Examen de Matemáticas para Economistas II (25030)

Profesor (grupos): Jordi Massó (02, 03) Primera convocatoria: 22 de Junio, 2006

1.- (25 puntos) Determinar (justificando la respuesta) si los siguientes conjuntos de \mathbb{R}^2 son abiertos, cerrados, acotados, compactos y/o convexos:

$$A = \{(x,y) \in \mathbb{R}^2 \mid 0 < x < 1, 1 < y < 2\}$$

$$B = \{(x,y) \in \mathbb{R}^2 \mid 0 < x < 1, x = y\}$$

$$C = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$$

$$D = \{(x, y) \in \mathbb{R}^2 \mid y = 3x\} \cup \{(x, y) \in \mathbb{R}^2 \mid y = 2x\}$$

$$E = \{(x,y) \in \mathbb{R}^2 \mid 2 \le x \le 3, 5 \le y \le 8\}.$$

Dar un razonamiento que justifique que la función $f: E \to \mathbb{R}$ definida por $f(x,y) = x^2 - 2y$ tiene un máximo y un mínimo en el conjunto E.

2.- (20 puntos) Encontrar las derivadas parciales $\frac{\partial f}{\partial x}(x,y)$ y $\frac{\partial f}{\partial y}(x,y)$ de la función $f:\mathbb{R}^2\to\mathbb{R}$

$$f(x,y) = x^3 + (xy + x^2 - y^2)^2.$$

Hallar $\nabla f(1,1)$, el gradiente de f en el punto (1,1).

3.- (20 puntos) Sea $F: \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}$ la función $F(x,y,z) = xyz - xz^2 + y^3z - 1$. Estudiar la existencia de la función implícita $f: \mathbb{R}^2 \to \mathbb{R}, z = f(x,y)$, definida por la relación F(x,y,z) = 0 en un entorno del punto $(x_0,y_0,z_0) = (0,1,1)$. Calcular $\nabla f(0,1)$ e interpretar su significado.

4.- (10 puntos) Clasificar (justificando la respuesta) la matriz

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{array} \right].$$

5.- (25 puntos) Hallar los extremos locales de la función $f(x,y) = x^2 + y^2 - x + 1$ restringidos al conjunto $S = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$

Revisión de examen: Lunes 3 de Julio de 2006 de 11 a 13 en el despacho B3-1116.