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Abstract

To allow society to treat unequal alternatives distinctly we propose a natural exten-

sion of Approval Voting [4] by relaxing the assumption of neutrality. According to

this extension, every alternative receives ex-ante a strictly positive and finite weight.

These weights may differ across alternatives. Given the voting decisions of every

individual (individuals are allowed to vote for, or approve of, as many alternatives as

they wish to), society elects the alternative for which the product of total number of

votes times exogenous weight is maximal. If the product is maximal for more than

one alternative, a pre-specified tie-breaking rule is applied. Our main result is an

axiomatic characterization of this family of voting procedures.
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1 Introduction

Approval Voting [4] is perhaps the most well known voting procedure that has been pro-

posed as an alternative to the Plurality Rule. For example, in a recent survey Brams and

Fishburn [5] lay out that the United Nations General Assembly, several scientific institu-

tions (among others the Mathematical Association of America, the American Mathematical

Society, and the American Statistical Association), and some political parties (i.e., in Penn-

sylvania) adopted Approval Voting or had at least some experience with it. According to

this rule, every voter can vote for, or approve of, as many alternatives as s/he wishes to

and given the response profile of individual approvals, society elects the set of alternatives

with the maximal number of votes.

Very recently, it has been looked at Approval Voting from different points of view.

First, several case studies have been carried out. For instance, Laslier [12] studies the 1999

elections of the President and the Council of the Society for Social Choice and Welfare,

where Approval Voting was the method being used but voters were also asked to submit

their rankings under the Borda count. Laslier [13] analyzes Approval Voting by means of

an experiment carried out in six places in France during the first round of the presidential

election of 2002, in which Jean-Marie Le Pen came in second, defeating the socialist can-

didate Lionel Jospin, and thus obtained the right to compete in the second round against

Jacques Chirac. Second, wide theoretical research has also been under way. Regenwetter

and Tsetlin [15] compare Approval Voting with positional voting methods and identify

conditions under which they tend to agree. Vorsatz [19] shows that, on the domain of

dichotomous preferences, Approval Voting coincides with the Borda count. De Sinopoli et

al. [7] analyze strategic behavior in Approval Voting games. Brams and Sanver [6] study

Approval Voting under the assumption that voters do not only have preferences on the

set of alternatives but also judgements about their acceptability. Nitzan and Baharad [14]

study the consequence of modifying Approval Voting by restricting the minimal and max-

imal number of alternatives that can be voted for, and, finally, Dellis and Oak [8] compare

Approval Voting with the Plurality Rule in a political competition model with endogenous
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candidacy entry.

It is inherent in the definition of Approval Voting that every vote counts the same,

independently which alternative receives it. We believe that this neutrality assumption is

relevant in democratic processes (i.e., presidential elections) where all alternatives should

be treated equally, but may not be as natural for group decision making problems in which

the characteristics of the alternatives are objectively different and society agrees on the

desirability to treat unequal alternatives distinctly (i.e., in the case when alternatives are

candidates characteristics such as seniority, age, education, race, and gender may matter).

In some circumstances society may also wish to give a slight preference to the status

quo alternative by using the following modification of Approval Voting: the status quo

is maintained if it is one of the alternatives with the maximal number of votes; then,

alternatives are not treated symmetrically any more and, consequently, the neutrality

axiom is violated. In general, society might be willing to break ties according to some

tie-breaking rule that is applied to the subset of alternatives with the maximal number

of votes. Finally, consider the situation when alternatives can be identified as points in a

multi-dimensional space in such a way that all preferences are unambiguously monotonic on

one of the dimensions (for instance, the cost of producing each alternative). Then, weights

of alternatives may be chosen according to the corresponding level on this dimension. It is

our objective to propose a generalization of Approval Voting that can be applied to these

kind of examples and present an axiomatic characterization of this new voting procedure.

The generalization we consider, Weighted Approval Voting, is simple and intuitive at the

same time: Assign ex-ante a strictly positive and finite weight to every alternative. Observe

that the weights are potentially different for distinct alternatives. Given the approvals of

every voter (again voters can vote for as many alternatives as they wish to), society elects

the alternative for which the product of total number of votes times weight is maximal.

If the product is maximal for more than one alternative, a pre-specified tie-breaking is

applied. It is defined as follows. Given a complete preorder (i.e., a complete, reflexive,

and transitive binary relation) on the set of alternatives, the tie-breaking rule selects, for

each non-empty set of alternatives, the subset of alternatives that is maximal according to
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the complete preorder. This voting rule reduces to Approval Voting when the weights are

identical for all alternatives and the complete preorder has a unique indifference class (i.e.,

ties are not broken).

We are interested in general voting procedures that could operate in different voting sit-

uations in which the set of voters as well as the set of alternatives might vary (for instance,

different choices have to be made over time). In particular, and given a universal set of

potential voters and a set of conceivable alternatives, a voting procedure (a family of voting

rules) should specify an outcome for every electorate (the subset of voters that indeed vote)

and every set of feasible alternatives (the subset of alternatives that are indeed at stake).

Our main result states that the family of all Weighted Approval Voting is characterized in

this setting by means of the following five properties. Consistency in alternatives, which is

the analogue of Arrow’s Choice Axiom and implies that a general election from a set of fea-

sible alternatives can be reduced to choices among pairs of alternatives only; Consistency

in voters, which requires that if two disjoint electorates elect a common set out of two

feasible alternatives, then exactly this set has to be elected when the two electorates are

assembled; Anonymity, which is symmetry among voters; No-Support, which states that

one alternative without any vote is elected, when confronted with another alternative, if

and only if the second alternative does not receive any vote either; and Coherence, which

asks that for every alternative, when confronted with another alternative, there must ex-

ist a situation (with strictly positive votes for both alternatives) at which the considered

alternative is elected (perhaps together with the other one).

Several authors have analyzed Approval Voting axiomatically. Fishburn [10] shows that

if the set of alternatives is fixed and the electorate is allowed to vary, then Approval Voting

is characterized by means of consistency in voters, neutrality, anonymity, and disjoint

equality (if two voters approve two nonempty and disjoint subsets of alternatives, then the

union of these two sets has to be elected whenever there is no other voter). Fishburn [9] also

characterizes Approval Voting by means of consistency in voters, neutrality, faithfulness

(if there is only one voter and this voter approves at least one alternative, the voting

procedure selects all alternatives this voter supports), and cancellation (if all alternatives
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receive the same number of votes, all alternatives are elected). Alós-Ferrer [1] shows that

the latter characterization is not tight since neutrality follows from consistency in voters,

faithfulness, and cancellation. Sertel [16] presents an alternative definition of Approval

Voting that differs from the original one only in the situation when no alternative receives

any vote. He assumes in this case that no alternative is elected. This, slightly different,

voting rule is then characterized by anonymity, weak unanimity (if the society consists of

only one voter, the voting procedure selects the set of alternatives this voter supports),

weak consistency (this property weakens consistency in voters slightly without changing

its main idea), and strong disjoint equality (disjoint equality is also defined for the case

when some voter does not approve any alternative). A further characterization is due to

Baigent and Xu [3]. They apply the properties of neutrality, strict monotonicity (if x is

elected at a certain response profile and a second response profile is identical to the first

one apart from the fact that x receives now an additional vote, then only x is elected

at the second response profile) and independence of symmetric substitutions. The latter

condition requires that the set of elected alternatives should be the same in the following

two situations: In the first situation, some voter approves, among other alternatives, x

but not y, whereas another voter approves, among other alternatives, y but not x. The

second situation is identical to the first one with the only difference that the first voter

approves now y but not x and the second voter approves now x but not y. Goodin and

List [11] relate Approval Voting axiomatically to May’s Theorem by showing that Approval

Voting is characterized by anonymity (they define anonymity in a different way than we

do, yet, the two properties turn out to be equivalent), neutrality, and strict monotonicity.

Note that any Weighted Approval Voting satisfies strict monotonicity and independence

of symmetric substitutions while it fails to satisfy axioms that have neutrality inherent in

its definition such as disjoint equality, faithfulness, cancellation, and weak unanimity.

The remainder of the paper is organized as follows. In the next section, we introduce our

notation and main definitions. In Section 3, we present the five axioms that characterize

all Weighted Approval Voting. Afterwards, we prove our theorem. Finally, we establish

the independence of the axioms and conclude with some remarks.
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2 Preliminaries

We consider elections in which the set of alternatives and the set of voters may vary. First,

let K be the universal set of conceivable alternatives for election. Generic alternatives

will be denoted by x, y, and z. The cardinality of K, κ, is finite and greater or equal

to 3 (if the set of conceivable alternatives contains only two alternatives, then the first

axiom, consistency in alternatives, is superfluous in Theorem 1 as it will become clear from

Lemma 3 later on). Since it may happen that not all conceivable alternatives are eligible,

we restrict the set of feasible alternatives to be equal to K ⊆ K. Alternatively, we will

denote subsets of alternatives by the capital letters S and T . Second, we represent the

universal set of voters by the set of natural numbers N. We will consider situations in

which the set of voters actually participating in the election, the electorate N , is a finite

subset of the natural numbers. Often we will also use the capital letters A and B to denote

electorates. The cardinalities of N and K are equal to n ≥ 1 and k ≥ 2, respectively.

For any voter i ∈ N, let Mi ∈ 2K be the set of alternatives i votes for. A profile

M = (Mi)i∈N ∈ (2K)N is a list of all votes. Given a profile M and an electorate N , a

response profile MN = (Mi)i∈N ∈ (2K)N is the n-tuple of votes coming from the electorate

N at profile M . We say that the response profiles MA and MB, corresponding to the

electorates A and B of equal size, are isomorphic if there exists a one-to-one mapping

π : A → B such that for all i ∈ A, Mi = Mπ(i). Given two disjoint electorates A

and B and two response profiles MA and MB, denote by MA + MB the response profile

(Mi)i∈A∪B ∈ (2K)A∪B. Finally, given the response profile MN and alternative x ∈ K, let

Gx(MN) = |{i ∈ N : x ∈ Mi}| be the support of x at MN .

Given a set of feasible alternatives K and an electorate N , a voting rule vK,N : (2K)N →

2K\{∅} selects, for all profiles M , a nonempty set of feasible alternatives vK,N(M) with

the property that for all M,M ′ ∈ (2K)N such that MN = M ′
N , vK,N(M) = vK,N(M ′).

This is the reason why, with a slight abuse of notation, we will write vK(MN) instead

of vK,N(M). Observe first that, although the empty set can be a component of response

profiles, the images of a given voting rule are nonempty subsets of feasible alternatives.
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We exclude the possibility to elect no alternative (even when all feasible alternatives get

zero support), because we want to include the interpretation of the image as the set of

pre-elected alternatives from which an ultimate winning alternative has still to be deter-

mined in a yet to be specified way (i.e., a lottery). Additionally, we aim at generalizing

Approval Voting which, for each response profile, elects the (always nonempty) subset of

feasible alternatives with maximal support. Second, response profiles may include votes

for unfeasible alternatives. These votes are redundant but this formulation simplifies later

on the definition of consistency in alternatives.

A family of voting rules {vK,N : (2K)N → 2K\{∅}}K,N is a set of voting rules, one for

every set of feasible alternatives K and electorate N . It is denoted by v. Given the family

of voting rules v and a particular set of feasible alternatives K, we denote the subfamily

of voting rules {vK,N : (2K)N → 2K\{∅}}N by vK .

As we have already argued in the Introduction, there are meaningful situations in

which not all alternatives are equally important. Thus, it is our objective to eliminate

the neutrality assumption underlying Approval Voting by allowing for the possibility to

discriminate among alternatives keeping the impact of a vote for a given alternative the

same for all voters.1 To define the natural non-neutral extension of Approval Voting,

denote by R++ and Q++ the set of strictly positive real and rational numbers, respectively.

Let % be a complete preorder on K (i.e., a complete, reflexive, and transitive binary

relation on K). We refer to % as a tie-breaking rule. The asymmetric and symmetric

parts of % are denoted by ≻ and ∼, respectively. Given a vector of strictly positive

weights p = (px)x∈K ∈ Rκ
++, the tie-breaking rule % on K, and a set of feasible alternatives

K, we denote by p|K and %|K the restrictions of p and % on K, respectively; namely,

p|K = (px)x∈K ∈ Rk
++ and for all x, y ∈ K,x %|K y if and only if x % y. Obviously, p|K = p

and %|K =%.

1An alternative approach aims at allowing for different weights for distinct voters maintaining neutrality.
It is also very prospective to analyze the normative foundations of this generalization of Approval Voting
because one can identify a variety situations where this rule is applied. Examples include voting in the EU
Member Council (the weight of a country is determined by its population size) and management boards (a
vote from the CEO counts usually more than a vote from other board members). To our best knowledge,
this rule has not been studied axiomatically so far.
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Definition 1 The family of voting rules v is a Weighted Approval Voting if there exists

a vector of weights p = (px)x∈K, with px ∈ R++ for all x ∈ K, and a tie-breaking rule %

such that for all sets of feasible alternatives K and all response profiles MN ,

x ∈ vK(MN) ⇔ px · Gx(MN) ≥ py · Gy(MN) for all y ∈ K and

x % y for all y ∈ K such that px · Gx(MN) = py · Gy(MN) > 0.
(1)

The family of Weighted Approval Voting with vector of weights p and tie-breaking rule

% is denoted by v(p,%). Approval Voting, denoted by vA, is the special case of a Weighted

Approval Voting when for all x, y ∈ K, px = py and x ∼ y. Note that the family of all

Weighted Approval Voting contains as a specially interesting subclass those lexicographic

voting rules that always choose a unique alternative (except when no alternative receives

any vote) by applying first Approval Voting (all weights are the same) and selecting after-

wards, among the subset of alternatives with maximal support, the unique alternative that

maximizes a given strict order ≻. Moreover, observe that the vector of weights (px)x∈K of

any Weighted Approval Voting has one degree of freedom because multiplying the weights

by a strictly positive number does not have any effect on the result of the election.

Remark 1 For all vectors of weights p and all λ ∈ R++, v(λ·p,%) = v(p,%).

Finally, let v = {vK,N : (2K)N → 2K\{∅}}K,N be a family of voting rules and let K be a

set of feasible alternatives. Given a vector of strictly positive weights pK = (pK
x )x∈K and a

tie-breaking rule %K on K, the subfamily of voting rules vK = {vK,N : (2K)N → 2K\{∅}}N

will be called the Weighted Approval Voting relative to pK and %K if condition (1) holds

when p is replaced by pK and % by %K .

3 Properties and Characterization

We present now formally the properties that characterize all Weighted Approval Voting.

Two consistency properties prescribe how the elected set of alternatives varies as the set

of feasible alternatives or the electorate changes.
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Consistency in Alternatives: The family of voting rules v is consistent in alternatives

if for all sets of feasible alternatives S ⊂ T ⊆ K, all profiles M ∈ (2K)N, and all electorates

N such that vT (MN) ∩ S 6= ∅,

vS(MN) = vT (MN) ∩ S.

This property means the following. Assume first that a particular set of alternatives

is feasible and society elects a subset of them. If it turns out afterwards that fewer alter-

natives are feasible, then the set of elected alternatives is restricted accordingly (see [2]).

Consistency in alternatives plays a crucial role in the proof of our characterization because

it establishes the transitivity of the weights and the tie-breaking rule. Additionally, it al-

lows us to extend the two alternatives case to any set of alternatives. For the latter reason

we only have to state the other four properties with respect to two alternatives.

The second consistency property requires that if two disjoint electorates elect some

common alternatives, then exactly these alternatives are elected whenever all voters within

and no voters outside these two electorates participate in the election (see [17]). This

property insures the additivity of the votes.

Consistency in Voters: The family of voting rules v is consistent in voters if for all

alternatives x, y ∈ K, all profiles M ∈ (2K)N, and all disjoint electorates A,B ⊆ N such

that v{x,y}(MA) ∩ v{x,y}(MB) 6= ∅,

v{x,y}(MA + MB) = v{x,y}(MA) ∩ v{x,y}(MB).

According to the third property the set of elected alternatives depends only on the

support of the alternatives (see [9]). Hence, the weights will be independent of the identity

of the voters.

Anonymity: The family of voting rules v is anonymous if for all alternatives x, y ∈ K,

all profiles M,M ′ ∈ (2K)N, and all electorates A and B such that Gx(MA) = Gx(M
′
B) and

Gy(MA) = Gy(M
′
B),

v{x,y}(MA) = v{x,y}(M ′
B).
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The fourth axiom refers to response profiles with the property that the support of at

least one of the two feasible alternatives is zero.

No-Support: The family of voting rules v satisfies the no-support condition if for all

alternatives x, y ∈ K, all profiles M ∈ (2K)N, and all electorates N such that Gx(MN) = 0,

x ∈ v{x,y}(MN) if and only if Gy(MN) = 0.

The last property, coherence, requires that every alternative x, when confronted with

any alternative y, is elected (perhaps with y) for some profile and some electorate at which

both alternatives have a strictly positive support.

Coherence: The family of voting rules v is coherent if for all x ∈ K and all y ∈ K\{x},

there exists a profile M ∈ (2K)N and an electorate N such that Gx(MN) > 0, Gy(MN) > 0,

and
x ∈ v{x,y}(MN).

In Theorem 1 we state an axiomatic characterization of all Weighted Approval Voting

based on these five properties.

Theorem 1 The family of voting rules v is consistent in alternatives and voters, anony-

mous, coherent, and satisfies the no-support condition if and only if v is a Weighted Ap-

proval Voting.

4 Proof of the Characterization

We start by proving that, in the case of two feasible alternatives, the relevant information

is not the absolute support of the alternatives (as it follows directly from anonymity) but

rather their relative support. Afterwards, we prove a monotonicity like property. First,

let Fxy(MN) = Gx(MN )
Gy(MN )

be the relative support of alternative x with respect to y at the

response profile MN , provided that Gy(MN) > 0.
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Lemma 1 Assume that the family of voting rules v is consistent in voters and anonymous.

Then, for all alternatives x, y ∈ K, all profiles M,M ′ ∈ (2K)N, and all electorates A and

B such that Gy(MA) > 0, Gy(M
′
B) > 0, and Fxy(MA) = Fxy(M

′
B),

v{x,y}(MA) = v{x,y}(M ′
B).

Proof: Let {x, y} be the set of feasible alternatives and take any two response profiles

MA and M ′
B that satisfy the hypothesis of Lemma 1. Consider two electorates Ā and B̄

of sizes |A| · Gy(M
′
B) and |B| · Gy(MA), respectively. Let M̄Ā and M̄ ′

B̄
be two response

profiles obtained by replicating Gy(M
′
B)-times the response profile MA and Gy(MA)-times

the response profile M ′
B, respectively. Namely, the response profile M̄Ā is the union of

Gy(M
′
B)-isomorphic copies of MA (denoted by MA1 , ...,MAGy(M′

B
)
) and the response profile

M̄ ′
B̄

is the union of Gy(MA)-isomorphic copies of M ′
B (denoted by M ′

B1
, ...,M ′

BGy(MA)
), where

all electorates At, t = 1, ..., Gy(M
′
B) and all Br, r = 1, ..., Gx(MA) are disjoint. Observe

that Gx(M̄Ā) = Gx(MA) · Gy(M
′
B) and Gx(M̄

′
B̄
) = Gx(M

′
B) · Gy(MA). By assumption,

Gx(M̄Ā) = Gx(M̄
′
B̄). (2)

Moreover, Gy(M̄Ā) = Gy(MA) · Gy(M
′
B) and Gy(M̄

′
B̄
) = Gy(M

′
B) · Gy(MA). Thus,

Gy(M̄Ā) = Gy(M̄
′
B̄). (3)

By anonymity, (2) and (3) imply

v{x,y}(M̄Ā) = v{x,y}(M̄ ′
B̄). (4)

Also, by anonymity, for all t = 1, ..., Gy(M
′
B) and all r = 1, ..., Gy(MA), v{x,y}(MAt

) =

v{x,y}(MA) and v{x,y}(M ′
Br

) = v{x,y}(M ′
B). Then, by iterating on the properties of consis-

tency in voters and anonymity,

v{x,y}(M̄Ā) = v{x,y}

(

∑Gy(M ′

B)

t=1
MAt

)

=

Gy(M ′

B)
⋂

t=1

v{x,y}(MAt
) = v{x,y}(MA)

and

v{x,y}(M̄ ′
B̄) = v{x,y}

(

∑Gy(MA)

r=1
M ′

Br

)

=

Gy(MA)
⋂

r=1

v{x,y}(M ′
Br

) = v{x,y}(M ′
B).

By (4), v{x,y}(MA) = v{x,y}(M ′
B). �
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Lemma 2 Assume that the family of voting rules v is consistent in voters, anonymous, and

satisfies the no-support condition. Then, for all alternatives x, y ∈ K, all profiles M,M ′ ∈

(2K)N, and all electorates A and B such that Gy(MA) > 0, Gy(M
′
B) > 0, Fxy(MA) >

Fxy(M
′
B), and x ∈ v{x,y}(M ′

B),
v{x,y}(MA) = {x}.

Proof: Let {x, y} be the set of feasible alternatives and take any two response profiles

MA and M ′
B that satisfy the hypothesis of Lemma 2. Consider two electorates Ā and B̄

of sizes |A| ·Gy(M
′
B) and |B| ·Gy(MA), respectively. Let M̄Ā and M̄ ′

B̄
be the two response

profiles obtained by replicating Gy(M
′
B)-times the response profile MA and Gy(MA)-times

the response profile M ′
B, respectively. Namely, the response profile M̄Ā is the union of

Gy(M
′
B)-isomorphic copies of MA and the response profile M̄ ′

B̄
is the union of Gy(MA)

-isomorphic copies of M ′
B. By consistency in voters and anonymity,

v{x,y}(M̄Ā) = v{x,y}(MA) and v{x,y}(M̄ ′
B̄) = v{x,y}(M ′

B). (5)

Observe that Gy(M̄Ā) = Gy(MA)·Gy(M
′
B) = Gy(M̄

′
B̄
). Moreover, by hypothesis, Gx(M̄Ā) =

Gx(MA) · Gy(M
′
B) > Gy(MA) · Gx(M

′
B) = Gx(M̄

′
B̄
).

Now, take two response profiles M̂C and M̂D corresponding to the disjoint electorates

C and D, with the properties that Gy(M̂D) = Gy(M̄
′
B̄
), Gx(M̂D) = Gx(M̄

′
B̄
), Gy(M̂C) = 0,

and Gx(M̂C) = Gx(M̄Ā) − Gx(M̄
′
B̄
) > 0. By anonymity,

v{x,y}(M̂D) = v{x,y}(M̄ ′
B̄). (6)

Since Gx(M̄Ā) = Gx(M̂C)+Gx(M̄
′
B̄
) = Gx(M̂C)+Gx(M̂D), Gy(M̄Ā) = Gy(M̂C)+Gy(M̂D),

and the electorates C and D are disjoint, Gx(M̄Ā) = Gx(M̂C + M̂D) and Gy(M̄Ā) =

Gy(M̂C + M̂D). By anonymity,

v{x,y}(M̄Ā) = v{x,y}(M̂C + M̂D). (7)

By the no-support condition,

v{x,y}(M̂C) = {x}.

Since, by hypothesis, x ∈ v{x,y}(M ′
B), conditions (5) and (6) imply x ∈ v{x,y}(M̂D).Thus,

v{x,y}(M̂C) ∩ v{x,y}(M̂D) = {x}. (8)
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By consistency in voters,

v{x,y}(M̂C + M̂D) = v{x,y}(M̂C) ∩ v{x,y}(M̂D). (9)

Conditions (7), (8), and (9) imply that v{x,y}(M̄Ā) = {x}. Finally, it follows from (5) that

v{x,y}(MA) = {x}. �

Lemma 3 Assume that the family of voting rules v is consistent in voters, anonymous,

coherent, and satisfies the no-support condition. Then, for all alternatives x, y ∈ K, there

exist two weights p
{x,y}
x , p

{x,y}
y ∈ R++ and a tie-breaking rule %{x,y} on {x, y} such that

v{x,y} is the Weighted Approval Voting relative to p{x,y} = (p
{x,y}
x , p

{x,y}
y ) and %{x,y}.

Proof: Let {x, y} be the set of feasible alternatives and take any v that satisfies

the hypothesis of Lemma 3. For all profiles M and all electorates N , if MN is such

that Gx(MN) = Gy(MN) = 0, then v{x,y}(MN) = {x, y} by the no-support condition.

Thus, it remains to be shown that there exist two weights p
{x,y}
x , p

{x,y}
y ∈ R++ and a tie-

breaking rule %{x,y} on {x, y} with the property that for all response profiles MN satisfying

Gx(MN) + Gy(MN) > 0,

x ∈ v{x,y}(MN) ⇔ either p
{x,y}
x · Gx(MN) > p

{x,y}
y · Gy(MN) or

p
{x,y}
x · Gx(MN) = p

{x,y}
y · Gy(MN) and x %{x,y} y.

(10)

To insure that condition (10) holds, we investigate the restrictions that response profiles

impose on the weights and the tie-breaking rule. Consider any electorate N and let the

response profiles MN and M ′
N be such that Gx(MN) = Gy(M

′
N) = 1 and Gy(MN) =

Gx(M
′
N) = 0. By the no-support condition, v{x,y}(MN) = {x} and v{x,y}(M ′

N) = {y}.

Then, condition (10) holds for any p
{x,y}
x > 0 and p

{x,y}
y > 0, and any tie-breaking rule

%{x,y} on {x, y}. To further restrict the weights and the tie-breaking rule, we have to

consider the response profiles in which both alternatives get at least one vote. Formally,

for any electorate N , define MN = {M̃N ∈ (2K)N : Gx(M̃N) > 0 and Gy(M̃N) > 0}. We

divide the analysis into four cases.

1. Assume that for all electorates B and all M̃B ∈ MB, v{x,y}(M̃B) = {x}. This

contradicts coherence, and therefore, this case cannot be.
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2. Assume that for all electorates B and all M̃B ∈ MB, v{x,y}(M̃B) = {y}. This

contradicts coherence, and therefore, this case cannot be.

3. Assume that there exists an electorate B and a response profile M̃B ∈ MB such

that v{x,y}(M̃B) = {x, y}. Consider any electorate A 6= B and any response profile

M̂A ∈ MA. Assume at first that Fxy(M̂A) > Fxy(M̃B). Since x ∈ v{x,y}(M̃B) by

assumption, Lemma 2 implies that v{x,y}(M̂A) = {x}. Therefore,

if Fxy(M̂A) > Fxy(M̃B), then v{x,y}(M̂A) = {x}. (11)

Assume now that v{x,y}(M̂A) = {x}. Since v{x,y}(M̃B) = {x, y}, Lemma 1 implies

that Fxy(M̂A) 6= Fxy(M̃B). Assume at first that Fxy(M̂A) < Fxy(M̃B). Then, since

y ∈ v{x,y}(M̃B) by assumption, we obtain from Lemma 2 that y ∈ v{x,y}(M̂A) = {x}.

This is a contradiction, and therefore, Fxy(M̂A) > Fxy(M̃B). Hence,

if v{x,y}(M̂A) = {x}, then Fxy(M̂A) > Fxy(M̃B). (12)

We conclude from (11) and (12) that

v{x,y}(M̂A) = {x} if and only if Fxy(M̂A) > Fxy(M̃B). (13)

Symmetrically, we can obtain that

v{x,y}(M̂A) = {y} if and only if Fxy(M̂A) < Fxy(M̃B). (14)

It follows from (13) and (14) that condition (10) holds if and only if p
{x,y}
x = Gy(M̃B),

p
{x,y}
y = Gx(M̃B), and x ∼{x,y} y.

4. Assume that for all electorates B and all M̃B ∈ MB, v{x,y}(M̃B) 6= {x, y} and neither

Case 1 nor Case 2 holds. Consider the electorate N and a response profile M̂N with

the property that Gx(M̂N) = Gy(M̂N) = 1. Suppose without loss of generality that

v{x,y}(M̂N) = {x}. Moreover, set p
{x,y}
y ≡ 1.

Observe that by Lemma 1, v{x,y} is a function of the relative support and, by Lemma

2, this function is monotonic. Moreover, by the assumption defining Case 4, v{x,y}
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is a singleton set and, by coherence, there exists a response profile M̄B ∈ MB with

strictly positive support for both alternatives such that v{x,y}(M̄N) = {y}. Hence,

there exists a real number r ≥ 1 such that for all electorates B and all response

profiles M̃B with the property that Gy(M̃B) > Gx(M̃B), at least one of the following

two cases holds:

(a) if Fyx(M̃B) > r, v{x,y}(M̃B) = {y} and if Fyx(M̃B) ≤ r, v{x,y}(M̃B) = {x} or

(b) if Fyx(M̃B) ≥ r, v{x,y}(M̃B) = {y} and if Fyx(M̃B) < r, v{x,y}(M̃B) = {x}.

Now, if r ∈ Q++, condition (10) holds for p
{x,y}
x = r, p

{x,y}
y = 1, and x ≻{x,y} y in the

first case and p
{x,y}
x = r, p

{x,y}
y = 1, and y ≻{x,y} x in the second case. If r 6∈ Q++,

condition (10) holds for p
{x,y}
x = r, p

{x,y}
y = 1, and any tie-breaking rule %{x,y} on

{x, y}. �

In Lemma 3 we have shown that for any pair of alternatives x, y ∈ K, there are two

strictly positive and finite weights, p
{x,y}
x and p

{x,y}
y , and a tie-breaking rule %{x,y} on {x, y}

such that the subfamily of voting rules v{x,y} is the Weighted Approval Voting relative to

p{x,y} = (p
{x,y}
x , p

{x,y}
y ) and %{x,y}. Hence, so far we have constructed for every alternative

x ∈ K, κ− 1 weights and κ− 1 tie-breaking rules that can be applied when x is confronted

with each alternative y 6= x. We show next that it is possible to construct a single weight

for every alternative.

Lemma 4 Assume that the family of voting rules v is consistent in alternatives and voters,

anonymous, coherent, and satisfies the no-support condition. Then, there exists a κ-tuple

of weights (pz)z∈K ∈ Rκ
++ and

κ(κ−1)
2

tie-breaking rules %{x,y}, one for every pair of different

alternatives x, y ∈ K, such that for all alternatives x, y ∈ K, v{x,y} is the Weighted Approval

Voting relative to p{x,y} = (px, py) and %{x,y}.

Proof: The proof is done by induction on the set of feasible alternatives. Take any

K ⊂ K of cardinality two. By Lemma 3, there are two weights (pK
x )x∈K ∈ R2

++ and a

tie-breaking rule %K such that vK is the Weighted Approval Voting relative to pK and %K .
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Induction Hypothesis: Suppose that given the set of feasible alternatives K ⊂ K of

cardinality k ≥ 2, there exists a k-tuple of weights
(

pK
x

)

x∈K
∈ Rk

++ and k(k−1)
2

tie-breaking

rules %{x,y}, one for every pair of different and feasible alternatives x, y ∈ K, such that

for all x, y ∈ K, v{x,y} is the Weighted Approval Voting relative to p{x,y} = (pK
x , pK

y ) and

%{x,y}.

We have to prove that if the set of feasible alternatives is equal to K∪{z}, z 6∈ K, then there

exists a k + 1-tuple of weights (p
K∪{z}
x )x∈K∪{z} ∈ Rk+1

++ and (k+1)k
2

tie-breaking rules %{x,y},

one for every pair of different and feasible alternatives x, y ∈ K ∪ {z}, such that for all

x, y ∈ K ∪ {z}, v{x,y} is the Weighted Approval Voting relative to p{x,y} = (p
K∪{z}
x , p

K∪{z}
y )

and %{x,y}.

For all alternatives x ∈ K, let p
K∪{z}
x = pK

x . Then, for all x, y ∈ K, v{x,y} is the

Weighted Approval Voting relative to p{x,y} = (p
K∪{z}
x , p

K∪{z}
y ) and %{x,y} by the induction

hypothesis. By Lemma 3, we know that for all x ∈ K, there exist two strictly positive

and finite weights, p
{x,z}
x and p

{x,z}
z , and a tie-breaking rule %{x,z} such that v{x,z} is the

Weighted Approval Voting relative to p{x,z} = (p
{x,z}
x , p

{x,z}
z ) and %{x,z}. Consequently, it

remains to determine the weight p
K∪{z}
z .

By Remark 1, the weights p
{x,z}
x and p

{x,z}
z are determined up to proportional changes;

that is, if we multiply both by λ > 0, then the result of the election when x is confronted

with z does not change. Set λ equal to p
K∪{z}
x = λ · p

{x,z}
x , or, λ = p

K∪{z}
x /p

{x,z}
x . Define

p
K∪{z}
z = λ · p

{x,z}
z . Thus, p

K∪{z}
z = p

{x,z}
z · p

K∪{z}
x /p

{x,z}
x . Without loss of generality we

can also define p
K∪{z}
x ≡ 1, by setting λ′ = 1/(λ · p

{x,z}
x ). Then, p

K∪{z}
z = p

{x,z}
z /p

{x,z}
x .

Since, by Lemma 3, v{x,z} is the Weighted Approval Voting relative to (p
{x,z}
x , p

{x,z}
z ) and

%{x,z}, we conclude that this subfamily is also the Weighted Approval Voting relative to

p{x,z} = (p
K∪{z}
x , p

K∪{z}
z ) and %{x,z}.

We still have to show that given any alternative y ∈ K\{x}, v{y,z} is the Weighted

Approval Voting relative to p{y,z} = (p
K∪{z}
y , p

K∪{z}
z ) and %{y,z}. To do so, we prove that

there exists a µ > 0 such that p
K∪{z}
y = µ · p

{y,z}
y and p

K∪{z}
z = µ · p

{y,z}
z . Rewrite these two

equations as p
K∪{z}
y · p

{y,z}
z = p

K∪{z}
z · p

{y,z}
y and suppose otherwise. That is,
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δ ≡ pK∪{z}
z · p{y,z}

y − pK∪{z}
y · p{y,z}

z > 0.

Note that we can deal with the case δ < 0 using a symmetric argument. Let p̄z ≡
nz

mz
and

p̄y ≡ ny

my
be two rational numbers such that p̄z < p

K∪{z}
z , p̄y > p

K∪{z}
y , and

p̄z · p
{y,z}
y − p̄y · p

{y,z}
z > 0. (15)

Here, ny,my, nz and mz are strictly positive integers. Observe that p̄y and p̄z must exist,

because the set of rational numbers is dense in the set of real numbers. Rewrite equation

(15) as

p{y,z}
y · (nz · my) > p{y,z}

z · (ny · mz). (16)

Consider now the electorate N of size n ≥ min{ny ·nz, ny ·mz, nz ·my} and let the response

profile MN be such that Gx(MN) = nz ·ny, Gy(MN) = nz ·my, and Gz(MN) = ny ·mz. Since,

by Lemma 3, v{y,z} is the Weighted Approval Voting relative to p{y,z} = (p
{y,z}
y , p

{y,z}
z ) and

%{y,z}, v{y,z}(MN) = {y} by equation (16). This implies, by consistency in alternatives,

that z 6∈ v{x,y,z}(MN).

In addition, Gx(MN) = p̄y · Gy(MN) > p
K∪{z}
y · Gy(MN). Since v{x,y} is the Weighted

Approval Voting relative to p{x,y} = (1, p
K∪{z}
y ) and %{x,y} by construction, v{x,y}(MN) =

{x}. This implies, by consistency in alternatives, that y 6∈ v{x,y,z}(MN).

The two conditions z 6∈ v{x,y,z}(MN) and y 6∈ v{x,y,z}(MN) imply that v{x,y,z}(MN) =

{x}. Hence, v{x,y,z}(MN) ∩ {x, z} = {x} and, by consistency in alternatives, v{x,z}(MN) =

{x}. Finally, since v{x,z} is the Weighted Approval Voting relative to p{x,z} = (1, p
K∪{z}
z )

and %{x,z} by construction, v{x,z}(MN) = {x} implies p
K∪{z}
z ·Gz(MN) ≤ 1 ·Gx(MN). But

p
K∪{z}
z · Gz(MN) > p̄z · Gz(MN) = nz

mz
· ny · mz = Gx(MN). This is a contradiction.

Hence, there is a (k + 1)-tuple of strictly positive and finite weights (p
K∪{z}
x )x∈K∪{z} and

(k+1)k
2

binary relations %{x,y} such that for all x, y ∈ K∪{z}, v{x,y} is the Weighted Approval

Voting relative to p{x,y} = (p
K∪{z}
x , p

K∪{z}
x ) and %{x,y}. The Lemma follows finally from the

case K ∪ {z} = K and px ≡ pKx for all x ∈ K. �

So far, we have constructed the vector of weights p, but we still have not shown that

the κ(κ−1)
2

tie-breaking rules (one for each pair of different alternatives x, y ∈ K)obtained
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from the pairwise comparisons in Lemma 3 induce a unique tie-breaking rule % on K such

that for every pair x, y ∈ K, %|{x,y} =%{x,y}. This is done next.

Lemma 5 Assume that the family of voting rules v is consistent in alternatives and voters,

anonymous, coherent, and satisfies the no-support condition. Then, there exists a κ-tuple

of weights (pz)z∈K ∈ Rκ
++ and a tie-breaking rule % on K such that for all x, y ∈ K, v{x,y}

is the Weighted Approval Voting relative to p{x,y} = (px, py) and %|{x,y}.

Proof: Take any v that satisfies the hypothesis of the Lemma. By Lemma 4, there

exist a κ-tuple of weights (pz)z∈K ∈ Rκ
++ and κ(κ−1)

2
tie-breaking rules %{x,y}, one for every

pair of different alternatives x, y ∈ K, such that v{x,y} is the Weighted Approval Voting

relative to p{x,y} = (px, py) and %{x,y}. Hence, we have to prove that it is possible to

construct a complete, reflexive, and transitive binary relation % on K from (%{x,y})x,y∈K
x 6=y

such that for every pair x, y ∈ K, %|{x,y} =%{x,y}.

According to Lemma 3, %{x,y} is completely prescribed if and only if both alternatives

have a rational weight. Otherwise, the binary relation can be chosen freely. So, let K

be the set of all alternatives that have a rational weight; that is, x ∈ K if and only

if px ∈ Q++. We show that the k(k−1)
2

tie-breaking rules (%{x,y})x,y∈K
x 6=y

induce a unique

complete, reflexive, and transitive binary relation %K on K with the property that for all

x, y ∈ K, %K
∣

∣

{x,y}
=%{x,y}.

Define the binary relation %K on K as follows: for every pair of different alternatives

x, y ∈ K, set x %K y if and only if x %{x,y} y. Obviously, %K is complete and reflexive. We

have to show that %K is transitive as well. Suppose otherwise; that is, there exists a triple

x, y, z ∈ K such that x %{x,y} y, y %{y,z} z, and z ≻{x,z} x. For all w ∈ {x, y, z}, define

pw = nw

mw
, where nw and mw are strictly positive integers. Now, consider any response

profile MN with the property that Gx(MN) = ny · mx · nz, Gy(MN) = nx · my · nz, and

Gz(MN) = nx ·mz ·ny. Then, px ·Gx(MN) = py ·Gy(MN) = pz ·Gz(MN) = nx ·ny ·nz. Since

x %{x,y} y by assumption, x ∈ v{x,y}(MN). It follows from consistency in alternatives that

x ∈ v{x,y,z}(MN) whenever y ∈ v{x,y,z}(MN). Moreover, since y %{y,z} z by assumption,

y ∈ v{x,y}(MN). It follows from consistency in alternatives that y ∈ v{x,y,z}(MN) whenever
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z ∈ v{x,y,z}(MN). Both results together imply that v{x,y,z}(MN) ∈ {{x}, {x, y}, {x, y, z}}.

Hence, x ∈ v{x,y,z}(MN) ∩ {x, z} and it follows from consistency in alternatives that x ∈

v{x,z}(MN). But, z ≻{x,z} x and px · Gx(MN) = pz · Gz(MN) imply that v{x,z}(MN) =

{z}, a contradiction. Hence, the k(k−1)
2

tie-breaking rules (%{x,y})x,y∈K
x 6=y

induce a complete,

reflexive, and transitive binary relation %K on K with the property that for every pair

x, y ∈ K, %K
∣

∣

{x,y}
=%{x,y}.

Finally, observe that %K induces a reflexive and transitive (but not complete) binary

relation %∗ on K. However, according to Szpilrajn [18], any reflexive and transitive binary

relation can be completed in a transitive way. �

In the next and last step of the proof, we apply consistency in alternatives to generalize

Lemma 5 to all sets of feasible alternatives.

Proof of Theorem 1: It is easy to check that any Weighted Approval Voting satisfies

consistency in alternatives and voters, anonymity, the no-support condition, and coherence.

To prove the other implication let v be a family of voting rules that satisfies consistency

in alternatives and voters, anonymity, the no-support condition, and coherence. We show

that the κ-tuple of strictly positive and finite weights (px)x∈K constructed in Lemma 4 and

the tie-breaking rule % on K identified in Lemma 5 are such that for all sets of feasible

alternatives K and all response profiles MN ,

x ∈ vK(MN) ⇔ px · Gx(MN) ≥ py · Gy(MN) for all y ∈ K and

x % y for all y ∈ K satisfying px · Gx(MN) = py · Gy(MN) > 0.

Assume that x ∈ vK(MN). Then, by consistency in alternatives, x ∈ v{x,y}(MN)

for all y ∈ K\{x}. By Lemma 5, v{x,y} is the Weighted Approval Voting relative to

p{x,y} = (px, py) and %|{x,y}. Hence, px · Gx(MN) ≥ py · Gy(MN) for all y ∈ K, and x % y

for all y ∈ K satisfying px · Gx(MN) = py · Gy(MN) > 0.

Assume that px ·Gx(MN) ≥ py ·Gy(MN) for all y ∈ K, and x % y for all y ∈ K satisfying

px · Gx(MN) = py · Gy(MN) > 0. Then, for all y ∈ K \ {x}, x ∈ v{x,y}(MN) because, by

Lemma 5, v{x,y} is the Weighted Approval Voting relative to p{x,y} = (px, py) and %|{x,y}.
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If there is some z 6= x such that z ∈ vK(MN), then vK(MN) ∩ {x, z} 6= ∅. Hence,

v{x,z}(MN) = vK(MN) ∩ {x, z} by consistency in alternatives. Since, by Lemma 5, v{x,z}

is the Weighted Approval Voting relative to p{x,z} = (px, pz) and %|{x,z}, x ∈ v{x,z}(MN).

Hence, x ∈ vK(MN). If there does not exist any alternative z 6= x such that z ∈ vK(MN),

then x ∈ vK(MN) as well because the set vK(MN) cannot be empty. Finally, observe that

if the response profile MN is such that Gx(MN) = 0 for all x ∈ K, then vK(MN) = K by

the no-support condition. This concludes the proof. �

5 Final Remarks

We show next, with the help of five examples, the independence of the properties used in

Theorem 1. Finally, we argue that additional axioms are needed if the aim is to characterize,

for a fixed electorate or a fixed set of feasible alternatives, the class of all Weighted Approval

Voting without the corresponding consistency property.

5.1 Independence of the Axioms

Consistency in Alternatives: Fix x ∈ K. Let the family of voting rules v be such that for all

sets of feasible alternatives K of size two, all profiles M , and all electorates N , vK(MN) =

vK
A (MN). Otherwise, apply the Weighted Approval Voting with weights px = 2 and py = 1

for all y 6= x. Assume that ties are not broken. This family satisfies consistency in voters,

anonymity, the no-support condition, and coherence. The following example shows that

it is not consistent in alternatives. Let K = {x, y, z} and suppose that N = {i, j}. If

Mi = Mj = K, then v{x,y}(Mi + Mj) = {x, y} and v{x,y,z}(Mi + Mj) = {x}. Consistency in

alternatives would imply that v{x,y}(Mi + Mj) = v{x,y,z}(Mi + Mj) ∩ {x, y} = {x}. Hence,

v does not satisfy consistency in alternatives.

Consistency in Voters: Let the family of voting rules v be such that for all sets of feasible

alternatives K, all profiles M , and all electorates N such that Gx(MN) > 1 for some

x ∈ K, vK(MN) = vK
A (MN). Otherwise, apply the Weighted Approval Voting with weights
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px = 2 and py = 1 for all y 6= x. Assume that ties are not broken. This family satisfies

consistency in alternatives, anonymity, the no-support condition, and coherence. The

following example shows that it is not consistent in voters. Let K = {x, y, z} and suppose

that N = {i, j}. If Mi = Mj = {x, y}, then v{x,y}(Mi) = v{x,y}(Mj) = {x} and v{x,y}(Mi +

Mj) = {x, y}. Consistency in voters would imply that v{x,y}(Mi + Mj) = v{x,y}(Mi) ∩

v{x,y}(Mj) = {x}. Hence, v does not satisfy consistency in voters.

Anonymity: Assign to each voter i ∈ N a strictly positive and finite number qi in such a

way that qi 6= qj for some pair i, j ∈ N. Now, let the family of voting rules v be such that

for all sets of feasible alternatives K, all profiles M , and all electorates N , x ∈ vK(MN) if

and only if
∑

i∈N :x∈Mi
qi ≥

∑

i∈N :y∈Mi
qi for all y ∈ K. This family satisfies consistency in

alternatives and voters, the no-support condition, and coherence. The following example

shows that it is not anonymous. Let K = {x, y, z} and suppose that N = {i, j}. Moreover,

let qi = 2 and qj = 1. If Mi = M ′
j = {x} and M ′

i = Mj = {y}, then v{x,y}(Mi + Mj) = {x}

and v{x,y}(M ′
i + M ′

j) = {y}. Hence, v does not satisfy anonymity.

No-Support: Let the family of voting rules v be such that for all sets of feasible alternatives

K, all profiles M , and all electorates N , x ∈ vK(MN) if and only if Gx(MN) ≤ Gy(MN)

for all y ∈ K. This family satisfies consistency in alternatives and voters, anonymity, and

coherence. The following example shows that it does not satisfy the no-support condition.

Let K = {x, y, z} and suppose that N = {i, j}. If Mi = Mj = {y}, then v{x,y}(Mi +Mj) =

{x}. Hence, v does not satisfy the no-support condition.

Coherence: Let η : K → {1, ..., κ} be any one-to-one mapping that assigns to every x ∈ K

a positive integer between 1 and κ. Given η, let the family of voting rules v be such that

for all sets of feasible alternatives K, all profiles M , and all electorates N , vK(MN) = {y ∈

K : Gy(MN) > 0 and η(y) < η(z) for all z ∈ K s.t. Gz(MN) > 0}. If no alternative gets

any vote, then vK(MN) = K. This family satisfies consistency in alternatives and voters,

anonymity, and the no-support condition. The following example shows that it does not

satisfy coherence. Let K = {x, y, z} and define η to be such that η(x) = 1 and η(y) = 2.
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Then, for all profiles M and all electorates N such that Gx(MN) > 0 and Gy(MN) > 0,

v{x,y}(MN) = {x}. Hence, v does not satisfy coherence.

5.2 Consistency Properties

An additional point, also related to the independence of the properties, regards the question

whether it is possible to obtain a similar characterization of all Weighted Approval Voting

for a given electorate (or a given set of feasible alternatives); that is, if the electorate (or

the set of feasible alternatives) is fixed at N (or at K) and the corresponding consistency

property is dropped, is the class of all Weighted Approval Voting characterized by the

remaining four properties? The following two examples show that this is not the case.

Example 1: Suppose that the electorate is equal to N = {1, 2}. Let the family of voting

rules v̂ = {v̂K,N : (2K)N → 2K\{∅}}K be such that for all sets of feasible alternatives

K ⊆ K and all response profiles MN ∈ (2K)N such that Gr(MN) > 0 for some r ∈ K,

v̂K(MN) = {r ∈ K : Gr(MN) > 0}. If no alternatives receives any vote, the set K is elected.

This family of voting rules satisfies consistency in alternatives, anonymity, coherence, and

the no-support condition. Yet, v̂ is not a Weighted Approval Voting because there does

not exist a vector of weights p = (px)x∈K ∈ Rκ
++ and a tie-breaking rule % on K such that

for all sets of feasible alternatives K and all response profiles MN ,

r ∈ v̂K(MN) ⇔ pr · Gr(MN) ≥ ps · Gs(MN) for all s ∈ K and

r % s for all s ∈ K such that pr · Gr(MN) = ps · Gs(MN) > 0.
(17)

To see it, let K = {x, y, z} and consider two response profiles MN and M ′
N with the

property that Gx(MN) = Gy(M
′
N) = 1 and Gx(M

′
N) = Gy(MN) = 2. Observe that, by

definition of v̂, v̂{x,y}(MN) = v̂{x,y}(M ′
N) = {x, y}. Let (px, py, pz) ∈ R3

++ be an arbitrary

vector weights. Condition (17) implies simultaneously that px = 2 · py and 2 · px = py.

Hence, px = py = 0. Observe that this argument works even if we admit zero weights. To

see that, take any response profile M ′′
N which satisfies Gx(M

′′
N) > 0 and Gy(M

′′
N) = 0. Since

v̂K(M ′′
N) = {x} by definition of v̂K , condition (17) implies that px > 0. This contradicts

px = 0.

22



Example 2: Suppose that the set of feasible alternatives is equal to K = {x, y, z}. Let

the family of voting rules ṽ = {ṽK,N : (2K)N → 2K\{∅}}N be such that for all profiles

M ∈ (2K)N and all electorates N , (a) if vK
A (MN) = {x, y}, then ṽK(MN) = {x}, (b)

if vK
A (MN) = {y, z}, then ṽK(MN) = {y}, (c) if vK

A (MN) = {x, z}, then ṽK(MN) =

{z}, and (d) ṽK(MN) = vK
A (MN) in all other situations. This family of voting rules is

consistent in voters (if two disjoint electorates elect a common set of alternatives exactly

those alternatives are elected when the two electorates are assembled), anonymous (the

voting rule depends only on the amount of votes every alternative receives), coherent

(given an alternative, there is a situation in which all alternatives have strictly positive

support and the considered alternative belongs to the image), and satisfies the no-support

condition (if an alternative does not get any vote it is selected if and only if all alternatives

have zero support). Yet, ṽ is not a Weighted Approval Voting because the cycle induces a

non-transitive tie-breaking rule. To see it, assume otherwise, and let p = (px, py, pz) ∈ R3
++

and % be the vector of weights and the complete preoder associated to ṽ. Then, (a) and

(d) imply that px = py and x ≻ y, (b) and (d) imply that py = pz and y ≻ z, and (c) and

(d) imply that pz = px and z ≻ x. Consequently, the tie-breaking rule is not transitive.
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