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Resumen Con el objeto de considerar comportamientos coin memoria acotada en jucgas repetidos
no atémicos, se restringen los conjuntos de estrategias de los jugadores de tal manera que
éstos sélo pueden tener en cuenia los promedios de las proporciones de las jugadas agrega-
das anteriores. Se impone un requerimiento minimo de racionalidad, se define una solucién
para el jucgo y se demuesira la existencia de solucioncs estables. El resultado mds impor-
tante obienido es que bajo hipdtesis de continuidad de las funciones de pagos, una solucidn
estable constituye un equilibrio do Nash del juego no restringido,

Abstract In order to account for bounded memory in a nonatomic repeated game, the sirategy sets
of the players are restricted in such a way that the players can take info uccount only the
averages of the proportions of the previous aggregats plays. A minimal rationality require-
ment is imposed, a solution for the gune is defined, and the existence of stable solutions is
established. The main result obtained is that under continuous payoffs a stable solution
constitutes a Nash equilibrium of the vnrestricted game.

1. INTRODUCTION

Repeated games have been used in economics 10 analyze conflict situations lasting
over time. Examples of their applicability include things as diversc as a firm and a union
bargaining over the wage rate on the one hand, and institutional -arrangements for the
buying and selling of commodities such as auctions and competitive markets on the
other (1). Here, we focus on a particular type of repeated game, the main characteristic
of which is the presence of a large number of players. A large class of economic pheno-
mena possess such characteristic.

The most well-known model of a repeated game is the one that assumes perfect
monitoring: at any point in time a player is able to remember the past actions taken by
everybody else. In such a setting, a player's current action may be contingent to different
histories of play. Smale (1980) argued that for reasons of bounded memory this way of
modeling players' behavior is not a very sensible one. He suggested a continuous statio-
nary behavior based on a finite-dimensional summary of the history of the game. He
showed that if the aggregate behavior is stable and players maximize payoffs at the sta-
tionary point, then players don't have incentives to become more sophisticated (using all
the information generated by the play of the game) if one restricts the strategies of the
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players (the set of possible deviations from the stationary behavior) to satisfy a very
strong requirement of continuity.

Here, we would like to strengthen Smale result in a context in which to assume pla-
yers with bounded rationality makes even more sense: the game that is repeated over
time has a large set of players. There are at least two reasons for considering models of
bounded rationality with a large set of individuals. First, a wide class of economic situa-
tions is characterized by a large set of decision makers. Second, the larger is the number
of agents, the greater is the complexity of the fully-rational individual decision process if
it has to take into account the behavior of all other agents.

‘The main motivation of the paper is to prove in a formal model the intuition that

~ bounded rational behavior (in particular, bounded memory behavior) is less restrictive

when the nature of the conflict that agents face has a competitive flavor: individual

actions have no influence in the aggregate. I do this by mimicing Smale’s set up and
using Schmeidler (1973) existence results.

We are therefore interested in the equilibrium implications of boundedly rational beha-
vior in a dynamic context where the number of agents is large. In particular, we analyze a
model (a nonatomic repeated game) in which agents can only remember an aggregate sum-
mary of previous outcomes, Thus, at any point in time, players are restricted to choose
their actions according to a memory strategy which takes into account only some average
of the history of the systemt. Following Smale (1980), we define a solution of a repeated
game to be a stationary point of the dynamical system generated by an aggregate memory
strafegy. A solution is said to satisfy the Nash property if at the stationary point the aggre-
gate memory strategy prescribes a Nash equilibrium of the one-shot game (i.6.; payoff
maximization behavior is required only at the stationary point); such solutions are shown
to exist. Qur main result is that, roughly, under continuous payoffs any stable solution with
the Nash property constitutes a Nash equilibrium in the original unrestricted, repeated
game (with long-run average payoff criterion) and for every e > 0 there is a discount factor
such that it constitutes an e-best reply of the discounted repeated game.

It is easy to think of general economic models that without fitting this set up could
reproduce the results of this paper; in particular models where: (i) there is a continuum
of firms selling goods over time in a competitive market, that using some statistic of the
past (not necessarily a statistic of the past quantities) decide the present amount to sell;
(i) there is a large number of buyers and/or sellers in a stock market deciding their
current behavior taking into account only past statistics of the market {(average Dow
Jones indexes, etc.); and (iii) there is a continuum of buyers in a given set of markets
deciding the purchases over time of different goods and using past information on price
indexes, quality indexes, and so on.

'The next section of the paper describes the mixed extensions of nonatomic repeated
games. In section 3, the core of the paper, we define memory strategies and present the
main results. At the end of the paper the reader will find an appendix with some proofs,

2. THE UNRESTRICTED GAME

Let (I, M, A) be a measure space where / = [0, 1] is the set of players, M is the o-
algebra of Lebesgue measurable subsets of £, and A is the Lebesgue measure on M. Each
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player i € I has available a finite, uniformly bounded numbex of actions; and, withoqt
loss of generality, we may assume that this number is n for each i € I, In order to consi-
der the mixed extension of the one-shot game, define

"
2 x")eR"Ix* > 0for] <k<nand 3 xF = 1}
k=1

i i f h player. A joint action is a measurable function a
i’l:oﬁllel Stf(:}t g’f‘ n”}‘llf\fg 2020?;} ,f(;rzjeic, ag),ywhere ]]:z" is a measurable 'real-valued function
from I to /0, I]. In this case & is Lebesgue-intcgrab]e.:, and we write L a for tl;e vector
(. ca'(i) dA(i), .. L a'(i) dA(i)). Let A be the set of egmvalence classes of such uncnogs
where @ and b are equivalent iff A(fi € 1 | ali} # b(i}}) = 0 In the sequel we follow 1 _ej
usual convention of neglecting the distinction beiween integrable functions and their

equivalence classes.
Let i be the (larger) set of equivalence classes of the set
fa:1-> R"| a is Lebesgue-integrable}

and let | | 5 be the maximum norm in R”. We can define a norm “ |4 on o as follows:
givenae o
lals = Vhilalls = max(l;|a']: 1 <ksnp.

i i s and A is a closed, boun-

It is easy to show that & is a complete normed vector space an sed, bo
ded, conveg subset of it. Following Schmeidler (1973), we may look at & as a 10ca11_y
convex linear topological space if we endow it with the L I—WSaak topology (2). Then Alis
a compact, convex subset of it. Also, by the Eberlein-Smulian Theorem {Dunford and

Schwartz (1966)) it is also sequentially compact.
] i ions wf: R k=12 .,n
For each player [ € 1, we define n bounded func':twns w's A >R k=12 ..n
where u}(a) ig tlfe payofT to player i if he chooses action k and the joint action is a.‘fI‘he—
refore, the payoff function for the mixed extension of the game for player i is the func-
tion A A" X A — R defined by

hi(x,a) = 5’ xkuf(a) forevery (x, a) € 4" X A
k=1

Let v; be a bound of the payoff function ;. In addition, we also assume that for every
a € A the function Afa(i), a) is measurable as a function of i.

Before proceeding, a brief comment related to the asspmptions glready made n"(lfy be
useful, What is really needed here is that the number of actions be nniformly boundle (1.ke).,
there is an upper bound common to all players) and the Payoff_ function for every p ayerb C
hounded below. If this is the case, then there is no restriction 11 assuming that the number

{2) The weak topology coincides with the natural fopology generated by the family of seminorms iz, | € € ¥} where

pefa) = | £fa) | and s£* is the dual space of s,
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of actions is the same for all players, since we can modify the individual action set and the
corresponding payoff function by introducing artificial actions with payoffs smaller than
;- The solution concept defined later in the paper will not be modified since continuity of
memory strategies together with the Nash property will guarantee that players assign zero
probability, in the long run, to any of the actions introduced artificially.

Now, we can define a Nash equilibrium of G (the mixed extension of the initial finite
action game) as an a € A such that for a.e. i € I,

hifafi), a) 2 hix,a) Yxe A"
Let A¥ denote the set of Nash equilibria of G,

For our main goal of analyzing bounded memory behavior in a repeated game, we
will have to deal with games having equilibrium points. Following Schmeidler (1973),
the following assumption guarantees that A* is nonempty (3):

A.: (i) Fora.e ie Tand Vk=1,2, .., nthe fuhctions 1) are weak continuous,
(iiy Forevervae Aandk, 1=1,2, .., nihesets fie I | u!‘(a) > ul(a)} are measurable.

In order to play the infinitely-repeated game in a fully rational way, at each period,
say ¢ + I, a player's action might depend on the history of the game up to period ¢. The-
refore his action at period ¢ + / should be a function from the fold Cartesian product of
A with itself (denoted by A") to A", i.e. a strategy for player i in the unrestricted, infini-
tely-repeated game G is a sequence of functions f; = (£, fZ, ...} satisfying;:

(i) ffe A% and Viz 1

(i) fH AT — A"

Let F; denote the set of f; satisfying (i} and (i) and let

F={tf); | LheF, vielf f is measurable as a function of i; and

Vizland Via', &, .., d) e A" fiH(d, &, ..., &) is measurable as a function of i}
denote the set of feasible joint strategies. Given f e F, the play it produces is identified
as folll(l)v:s: let a’(f) € A be such that &’ (i) =f! a.e. i€ I, and, recursively, a*/(f) € A be
such tha

a i) = fITE ), L d P aeie ]
For player i € I, let

Y &
Shi(fiatify oat(F)), d' ().

ni) =4
T t=1

To define payoffs in G, first we associate with each f € F the sequence {hi(H}z, € €,
Next, we take any Banach limit (4} on €., and we define the payoff function Hy(f) to be

(3} For a more general existence resnlt, in which aggregate actions are modeled via distributions, see Mas-Colell (1984,
(4} A Banach limit on £,, is a linear functional L/M satisfying:

iminf ¥* < LIM{y} < Bmsup v' Wy e 74, 3% ) et
t—res {=yoe

The existence of such functionals is a well-known consequence of the Hahn-Banach Theotem.
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the Banach limit evaluated at the sequence {Af( f)j{';":‘,..‘ Giv;n fe F and g; € F;, let
(f| g} € F denote the joint strategy f with player i switching to g;, defined by

g i) =i
1 ifj =i

(flgh = {

Now, fe Fis a Nash equilibrium of G™ if for a.e. i€ I H{f} > H,-(f| gi) Ve, e F,.
Let F*# denote the set of Nash equilibria of G™.

3. MEMORY STRATEGIES

Since A is an infinite-dimensional space, each player might need an infinite memory
in order to play his part of a Nash equilibrium in the repeated game, ansideratlons gf
bounded memory therefore suggest the possibility of modeling the behavior oi“: players in
a more restrictive way. In particular, we assume here that strategies are stationary and
depend only on the average of proportions of players that have taken the different
actions in the past.

Formally, define
‘ & = {4]4 s AT = A" continuous}
as the set of individual memory strategies for the repeated game and define
S = {s=(s)es|5;€ Pforeachic I, and ¥x € A" s{x) is measurable
as a function of i}
as the set of aggregate memory strategies (as before, identified as the set of i1s equiva-
lence classes).

Given s € § and initial condition z € 4", the repeated game is played as follows: at
period ¢ = 1 the aggregate play is a' € A defined by a'(i) = sz) a.e. i € I. Given al,
define 4’ € A by @' € ', and at the end of period 1 players only know and recall the
vector |, 37 & A" In general, in period ¢ + 7, given [; 4% € A", the aggregate play is
a™ e A defined by a™*'(i) = s{l;@") a.e. i € I; and, at the end of period ¢ + I, players

only know and recall ;3" & A", where &' & A is defined by

" I, 1
a:+1 = a.'t + at+1‘

t+ 1 t+ 1

In the next period (£ + 2} almost every i € I will play according to _his S; e\falual;ed at
J; @1 Thus, s € § and z € A" induce a sequence {a'};-; of functions in A which tells us
how the repeated game is played in the aggregale.

Given s € § we may describe the dynamics of thg system by the function ¢.c A" — A"
and the sequence of functions {@f; 4" — A"}, defined by:
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#(x) = [, s(x) dA(i), and

¢ )
+ .
+1x t+1¢s(x)

\

Now, we can define a solution of the game as well as prove its existence.

5

o = 4 fort = 1, and, V¢t = 1, ¢iH(x) = ¢

Definition: A pair (s, x), where s € § and x € A", is a solution if x is stationary for
the dynamics defined by ¢, and {072 ;; i.e., if x is a fixed point of ¢,.

Proposition 1. Forevery s ¢ § there exists x € A" such that (s, x) is a solution,

Proof: A" is a compact and convex subsei of R”, thus by Brouwer's Fixed Point The-
orem we need only (o show thal ¢, is continuous, Let {x,,} .. be an arbitrary sequence in
A"such that fim x, = x. We have fo show that fim @(x,} = @&(x). By continuity

H—yoo

m—yoe
of s(-), ,,ffia §(x,) = g{x), and forevery m 21 and fora.e. i€ I, |sfx,) HES].

Moreover, {5/(x,,)} ./ 18 a sequence of measurable functions defined on {; therefore, by
the Bounded Convergence Theorern,

lim é(x,) = lim [ s(x,)di(i) = I, lim stx,) dA(i) = ; s(x) dd(i) = #(x).

From our point of view a solution must also satisfy some stability property in order
to be interesting. After defining global stability in our context, we will lock for a set of
sufficient conditions guaranteeing that a solution satisfies this requirement.

Definition: A solution (s, x) is globally stable if for every initial z € 4"
{:840) iy, - x.

Proposition 2; Suppose 5 € § satisfies the following conditions: For a.e. i € [ the
function 5,(-} is differentiable, In addition, there exists 5 & {f), I) such that ¥x € A" and
Vk,i=1,2,..,nandfora.e i€ [

Bsf(x) < 7
't n

Then there exists a unigue x* € A" such that (s, x*) is a solution. Moreover, (s, x*) is
globally stable,

Proof: See Appendix at the end of the paper.

The solution associated with any memory strategy so far has no relation to payoff
maximization. We will now define a solution with a minimum requirement of rationality
by imposing that at the (unique) stationary point the solution has to satisfy a one-shot
Nash equilibrium property; i.e.,
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Definition: A solution (s, x*) has the Nash property if fora.e. i € I,
his{x*), a) = hifx, a) Vxe A" where afi) = sjx*)ae. ic L

The next two propositions give sufficient conditions for the existence of a globally
stable solution with the Nash property (in the case of Proposition 4, the solution ig in
pure actions). Both are direct applications of results in Schmeidler (1973) and the proofs
use only memoryless sirafegies.

Proposition 3. If A.1 is satisfied there exists a globally stable solution (s, x*) with
the Nash property.

Proof: By Theorem 1 in Schmeidler (1973}, Ja* € A such that fora.e. i € 1,
hat(i), a*) = hx, a*) Vx € A" Letx* = [; a*(i) d(i) and let s,(x) = a*(i) Vi e A"

The hypothesis of Proposition 2 as well as the Nash property are clearly satisfied.
|

Now, an additional assumption in order to guarantee that players use a pure action in
the stationary point.

A.2; The payoff functions satisfy: Foreveryk=1,2,..,nandfora.c. i [, iff, a= J, b
then uf(a) = uk(b).

Agsumption A.2 means that the game is ancnymous in the sense that the payoff for

~any player depends only on the action that he takes and the proportion of players taking

the different actions.

Proposition 4. If A.l and A.2 are satisfied, there exists a globally stable solution
{s, x*) with the Nash property such that for a.e. i € [ and some &; € {1, 2, ..., nj,
sh(x*} =  (i.e., at the stationary point almost all players use a pure action).

Proof: By Theorem 2 in Schmeidler (1973) there exists a* € A such that for a.e. i € |,
hia®(i), a*) = hfx, a*} Vx € A" and for some k; € {1, 2, .., 0}, a*%i(i) = 1. The result
follows as in the proof of Proposition 3.

|

A natural question to ask is under which conditions an aggregate memory strategy
5 € § is a Nash equilibrium in the restricted game (where the strategy set for all players
is &) or, even more generally, when s is a Nash equilibrium in the unrestricied game
(when the strategy set for player i € I is ;). The next theorem answers the more general
question, but before stating it we need the following definition.

Definirion: A solution (s, x*) generates a Nash equilibrium of the unrestricted repea-
ted game if ¥z € 4", there exists f € F* (possibly depending on z) such that the sequen-
ce {a'}7; induced by s and z is such that V¢ = I, a'(f) = &'.

Theorem: Tf A.l is satisfied and (s, x*) is a globally stable solution with the Nash
properiy, then (s, x*) generates a Nash equilibrium of the vnrestricted repeated game.
Proof: See Appendix at the end of the paper.

The above theorem answers in an affirmative way the question of whether or not a
memory strategy is an equilibrium of the unrestricted repeated game if players are abso-
lutely patient {(i.e., they do not discount the future). We would like to answer the same
question for the case players use the discounted sum criterion in evaluating an infinite
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sequence of payoffs. To do so we will define the payoff for the discounted repeated
game G* where A€ [0, 1) is the discount factor.

Given a strategy f € F the payoff for playeri € {in G*#is defined as

HE(F) = (1 - B) zg 27 by (@' (f) (i), a'(£)).

Now, f& F is an equilibrium of G? if for a.e. i € I Hf| g) < H¥(f) Vg; € F,. The <Anti-
Folkk» Theorem says that only sequences of one-shot equilibria are possible in an equili-
brium. of the repeated games G [see Massé (1993)]. The idea behind it is simple: if the
payoff criterion of the repeated game has the property thal increasing the payoff in any
stage game raises the overall payoff, then, because of the fact that individual actions are
not discernible by the others, the equilibrium set of the repeated game consists of
sequences of one-shot equilibria, Therefore, the «Anti-Folk» Theorem tells us that in
general memory strategies are not equilibria of G¥. However, the next propositions give
a partial affirmative answer in the sense that memory strategies constituie a best reply up
to €. More precisely,

Proposition 5. In addition to A.1 suppose that for ae. ie Tand forevery k= 1,2, ..., n
the functions 1) are norm continuous, and let {a'}2; be any sequence of actions gene-
rated by a globally stable solution (s, x¥) with the Nash property. Then, Ve > 0 and for
a.e ie 1,38 e (0, 1)suchthat VBe (5, 1)

(1 ~ 5) %,ﬁ‘"f (hia'ti), a') = hebt, a')) | < €

for every sequence {b/, b7, ...} of points in A" such that
bl e argmax hi(x, a') forevery t 2 L
Xe

Progf: See Appendix at the end of the paper.
Proposition 6: In addition to the assumptions of Proposition 5 suppose:

(i) Forevery k=1,2, .., nand ae. i € I ul's are uniformly norm continuous; i.e., if
{a'}=; = ainnorm, then Ve > 0 3T 2 [ such that, | A(a'(i), @') - Afa(i), a) | < e Vi > T.

(ii) Jy € R, such that ¥{x,a)e A"x A | hix, a) | <vforae iel

Then Ve > 0, Eﬁ\ € (0, 1) such that V8 ¢ (ﬁ, 1) and for a.e. i € I the following is
true:

(1= ) X 57 (hyta'ti) a') - m(of, a)| < e
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for every sequence b, b7, ...J of points in A" such that

bi e argmax h;(x, a') Vit =2 1(5).
xed"

Proof: The proof of Proposition 3 applies setting 7; =T, y; = y and f; = )’3‘\ forae is I
|

Before finishing the paper a comment is in order. Following a remark in Schmeidler
(1973), we think that a generalization of the contents of this paper is possible. Assume
that A" is a compact and convex subset of R” (not necessarily the unit simplex) and that
h/'s are continuous on A" X A and quasi-concave (not necessarily affine) on A", Then,
existence of equilibrium follows, and all the analysis should go through (in the case of
Proposition 4, we would have to replace the pure actions by extreme points of A4%). Anot-
her way of generalizing the paper, solving also the unpleasant feature of the mixed stra-
tegy behavior, and obtaining a mode] closer to economic applications would consist on
adopting the more general framework of modeling aggregate behavior via the distribu-
tional approach of Mas-Colell (1984) and use his existence results.

APPENDIX

Proposition 2: Suppose s € S satisfies the following conditions: For a.e. i € T the
function s} is differentiable. In addition, there exists n € [0, {) such that Vx € A" and
Vi, 1=1,2,...,nandforae icl

dsf(x)

7
' <

T on

Then there exists a unique x* € A" such that (s, x*) is a solution. Moreover, (s, x*) is
globally stable.

Proof: The proof is in two steps. First, we will show that ¢, is a contraction, from
which existence and uniqueness (but not global stability) (6) of such x* follows easily.
Second, we will show stability of (s, x*).

Step 1: We show that ¢ A" — A” is a contraction with modulus 7, i.e.. for every x,
ze A" | dfx) — do(z) | g < 17| ¥~z | 5 Let x, z € A" be arbitrary. Then

| o) — B2 | = | Iy six) dMi)— Iy sfz) dii) | g =
|5 £si(x) — s(2)] da(i) | g < max {I; | s¥x) - sf(z) | dMi) | 1 <k < nf. [1]

(5) Notice that the difference between the conclusions of both propositions is that in Proposition 6, the lower bound for
the discount factor 8 is uniform.
(6) In our situation, the contraction does not give us global stability immediately, since the average step disturbs the
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Now, by the Mean-Value Theorem, ¥j=1,2, ..,nanda.e.i e[

dsliw,) Mmﬂuﬁw

!

(2]

i(x) = sizy | =
si(x) nm‘( R

where w; = ;x + (I — a;jz for some @; & (0, 1).

Therefore [2] is equal to

" asf(w) i aSJ W,
Z;k“’—(xkﬁzk) < 3 "—LkL)|xk—zk|£
k=1 Ox Py b
Snz(max xk—zk| =7lx-z|,.
N \i<k<n ]?" "E

. Thus, [1] is Tess or equal to 77 | x— 2| z. Hence, by the Contraction Mapping Theorem there
exists a unique x* € A" such that x* = ¢(x*), implying that (s, x*) is the unique solution.

Step 2: (5, x*) is globally stable.
Let z € A" be arbitrary, we have to show that (]2, — x*, Let £ > I, then

[ fa = wn |, = | dare Lty - ol - g <
< e o | D adah - gon ) <
< L_Ti " Jgit - g% HE + % ?]” far1 — x# IL —

- (g " zj" Jart — e,
! t /3

Therefore H Jai-t = x# "E < E'(r; ! + {:;7] Iz = x* |

Now, notice the following three facts:
. -1 -
O (BLedy)-1-(1-=Du -y
¥ r r ‘

(i) [1 -

) 3 (1 -

r— 1

)(f—i])E[O, I)vrz 1;

r— 1

Vi-p=t-n%

|

diverges,

.
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t -_—
Then, by Titchmarch's Lemma (7), lim [] [r ! + 1 ;7] = 0
F

e Ly r
Hence, lim ” Jat — x* "F = ( implying that (s, x*) is a globally siable solution.
t—>oo *

|
Theorem: If A.l is satisfied and (s, x*) is a globally stable solution with the Nash

- property, then (s, x*) generates a Nash equilibrium of the unrestricted repeated game.

Proof: Given (s, x*) and z € A", construct f € F so that it agrees for every player i,
every ¢, and every history with what 5 and z would generate. Since (s, x*) is giobally sta-
ble, {I; 3%, = x*, and thus, by continuity of s¢-), {s;{[; &)}z — sx*) for a.e. i e I.
Define a*(i) = s,{x*) a.e. i € 1. Notice that for a.e. i € I {d'(f) ()};2; — a*(i) because
a(f) (i) = s;(I, 7). Since (5, x*) has the Nash property, for a.e. i € I hfs(x*), a*) =
= hi{a*(i), a*) = hix, a*) Vx € A", implying that a* € A* (the set of one-shot Nash equi-
libria).

The next step is to show that {a(f)};~; — a* in norm. Let € > 0 be given, we want to
show that F7T such that V¢t > T, H a(f) — a* \| 4 < e As sf-) is continuous, Vk= 1,2, .., n
there exists Ty > / such that V¢ > Ty, [;| sf (| &) — sf(x*) | dA(i) < € by the Bounded
Convergence Theorem, Take T’ = max (T), | 1<k<n}; hence Vi > T,

L@y —aa = || &P (1) — a®i) | dND) |z =
= max {l;| sE( &) — skx®) | difi): 1 <k <} < e

The last step is to show that the conditions of Theorem 2 in Mass6 and Rosenthal
{1989) are satisfied and therefore f € F*. The set A is sequentially compact with the
weak topology. Assumption A.l means that for a.e. i € I, k; is continuous in its second
argument. Since convergence in norm implies weak convergence and for a.e. i € [
[a'(h) ()2, — a*(i), we have that {R(a'(f) (i), d()e; — hla*(i), a*} for ae i e L
Thus, by Theorem 2 in Massé and Rosenthal (1989), f e F*,

|

Proposition 5: In addition to A.1 suppose that fora.e. i€ Jand foreveryk=1,2, ..., n

the functions #(-) are norm continuous, and let {a‘}y; be any sequence of actions gene-

rated by a globally stable solution (s, x*) with the Nash property. Then, Ve > 0 and for
ae.iel, 3B e (0, I)suchthat V3e (5;, 1)

< €

(1= ) 3 B (h(a'(i), a') ~ hy(b], a"))
t=1 .

[ oo
(7 Let {b);.; be a sequence of real numbers such that b, € {0, 1), Then H {1 — ) — 0 provided that J, b di-

) £l
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for every sequence {b{, b, ...} of points in A" such that

bl e argmax h,(x, a') foreveryt = 1.
xed

Proof- Fora.e.i€ land Vi 2 1, let bj € A" be s.t. hybi, &) 2 hifa;, o) Va; e A" (the
existence of such & follows from the Weierstrass Theorem). Let e > 0 be given; then for
aede land VT, 21,

<

(1~ 8) 3 A1 h(a'(i), a') - hy(b!, a'}]
=1

i oo
S =p T (1= p) 2 T (@), @) - kbl a)| =
i= '

=1+

= (1= Y24 (1= 3 T h(bl, @' - (s, (x%), @) +

(=T+]
By (s (x%), a¥) — hy(a'(i), a) | [3]
Since {(a'(i), &')J7; — (sx*), a*), by joint continuity of A; we have that for a.e.

ie I {h{d(i), d)ir; — hfs{x*), a*). Therefore for T; sufficiently large, [3] is smaller
than '

(1 - A% 2y + (1 - B 3 ﬂ”(g + |hi(b,-’, a') — hi(s;(x*), a*) D [41

t=T+1

Now, notice that for a.e. { € I 5{x*} € argnjgx h(x, a*), forevery 21
xe
b!-’ € argr}gx hix, a'), and h; (-, +) is continuous. Therefore by the Maximum Theorem
XE

since {a'};2; — a*, we have that
{hy(b}, &'} — hfsdx*), a*).
Therefore, for T, sufficiently large, [4] is smaller than

(1 - A% 2)’:"'/57;(5) +ﬂ$(£} [5]
3 3
L
. £ . 6y, — 3e |k p .
Then, | assuming ¥ > — |letting 4 = | ==——— |, forevery # € (4, 1), [5]is
‘ 2 6y, — 2¢

smaller than .
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