$:

5.3.- Payoffs

Remarks on $H_{i}^{\lambda}(f)=(1-\lambda) \sum_{t=1}^{\infty} \lambda^{t-1} h_{i}\left(a^{t}(f)\right)$:

- $(1-\lambda)$ is a very useful normalization (remember that h_{i} is a vNM utility function and $(1-\lambda) h_{i}$ is a positive affine transformation); for instance, it assigns x to the constant sequence $\left\{x^{t}=x\right\}_{t=1}^{\infty}$, since

$$
(1-\lambda) \sum_{t=1}^{\infty} \lambda^{t-1} x=(1-\lambda) \frac{1}{1-\lambda} x=x
$$

5.3.- Payoffs

Remarks on $H_{i}^{\lambda}(f)=(1-\lambda) \sum_{t=1}^{\infty} \lambda^{t-1} h_{i}\left(a^{t}(f)\right)$:

- $(1-\lambda)$ is a very useful normalization (remember that h_{i} is a vNM utility function and $(1-\lambda) h_{i}$ is a positive affine transformation); for instance, it assigns x to the constant sequence $\left\{x^{t}=x\right\}_{t=1}^{\infty}$, since

$$
(1-\lambda) \sum_{t=1}^{\infty} \lambda^{t-1} x=(1-\lambda) \frac{1}{1-\lambda} x=x
$$

- If G is not bounded, the series may be divergent, and therefore H_{i}^{λ} would not necessarily be well-defined.

5.3.- Payoffs

Remarks on $H_{i}^{\lambda}(f)=(1-\lambda) \sum_{t=1}^{\infty} \lambda^{t-1} h_{i}\left(a^{t}(f)\right)$:

- $(1-\lambda)$ is a very useful normalization (remember that h_{i} is a vNM utility function and $(1-\lambda) h_{i}$ is a positive affine transformation); for instance, it assigns x to the constant sequence $\left\{x^{t}=x\right\}_{t=1}^{\infty}$, since

$$
(1-\lambda) \sum_{t=1}^{\infty} \lambda^{t-1} x=(1-\lambda) \frac{1}{1-\lambda} x=x
$$

- If G is not bounded, the series may be divergent, and therefore H_{i}^{λ} would not necessarily be well-defined.
- The payoff $H_{i}^{\lambda}(f)$ can be interpreted as player i 's expected payoff of playing f when at t, the probability of playing the game at $t+1$ is equal to λ.

5.3.- Payoffs

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a bounded game in normal form. The infinitely repeated game is the game in normal form $G_{\infty}=\left(I,\left(F_{i}\right)_{i \in I},\left(H_{i}^{\infty}\right)_{i \in I}\right.$, where $\left(I,\left(F_{i}\right)_{i \in I}\right)$ is the super-game form and for each $i \in I, H_{i}^{\infty}: F \longrightarrow \mathbb{R}$ that will be defined later.

5.3.- Payoffs

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a bounded game in normal form. The infinitely repeated game is the game in normal form $G_{\infty}=\left(I,\left(F_{i}\right)_{i \in I},\left(H_{i}^{\infty}\right)_{i \in I}\right.$, where $\left(I,\left(F_{i}\right)_{i \in I}\right)$ is the super-game form and for each $i \in I, H_{i}^{\infty}: F \longrightarrow \mathbb{R}$ that will be defined later.
- The "natural" payoff function would be: for all $f \in F$,

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)=\lim _{T \rightarrow \infty} H_{i}^{T}(f)
$$

5.3.- Payoffs

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a bounded game in normal form. The infinitely repeated game is the game in normal form $G_{\infty}=\left(I,\left(F_{i}\right)_{i \in I},\left(H_{i}^{\infty}\right)_{i \in I}\right.$, where $\left(I,\left(F_{i}\right)_{i \in I}\right)$ is the super-game form and for each $i \in I, H_{i}^{\infty}: F \longrightarrow \mathbb{R}$ that will be defined later.
- The "natural" payoff function would be: for all $f \in F$,

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)=\lim _{T \rightarrow \infty} H_{i}^{T}(f)
$$

- Problem: This limit may not exist (its existence depends on the particular strategies used by players).

5.3.- Payoffs [Parenthesis]

5.3.- Payoffs [Parenthesis]

- Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence of real numbers (i.e., $\left\{x_{n}\right\} \in I_{\infty}$).

5.3.- Payoffs [Parenthesis]

- Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence of real numbers (i.e., $\left\{x_{n}\right\} \in I_{\infty}$).
- We say that $\bar{x} \in \mathbb{R}$ is the limit superior of $\left\{x_{n}\right\}, \lim \sup \left\{x_{n}\right\}$, if \bar{x} is the highest accumulation point of $\left\{x_{n}\right\}$; that is,

$$
n \rightarrow \infty
$$

5.3.- Payoffs [Parenthesis]

- Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence of real numbers (i.e., $\left\{x_{n}\right\} \in I_{\infty}$).
- We say that $\bar{x} \in \mathbb{R}$ is the limit superior of $\left\{x_{n}\right\}, \lim \sup \left\{x_{n}\right\}$, if \bar{x} is the highest accumulation point of $\left\{x_{n}\right\}$; that is,
- for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for all $n>N, x_{n}<\bar{x}+\varepsilon$ (from N on, the sequence is never above $\bar{x}+\varepsilon$).

5.3.- Payoffs [Parenthesis]

- Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence of real numbers (i.e., $\left\{x_{n}\right\} \in I_{\infty}$).
- We say that $\bar{x} \in \mathbb{R}$ is the limit superior of $\left\{x_{n}\right\}, \lim \sup \left\{x_{n}\right\}$, if \bar{x} is the highest accumulation point of $\left\{x_{n}\right\}$; that is,
- for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for all $n>N, x_{n}<\bar{x}+\varepsilon$ (from N on, the sequence is never above $\bar{x}+\varepsilon$).
- for all $\varepsilon>0$ and all $m \in \mathbb{N}$ there exists $n>m$ such that $x_{n}>\bar{x}-\varepsilon$ (the sequence always goes back to be close to \bar{x}).

5.3.- Payoffs [Parenthesis]

- Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence of real numbers (i.e., $\left\{x_{n}\right\} \in I_{\infty}$).
- We say that $\bar{x} \in \mathbb{R}$ is the limit superior of $\left\{x_{n}\right\}, \lim \sup \left\{x_{n}\right\}$, if \bar{x} is the highest accumulation point of $\left\{x_{n}\right\}$; that is,
- for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for all $n>N, x_{n}<\bar{x}+\varepsilon$ (from N on, the sequence is never above $\bar{x}+\varepsilon$).
- for all $\varepsilon>0$ and all $m \in \mathbb{N}$ there exists $n>m$ such that $x_{n}>\bar{x}-\varepsilon$ (the sequence always goes back to be close to \bar{x}).
- We say that $\underline{x} \in \mathbb{R}$ is the limit inferior of $\left\{x_{n}\right\}, \liminf _{n \rightarrow \infty}\left\{x_{n}\right\}$, if \underline{x} is the smallest accumulation point of $\left\{x_{n}\right\}$; that is,

5.3.- Payoffs [Parenthesis]

- Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence of real numbers (i.e., $\left\{x_{n}\right\} \in I_{\infty}$).
- We say that $\bar{x} \in \mathbb{R}$ is the limit superior of $\left\{x_{n}\right\}, \lim \sup \left\{x_{n}\right\}$, if \bar{x} is the highest accumulation point of $\left\{x_{n}\right\}$; that is,
- for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for all $n>N, x_{n}<\bar{x}+\varepsilon$ (from N on, the sequence is never above $\bar{x}+\varepsilon$).
- for all $\varepsilon>0$ and all $m \in \mathbb{N}$ there exists $n>m$ such that $x_{n}>\bar{x}-\varepsilon$ (the sequence always goes back to be close to \bar{x}).
- We say that $\underline{x} \in \mathbb{R}$ is the limit inferior of $\left\{x_{n}\right\}, \liminf _{n \rightarrow \infty}\left\{x_{n}\right\}$, if \underline{x} is the smallest accumulation point of $\left\{x_{n}\right\}$; that is,
- for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for all $n>N, x_{n}>\underline{x}-\varepsilon$ (from N on, the sequence is never below $\underline{x}-\varepsilon$).

5.3.- Payoffs [Parenthesis]

- Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence of real numbers (i.e., $\left\{x_{n}\right\} \in I_{\infty}$).
- We say that $\bar{x} \in \mathbb{R}$ is the limit superior of $\left\{x_{n}\right\}, \lim \sup \left\{x_{n}\right\}$, if \bar{x} is the highest accumulation point of $\left\{x_{n}\right\}$; that is,
- for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for all $n>N, x_{n}<\bar{x}+\varepsilon$ (from N on, the sequence is never above $\bar{x}+\varepsilon$).
- for all $\varepsilon>0$ and all $m \in \mathbb{N}$ there exists $n>m$ such that $x_{n}>\bar{x}-\varepsilon$ (the sequence always goes back to be close to \bar{x}).
- We say that $\underline{x} \in \mathbb{R}$ is the limit inferior of $\left\{x_{n}\right\}, \liminf _{n \rightarrow \infty}\left\{x_{n}\right\}$, if \underline{x} is the smallest accumulation point of $\left\{x_{n}\right\}$; that is,
- for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for all $n>N, x_{n}>\underline{x}-\varepsilon$ (from N on, the sequence is never below $\underline{x}-\varepsilon$).
- for all $\varepsilon>0$ and all $m \in \mathbb{N}$ there exists $n>m$ such that $x_{n}<\underline{x}+\varepsilon$ (the sequence always goes back to be close to \underline{x}).

5.3.- Payoffs [Parenthesis]

- Remark: for all $\left\{x_{n}\right\} \in I_{\infty}, \liminf _{n \rightarrow \infty}\left\{x_{n}\right\}=-\limsup \left\{y_{n}\right\}$, where for all $n \geq 1, y_{n}=-x_{n}$.

5.3.- Payoffs [Parenthesis]

- Remark: for all $\left\{x_{n}\right\} \in I_{\infty}, \liminf _{n \rightarrow \infty}\left\{x_{n}\right\}=-\limsup _{n \rightarrow \infty}\left\{y_{n}\right\}$, where for all $n \geq 1, y_{n}=-x_{n}$.
- Example: $x_{n}= \begin{cases}1 & \text { if } n \text { is odd } \\ -1 & \text { if } n \text { is even }\end{cases}$
. Then, $\limsup _{n \rightarrow \infty}\left\{x_{n}\right\}=1$ and $\liminf _{n \rightarrow \infty}\left\{x_{n}\right\}=-1$.

5.3.- Payoffs [Parenthesis]

- Remark: for all $\left\{x_{n}\right\} \in I_{\infty}, \liminf _{n \rightarrow \infty}\left\{x_{n}\right\}=-\limsup _{n \rightarrow \infty}\left\{y_{n}\right\}$, where for all

$$
n \geq 1, y_{n}=-x_{n}
$$

- Example: $x_{n}= \begin{cases}1 & \text { if } n \text { is odd } \\ -1 & \text { if } n \text { is even }\end{cases}$
. Then, $\lim \sup \left\{x_{n}\right\}=1$ and $n \rightarrow \infty$ $\liminf _{n \rightarrow \infty}\left\{x_{n}\right\}=-1$.
- Properties: for all $\left\{x_{n}\right\},\left\{y_{n}\right\} \in I_{\infty}$,

5.3.- Payoffs [Parenthesis]

- Remark: for all $\left\{x_{n}\right\} \in I_{\infty}, \liminf _{n \rightarrow \infty}\left\{x_{n}\right\}=-\limsup _{n \rightarrow \infty}\left\{y_{n}\right\}$, where for all

$$
n \geq 1, y_{n}=-x_{n}
$$

- Example: $x_{n}= \begin{cases}1 & \text { if } n \text { is odd } \\ -1 & \text { if } n \text { is even }\end{cases}$ Then, $\limsup _{n \rightarrow \infty}\left\{x_{n}\right\}=1$ and $\liminf _{n \rightarrow \infty}\left\{x_{n}\right\}=-1$.
- Properties: for all $\left\{x_{n}\right\},\left\{y_{n}\right\} \in I_{\infty}$,
- if $\lim _{n \rightarrow \infty}\left\{x_{n}\right\}$ exists then $\liminf _{n \rightarrow \infty}\left\{x_{n}\right\}=\lim _{n \rightarrow \infty}\left\{x_{n}\right\}=\limsup _{n \rightarrow \infty}\left\{x_{n}\right\}$.

5.3.- Payoffs [Parenthesis]

- Remark: for all $\left\{x_{n}\right\} \in I_{\infty}, \liminf _{n \rightarrow \infty}\left\{x_{n}\right\}=-\limsup _{n \rightarrow \infty}\left\{y_{n}\right\}$, where for all

$$
n \geq 1, y_{n}=-x_{n}
$$

- Example: $x_{n}= \begin{cases}1 & \text { if } n \text { is odd } \\ -1 & \text { if } n \text { is even }\end{cases}$. Then, $\lim \sup \left\{x_{n}\right\}=1$ and $n \rightarrow \infty$ $\liminf _{n \rightarrow \infty}\left\{x_{n}\right\}=-1$.
- Properties: for all $\left\{x_{n}\right\},\left\{y_{n}\right\} \in I_{\infty}$,
- if $\lim _{n \rightarrow \infty}\left\{x_{n}\right\}$ exists then $\liminf _{n \rightarrow \infty}\left\{x_{n}\right\}=\lim _{n \rightarrow \infty}\left\{x_{n}\right\}=\limsup _{n \rightarrow \infty}\left\{x_{n}\right\}$.

$$
\begin{aligned}
\liminf _{n \rightarrow \infty}\left\{x_{n}\right\}+\liminf _{n \rightarrow \infty}\left\{y_{n}\right\} & \leq \liminf _{n \rightarrow \infty}\left\{x_{n}+y_{n}\right\} \\
& \leq \liminf _{n \rightarrow \infty}\left\{x_{n}\right\}+\limsup _{n \rightarrow \infty}\left\{y_{n}\right\} \\
& \leq \limsup _{n \rightarrow \infty}\left\{x_{n}+y_{n}\right\} \\
& \leq \limsup _{n \rightarrow \infty}\left\{x_{n}\right\}+\limsup _{n \rightarrow \infty}\left\{y_{n}\right\} .
\end{aligned}
$$

5.3.- Payoffs [Parenthesis]

- If G is bounded then, for all $f \in F,\left\{\frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)\right\}_{T=1}^{\infty} \in I_{\infty}$.

5.3.- Payoffs [Parenthesis]

- If G is bounded then, for all $f \in F,\left\{\frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)\right\}_{T=1}^{\infty} \in I_{\infty}$.
- Desirable properties for $H_{i}^{\infty}(f)$.

5.3.- Payoffs [Parenthesis]

- If G is bounded then, for all $f \in F,\left\{\frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)\right\}_{T=1}^{\infty} \in I_{\infty}$.
- Desirable properties for $H_{i}^{\infty}(f)$.
- If $\lim _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)$ exists then $H_{i}^{\infty}(f)$ should be equal to it.

5.3.- Payoffs [Parenthesis]

- If G is bounded then, for all $f \in F,\left\{\frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)\right\}_{T=1}^{\infty} \in I_{\infty}$.
- Desirable properties for $H_{i}^{\infty}(f)$.
- If $\lim _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)$ exists then $H_{i}^{\infty}(f)$ should be equal to it.
- $\liminf _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right) \leq H_{i}^{\infty}(f) \leq \limsup _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)$.

5.3.- Payoffs [Parenthesis]

- If G is bounded then, for all $f \in F,\left\{\frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)\right\}_{T=1}^{\infty} \in I_{\infty}$.
- Desirable properties for $H_{i}^{\infty}(f)$.
- If $\lim _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)$ exists then $H_{i}^{\infty}(f)$ should be equal to it.
- $\liminf _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right) \leq H_{i}^{\infty}(f) \leq \limsup _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)$.
- Note that the later implies the former.

5.3.- Payoffs [Parenthesis]

- If G is bounded then, for all $f \in F,\left\{\frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)\right\}_{T=1}^{\infty} \in I_{\infty}$.
- Desirable properties for $H_{i}^{\infty}(f)$.
- If $\lim _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)$ exists then $H_{i}^{\infty}(f)$ should be equal to it.
- $\liminf _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right) \leq H_{i}^{\infty}(f) \leq \limsup _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)$.
- Note that the later implies the former.
- Since we will have to check (equilibrium condition) whether $H_{i}^{\infty}(f)-H_{i}^{\infty}\left(g_{i}, f_{-i}\right) \geq 0$, we would like that $H_{i}^{\infty}(f)$ be linear.

5.3.- Payoffs [Parenthesis]

Proposition There exists a linear function $H: l_{\infty} \longrightarrow \mathbb{R}$ (called a Banach limit) such that for all $\left\{x_{n}\right\} \in I_{\infty}$,

$$
\liminf _{n \rightarrow \infty}\left\{x_{n}\right\} \leq H\left(\left\{x_{n}\right\}\right) \leq \limsup _{n \rightarrow \infty}\left\{x_{n}\right\} .
$$

5.3.- Payoffs [Parenthesis]

Proposition There exists a linear function $H: I_{\infty} \longrightarrow \mathbb{R}$ (called a Banach limit) such that for all $\left\{x_{n}\right\} \in I_{\infty}$,

$$
\liminf _{n \rightarrow \infty}\left\{x_{n}\right\} \leq H\left(\left\{x_{n}\right\}\right) \leq \limsup _{n \rightarrow \infty}\left\{x_{n}\right\} .
$$

- It follows from the Hahn-Banach Theorem.

5.3.- Payoffs [Parenthesis]

Proposition There exists a linear function $H: I_{\infty} \longrightarrow \mathbb{R}$ (called a Banach limit) such that for all $\left\{x_{n}\right\} \in I_{\infty}$,

$$
\liminf _{n \rightarrow \infty}\left\{x_{n}\right\} \leq H\left(\left\{x_{n}\right\}\right) \leq \limsup _{n \rightarrow \infty}\left\{x_{n}\right\} .
$$

- It follows from the Hahn-Banach Theorem.
- Remarks:

5.3.- Payoffs [Parenthesis]

Proposition There exists a linear function $H: l_{\infty} \longrightarrow \mathbb{R}$ (called a Banach limit) such that for all $\left\{x_{n}\right\} \in I_{\infty}$,

$$
\liminf _{n \rightarrow \infty}\left\{x_{n}\right\} \leq H\left(\left\{x_{n}\right\}\right) \leq \limsup _{n \rightarrow \infty}\left\{x_{n}\right\} .
$$

- It follows from the Hahn-Banach Theorem.
- Remarks:
- There are many Banach limits.

5.3.- Payoffs [Parenthesis]

Proposition There exists a linear function $H: I_{\infty} \longrightarrow \mathbb{R}$ (called a Banach limit) such that for all $\left\{x_{n}\right\} \in I_{\infty}$,

$$
\liminf _{n \rightarrow \infty}\left\{x_{n}\right\} \leq H\left(\left\{x_{n}\right\}\right) \leq \limsup _{n \rightarrow \infty}\left\{x_{n}\right\} .
$$

- It follows from the Hahn-Banach Theorem.
- Remarks:
- There are many Banach limits.
- Results will be invariant with respect to which one we will use.

5.3.- Payoffs [Parenthesis]

Proposition There exists a linear function $H: I_{\infty} \longrightarrow \mathbb{R}$ (called a Banach limit) such that for all $\left\{x_{n}\right\} \in I_{\infty}$,

$$
\liminf _{n \rightarrow \infty}\left\{x_{n}\right\} \leq H\left(\left\{x_{n}\right\}\right) \leq \limsup _{n \rightarrow \infty}\left\{x_{n}\right\} .
$$

- It follows from the Hahn-Banach Theorem.
- Remarks:
- There are many Banach limits.
- Results will be invariant with respect to which one we will use.
- It is not known a functional form of a Banach limit.

5.3.- Payoffs [Parenthesis]

Proposition There exists a linear function $H: I_{\infty} \longrightarrow \mathbb{R}$ (called a Banach limit) such that for all $\left\{x_{n}\right\} \in I_{\infty}$,

$$
\liminf _{n \rightarrow \infty}\left\{x_{n}\right\} \leq H\left(\left\{x_{n}\right\}\right) \leq \limsup _{n \rightarrow \infty}\left\{x_{n}\right\} .
$$

- It follows from the Hahn-Banach Theorem.
- Remarks:
- There are many Banach limits.
- Results will be invariant with respect to which one we will use.
- It is not known a functional form of a Banach limit.
- End of Parenthesis.

5.3.- Payoffs

- Choose a Banach limit $H: I_{\infty} \longrightarrow \mathbb{R}$.

5.3.- Payoffs

- Choose a Banach limit $H: I_{\infty} \longrightarrow \mathbb{R}$.
- Given $f \in F$, construct $\left\{h_{i}\left(a^{t}(f)\right)\right\}_{t=1}^{\infty} \in I_{\infty}$ (since G is bounded).

5.3.- Payoffs

- Choose a Banach limit $H: I_{\infty} \longrightarrow \mathbb{R}$.
- Given $f \in F$, construct $\left\{h_{i}\left(a^{t}(f)\right)\right\}_{t=1}^{\infty} \in I_{\infty}$ (since G is bounded).
- Find $\left\{\frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)\right\}_{T=1}^{\infty} \in I_{\infty}$.

5.3.- Payoffs

- Choose a Banach limit $H: I_{\infty} \longrightarrow \mathbb{R}$.
- Given $f \in F$, construct $\left\{h_{i}\left(a^{t}(f)\right)\right\}_{t=1}^{\infty} \in I_{\infty}$ (since G is bounded).
- Find $\left\{\frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)\right\}_{T=1}^{\infty} \in I_{\infty}$.
- Define

$$
H_{i}^{\infty}(f)=H\left(\left\{\frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)\right\}_{T=1}^{\infty}\right)
$$

5.3.- Payoffs

- Choose a Banach limit $H: I_{\infty} \longrightarrow \mathbb{R}$.
- Given $f \in F$, construct $\left\{h_{i}\left(a^{t}(f)\right)\right\}_{t=1}^{\infty} \in I_{\infty}$ (since G is bounded).
- Find $\left\{\frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)\right\}_{T=1}^{\infty} \in I_{\infty}$.
- Define

$$
H_{i}^{\infty}(f)=H\left(\left\{\frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)\right\}_{T=1}^{\infty}\right) .
$$

- Since G_{∞} is a game in normal form, we can define F_{∞}^{*} as the set of Nash equilibria of G_{∞}.

5.4.- "Folk" Theorems

- Family of results characterizing the set of Nash equilibria or Subgame Perfect equilibria of repeated games $\left(G_{T}, G_{\lambda}\right.$ and $\left.G_{\infty}\right)$ and their relationships. For example:

5.4.- "Folk" Theorems

- Family of results characterizing the set of Nash equilibria or Subgame Perfect equilibria of repeated games $\left(G_{T}, G_{\lambda}\right.$ and $\left.G_{\infty}\right)$ and their relationships. For example:

5.4.- "Folk" Theorems

- Family of results characterizing the set of Nash equilibria or Subgame Perfect equilibria of repeated games $\left(G_{T}, G_{\lambda}\right.$ and $\left.G_{\infty}\right)$ and their relationships. For example:

Proposition Let G be the Prisoners' Dilemma. Then, for every $T \geq 1$ and every $f \in F_{T}^{*}, a^{t}(f)=(D, D)$ for all $t \geq 1$.

5.4.- "Folk" Theorems

- Family of results characterizing the set of Nash equilibria or Subgame Perfect equilibria of repeated games $\left(G_{T}, G_{\lambda}\right.$ and $\left.G_{\infty}\right)$ and their relationships. For example:

Proposition Let G be the Prisoners' Dilemma. Then, for every $T \geq 1$ and every $f \in F_{T}^{*}, a^{t}(f)=(D, D)$ for all $t \geq 1$.

Proof Let $f \in F_{T}^{*}$ and assume otherwise; namely, there exists $1 \leq t \leq T, a^{t}(f) \neq(D, D)$.

5.4.- "Folk" Theorems

- Family of results characterizing the set of Nash equilibria or Subgame Perfect equilibria of repeated games $\left(G_{T}, G_{\lambda}\right.$ and $\left.G_{\infty}\right)$ and their relationships. For example:

Proposition Let G be the Prisoners' Dilemma. Then, for every $T \geq 1$ and every $f \in F_{T}^{*}, a^{t}(f)=(D, D)$ for all $t \geq 1$.

Proof Let $f \in F_{T}^{*}$ and assume otherwise; namely, there exists $1 \leq t \leq T, a^{t}(f) \neq(D, D)$.

- Let $s=\max \left\{1 \leq t \leq T \mid a^{t}(f) \neq(D, D)\right\}$.

5.4.- "Folk" Theorems

- Family of results characterizing the set of Nash equilibria or Subgame Perfect equilibria of repeated games $\left(G_{T}, G_{\lambda}\right.$ and $\left.G_{\infty}\right)$ and their relationships. For example:

Proposition Let G be the Prisoners' Dilemma. Then, for every $T \geq 1$ and every $f \in F_{T}^{*}, a^{t}(f)=(D, D)$ for all $t \geq 1$.

Proof Let $f \in F_{T}^{*}$ and assume otherwise; namely, there exists $1 \leq t \leq T, a^{t}(f) \neq(D, D)$.

- Let $s=\max \left\{1 \leq t \leq T \mid a^{t}(f) \neq(D, D)\right\}$.
- Without loss of generality, assume that $a_{1}^{s}(f)=C$.

5.4.- "Folk" Theorems

- Family of results characterizing the set of Nash equilibria or Subgame Perfect equilibria of repeated games $\left(G_{T}, G_{\lambda}\right.$ and $\left.G_{\infty}\right)$ and their relationships. For example:

Proposition Let G be the Prisoners' Dilemma. Then, for every $T \geq 1$ and every $f \in F_{T}^{*}, a^{t}(f)=(D, D)$ for all $t \geq 1$.

Proof Let $f \in F_{T}^{*}$ and assume otherwise; namely, there exists $1 \leq t \leq T, a^{t}(f) \neq(D, D)$.

- Let $s=\max \left\{1 \leq t \leq T \mid a^{t}(f) \neq(D, D)\right\}$.
- Without loss of generality, assume that $a_{1}^{s}(f)=C$.
- Define $g_{1}=\left\{g_{1}^{t}\right\}_{t=1}^{\infty}$ as follows:

5.4.- "Folk" Theorems

- Family of results characterizing the set of Nash equilibria or Subgame Perfect equilibria of repeated games $\left(G_{T}, G_{\lambda}\right.$ and $\left.G_{\infty}\right)$ and their relationships. For example:

Proposition Let G be the Prisoners' Dilemma. Then, for every $T \geq 1$ and every $f \in F_{T}^{*}, a^{t}(f)=(D, D)$ for all $t \geq 1$.

Proof Let $f \in F_{T}^{*}$ and assume otherwise; namely, there exists $1 \leq t \leq T, a^{t}(f) \neq(D, D)$.

- Let $s=\max \left\{1 \leq t \leq T \mid a^{t}(f) \neq(D, D)\right\}$.
- Without loss of generality, assume that $a_{1}^{s}(f)=C$.
- Define $g_{1}=\left\{g_{1}^{t}\right\}_{t=1}^{\infty}$ as follows:
- for all $1 \leq t<s$ (if any), $g_{1}^{t}=f_{1}^{t}$ and

5.4.- "Folk" Theorems

- Family of results characterizing the set of Nash equilibria or Subgame Perfect equilibria of repeated games $\left(G_{T}, G_{\lambda}\right.$ and $\left.G_{\infty}\right)$ and their relationships. For example:

Proposition Let G be the Prisoners' Dilemma. Then, for every $T \geq 1$ and every $f \in F_{T}^{*}, a^{t}(f)=(D, D)$ for all $t \geq 1$.

Proof Let $f \in F_{T}^{*}$ and assume otherwise; namely, there exists $1 \leq t \leq T, a^{t}(f) \neq(D, D)$.

- Let $s=\max \left\{1 \leq t \leq T \mid a^{t}(f) \neq(D, D)\right\}$.
- Without loss of generality, assume that $a_{1}^{s}(f)=C$.
- Define $g_{1}=\left\{g_{1}^{t}\right\}_{t=1}^{\infty}$ as follows:
- for all $1 \leq t<s$ (if any), $g_{1}^{t}=f_{1}^{t}$ and
- for all $t \geq s$ and all $\left(a^{1}, \ldots, a^{t-1}\right) \in A^{t-1}, g_{1}^{t}\left(a^{1}, \ldots, a^{t-1}\right)=D$.

5.4.- "Folk" Theorems

- By definition of $g_{1}, a^{t}\left(g_{1}, f_{2}\right)=a^{t}\left(f_{1}, f_{2}\right)$ for all $1 \leq t<s$ (if any).

5.4.- "Folk" Theorems

- By definition of $g_{1}, a^{t}\left(g_{1}, f_{2}\right)=a^{t}\left(f_{1}, f_{2}\right)$ for all $1 \leq t<s$ (if any).
- Hence,

$$
\begin{aligned}
a_{2}^{s}\left(g_{1}, f_{2}\right) & =f_{2}^{s}\left(a^{1}\left(g_{1}, f_{2}\right), \ldots, a^{s-1}\left(g_{1}, f_{2}\right)\right) \\
& =f_{2}^{s}\left(a^{1}\left(f_{1}, f_{2}\right), \ldots, a^{s-1}\left(f_{1}, f_{2}\right)\right) \\
& =a_{2}^{s}\left(f_{1}, f_{2}\right)
\end{aligned}
$$

5.4.- "Folk" Theorems

- By definition of $g_{1}, a^{t}\left(g_{1}, f_{2}\right)=a^{t}\left(f_{1}, f_{2}\right)$ for all $1 \leq t<s$ (if any).
- Hence,

$$
\begin{aligned}
a_{2}^{s}\left(g_{1}, f_{2}\right) & =f_{2}^{s}\left(a^{1}\left(g_{1}, f_{2}\right), \ldots, a^{s-1}\left(g_{1}, f_{2}\right)\right) \\
& =f_{2}^{s}\left(a^{1}\left(f_{1}, f_{2}\right), \ldots, a^{s-1}\left(f_{1}, f_{2}\right)\right) \\
& =a_{2}^{s}\left(f_{1}, f_{2}\right) .
\end{aligned}
$$

- Thus,

5.4.- "Folk" Theorems

- By definition of $g_{1}, a^{t}\left(g_{1}, f_{2}\right)=a^{t}\left(f_{1}, f_{2}\right)$ for all $1 \leq t<s$ (if any).
- Hence,

$$
\begin{aligned}
a_{2}^{s}\left(g_{1}, f_{2}\right) & =f_{2}^{s}\left(a^{1}\left(g_{1}, f_{2}\right), \ldots, a^{s-1}\left(g_{1}, f_{2}\right)\right) \\
& =f_{2}^{s}\left(a^{1}\left(f_{1}, f_{2}\right), \ldots, a^{s-1}\left(f_{1}, f_{2}\right)\right) \\
& =a_{2}^{s}\left(f_{1}, f_{2}\right) .
\end{aligned}
$$

- Thus,
- for all $1 \leq t<s$ (if any), $h_{1}\left(a^{t}\left(g_{1}, f_{2}\right)\right)=h_{1}\left(a^{t}\left(f_{1}, f_{2}\right)\right)$,

5.4.- "Folk" Theorems

- By definition of $g_{1}, a^{t}\left(g_{1}, f_{2}\right)=a^{t}\left(f_{1}, f_{2}\right)$ for all $1 \leq t<s$ (if any).
- Hence,

$$
\begin{aligned}
a_{2}^{s}\left(g_{1}, f_{2}\right) & =f_{2}^{s}\left(a^{1}\left(g_{1}, f_{2}\right), \ldots, a^{s-1}\left(g_{1}, f_{2}\right)\right) \\
& =f_{2}^{s}\left(a^{1}\left(f_{1}, f_{2}\right), \ldots, a^{s-1}\left(f_{1}, f_{2}\right)\right) \\
& =a_{2}^{s}\left(f_{1}, f_{2}\right) .
\end{aligned}
$$

- Thus,
- for all $1 \leq t<s$ (if any), $h_{1}\left(a^{t}\left(g_{1}, f_{2}\right)\right)=h_{1}\left(a^{t}\left(f_{1}, f_{2}\right)\right)$,
- for all $t>s, h_{1}\left(a^{t}\left(g_{1}, f_{2}\right)\right) \geq 1=h_{1}\left(a^{t}\left(f_{1}, f_{2}\right)\right)$,

5.4.- "Folk" Theorems

- By definition of $g_{1}, a^{t}\left(g_{1}, f_{2}\right)=a^{t}\left(f_{1}, f_{2}\right)$ for all $1 \leq t<s$ (if any).
- Hence,

$$
\begin{aligned}
a_{2}^{s}\left(g_{1}, f_{2}\right) & =f_{2}^{s}\left(a^{1}\left(g_{1}, f_{2}\right), \ldots, a^{s-1}\left(g_{1}, f_{2}\right)\right) \\
& =f_{2}^{s}\left(a^{1}\left(f_{1}, f_{2}\right), \ldots, a^{s-1}\left(f_{1}, f_{2}\right)\right) \\
& =a_{2}^{s}\left(f_{1}, f_{2}\right) .
\end{aligned}
$$

- Thus,
- for all $1 \leq t<s$ (if any), $h_{1}\left(a^{t}\left(g_{1}, f_{2}\right)\right)=h_{1}\left(a^{t}\left(f_{1}, f_{2}\right)\right)$,
- for all $t>s, h_{1}\left(a^{t}\left(g_{1}, f_{2}\right)\right) \geq 1=h_{1}\left(a^{t}\left(f_{1}, f_{2}\right)\right)$,
- and

$$
\begin{aligned}
h_{1}\left(a^{s}\left(g_{1}, f_{2}\right)\right) & =h_{1}\left(D, a_{2}^{s}\left(g_{1}, f_{2}\right)\right) \\
& >h_{1}\left(C, a_{2}^{s}\left(g_{1}, f_{2}\right)\right) \\
& =h_{1}\left(C, a_{2}^{s}\left(f_{1}, f_{2}\right)\right) \\
& =h_{1}\left(a^{s}\left(f_{1}, f_{2}\right)\right) .
\end{aligned}
$$

5.4.- "Folk" Theorems

- Therefore,

$$
\begin{aligned}
H_{1}^{T}\left(g_{1}, f_{2}\right) & =\frac{1}{T} \sum_{t=1}^{T} h_{1}\left(a^{t}\left(g_{1}, f_{2}\right)\right) \\
& >\frac{1}{T} \sum_{t=1}^{T} h_{1}\left(a^{t}\left(f_{1}, f_{2}\right)\right) \\
& =H_{1}^{T}\left(f_{1}, f_{2}\right),
\end{aligned}
$$

which contradicts that $\left(f_{1}, f_{2}\right) \in F_{T}^{*}$.

5.4.- "Folk" Theorems

Proposition Let G be the Prisoners' Dilemma. Then, tit-for-tat is an equilibrium of G_{∞}.

5.4.- "Folk" Theorems

Proposition Let G be the Prisoners' Dilemma. Then, tit-for-tat is an equilibrium of G_{∞}.

Proof Let g_{i} be the strategy tit-for-tat for player $i=1,2$.

5.4.- "Folk" Theorems

Proposition Let G be the Prisoners' Dilemma. Then, tit-for-tat is an equilibrium of G_{∞}.

Proof Let g_{i} be the strategy tit-for-tat for player $i=1,2$.

- Then, since for all $t \geq 1, a^{t}\left(g_{1}, g_{2}\right)=(C, C), H_{i}^{\infty}\left(g_{1}, g_{2}\right)=3$.

5.4.- "Folk" Theorems

Proposition Let G be the Prisoners' Dilemma. Then, tit-for-tat is an equilibrium of G_{∞}.

Proof Let g_{i} be the strategy tit-for-tat for player $i=1,2$.

- Then, since for all $t \geq 1, a^{t}\left(g_{1}, g_{2}\right)=(C, C), H_{i}^{\infty}\left(g_{1}, g_{2}\right)=3$.
- Let $f_{1} \in F_{1}$ be arbitrary (a symmetric argument works for player 2).

5.4.- "Folk" Theorems

Proposition Let G be the Prisoners' Dilemma. Then, tit-for-tat is an equilibrium of G_{∞}.

Proof Let g_{i} be the strategy tit-for-tat for player $i=1,2$.

- Then, since for all $t \geq 1, a^{t}\left(g_{1}, g_{2}\right)=(C, C), H_{i}^{\infty}\left(g_{1}, g_{2}\right)=3$.
- Let $f_{1} \in F_{1}$ be arbitrary (a symmetric argument works for player 2).

5.4.- "Folk" Theorems

Proposition Let G be the Prisoners' Dilemma. Then, tit-for-tat is an equilibrium of G_{∞}.

Proof Let g_{i} be the strategy tit-for-tat for player $i=1,2$.

- Then, since for all $t \geq 1, a^{t}\left(g_{1}, g_{2}\right)=(C, C), H_{i}^{\infty}\left(g_{1}, g_{2}\right)=3$.
- Let $f_{1} \in F_{1}$ be arbitrary (a symmetric argument works for player 2). For every $T \geq 1$,

$$
\begin{gathered}
\sum_{t=1}^{T} h_{1}\left(a^{t}\left(f_{1}, g_{2}\right)\right)=3 \cdot \#\left\{1 \leq t \leq T \mid a^{t}\left(f_{1}, g_{2}\right)=(C, C)\right\} \\
+4 \cdot \#\left\{1 \leq t \leq T \mid a^{t}\left(f_{1}, g_{2}\right)=(D, C)\right\} \\
+0 \cdot \#\left\{1 \leq t \leq T \mid a^{t}\left(f_{1}, g_{2}\right)=(C, D)\right\} \\
+1 \cdot \#\left\{1 \leq t \leq T \mid a^{t}\left(f_{1}, g_{2}\right)=(D, D)\right\}
\end{gathered}
$$

5.4.- "Folk" Theorems

- By the definition of g_{2} (tit-for-tat),

$$
\begin{aligned}
& \#\left\{t \leq T \mid a^{t}\left(f_{1}, g_{2}\right)=(D, C)\right\}+\#\left\{t \leq T \mid a^{t}\left(f_{1}, g_{2}\right)=(D, D)\right\} \\
& =\#\left\{t \leq T \mid a_{1}^{t}\left(f_{1}, g_{2}\right)=D\right\} \\
& \leq \#\left\{t \leq T \mid a_{2}^{t}\left(f_{1}, g_{2}\right)=D\right\}+1 \\
& =\#\left\{t \mid a^{t}\left(f_{1}, g_{2}\right)=(C, D)\right\}+\#\left\{t \mid a^{t}\left(f_{1}, g_{2}\right)=(D, D)\right\}+1
\end{aligned}
$$

5.4.- "Folk" Theorems

- By the definition of g_{2} (tit-for-tat),

$$
\begin{aligned}
& \#\left\{t \leq T \mid a^{t}\left(f_{1}, g_{2}\right)=(D, C)\right\}+\#\left\{t \leq T \mid a^{t}\left(f_{1}, g_{2}\right)=(D, D)\right\} \\
& =\#\left\{t \leq T \mid a_{1}^{t}\left(f_{1}, g_{2}\right)=D\right\} \\
& \leq \#\left\{t \leq T \mid a_{2}^{t}\left(f_{1}, g_{2}\right)=D\right\}+1 \\
& =\#\left\{t \mid a^{t}\left(f_{1}, g_{2}\right)=(C, D)\right\}+\#\left\{t \mid a^{t}\left(f_{1}, g_{2}\right)=(D, D)\right\}+1 .
\end{aligned}
$$

- Hence,

$$
\begin{equation*}
\#\left\{t \mid a^{t}\left(f_{1}, g_{2}\right)=(D, C)\right\} \leq \#\left\{t \mid a^{t}\left(f_{1}, g_{2}\right)=(C, D)\right\}+1 \tag{1}
\end{equation*}
$$

5.4.- "Folk" Theorems

$$
\begin{aligned}
& \sum_{t=1}^{T} h_{1}\left(a^{t}\left(f_{1}, g_{2}\right)\right)=3 \cdot \#\left\{t \leq T \mid a^{t}\left(f_{1}, g_{2}\right)=(C, C)\right\} \\
& \left.+3 \cdot \#\left\{t \leq T \mid a^{t}\left(f_{1}, g_{2}\right)=(D, C)\right\}\right\}=3 T \\
& +3 \cdot \#\left\{t \leq T \mid \mathrm{a}^{t}\left(f_{1}, g_{2}\right)=(C, D)\right\} \\
& +3 \cdot \#\left\{t \leq T \mid \mathrm{a}^{t}\left(f_{1}, g_{2}\right)=(D, D)\right\} \\
& \left.\begin{array}{l}
+1 \cdot \#\left\{t \leq T \mid a^{t}\left(f_{1}, g_{2}\right)=(D, C)\right\} \\
-1 \cdot \#\left\{t \leq T \mid a^{t}\left(f_{1}, g_{2}\right)=(C, D)\right\}
\end{array}\right\} \leq 1 \text { by }(1) \\
& \left.\begin{array}{l}
-2 \cdot \#\left\{t \leq T \mid a^{t}\left(f_{1}, g_{2}\right)=(C, D)\right\} \\
-2 \cdot \#\left\{t \leq T \mid a^{t}\left(f_{1}, g_{2}\right)=(D, D)\right\}
\end{array}\right\} \leq 0 .
\end{aligned}
$$

5.4.- "Folk" Theorems

$$
\begin{aligned}
& \sum_{t=1}^{T} h_{1}\left(a^{t}\left(f_{1}, g_{2}\right)\right)=3 \cdot \#\left\{t \leq T \mid a^{t}\left(f_{1}, g_{2}\right)=(C, C)\right\} \\
& \left.+3 \cdot \#\left\{t \leq T \mid a^{t}\left(f_{1}, g_{2}\right)=(D, C)\right\}\right\}=3 T \\
& +3 \cdot \#\left\{t \leq T \mid a^{t}\left(f_{1}, g_{2}\right)=(C, D)\right\} \\
& +3 \cdot \#\left\{t \leq T \mid \mathrm{a}^{t}\left(f_{1}, g_{2}\right)=(D, D)\right\} \\
& \begin{array}{l}
+1 \cdot \#\left\{t \leq T \mid a^{t}\left(f_{1}, g_{2}\right)=(D, C)\right\} \\
-1 \cdot \#\left\{t \leq T \mid a^{t}\left(f_{1}, g_{2}\right)=(C, D)\right\} \leq 1 \text { by }(1) .
\end{array} \\
& \begin{array}{l}
-2 \cdot \#\left\{t \leq T \mid a^{t}\left(f_{1}, g_{2}\right)=(C, D)\right\} \\
-2 \cdot \#\left\{t \leq T \mid a^{t}\left(f_{1}, g_{2}\right)=(D, D)\right\} \leq 0 .
\end{array}
\end{aligned}
$$

Hence,

$$
\sum_{t=1}^{T} h_{1}\left(a^{t}\left(f_{1}, g_{2}\right)\right) \leq 3 T+1
$$

5.4.- "Folk" Theorems

- Thus,

$$
\begin{aligned}
H_{1}^{\infty}\left(f_{1}, g_{2}\right) & =H\left(\left\{\frac{1}{T} \sum_{t=1}^{T} h_{1}\left(a^{t}\left(f_{1}, g_{2}\right)\right)\right\}_{t=1}^{T}\right) \\
& \leq \limsup _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{1}\left(a^{t}\left(f_{1}, g_{2}\right)\right) \\
& \leq \limsup _{n \rightarrow \infty}^{T}(3 T+1)=3 \\
& =H_{1}^{\infty}\left(g_{1}, g_{2}\right)
\end{aligned}
$$

5.4.- "Folk" Theorems

- Thus,

$$
\begin{aligned}
H_{1}^{\infty}\left(f_{1}, g_{2}\right) & =H\left(\left\{\frac{1}{T} \sum_{t=1}^{T} h_{1}\left(a^{t}\left(f_{1}, g_{2}\right)\right)\right\}_{t=1}^{T}\right) \\
& \leq \limsup _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{1}\left(a^{t}\left(f_{1}, g_{2}\right)\right) \\
& \leq \limsup _{n \rightarrow \infty}^{T}(3 T+1)=3 \\
& =H_{1}^{\infty}\left(g_{1}, g_{2}\right)
\end{aligned}
$$

- Therefore, for all $f_{1} \in F_{1}, H_{1}^{\infty}\left(f_{1}, g_{2}\right) \leq H_{1}^{\infty}\left(g_{1}, g_{2}\right)$.

5.4.- "Folk" Theorems

- Thus,

$$
\begin{aligned}
H_{1}^{\infty}\left(f_{1}, g_{2}\right) & =H\left(\left\{\frac{1}{T} \sum_{t=1}^{T} h_{1}\left(a^{t}\left(f_{1}, g_{2}\right)\right)\right\}_{t=1}^{T}\right) \\
& \leq \limsup _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{1}\left(a^{t}\left(f_{1}, g_{2}\right)\right) \\
& \leq \limsup _{n \rightarrow \infty}^{T}(3 T+1)=3 \\
& =H_{1}^{\infty}\left(g_{1}, g_{2}\right)
\end{aligned}
$$

- Therefore, for all $f_{1} \in F_{1}, H_{1}^{\infty}\left(f_{1}, g_{2}\right) \leq H_{1}^{\infty}\left(g_{1}, g_{2}\right)$.
- Hence, $\left(g_{1}, g_{2}\right) \in F_{\infty}^{*}$.

5.4.- "Folk" Theorems

- Thus,

$$
\begin{aligned}
H_{1}^{\infty}\left(f_{1}, g_{2}\right) & =H\left(\left\{\frac{1}{T} \sum_{t=1}^{T} h_{1}\left(a^{t}\left(f_{1}, g_{2}\right)\right)\right\}_{t=1}^{T}\right) \\
& \leq \limsup _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{1}\left(a^{t}\left(f_{1}, g_{2}\right)\right) \\
& \leq \limsup _{n \rightarrow \infty}^{T}(3 T+1)=3 \\
& =H_{1}^{\infty}\left(g_{1}, g_{2}\right)
\end{aligned}
$$

- Therefore, for all $f_{1} \in F_{1}, H_{1}^{\infty}\left(f_{1}, g_{2}\right) \leq H_{1}^{\infty}\left(g_{1}, g_{2}\right)$.
- Hence, $\left(g_{1}, g_{2}\right) \in F_{\infty}^{*}$.
- Note that this is independent of the particular Banach limit H chosen to evaluate sequences of averages.

5.4.- "Folk" Theorems

Objective: To describe, for every bounded game in normal form G, the set of equilibrium payoffs of G_{α} for $\alpha=T, \lambda, \infty$.

5.4.- "Folk" Theorems

Objective: To describe, for every bounded game in normal form G, the set of equilibrium payoffs of G_{α} for $\alpha=T, \lambda, \infty$.

- In terms of the payoffs $(h(a))_{a \in A}$ of G.

5.4.- "Folk" Theorems

Objective: To describe, for every bounded game in normal form G, the set of equilibrium payoffs of G_{α} for $\alpha=T, \lambda, \infty$.

- In terms of the payoffs $(h(a))_{a \in A}$ of G.
- In general, for $\alpha=T, \lambda, \infty, F_{\alpha}^{*}$ is extremely large.

5.4.- "Folk" Theorems

Objective: To describe, for every bounded game in normal form G, the set of equilibrium payoffs of G_{α} for $\alpha=T, \lambda, \infty$.

- In terms of the payoffs $(h(a))_{a \in A}$ of G.
- In general, for $\alpha=T, \lambda, \infty, F_{\alpha}^{*}$ is extremely large.
- Relationships:

5.4.- "Folk" Theorems

Objective: To describe, for every bounded game in normal form G, the set of equilibrium payoffs of G_{α} for $\alpha=T, \lambda, \infty$.

- In terms of the payoffs $(h(a))_{a \in A}$ of G.
- In general, for $\alpha=T, \lambda, \infty, F_{\alpha}^{*}$ is extremely large.
- Relationships:
- $F_{\lambda}^{*} \underset{\lambda \rightarrow 1}{\longrightarrow} F_{\infty}^{*}$ and $F_{T}^{*} \underset{\lambda \rightarrow 1}{\longrightarrow} F_{\infty}^{*}$?

5.4.- "Folk" Theorems

Objective: To describe, for every bounded game in normal form G, the set of equilibrium payoffs of G_{α} for $\alpha=T, \lambda, \infty$.

- In terms of the payoffs $(h(a))_{a \in A}$ of G.
- In general, for $\alpha=T, \lambda, \infty, F_{\alpha}^{*}$ is extremely large.
- Relationships:
- $F_{\lambda}^{*} \underset{\lambda \rightarrow 1}{\longrightarrow} F_{\infty}^{*}$ and $F_{T}^{*} \underset{\lambda \rightarrow 1}{\longrightarrow} F_{\infty}^{*}$?
- These collection of results are some times called Aumann-Shapley-Rubinstein Theorems.

5.4.- "Folk" Theorems

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a bounded game in normal form.

5.4.- "Folk" Theorems

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a bounded game in normal form.
- Definition The payoff $x_{i} \in \mathbb{R}$ is individually rational for player $i \in I$ if

$$
x_{i} \geq \inf _{a_{-i} \in A_{-i}} \sup _{a_{i} \in A_{i}} h_{i}\left(a_{i}, a_{-i}\right) \equiv R_{i} .
$$

5.4.- "Folk" Theorems

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a bounded game in normal form.
- Definition The payoff $x_{i} \in \mathbb{R}$ is individually rational for player $i \in I$ if

$$
x_{i} \geq \inf _{a_{-i} \in A_{-i}} \sup _{a_{i} \in A_{i}} h_{i}\left(a_{i}, a_{-i}\right) \equiv R_{i} .
$$

- Remark: If G is bounded, then $R_{i}=\min _{a_{-i} \in A_{-i}} \max _{a_{i} \in A_{i}} h_{i}\left(a_{i}, a_{-i}\right)$.

5.4.- "Folk" Theorems

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a bounded game in normal form.
- Definition The payoff $x_{i} \in \mathbb{R}$ is individually rational for player $i \in I$ if

$$
x_{i} \geq \inf _{a_{-i} \in A_{-i}} \sup _{a_{i} \in A_{i}} h_{i}\left(a_{i}, a_{-i}\right) \equiv R_{i} .
$$

- Remark: If G is bounded, then $R_{i}=\min _{a_{-i} \in A_{-i}} \max _{a_{i} \in A_{i}} h_{i}\left(a_{i}, a_{-i}\right)$.
- Interpretation: Player i can guarantee R_{i} by himself.

5.4.- "Folk" Theorems

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a bounded game in normal form.
- Definition The payoff $x_{i} \in \mathbb{R}$ is individually rational for player $i \in I$ if

$$
x_{i} \geq \inf _{a_{-i} \in A_{-i}} \sup _{a_{i} \in A_{i}} h_{i}\left(a_{i}, a_{-i}\right) \equiv R_{i} .
$$

- Remark: If G is bounded, then $R_{i}=\min _{a_{-i} \in A_{-i}} \max _{a_{i} \in A_{i}} h_{i}\left(a_{i}, a_{-i}\right)$.
- Interpretation: Player i can guarantee R_{i} by himself.
- Punishment idea: the other players choose their actions and then i chooses his best action.

5.4.- "Folk" Theorems

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a bounded game in normal form.
- Definition The payoff $x_{i} \in \mathbb{R}$ is individually rational for player $i \in I$ if

$$
x_{i} \geq \inf _{a_{-i} \in A_{-i}} \sup _{a_{i} \in A_{i}} h_{i}\left(a_{i}, a_{-i}\right) \equiv R_{i} .
$$

- Remark: If G is bounded, then $R_{i}=\min _{a_{-i} \in A_{-i}} \max _{a_{i} \in A_{i}} h_{i}\left(a_{i}, a_{-i}\right)$.
- Interpretation: Player i can guarantee R_{i} by himself.
- Punishment idea: the other players choose their actions and then i chooses his best action.
- Warning: with mixed strategies, this minimax may be smaller; i.e., there are games for which

$$
\inf _{\sigma_{-i} \in \Sigma_{-i}} \sup _{\sigma_{i} \in \Sigma_{i}} H_{i}\left(\sigma_{i}, \sigma_{-i}\right)<\inf _{a_{-i} \in A_{-i}} \sup _{a_{i} \in A_{i}} h_{i}\left(a_{i}, a_{-i}\right) .
$$

5.4.- "Folk" Theorems

- Examples:

5.4.- "Folk" Theorems

- Examples:
- Prisoners' Dilemma: $R_{i}=\min \{\max \{3,4\}, \max \{0,1\}\}=1$.

5.4.- "Folk" Theorems

- Examples:
- Prisoners' Dilemma: $R_{i}=\min \{\max \{3,4\}, \max \{0,1\}\}=1$.
- Battle of Sexes: $R_{i}=\min \{\max \{3,0\}, \max \{0,1\}\}=1$.

5.4.- "Folk" Theorems

- Examples:
- Prisoners' Dilemma: $R_{i}=\min \{\max \{3,4\}, \max \{0,1\}\}=1$.
- Battle of Sexes: $R_{i}=\min \{\max \{3,0\}, \max \{0,1\}\}=1$.
- Coordination Game: $R_{i}=\min \{\max \{1,0\}, \max \{0,2\}\}=1$.

5.4.- "Folk" Theorems

- Examples:
- Prisoners' Dilemma: $R_{i}=\min \{\max \{3,4\}, \max \{0,1\}\}=1$.
- Battle of Sexes: $R_{i}=\min \{\max \{3,0\}, \max \{0,1\}\}=1$.
- Coordination Game: $R_{i}=\min \{\max \{1,0\}, \max \{0,2\}\}=1$.
- Matching Pennies: $R_{i}=\min \{\max \{1,-1\}, \max \{1,-1\}\}=1$.

5.4.- "Folk" Theorems

- Examples:
- Prisoners' Dilemma: $R_{i}=\min \{\max \{3,4\}, \max \{0,1\}\}=1$.
- Battle of Sexes: $R_{i}=\min \{\max \{3,0\}, \max \{0,1\}\}=1$.
- Coordination Game: $R_{i}=\min \{\max \{1,0\}, \max \{0,2\}\}=1$.
- Matching Pennies: $R_{i}=\min \{\max \{1,-1\}, \max \{1,-1\}\}=1$.
- Notation: $C(G)=c l\left(c o\left\{h(a) \in \mathbb{R}^{\# I} \mid a \in A\right\}\right)$.

5.4.- "Folk" Theorems

- Examples:
- Prisoners' Dilemma: $R_{i}=\min \{\max \{3,4\}, \max \{0,1\}\}=1$.
- Battle of Sexes: $R_{i}=\min \{\max \{3,0\}, \max \{0,1\}\}=1$.
- Coordination Game: $R_{i}=\min \{\max \{1,0\}, \max \{0,2\}\}=1$.
- Matching Pennies: $R_{i}=\min \{\max \{1,-1\}, \max \{1,-1\}\}=1$.
- Notation: $C(G)=c l\left(c o\left\{h(a) \in \mathbb{R}^{\# I} \mid a \in A\right\}\right)$.
- If G is finite, $C(G)=c o\left\{h(a) \in \mathbb{R}^{\# \prime} \mid a \in A\right\}$.

5.4.- "Folk" Theorems

5.4.- "Folk" Theorems

Infinitely Repeated

5.4.- "Folk" Theorems

Infinitely Repeated

Theorem

Let G be a bounded game in normal form. Then,

$$
\left\{H^{\infty}(f) \in \mathbb{R}^{\# I} \mid f \in F_{\infty}^{*}\right\}=\left\{x \in C(G) \mid x_{i} \geq R_{i} \text { for all } i \in I\right\}
$$

5.4.- "Folk" Theorems

5.4.- "Folk" Theorems

5.4.- "Folk" Theorems

5.4.- "Folk" Theorems

5.4.- "Folk" Theorems

Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a finite game in normal form.

5.4.- "Folk" Theorems

Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a finite game in normal form.
Proposition 1 If f is an equilibrium of G_{α} for $\alpha=T, \lambda, \infty$ then, $H_{i}^{\alpha}(f) \geq R_{i}$ for all $i \in I$.

5.4.- "Folk" Theorems

Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a finite game in normal form.
Proposition 1 If f is an equilibrium of G_{α} for $\alpha=T, \lambda, \infty$ then, $H_{i}^{\alpha}(f) \geq R_{i}$ for all $i \in I$.
Proposition 2 Let $\left\{a^{t}\right\}_{t=1}^{\infty}$ be such that $a^{t} \in A$ for all $t \geq 1$ and $\liminf _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\right) \geq R_{i}$ for all $i \in I$ then, there exists an $f \in F$ such that (1) f is an equilibrium of G_{∞} and (2) $a^{t}(f)=a^{t}$ for all $t \geq 1$.

5.4.- "Folk" Theorems

Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a finite game in normal form.
Proposition 1 If f is an equilibrium of G_{α} for $\alpha=T, \lambda, \infty$ then, $H_{i}^{\alpha}(f) \geq R_{i}$ for all $i \in I$.
Proposition 2 Let $\left\{a^{t}\right\}_{t=1}^{\infty}$ be such that $a^{t} \in A$ for all $t \geq 1$ and $\liminf _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\right) \geq R_{i}$ for all $i \in I$ then, there exists an $f \in F$ such that (1) f is an equilibrium of G_{∞} and (2) $a^{t}(f)=a^{t}$ for all $t \geq 1$.

Proposition 3 For every $x \in C(G)$ there exists a sequence $\left\{a^{t}\right\}_{t=1}^{\infty}$ such that $a^{t} \in A$ for all $t \geq 1$ and for all $i \in I, \lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\right)$ exists and it is equal to x_{i}.

5.4.- "Folk" Theorems

Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a finite game in normal form.
Proposition 1 If f is an equilibrium of G_{α} for $\alpha=T, \lambda, \infty$ then, $H_{i}^{\alpha}(f) \geq R_{i}$ for all $i \in I$.

Proposition 2 Let $\left\{a^{t}\right\}_{t=1}^{\infty}$ be such that $a^{t} \in A$ for all $t \geq 1$ and $\liminf _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\right) \geq R_{i}$ for all $i \in I$ then, there exists an $f \in F$ such that (1) f is an equilibrium of G_{∞} and (2) $a^{t}(f)=a^{t}$ for all $t \geq 1$.

Proposition 3 For every $x \in C(G)$ there exists a sequence $\left\{a^{t}\right\}_{t=1}^{\infty}$ such that $a^{t} \in A$ for all $t \geq 1$ and for all $i \in I, \lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\right)$ exists and it is equal to x_{i}.

Proposition 4 For every $f \in F$ and every $\alpha=T, \lambda, \infty, H^{\alpha}(f) \in C(G)$.

5.4.- "Folk" Theorems

Proposition 1: Intuition

5.4.- "Folk" Theorems

Proposition 1: Intuition
Proposition 1 If f is an equilibrium of G_{α} for $\alpha=T, \lambda, \infty$ then, $H_{i}^{\alpha}(f) \geq R_{i}$ for all $i \in I$.

5.4.- "Folk" Theorems

Proposition 1: Intuition
Proposition 1 If f is an equilibrium of G_{α} for $\alpha=T, \lambda, \infty$ then, $H_{i}^{\alpha}(f) \geq R_{i}$ for all $i \in I$.

- Let $f \in F$ and $i \in I$ be arbitrary. Define recursively $g_{i} \in F_{i}$ as follows:

5.4.- "Folk" Theorems

Proposition 1: Intuition
Proposition 1 If f is an equilibrium of G_{α} for $\alpha=T, \lambda, \infty$ then, $H_{i}^{\alpha}(f) \geq R_{i}$ for all $i \in I$.

- Let $f \in F$ and $i \in I$ be arbitrary. Define recursively $g_{i} \in F_{i}$ as follows:
- Given $a^{1}(f)$ let $b_{i}^{1} \in A_{i}$ be s.t. $h_{i}\left(b_{i}^{1}, a^{1}(f)_{-i}\right) \geq R_{i}$; it exists since
$R_{i}=\min _{a_{-i} \in A_{-i}} \max _{a_{i} \in A_{i}} h_{i}\left(a_{i}, a_{-i}\right) \leq \max _{a_{i} \in A_{i}} h_{i}\left(a_{i}, a^{1}(f)_{-i}\right)=h_{i}\left(b_{i}^{1}, a^{1}(f)_{-i}\right)$.
Then, set $g_{i}^{1}=b_{i}^{1}$.

5.4.- "Folk" Theorems

Proposition 1: Intuition
Proposition 1 If f is an equilibrium of G_{α} for $\alpha=T, \lambda, \infty$ then, $H_{i}^{\alpha}(f) \geq R_{i}$ for all $i \in I$.

- Let $f \in F$ and $i \in I$ be arbitrary. Define recursively $g_{i} \in F_{i}$ as follows:
- Given $a^{1}(f)$ let $b_{i}^{1} \in A_{i}$ be s.t. $h_{i}\left(b_{i}^{1}, a^{1}(f)_{-i}\right) \geq R_{i}$; it exists since
$R_{i}=\min _{a_{-i} \in A_{-i}} \max _{a_{i} \in A_{i}} h_{i}\left(a_{i}, a_{-i}\right) \leq \max _{a_{i} \in A_{i}} h_{i}\left(a_{i}, a^{1}(f)_{-i}\right)=h_{i}\left(b_{i}^{1}, a^{1}(f)_{-i}\right)$.
Then, set $g_{i}^{1}=b_{i}^{1}$.
- Assume g_{i} has been defined up to t. Let $b_{i}^{t+1} \in A_{i}$ be s.t. $h_{i}\left(b_{i}^{1+1}, f^{t+1}\left(a^{1}\left(g_{i}, f_{-i}\right), \ldots, a^{t}\left(g_{i}, f_{-i}\right)\right)_{-i}\right) \geq R_{i}$; as before, it also exists. Then, for all $\left(a^{1}, \ldots, a^{t}\right) \in A^{t}$, set

$$
g_{i}^{t+1}\left(a^{1}, \ldots, a^{t}\right)= \begin{cases}b_{i}^{t+1} & \text { if } \forall 1 \leq s \leq t, a^{s}=a^{s}\left(g_{i}, f_{-i}\right) \\ f_{i}^{t+1}\left(a^{1}, \ldots, a^{t}\right) & \text { otherwise. }\end{cases}
$$

5.4.- "Folk" Theorems

Proposition 1: Intuition

- It is possible to show that, by the definition of g_{i},

$$
h_{i}\left(a^{t}\left(g_{i}, f_{-i}\right)\right) \geq R_{i}
$$

5.4.- "Folk" Theorems

Proposition 1: Intuition

- It is possible to show that, by the definition of g_{i},

$$
h_{i}\left(a^{t}\left(g_{i}, f_{-i}\right)\right) \geq R_{i}
$$

- Hence, for all $\alpha=T, \lambda, \infty, H_{i}^{\alpha}\left(g_{i}, f_{-i}\right) \geq R_{i}$.

5.4.- "Folk" Theorems

Proposition 1: Intuition

- It is possible to show that, by the definition of g_{i},

$$
h_{i}\left(a^{t}\left(g_{i}, f_{-i}\right)\right) \geq R_{i} .
$$

- Hence, for all $\alpha=T, \lambda, \infty, H_{i}^{\alpha}\left(g_{i}, f_{-i}\right) \geq R_{i}$.
- Thus, if for $\alpha=T, \lambda, \infty, f \in G_{\alpha}^{*}$ then, it must be the case that

$$
H_{i}^{\alpha}(f) \geq R_{i} .
$$

5.4.- "Folk" Theorems

Proposition 2: Intuition

Proposition 2 Let $\left\{a^{t}\right\}_{t=1}^{\infty}$ be such that $a^{t} \in A$ for all $t \geq 1$ and $\liminf _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\right) \geq R_{i}$ for all $i \in I$ then, there exists an $f \in F$ such that
(1) f is an equilibrium of G_{∞} and (2) $a^{t}(f)=a^{t}$ for all $t \geq 1$.

5.4.- "Folk" Theorems

Proposition 2: Intuition

Proposition 2 Let $\left\{a^{t}\right\}_{t=1}^{\infty}$ be such that $a^{t} \in A$ for all $t \geq 1$ and $\liminf _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\right) \geq R_{i}$ for all $i \in I$ then, there exists an $f \in F$ such that (1) f is an equilibrium of G_{∞} and (2) $a^{t}(f)=a^{t}$ for all $t \geq 1$.

- For every $i \in I$, there exists $a(i) \in A$ such that $h_{i}\left(b_{i}, a(i)_{-i}\right) \leq R_{i}$ for all $b_{i} \in A_{i}$. Observe that

$$
R_{i}=\min _{a_{-i} \in A_{-i}} \max _{a_{i} \in A_{i}} h_{i}\left(a_{i}, a_{-i}\right)=\max _{a_{i} \in A_{i}} h_{i}\left(a_{i}, a(i)_{-i}\right) \geq h_{i}\left(b_{i}, a(i)_{-i}\right)
$$

for all $b_{i} \in A_{i}$.

5.4.- "Folk" Theorems

Proposition 2: Intuition

Proposition 2 Let $\left\{a^{t}\right\}_{t=1}^{\infty}$ be such that $a^{t} \in A$ for all $t \geq 1$ and $\liminf _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\right) \geq R_{i}$ for all $i \in I$ then, there exists an $f \in F$ such that (1) f is an equilibrium of G_{∞} and (2) $a^{t}(f)=a^{t}$ for all $t \geq 1$.

- For every $i \in I$, there exists $a(i) \in A$ such that $h_{i}\left(b_{i}, a(i)_{-i}\right) \leq R_{i}$ for all $b_{i} \in A_{i}$. Observe that

$$
R_{i}=\min _{a_{-i} \in A_{-i}} \max _{a_{i} \in A_{i}} h_{i}\left(a_{i}, a_{-i}\right)=\max _{a_{i} \in A_{i}} h_{i}\left(a_{i}, a(i)_{-i}\right) \geq h_{i}\left(b_{i}, a(i)_{-i}\right)
$$

for all $b_{i} \in A_{i}$.

- For every $j \in I$, set $f_{j}^{1}=a_{j}^{1}$.

5.4.- "Folk" Theorems

Proposition 2: Intuition

Proposition 2 Let $\left\{a^{t}\right\}_{t=1}^{\infty}$ be such that $a^{t} \in A$ for all $t \geq 1$ and $\liminf _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\right) \geq R_{i}$ for all $i \in I$ then, there exists an $f \in F$ such that (1) f is an equilibrium of G_{∞} and (2) $a^{t}(f)=a^{t}$ for all $t \geq 1$.

- For every $i \in I$, there exists $a(i) \in A$ such that $h_{i}\left(b_{i}, a(i)_{-i}\right) \leq R_{i}$ for all $b_{i} \in A_{i}$. Observe that

$$
R_{i}=\min _{a_{-i} \in A_{-i}} \max _{a_{i} \in A_{i}} h_{i}\left(a_{i}, a_{-i}\right)=\max _{a_{i} \in A_{i}} h_{i}\left(a_{i}, a(i)_{-i}\right) \geq h_{i}\left(b_{i}, a(i)_{-i}\right)
$$ for all $b_{i} \in A_{i}$.

- For every $j \in I$, set $f_{j}^{1}=a_{j}^{1}$.
- Take any function $\gamma: 2^{\prime} \backslash\{\varnothing\} \longrightarrow I$ with the property that for all $J \in 2^{\prime} \backslash\{\varnothing\}, \gamma(J) \in J$.

5.4.- "Folk" Theorems

Proposition 2: Intuition

- Let $\left(b^{1}, \ldots, b^{t}\right) \in A^{t}$ be arbitrary. Let $s=\min \left\{1 \leq r \leq t \mid b^{r} \neq a^{r}\right\}$, $J=\left\{k \in I \mid b_{k}^{s} \neq a_{k}^{s}\right\}$ and $i=\gamma(J)$.

5.4.- "Folk" Theorems

Proposition 2: Intuition

- Let $\left(b^{1}, \ldots, b^{t}\right) \in A^{t}$ be arbitrary. Let $s=\min \left\{1 \leq r \leq t \mid b^{r} \neq a^{r}\right\}$, $J=\left\{k \in I \mid b_{k}^{s} \neq a_{k}^{s}\right\}$ and $i=\gamma(J)$.
- Define

$$
f_{j}^{t+1}\left(b^{1}, \ldots, b^{t}\right)= \begin{cases}a_{j}^{t+1} & \text { if } \forall 1 \leq r \leq t, b^{r}=a^{r} \\ a(i)_{j} & \text { otherwise } .\end{cases}
$$

5.4.- "Folk" Theorems

Proposition 2: Intuition

- Let $\left(b^{1}, \ldots, b^{t}\right) \in A^{t}$ be arbitrary. Let $s=\min \left\{1 \leq r \leq t \mid b^{r} \neq a^{r}\right\}$, $J=\left\{k \in I \mid b_{k}^{s} \neq a_{k}^{s}\right\}$ and $i=\gamma(J)$.
- Define

$$
f_{j}^{t+1}\left(b^{1}, \ldots, b^{t}\right)= \begin{cases}a_{j}^{t+1} & \text { if } \forall 1 \leq r \leq t, b^{r}=a^{r} \\ a(i)_{j} & \text { otherwise }\end{cases}
$$

- It is easy to show that for all $t \geq 1, a^{t}(f)=a^{t}$ (namely, (ii) is proven).

5.4.- "Folk" Theorems

Proposition 2: Intuition

- Let $\left(b^{1}, \ldots, b^{t}\right) \in A^{t}$ be arbitrary. Let $s=\min \left\{1 \leq r \leq t \mid b^{r} \neq a^{r}\right\}$, $J=\left\{k \in I \mid b_{k}^{s} \neq a_{k}^{s}\right\}$ and $i=\gamma(J)$.
- Define

$$
f_{j}^{t+1}\left(b^{1}, \ldots, b^{t}\right)= \begin{cases}a_{j}^{t+1} & \text { if } \forall 1 \leq r \leq t, b^{r}=a^{r} \\ a(i)_{j} & \text { otherwise }\end{cases}
$$

- It is easy to show that for all $t \geq 1, a^{t}(f)=a^{t}$ (namely, (ii) is proven).
- For any $g_{i} \in F_{i}$ either $a^{t}(f)=a^{t}\left(g_{i}, f_{-i}\right)$ for all $t \geq 1$, in which case $H_{i}^{\infty}(f)=H_{i}\left(g_{i}, f_{-i}\right)$ or else there exists $s=\min \left\{t \geq 1 \mid a^{t}\left(g_{i}, f_{-i}\right) \neq a^{t}(f)\right\}$. Then, $J=\{i\}$ and $\gamma(\{i\})=i$. Thus,

5.4.- "Folk" Theorems

Proposition 2: Intuition

$$
\begin{aligned}
H_{i}^{\infty}\left(g_{i}, f_{-i}\right) & =H\left(\left\{\frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\left(g_{i}, f_{-i}\right)\right\}_{T=1}^{\infty}\right)\right. \\
& \leq \limsup _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\left(g_{i}, f_{-i}\right)\right. \\
& \leq \limsup _{T \rightarrow \infty} \frac{1}{T}\left[s \max \left\{h_{i}(a) \mid a \in A\right\}+(T-s) R_{i}\right] \\
& \leq \limsup ^{\frac{1}{T} s \max \left\{h_{i}(a) \mid a \in A\right\}+\lim \sup \frac{1}{T}(T-s) R_{i}} \\
& \leq \limsup _{T \rightarrow \infty} \frac{1}{T} T R_{i} \\
& =R_{i} \\
& \leq \liminf _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\right) \quad \text { by hypothesis } \\
& \leq \liminf _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right) \quad \text { by (ii) } \\
& \leq H_{i}^{\infty}(f) .
\end{aligned}
$$

5.4.- "Folk" Theorems

Proposition 2: Intuition

$$
\begin{aligned}
H_{i}^{\infty}\left(g_{i}, f_{-i}\right) & =H\left(\left\{\frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\left(g_{i}, f_{-i}\right)\right\}_{T=1}^{\infty}\right)\right. \\
& \leq \limsup _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\left(g_{i}, f_{-i}\right)\right. \\
& \leq \limsup _{T \rightarrow \infty} \frac{1}{T}\left[s \max \left\{h_{i}(a) \mid a \in A\right\}+(T-s) R_{i}\right] \\
& \leq \limsup ^{\frac{1}{T} s \max \left\{h_{i}(a) \mid a \in A\right\}+\lim \sup \frac{1}{T}(T-s) R_{i}} \\
& \leq \limsup _{T \rightarrow \infty} \frac{1}{T} T R_{i} \\
& =R_{i} \\
& \leq \liminf _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\right) \quad \text { by hypothesis } \\
& \leq \liminf _{n \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right) \quad \text { by (ii) } \\
& \leq H_{i}^{\infty}(f) .
\end{aligned}
$$

But since g_{i} was arbitrary, $f \in F_{\infty}^{*}$.

5.4.- "Folk" Theorems

Proposition 3: Intuition

Proposition 3 For every $x \in C(G)$ there exists a sequence $\left\{a^{t}\right\}_{t=1}^{\infty}$ such that $a^{t} \in A$ for all $t \geq 1$ and for all $i \in I, \lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\right)$ exists and it is equal to x_{i}.

5.4.- "Folk" Theorems

Proposition 3: Intuition

Proposition 3 For every $x \in C(G)$ there exists a sequence $\left\{a^{t}\right\}_{t=1}^{\infty}$ such that $a^{t} \in A$ for all $t \geq 1$ and for all $i \in I, \lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\right)$ exists and it is equal to x_{i}.

Proposition 3 follows (after some work to deal with convex combinations with non-rational coefficients) from the following result which in turn follows from a more general result (Caratheodory Theorem).

5.4.- "Folk" Theorems

Proposition 3: Intuition

Proposition 3 For every $x \in C(G)$ there exists a sequence $\left\{a^{t}\right\}_{t=1}^{\infty}$ such that $a^{t} \in A$ for all $t \geq 1$ and for all $i \in I, \lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\right)$ exists and it is equal to x_{i}.

Proposition 3 follows (after some work to deal with convex combinations with non-rational coefficients) from the following result which in turn follows from a more general result (Caratheodory Theorem).
Result Let $X=\operatorname{co}\left\{x^{1}, \ldots, x^{K}\right\} \subseteq \mathbb{R}^{n}$. For every $x \in X$ there exist $y^{1}, \ldots, y^{n+1} \in\left\{x^{1}, \ldots, x^{k}\right\}$ and $p^{1}, \ldots, p^{n+1} \geq 0$ such that $\sum_{j=1}^{n+1} p^{j}=1$ with the property that $x=\sum_{j=1}^{n+1} p^{j} y^{j}$.

5.4.- "Folk" Theorems

Proposition 4: Intuition

Proposition 4 For every $f \in F$ and every $\alpha=T, \lambda, \infty, H^{\alpha}(f) \in C(G)$.

5.4.- "Folk" Theorems

Proposition 4: Intuition

Proposition 4 For every $f \in F$ and every $\alpha=T, \lambda, \infty, H^{\alpha}(f) \in C(G)$.

- For $\alpha=T, \infty$ the statement obviously holds.

5.4.- "Folk" Theorems

Proposition 4: Intuition

Proposition 4 For every $f \in F$ and every $\alpha=T, \lambda, \infty, H^{\alpha}(f) \in C(G)$.

- For $\alpha=T, \infty$ the statement obviously holds.
- For $\alpha=\lambda$, observe that for every $t \geq 1,0 \leq(1-\lambda) \lambda^{t-1} \leq 1$ and $(1-\lambda) \sum_{t=1}^{\infty} \lambda^{t-1}=(1-\lambda) \frac{1}{1-\lambda}=1$. Thus, each $(1-\lambda) \lambda^{t-1}$ can be seen as the coefficient of an (infinite) convex combination: Thus, $H^{\lambda}(f)=(1-\lambda) \sum_{t=1}^{\infty} \lambda^{t-1} h\left(a^{t}(f)\right) \in C(G)$.

5.4.- "Folk" Theorems

- Proof of the Theorem

5.4.- "Folk" Theorems

- Proof of the Theorem
- \subseteq) Let f be an equilibrium of G_{α}.

5.4.- "Folk" Theorems

- Proof of the Theorem
- $\subseteq)$ Let f be an equilibrium of G_{α}.
- By Proposition $1, H_{i}^{\alpha}(f) \geq R_{i}$ for all $i \in I$.

5.4.- "Folk" Theorems

- Proof of the Theorem
- \subseteq) Let f be an equilibrium of G_{α}.
- By Proposition $1, H_{i}^{\alpha}(f) \geq R_{i}$ for all $i \in I$.
- By Proposition $4, H^{\alpha}(f) \in C(G)$.

5.4.- "Folk" Theorems

- Proof of the Theorem
- \subseteq) Let f be an equilibrium of G_{α}.
- By Proposition $1, H_{i}^{\alpha}(f) \geq R_{i}$ for all $i \in I$.
- By Proposition $4, H^{\alpha}(f) \in C(G)$.
- Hence, $H^{\alpha}(f) \in\left\{x \in C(G) \mid x_{i} \geq R_{i}\right.$ for all $\left.i \in I\right\}$.

5.4.- "Folk" Theorems

- Proof of the Theorem
- \subseteq) Let f be an equilibrium of G_{α}.
- By Proposition $1, H_{i}^{\alpha}(f) \geq R_{i}$ for all $i \in I$.
- By Proposition $4, H^{\alpha}(f) \in C(G)$.
- Hence, $H^{\alpha}(f) \in\left\{x \in C(G) \mid x_{i} \geq R_{i}\right.$ for all $\left.i \in I\right\}$.
- $\supseteq)$ Let $x \in C(G)$ and assume $x_{i} \geq R_{i}$ for all $i \in I$.

5.4.- "Folk" Theorems

- Proof of the Theorem
- \subseteq) Let f be an equilibrium of G_{α}.
- By Proposition $1, H_{i}^{\alpha}(f) \geq R_{i}$ for all $i \in I$.
- By Proposition 4, $H^{\alpha}(f) \in C(G)$.
- Hence, $H^{\alpha}(f) \in\left\{x \in C(G) \mid x_{i} \geq R_{i}\right.$ for all $\left.i \in I\right\}$.
- $\supseteq)$ Let $x \in C(G)$ and assume $x_{i} \geq R_{i}$ for all $i \in I$.
- By Proposition 3, there exists a sequence $\left\{a^{t}\right\}_{t=1}^{\infty}$ such that $a^{t} \in A$ for all $t \geq 1$ and for all $i \in I, \lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\right)=x_{i}$.

5.4.- "Folk" Theorems

- Proof of the Theorem
- $\subseteq)$ Let f be an equilibrium of G_{α}.
- By Proposition $1, H_{i}^{\alpha}(f) \geq R_{i}$ for all $i \in I$.
- By Proposition $4, H^{\alpha}(f) \in C(G)$.
- Hence, $H^{\alpha}(f) \in\left\{x \in C(G) \mid x_{i} \geq R_{i}\right.$ for all $\left.i \in I\right\}$.
- $\supseteq)$ Let $x \in C(G)$ and assume $x_{i} \geq R_{i}$ for all $i \in I$.
- By Proposition 3, there exists a sequence $\left\{a^{t}\right\}_{t=1}^{\infty}$ such that $a^{t} \in A$ for all $t \geq 1$ and for all $i \in I, \lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\right)=x_{i}$.
- By Proposition 2, there exists $f \in F$ such that (1) f is an equilibrium of G_{∞} and (2) $a^{t}(f)=a^{t}$ for all $t \geq 1$.

5.4.- "Folk" Theorems

- Proof of the Theorem
- \subseteq) Let f be an equilibrium of G_{α}.
- By Proposition $1, H_{i}^{\alpha}(f) \geq R_{i}$ for all $i \in I$.
- By Proposition 4, $H^{\alpha}(f) \in C(G)$.
- Hence, $H^{\alpha}(f) \in\left\{x \in C(G) \mid x_{i} \geq R_{i}\right.$ for all $\left.i \in I\right\}$.
- $\supseteq)$ Let $x \in C(G)$ and assume $x_{i} \geq R_{i}$ for all $i \in I$.
- By Proposition 3, there exists a sequence $\left\{a^{t}\right\}_{t=1}^{\infty}$ such that $a^{t} \in A$ for all $t \geq 1$ and for all $i \in I, \lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\right)=x_{i}$.
- By Proposition 2, there exists $f \in F$ such that (1) f is an equilibrium of G_{∞} and (2) $a^{t}(f)=a^{t}$ for all $t \geq 1$.
- Hence, for all $i \in I$,

$$
H_{i}^{\infty}(f)=H\left(\left\{\frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)\right\}_{T=1}^{\infty}\right)=\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\right)=x_{i}
$$

5.4.- "Folk" Theorems

- Proof of the Theorem
- \subseteq) Let f be an equilibrium of G_{α}.
- By Proposition $1, H_{i}^{\alpha}(f) \geq R_{i}$ for all $i \in I$.
- By Proposition $4, H^{\alpha}(f) \in C(G)$.
- Hence, $H^{\alpha}(f) \in\left\{x \in C(G) \mid x_{i} \geq R_{i}\right.$ for all $\left.i \in I\right\}$.
- $\supseteq)$ Let $x \in C(G)$ and assume $x_{i} \geq R_{i}$ for all $i \in I$.
- By Proposition 3, there exists a sequence $\left\{a^{t}\right\}_{t=1}^{\infty}$ such that $a^{t} \in A$ for all $t \geq 1$ and for all $i \in I, \lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\right)=x_{i}$.
- By Proposition 2, there exists $f \in F$ such that (1) f is an equilibrium of G_{∞} and (2) $a^{t}(f)=a^{t}$ for all $t \geq 1$.
- Hence, for all $i \in I$,

$$
H_{i}^{\infty}(f)=H\left(\left\{\frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}(f)\right)\right\}_{T=1}^{\infty}\right)=\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} h_{i}\left(a^{t}\right)=x_{i} .
$$

- Thus, $x \in\left\{H^{\infty}(f) \in \mathbb{R}^{\# \prime} \mid f\right.$ is an equilibrium of $\left.G_{\infty}\right\}$.

5.4.- "Folk" Theorems

Discounted Repeated

Theorem

For every $x \in C(G)$ such that $x_{i}>R_{i}$ for all $i \in I$, there exists $\underline{\lambda} \in(0,1)$ such that for all $\lambda \in(\underline{\lambda}, 1)$ there exists $f \in F_{\lambda}^{*}$ with the property that $H^{\lambda}(f)=x$.

5.4.- "Folk" Theorems

Finitely Repeated

Theorem

Benoit and Krishna (1987) Assume that for every $i \in I$ there exists $a^{*}(i) \in A^{*}$ such that $h_{i}\left(a^{*}(i)\right)>R_{i}$. Then, for all $x \in C(G)$ such that $x_{i}>R_{i}$ for all $i \in I$ and for every $\varepsilon>0$ there exists $\hat{T} \in \mathbb{N}$ such that for all $T>\hat{T}$ there exists $f \in F_{T}^{*}$ such that $\left\|H^{T}(f)-x\right\|<\varepsilon$.

5.4.- "Folk" Theorems

Finitely Repeated

Theorem

Benoît and Krishna (1987) Assume that for every $i \in I$ there exists $a^{*}(i) \in A^{*}$ such that $h_{i}\left(a^{*}(i)\right)>R_{i}$. Then, for all $x \in C(G)$ such that $x_{i}>R_{i}$ for all $i \in I$ and for every $\varepsilon>0$ there exists $\hat{T} \in \mathbb{N}$ such that for all $T>\hat{T}$ there exists $f \in F_{T}^{*}$ such that $\left\|H^{T}(f)-x\right\|<\varepsilon$.

- Benoît, J.P. and V. Krisnha. "Nash Equilibria of Finitely Repeated Games," International Journal of Game Theory 16, 1987.

5.4.- "Folk" Theorems

Finitely Repeated: Intuition

5.4.- "Folk" Theorems

Finitely Repeated: Intuition

- Terminal phase: for $Q \in \mathbb{N}$,

5.4.- "Folk" Theorems

Finitely Repeated: Intuition

- Terminal phase: for $Q \in \mathbb{N}$,

- Observe that for all $i \in N, h_{i}\left(a^{*}(i)\right)>R_{i}$ and $h_{i}\left(a^{*}(j)\right) \geq R_{i}$ for all $j \in N$.

5.4.- "Folk" Theorems

Finitely Repeated: Intuition

- Terminal phase: for $Q \in \mathbb{N}$,

- Observe that for all $i \in N, h_{i}\left(a^{*}(i)\right)>R_{i}$ and $h_{i}\left(a^{*}(j)\right) \geq R_{i}$ for all $j \in N$.
- Average payoffs in the terminal phase: for all $i \in N$,

$$
y_{i}=\frac{1}{Q n} Q \sum_{j=1}^{n} h_{i}\left(a^{*}(j)\right)=\frac{1}{n} \sum_{j=1}^{n} h_{i}\left(a^{*}(j)\right)>R_{i} .
$$

5.4.- "Folk" Theorems

Finitely Repeated: Intuition

- Terminal phase: for $Q \in \mathbb{N}$,

- Observe that for all $i \in N, h_{i}\left(a^{*}(i)\right)>R_{i}$ and $h_{i}\left(a^{*}(j)\right) \geq R_{i}$ for all $j \in N$.
- Average payoffs in the terminal phase: for all $i \in N$,

$$
y_{i}=\frac{1}{Q n} Q \sum_{j=1}^{n} h_{i}\left(a^{*}(j)\right)=\frac{1}{n} \sum_{j=1}^{n} h_{i}\left(a^{*}(j)\right)>R_{i} .
$$

- Given $x \in C(G)$ such that $x_{i}>R_{i}$ for all $i \in N$, choose Q with the property that for all $i \in N$,

$$
x_{i}+Q y_{i}>\sup _{a \in A} h_{i}(a)+Q R_{i}
$$

5.4.- "Folk" Theorems

Finitely Repeated: Intuition

- Given $\varepsilon>0$, choose $T \in \mathbb{N}$ such that there exists a cycle $\left\{a^{t}\right\}$ of length $T-Q n$ such that

$$
\left\|\frac{1}{T-Q n} \sum_{t=1}^{T-Q n} h\left(a^{t}\right)-x\right\|<\varepsilon .
$$

5.4.- "Folk" Theorems

Finitely Repeated: Intuition

- Given $\varepsilon>0$, choose $T \in \mathbb{N}$ such that there exists a cycle $\left\{a^{t}\right\}$ of length $T-Q n$ such that

$$
\left\|\frac{1}{T-Q n} \sum_{t=1}^{T-Q n} h\left(a^{t}\right)-x\right\|<\varepsilon .
$$

- Define $f \in F_{T}$: for $i \in N$,

5.4.- "Folk" Theorems

Finitely Repeated: Intuition

- Given $\varepsilon>0$, choose $T \in \mathbb{N}$ such that there exists a cycle $\left\{a^{t}\right\}$ of length $T-Q n$ such that

$$
\left\|\frac{1}{T-Q n} \sum_{t=1}^{T-Q n} h\left(a^{t}\right)-x\right\|<\varepsilon .
$$

- Define $f \in F_{T}$: for $i \in N$,
- for $1 \leq t \leq T$ - Qn.

$$
f_{i}^{t}(\cdot)= \begin{cases}a^{t} & \text { if all players follow the cycle }\left\{a^{t}\right\} \\ a(j)_{i} & \text { if } j \text { has deviated, }\end{cases}
$$

where $a(j)$ is such that $h_{j}\left(b_{j}, a(j)_{-j}\right) \leq R_{j}$ for all $b_{j} \in A_{j}$.

5.4.- "Folk" Theorems

Finitely Repeated: Intuition

- Given $\varepsilon>0$, choose $T \in \mathbb{N}$ such that there exists a cycle $\left\{a^{t}\right\}$ of length $T-Q n$ such that

$$
\left\|\frac{1}{T-Q n} \sum_{t=1}^{T-Q n} h\left(a^{t}\right)-x\right\|<\varepsilon .
$$

- Define $f \in F_{T}$: for $i \in N$,
- for $1 \leq t \leq T$ - Qn.

$$
f_{i}^{t}(\cdot)= \begin{cases}a^{t} & \text { if all players follow the cycle }\left\{a^{t}\right\} \\ a(j)_{i} & \text { if } j \text { has deviated, }\end{cases}
$$

where $a(j)$ is such that $h_{j}\left(b_{j}, a(j)_{-j}\right) \leq R_{j}$ for all $b_{j} \in A_{j}$.

- for $T-Q n+1 \leq t<T$.

$$
f_{i}^{t}(\cdot)=\text { terminal phase of Nash equilibria. }
$$

5.4.- "Folk" Theorems

Finitely Repeated: Intuition

- It is possible to show that for all T sufficiently large, all $i \in N$, and all $g_{i} \in F_{i}$,

$$
H_{i}^{T}(f) \geq H_{i}^{T}\left(g_{i}, f_{-i}\right) ;
$$

namely, $f \in F_{T}^{*}$.

5.4.- "Folk" Theorems

Finitely Repeated: Intuition

- It is possible to show that for all T sufficiently large, all $i \in N$, and all $g_{i} \in F_{i}$,

$$
H_{i}^{T}(f) \geq H_{i}^{T}\left(g_{i}, f_{-i}\right) ;
$$

namely, $f \in F_{T}^{*}$.

- Moreover, for sufficiently large T,

$$
\left\|H^{T}(f)-x\right\|<\varepsilon ;
$$

namely, the weight of the terminal phase vanishes.

5.4.- "Folk" Theorems: SPE

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a game in normal form.

5.4.- "Folk" Theorems: SPE

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a game in normal form.
- For every $t \geq 1$ and $i \in I$ define the mapping

$$
s_{i}: F_{i} \times A^{t} \longrightarrow F_{i},
$$

where, for every $\left(f_{i},\left(a^{1}, \ldots, a^{t}\right)\right) \in F_{i} \times A^{t}, s\left(f_{i},\left(a^{1}, \ldots, a^{t}\right)\right)_{i} \in F_{i}$ is obtained as follows:

5.4.- "Folk" Theorems: SPE

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a game in normal form.
- For every $t \geq 1$ and $i \in I$ define the mapping

$$
s_{i}: F_{i} \times A^{t} \longrightarrow F_{i},
$$

where, for every $\left(f_{i},\left(a^{1}, \ldots, a^{t}\right)\right) \in F_{i} \times A^{t}, s\left(f_{i},\left(a^{1}, \ldots, a^{t}\right)\right)_{i} \in F_{i}$ is obtained as follows:

- $s\left(f_{i},\left(a^{1}, \ldots, a^{t}\right)\right)_{i}^{1}=f_{i}^{t+1}\left(a^{1}, \ldots, a^{t}\right)$ and

5.4.- "Folk" Theorems: SPE

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a game in normal form.
- For every $t \geq 1$ and $i \in I$ define the mapping

$$
s_{i}: F_{i} \times A^{t} \longrightarrow F_{i},
$$

where, for every $\left(f_{i},\left(a^{1}, \ldots, a^{t}\right)\right) \in F_{i} \times A^{t}, s\left(f_{i},\left(a^{1}, \ldots, a^{t}\right)\right)_{i} \in F_{i}$ is obtained as follows:

- $s\left(f_{i},\left(a^{1}, \ldots, a^{t}\right)\right)_{i}^{1}=f_{i}^{t+1}\left(a^{1}, \ldots, a^{t}\right)$ and
- for all $r \geq 1$ and all $\left(b^{1}, \ldots, b^{r}\right) \in A^{r}$,

$$
s\left(f_{i},\left(a^{1}, \ldots, a^{t}\right)\right)_{i}^{r+1}\left(b^{1}, \ldots, b^{r}\right)=f_{i}^{t+r+1}\left(a^{1}, \ldots, a^{t}, b^{1}, \ldots, b^{r}\right)
$$

5.4.- "Folk" Theorems: SPE

- Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a game in normal form.
- For every $t \geq 1$ and $i \in I$ define the mapping

$$
s_{i}: F_{i} \times A^{t} \longrightarrow F_{i},
$$

where, for every $\left(f_{i},\left(a^{1}, \ldots, a^{t}\right)\right) \in F_{i} \times A^{t}, s\left(f_{i},\left(a^{1}, \ldots, a^{t}\right)\right)_{i} \in F_{i}$ is obtained as follows:

- $s\left(f_{i},\left(a^{1}, \ldots, a^{t}\right)\right)_{i}^{1}=f_{i}^{t+1}\left(a^{1}, \ldots, a^{t}\right)$ and
- for all $r \geq 1$ and all $\left(b^{1}, \ldots, b^{r}\right) \in A^{r}$,

$$
s\left(f_{i},\left(a^{1}, \ldots, a^{t}\right)\right)_{i}^{r+1}\left(b^{1}, \ldots, b^{r}\right)=f_{i}^{t+r+1}\left(a^{1}, \ldots, a^{t}, b^{1}, \ldots, b^{r}\right) .
$$

- Notation: for every $\left(f,\left(a^{1}, \ldots, a^{t}\right)\right) \in F \times A^{t}$, set

$$
s\left(f,\left(a^{1}, \ldots, a^{t}\right)\right) \equiv\left(s\left(f_{i},\left(a^{1}, \ldots, a^{t}\right)\right)_{i}\right)_{i \in I}
$$

5.4.- "Folk" Theorems: SPE

Definition Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a game in normal form. An strategy $f \in F$ is a Subgame Perfect Equilibrium (SPE) of G_{α}, for $\alpha=\infty, \lambda$, if for every $t \geq 1$ and every $\left(a^{1}, \ldots, a^{t}\right) \in A^{t}, s\left(f,\left(a^{1}, \ldots, a^{t}\right)\right)$ is a Nash equilibrium of G_{α}.

5.4.- "Folk" Theorems: SPE

Definition Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a game in normal form. An strategy $f \in F$ is a Subgame Perfect Equilibrium (SPE) of G_{α}, for $\alpha=\infty, \lambda$, if for every $t \geq 1$ and every $\left(a^{1}, \ldots, a^{t}\right) \in A^{t}, s\left(f,\left(a^{1}, \ldots, a^{t}\right)\right)$ is a Nash equilibrium of G_{α}.

Theorem

Aumann, Shapley, Rubinstein. Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a bounded game in normal form. Then,
$\left\{H^{\infty}(f) \in \mathbb{R}^{\# I} \mid f\right.$ is a SPE of $\left.G_{\infty}\right\}=\left\{x \in C(G) \mid x_{i}>R_{i}\right.$ for all $\left.i \in I\right\}$

5.4.- "Folk" Theorems: SPE

Definition Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a game in normal form. An strategy $f \in F$ is a Subgame Perfect Equilibrium (SPE) of G_{α}, for $\alpha=\infty, \lambda$, if for every $t \geq 1$ and every $\left(a^{1}, \ldots, a^{t}\right) \in A^{t}, s\left(f,\left(a^{1}, \ldots, a^{t}\right)\right)$ is a Nash equilibrium of G_{α}.

Theorem

Aumann, Shapley, Rubinstein. Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a bounded game in normal form. Then,
$\left\{H^{\infty}(f) \in \mathbb{R}^{\# I} \mid f\right.$ is a SPE of $\left.G_{\infty}\right\}=\left\{x \in C(G) \mid x_{i}>R_{i}\right.$ for all $\left.i \in I\right\}$

Theorem

Friedman (1971) Let $a^{*} \in A^{*}$ be such that $h\left(a^{*}\right)=e$. Then, for every $x \in C(G)$ such that $x_{i}>e_{i}$ for all $i \in I$, there exists $\underline{\lambda} \in(0,1)$ such that for all $\lambda \in(\underline{\lambda}, 1)$ there exists a SPE f of G_{λ} with $H^{\lambda}(f)=x$.

5.4.- "Folk" Theorems: SPE

Theorem

Fudenberg and Maskin (1986) Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a bounded game in normal form and assume $\operatorname{dim}(C(G))=n$. Then, for all $x \in C(G)$ such that $x_{i}>R_{i}$ for all $i \in I$, there exists $\underline{\lambda} \in(0,1)$ such that for all $\lambda \in(\underline{\lambda}, 1)$ there exists a SPE f of G_{λ} with $H^{\lambda}(f)=x$.

Theorem

Benoît and Krishna (1985) Let $G=\left(I,\left(A_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right)$ be a bounded game in normal form and assume that for each $i \in I$ there exist $a^{*}(i), \tilde{a}(i) \in A^{*}$ such that $h_{i}\left(a^{*}(i)\right)>h_{i}(\tilde{a}(i))$ and that $\operatorname{dim}(C(G))=n$. Then, for every $x \in C(G)$ such that $x_{i}>R_{i}$ for all $i \in I$ and every $\varepsilon>0$ there exists $\hat{T} \in \mathbb{N}$ such that for all $T>\hat{T}$ there exists a SPE $f \in F$ of G_{T} such that $\left\|H^{T}(f)-x\right\|<\varepsilon$.

5.4.- "Folk" Theorems

- Friedman, J. "A Non-cooperative Equilibrium for Supergames," The Review of Economic Studies 38, 1971.

5.4.- "Folk" Theorems

- Friedman, J. "A Non-cooperative Equilibrium for Supergames," The Review of Economic Studies 38, 1971.
- Benoît, J.P. and V. Krisnha. "Finitely Repeated Games," Econometrica 53, 1985.

5.4.- "Folk" Theorems

- Friedman, J. "A Non-cooperative Equilibrium for Supergames," The Review of Economic Studies 38, 1971.
- Benoît, J.P. and V. Krisnha. "Finitely Repeated Games," Econometrica 53, 1985.
- Fudenberg, D. and E. Maskin. "The Folk Theorem in Repeated Games with Discounting or with Incomplete Information," Econometrica 54, 1986.

5.4.- "Folk" Theorems

Final Remarks

- $F_{\lambda}^{*} \underset{\lambda \rightarrow 1}{\longrightarrow} F_{\infty}^{*}$?

5.4.- "Folk" Theorems

Final Remarks

- $F_{\lambda}^{*} \underset{\lambda \rightarrow 1}{\longrightarrow} F_{\infty}^{*}$?
- NO in general.

5.4.- "Folk" Theorems

Final Remarks

- $F_{\lambda}^{*} \underset{\lambda \rightarrow 1}{\longrightarrow} F_{\infty}^{*}$?
- NO in general.
- YES for the Prisoners' Dilemma.

5.4.- "Folk" Theorems

Final Remarks

- $F_{\lambda}^{*} \underset{\lambda \rightarrow 1}{\longrightarrow} F_{\infty}^{*}$?
- NO in general.
- YES for the Prisoners' Dilemma.
- Often YES.

5.4.- "Folk" Theorems

Final Remarks

- $F_{\lambda}^{*} \underset{\lambda \rightarrow 1}{\longrightarrow} F_{\infty}^{*}$?
- NO in general.
- YES for the Prisoners' Dilemma.
- Often YES.
- $F_{T}^{*} \underset{T \rightarrow \infty}{\longrightarrow} F_{\infty}^{*}$?

5.4.- "Folk" Theorems

Final Remarks

- $F_{\lambda}^{*} \underset{\lambda \rightarrow 1}{\longrightarrow} F_{\infty}^{*}$?
- NO in general.
- YES for the Prisoners' Dilemma.
- Often YES.
- $F_{T}^{*} \underset{T \rightarrow \infty}{\longrightarrow} F_{\infty}^{*}$?
- NO for the Prisoners' Dilemma.

5.4.- "Folk" Theorems

Final Remarks

- $F_{\lambda}^{*} \underset{\lambda \rightarrow 1}{\longrightarrow} F_{\infty}^{*}$?
- NO in general.
- YES for the Prisoners' Dilemma.
- Often YES.
- $F_{T}^{*} \underset{T \rightarrow \infty}{\longrightarrow} F_{\infty}^{*}$?
- NO for the Prisoners' Dilemma.
- YES for games with a suboptimal Nash equilibrium.

5.4.- "Folk" Theorems

Final Remarks

- $F_{\lambda}^{*} \underset{\lambda \rightarrow 1}{\longrightarrow} F_{\infty}^{*}$?
- NO in general.
- YES for the Prisoners' Dilemma.
- Often YES.
- $F_{T}^{*} \underset{T \rightarrow \infty}{\longrightarrow} F_{\infty}^{*}$?
- NO for the Prisoners' Dilemma.
- YES for games with a suboptimal Nash equilibrium.
- Bounded rationality (finite automata).

5.4.- "Folk" Theorems

Final Remarks

- $F_{\lambda}^{*} \underset{\lambda \rightarrow 1}{\longrightarrow} F_{\infty}^{*}$?
- NO in general.
- YES for the Prisoners' Dilemma.
- Often YES.
- $F_{T}^{*} \underset{T \rightarrow \infty}{\longrightarrow} F_{\infty}^{*}$?
- NO for the Prisoners' Dilemma.
- YES for games with a suboptimal Nash equilibrium.
- Bounded rationality (finite automata).
- Large set of players ;-)

5.4.- "Folk" Theorems

Final Remarks

- $F_{\lambda}^{*} \underset{\lambda \rightarrow 1}{\longrightarrow} F_{\infty}^{*}$?
- NO in general.
- YES for the Prisoners' Dilemma.
- Often YES.
- $F_{T}^{*} \underset{T \rightarrow \infty}{\longrightarrow} F_{\infty}^{*}$?
- NO for the Prisoners' Dilemma.
- YES for games with a suboptimal Nash equilibrium.
- Bounded rationality (finite automata).
- Large set of players ;-)
- Evolution of behavior.

5.5.- Stochastic Games

- L. Shapley. "Stochastic Games," Proceedings of the National Academy of Sciences 39, 1953.

5.5.- Stochastic Games

- L. Shapley. "Stochastic Games," Proceedings of the National Academy of Sciences 39, 1953.
- The game that players face over time is not always the same.

5.5.- Stochastic Games

- L. Shapley. "Stochastic Games," Proceedings of the National Academy of Sciences 39, 1953.
- The game that players face over time is not always the same.
- Present actions may influence future opportunities. For example:

5.5.- Stochastic Games

- L. Shapley. "Stochastic Games," Proceedings of the National Academy of Sciences 39, 1953.
- The game that players face over time is not always the same.
- Present actions may influence future opportunities. For example:
- fishing in a lake,

5.5.- Stochastic Games

- L. Shapley. "Stochastic Games," Proceedings of the National Academy of Sciences 39, 1953.
- The game that players face over time is not always the same.
- Present actions may influence future opportunities. For example:
- fishing in a lake,
- timber industry,

5.5.- Stochastic Games

- L. Shapley. "Stochastic Games," Proceedings of the National Academy of Sciences 39, 1953.
- The game that players face over time is not always the same.
- Present actions may influence future opportunities. For example:
- fishing in a lake,
- timber industry,
- cost-reducing investment decisions,

5.5.- Stochastic Games

- L. Shapley. "Stochastic Games," Proceedings of the National Academy of Sciences 39, 1953.
- The game that players face over time is not always the same.
- Present actions may influence future opportunities. For example:
- fishing in a lake,
- timber industry,
- cost-reducing investment decisions,
- industry where firms enter and leave (endogenously),

5.5.- Stochastic Games

- L. Shapley. "Stochastic Games," Proceedings of the National Academy of Sciences 39, 1953.
- The game that players face over time is not always the same.
- Present actions may influence future opportunities. For example:
- fishing in a lake,
- timber industry,
- cost-reducing investment decisions,
- industry where firms enter and leave (endogenously),
- etc.

5.5.- Stochastic Games

- L. Shapley. "Stochastic Games," Proceedings of the National Academy of Sciences 39, 1953.
- The game that players face over time is not always the same.
- Present actions may influence future opportunities. For example:
- fishing in a lake,
- timber industry,
- cost-reducing investment decisions,
- industry where firms enter and leave (endogenously),
- etc.
- Idea: several games may be played, with a transition probability that may depend on the profile of actions.

5.5.- Stochastic Games

- A stochastic game consists of a finite set of games in normal form $\left\{G_{1}, \ldots, G_{K}\right\}$ and a probability distribution p, where for every $k=1, \ldots, K$:

5.5.- Stochastic Games

- A stochastic game consists of a finite set of games in normal form $\left\{G_{1}, \ldots, G_{K}\right\}$ and a probability distribution p, where for every $k=1, \ldots, K$:
- $G_{k}=\left(I,\left(A_{i}^{k}\right)_{i \in I},\left(h_{i}^{k}\right)_{i \in I}\right)$ is a finite game in normal form,

5.5.- Stochastic Games

- A stochastic game consists of a finite set of games in normal form $\left\{G_{1}, \ldots, G_{K}\right\}$ and a probability distribution p, where for every $k=1, \ldots, K$:
- $G_{k}=\left(I,\left(A_{i}^{k}\right)_{i \in I},\left(h_{i}^{k}\right)_{i \in I}\right)$ is a finite game in normal form,
- without loss of generality, assume $A_{i}^{k} \cap A_{i}^{k^{\prime}}=\varnothing$ for all $i \in I$ and $k \neq k^{\prime}$ (and define $A_{i}=\bigcup_{k=1}^{K} A_{i}^{k}$),

5.5.- Stochastic Games

- A stochastic game consists of a finite set of games in normal form $\left\{G_{1}, \ldots, G_{K}\right\}$ and a probability distribution p, where for every $k=1, \ldots, K$:
- $G_{k}=\left(I,\left(A_{i}^{k}\right)_{i \in I},\left(h_{i}^{k}\right)_{i \in I}\right)$ is a finite game in normal form,
- without loss of generality, assume $A_{i}^{k} \cap A_{i}^{k^{\prime}}=\varnothing$ for all $i \in I$ and $k \neq k^{\prime}$ (and define $A_{i}=\bigcup_{k=1}^{K} A_{i}^{k}$),
- G_{1} is the initial game;

5.5.- Stochastic Games

- A stochastic game consists of a finite set of games in normal form $\left\{G_{1}, \ldots, G_{K}\right\}$ and a probability distribution p, where for every $k=1, \ldots, K$:
- $G_{k}=\left(I,\left(A_{i}^{k}\right)_{i \in I},\left(h_{i}^{k}\right)_{i \in I}\right)$ is a finite game in normal form,
- without loss of generality, assume $A_{i}^{k} \cap A_{i}^{k^{\prime}}=\varnothing$ for all $i \in I$ and

$$
k \neq k^{\prime}\left(\text { and define } A_{i}=\bigcup_{k=1}^{K} A_{i}^{k}\right)
$$

- G_{1} is the initial game;
- for every $a^{k} \in A^{k}, p\left(a^{k}\right)$ is a probability distribution on $\left\{G_{1}, \ldots, G_{K}\right\}$ (i.e., $p\left(a^{k}\right) \in \Delta^{K}$), where for all $k^{\prime}=1, \ldots, K$,

5.5.- Stochastic Games

- A stochastic game consists of a finite set of games in normal form $\left\{G_{1}, \ldots, G_{K}\right\}$ and a probability distribution p, where for every $k=1, \ldots, K$:
- $G_{k}=\left(I,\left(A_{i}^{k}\right)_{i \in I},\left(h_{i}^{k}\right)_{i \in I}\right)$ is a finite game in normal form,
- without loss of generality, assume $A_{i}^{k} \cap A_{i}^{k^{\prime}}=\varnothing$ for all $i \in I$ and

$$
k \neq k^{\prime}\left(\text { and define } A_{i}=\bigcup_{k=1}^{K} A_{i}^{k}\right)
$$

- G_{1} is the initial game;
- for every $a^{k} \in A^{k}, p\left(a^{k}\right)$ is a probability distribution on $\left\{G_{1}, \ldots, G_{K}\right\}$ (i.e., $p\left(a^{k}\right) \in \Delta^{K}$), where for all $k^{\prime}=1, \ldots, K$,
- $p\left(a^{k}\right)_{k^{\prime}}$ is the probability of moving to game $G_{k^{\prime}}$ if players are at game G_{k} and choose action $a^{k} \in A^{k}$.

5.5.- Stochastic Games

- For every $t \geq 1$, denote by D^{t} the set of histories of length t that are consistent with the probability distribution p.

5.5.- Stochastic Games

- For every $t \geq 1$, denote by D^{t} the set of histories of length t that are consistent with the probability distribution p.
- A strategy for player i is a sequence $f=\left\{f_{i}^{t}\right\}_{t=1}^{\infty}$ where for all $i \in I$,

5.5.- Stochastic Games

- For every $t \geq 1$, denote by D^{t} the set of histories of length t that are consistent with the probability distribution p.
- A strategy for player i is a sequence $f=\left\{f_{i}^{t}\right\}_{t=1}^{\infty}$ where for all $i \in I$,
- $f_{i}^{1} \in A_{i}^{1}$, and

5.5.- Stochastic Games

- For every $t \geq 1$, denote by D^{t} the set of histories of length t that are consistent with the probability distribution p.
- A strategy for player i is a sequence $f=\left\{f_{i}^{t}\right\}_{t=1}^{\infty}$ where for all $i \in I$,
- $f_{i}^{1} \in A_{i}^{1}$, and
- for all $t \geq 1, f_{i}^{t+1}: D^{t} \longrightarrow A_{i}^{1} \times \cdots \times A_{i}^{K}$ with the property that for all $\left(d^{1}, \ldots, d^{t}\right) \in D^{t}, f_{i}^{t+1}\left(d^{1}, \ldots, d^{t}\right)=\left(a_{i}^{1}, \ldots, a_{i}^{K}\right)$ specifies an action of player i for each possible game G_{k}.

5.5.- Stochastic Games

- For every $t \geq 1$, denote by D^{t} the set of histories of length t that are consistent with the probability distribution p.
- A strategy for player i is a sequence $f=\left\{f_{i}^{t}\right\}_{t=1}^{\infty}$ where for all $i \in I$,
- $f_{i}^{1} \in A_{i}^{1}$, and
- for all $t \geq 1, f_{i}^{t+1}: D^{t} \longrightarrow A_{i}^{1} \times \cdots \times A_{i}^{K}$ with the property that for all $\left(d^{1}, \ldots, d^{t}\right) \in D^{t}, f_{i}^{t+1}\left(d^{1}, \ldots, d^{t}\right)=\left(a_{i}^{1}, \ldots, a_{i}^{K}\right)$ specifies an action of player i for each possible game G_{k}.
- A stationary strategy for player i is a function
$s_{i}:\left\{G_{1}, \ldots, G_{K}\right\} \longrightarrow A_{i}$ such that for all $k=1, \ldots, K, s_{i}\left(G_{k}\right) \in A_{i}^{k}$.

5.5.- Stochastic Games

- For every $t \geq 1$, denote by D^{t} the set of histories of length t that are consistent with the probability distribution p.
- A strategy for player i is a sequence $f=\left\{f_{i}^{t}\right\}_{t=1}^{\infty}$ where for all $i \in I$,
- $f_{i}^{1} \in A_{i}^{1}$, and
- for all $t \geq 1, f_{i}^{t+1}: D^{t} \longrightarrow A_{i}^{1} \times \cdots \times A_{i}^{K}$ with the property that for all $\left(d^{1}, \ldots, d^{t}\right) \in D^{t}, f_{i}^{t+1}\left(d^{1}, \ldots, d^{t}\right)=\left(a_{i}^{1}, \ldots, a_{i}^{K}\right)$ specifies an action of player i for each possible game G_{k}.
- A stationary strategy for player i is a function $s_{i}:\left\{G_{1}, \ldots, G_{K}\right\} \longrightarrow A_{i}$ such that for all $k=1, \ldots, K, s_{i}\left(G_{k}\right) \in A_{i}^{k}$.
- Definition of payoffs accordingly:

5.5.- Stochastic Games

- For every $t \geq 1$, denote by D^{t} the set of histories of length t that are consistent with the probability distribution p.
- A strategy for player i is a sequence $f=\left\{f_{i}^{t}\right\}_{t=1}^{\infty}$ where for all $i \in I$,
- $f_{i}^{1} \in A_{i}^{1}$, and
- for all $t \geq 1, f_{i}^{t+1}: D^{t} \longrightarrow A_{i}^{1} \times \cdots \times A_{i}^{K}$ with the property that for all $\left(d^{1}, \ldots, d^{t}\right) \in D^{t}, f_{i}^{t+1}\left(d^{1}, \ldots, d^{t}\right)=\left(a_{i}^{1}, \ldots, a_{i}^{K}\right)$ specifies an action of player i for each possible game G_{k}.
- A stationary strategy for player i is a function $s_{i}:\left\{G_{1}, \ldots, G_{K}\right\} \longrightarrow A_{i}$ such that for all $k=1, \ldots, K, s_{i}\left(G_{k}\right) \in A_{i}^{k}$.
- Definition of payoffs accordingly:
- finitely repeated,

5.5.- Stochastic Games

- For every $t \geq 1$, denote by D^{t} the set of histories of length t that are consistent with the probability distribution p.
- A strategy for player i is a sequence $f=\left\{f_{i}^{t}\right\}_{t=1}^{\infty}$ where for all $i \in I$,
- $f_{i}^{1} \in A_{i}^{1}$, and
- for all $t \geq 1, f_{i}^{t+1}: D^{t} \longrightarrow A_{i}^{1} \times \cdots \times A_{i}^{K}$ with the property that for all $\left(d^{1}, \ldots, d^{t}\right) \in D^{t}, f_{i}^{t+1}\left(d^{1}, \ldots, d^{t}\right)=\left(a_{i}^{1}, \ldots, a_{i}^{K}\right)$ specifies an action of player i for each possible game G_{k}.
- A stationary strategy for player i is a function $s_{i}:\left\{G_{1}, \ldots, G_{K}\right\} \longrightarrow A_{i}$ such that for all $k=1, \ldots, K, s_{i}\left(G_{k}\right) \in A_{i}^{k}$.
- Definition of payoffs accordingly:
- finitely repeated,
- infinitely repeated with discounting,

5.5.- Stochastic Games

- For every $t \geq 1$, denote by D^{t} the set of histories of length t that are consistent with the probability distribution p.
- A strategy for player i is a sequence $f=\left\{f_{i}^{t}\right\}_{t=1}^{\infty}$ where for all $i \in I$,
- $f_{i}^{1} \in A_{i}^{1}$, and
- for all $t \geq 1, f_{i}^{t+1}: D^{t} \longrightarrow A_{i}^{1} \times \cdots \times A_{i}^{K}$ with the property that for all $\left(d^{1}, \ldots, d^{t}\right) \in D^{t}, f_{i}^{t+1}\left(d^{1}, \ldots, d^{t}\right)=\left(a_{i}^{1}, \ldots, a_{i}^{K}\right)$ specifies an action of player i for each possible game G_{k}.
- A stationary strategy for player i is a function $s_{i}:\left\{G_{1}, \ldots, G_{K}\right\} \longrightarrow A_{i}$ such that for all $k=1, \ldots, K, s_{i}\left(G_{k}\right) \in A_{i}^{k}$.
- Definition of payoffs accordingly:
- finitely repeated,
- infinitely repeated with discounting,
- infinitely repeated without discounting.

5.5.- Stochastic Games

Theorem

Shapley (1953) Let $\left\{G_{1}, \ldots, G_{K}\right\}$ and p be an stochastic game with the property that $\# I=2$ and for all $k=1, \ldots, K, G_{k}$ is zero sum. Then, the infinitely repeated game with discounting has a value.

5.5.- Stochastic Games

Theorem

Shapley (1953) Let $\left\{G_{1}, \ldots, G_{K}\right\}$ and p be an stochastic game with the property that $\# I=2$ and for all $k=1, \ldots, K, G_{k}$ is zero sum. Then, the infinitely repeated game with discounting has a value.

- The proof is not constructive (it uses a fix-point argument).

5.5.- Stochastic Games

Theorem

Shapley (1953) Let $\left\{G_{1}, \ldots, G_{K}\right\}$ and p be an stochastic game with the property that $\# I=2$ and for all $k=1, \ldots, K, G_{k}$ is zero sum. Then, the infinitely repeated game with discounting has a value.

- The proof is not constructive (it uses a fix-point argument).
- An important part of this literature has tried to show existence of equilibria with stationary strategies for general settings.

5.5.- Stochastic Games

Theorem

Shapley (1953) Let $\left\{G_{1}, \ldots, G_{K}\right\}$ and p be an stochastic game with the property that $\# I=2$ and for all $k=1, \ldots, K, G_{k}$ is zero sum. Then, the infinitely repeated game with discounting has a value.

- The proof is not constructive (it uses a fix-point argument).
- An important part of this literature has tried to show existence of equilibria with stationary strategies for general settings.
- Lokwood (1990)'s characterization with discounting

5.5.- Stochastic Games

Theorem

Shapley (1953) Let $\left\{G_{1}, \ldots, G_{K}\right\}$ and p be an stochastic game with the property that $\# I=2$ and for all $k=1, \ldots, K, G_{k}$ is zero sum. Then, the infinitely repeated game with discounting has a value.

- The proof is not constructive (it uses a fix-point argument).
- An important part of this literature has tried to show existence of equilibria with stationary strategies for general settings.
- Lokwood (1990)'s characterization with discounting
- $p\left(a^{k}\right)>0$ for all $k=1, \ldots, K$ and all $a^{k} \in A^{k}$.

5.5.- Stochastic Games

Theorem

Shapley (1953) Let $\left\{G_{1}, \ldots, G_{K}\right\}$ and p be an stochastic game with the property that $\# I=2$ and for all $k=1, \ldots, K, G_{k}$ is zero sum. Then, the infinitely repeated game with discounting has a value.

- The proof is not constructive (it uses a fix-point argument).
- An important part of this literature has tried to show existence of equilibria with stationary strategies for general settings.
- Lokwood (1990)'s characterization with discounting
- $p\left(a^{k}\right)>0$ for all $k=1, \ldots, K$ and all $a^{k} \in A^{k}$.
- Massó and Neme (1996)'s characterization with

5.5.- Stochastic Games

Theorem

Shapley (1953) Let $\left\{G_{1}, \ldots, G_{K}\right\}$ and p be an stochastic game with the property that $\# I=2$ and for all $k=1, \ldots, K, G_{k}$ is zero sum. Then, the infinitely repeated game with discounting has a value.

- The proof is not constructive (it uses a fix-point argument).
- An important part of this literature has tried to show existence of equilibria with stationary strategies for general settings.
- Lokwood (1990)'s characterization with discounting
- $p\left(a^{k}\right)>0$ for all $k=1, \ldots, K$ and all $a^{k} \in A^{k}$.
- Massó and Neme (1996)'s characterization with
- $p\left(a^{k}\right)_{k^{\prime}} \in\{0,1\}$ for all $k, k^{\prime}=1, \ldots, K$ and all $a^{k} \in A^{k}$,

5.5.- Stochastic Games

Theorem

Shapley (1953) Let $\left\{G_{1}, \ldots, G_{K}\right\}$ and p be an stochastic game with the property that $\# I=2$ and for all $k=1, \ldots, K, G_{k}$ is zero sum. Then, the infinitely repeated game with discounting has a value.

- The proof is not constructive (it uses a fix-point argument).
- An important part of this literature has tried to show existence of equilibria with stationary strategies for general settings.
- Lokwood (1990)'s characterization with discounting
- $p\left(a^{k}\right)>0$ for all $k=1, \ldots, K$ and all $a^{k} \in A^{k}$.
- Massó and Neme (1996)'s characterization with
- $p\left(a^{k}\right)_{k^{\prime}} \in\{0,1\}$ for all $k, k^{\prime}=1, \ldots, K$ and all $a^{k} \in A^{k}$,
- infinitely repeated without discounting.

5.5.- Stochastic Games

Theorem

Shapley (1953) Let $\left\{G_{1}, \ldots, G_{K}\right\}$ and p be an stochastic game with the property that $\# I=2$ and for all $k=1, \ldots, K, G_{k}$ is zero sum. Then, the infinitely repeated game with discounting has a value.

- The proof is not constructive (it uses a fix-point argument).
- An important part of this literature has tried to show existence of equilibria with stationary strategies for general settings.
- Lokwood (1990)'s characterization with discounting
- $p\left(a^{k}\right)>0$ for all $k=1, \ldots, K$ and all $a^{k} \in A^{k}$.
- Massó and Neme (1996)'s characterization with
- $p\left(a^{k}\right)_{k^{\prime}} \in\{0,1\}$ for all $k, k^{\prime}=1, \ldots, K$ and all $a^{k} \in A^{k}$,
- infinitely repeated without discounting.
- based on connected stationary strategies,

5.5.- Stochastic Games

Theorem

Shapley (1953) Let $\left\{G_{1}, \ldots, G_{K}\right\}$ and p be an stochastic game with the property that $\# I=2$ and for all $k=1, \ldots, K, G_{k}$ is zero sum. Then, the infinitely repeated game with discounting has a value.

- The proof is not constructive (it uses a fix-point argument).
- An important part of this literature has tried to show existence of equilibria with stationary strategies for general settings.
- Lokwood (1990)'s characterization with discounting
- $p\left(a^{k}\right)>0$ for all $k=1, \ldots, K$ and all $a^{k} \in A^{k}$.
- Massó and Neme (1996)'s characterization with
- $p\left(a^{k}\right)_{k^{\prime}} \in\{0,1\}$ for all $k, k^{\prime}=1, \ldots, K$ and all $a^{k} \in A^{k}$,
- infinitely repeated without discounting.
- based on connected stationary strategies,
- the set of equilibrium payoffs is not convex and $\mathrm{SPE} \subset \mathrm{NE}$.

5.5.- Stochastic Games

- Lockwood, B. "The Folk Theorem in Stochastic Games with and without Discounting," Birkbeck College Discussion Paper in Economics 18, 1990.

5.5.- Stochastic Games

- Lockwood, B. "The Folk Theorem in Stochastic Games with and without Discounting," Birkbeck College Discussion Paper in Economics 18, 1990.
- Massó, J. and A. Neme. "Equilibrium Payoffs of Dynamic Games," International Journal of Game Theory 25, 1996.

