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Abstract

For the provision of a binary public good we characterize the set of all strategy-

proof social choice functions and show that, if the binary public good is exclud-

able and has a �xed cost, the equal-cost sharing rule minimizes the maximal

welfare loss among the class of all strategy-proof and individually rational rules.

�We want to thank María Angeles de Frutos, Rajat Deb and Hervé Moulin for their comments. We are

especially thankful to Shinji Ohseto for his comments and a very helpful suggestion that helped us to write

a better paper. Support for the research of J. Massó was received through the prize �ICREA Acadèmia�

for excellence in research, funded by the Generalitat de Catalunya. He also acknowledges the support of

MOVE, where he is an a¢ liated researcher, and of the Barcelona Graduate School of Economics (through

its Research Recognition Programme), where he is an a¢ liated professor. His work is also supported by the

Spanish Ministry of Science and Innovation, through grants ECO2008-04756 (Grupo Consolidado-C) and

CONSOLIDER-INGENIO 2010 (CDS2006-00016), and by the Generalitat de Catalunya, through grant

SGR2009-419. The work of A. Nicolò is partially supported by the Italian Ministry of University and

Research, through grant 2005137858.

yDepartament d�Economia i d�Història Econòmica and CODE. Universitat Autonòma de Barcelona.

08193 Bellaterra (Barcelona), Spain. Email: jordi.masso@uab.es

zDipartimento di Scienze Economiche. Università degli Studi di Padova. Via del Santo 33. 35123,

Padova, Italy. Email: antonio.nicolo@unipd.it

xIndian Statistical Institute. 7, S.J.S. Sansanwal Marg, New Delhi - 110016, India. Email:

asen@isid.ac.in



Keywords: Excludable Public Good; Equal-cost Sharing; Strategy-proofness;

Individual Rationality.

JEL Classi�cation: D71.

1 Introduction

In many collective decision problems a group of agents has to make a joint decision about

the costly provision of a public good that can be bene�cial to more than one agent because

there is no rivalry in consumption. Often, the public good is binary (either the public

good is provided or it is not) and each agent assigns a (monetary) valuation to its use: her

maximal willingness to pay. The public good is pure if no agent can be excluded from its

use whenever the public good is provided. However, there are many circumstances under

which the public good is not pure, because, even if all its users consume the same amount

of the public good (or equivalently, it is technologically unfeasible or too costly to monitor

the amount each agent consumes), agents can be excluded from its use; for example, when

a key or a code, needed to have access to the consumption of the public good, is given

only to the subset of users. A simple example is the decision of installing an elevator in a

building: its use can be limited (using a key or a code) to those who contribute to pay the

cost of installation. Other examples are the television and radio licence fees in UK or Italy

and, more recently, the project of providing (through a satellite-based broadband platform)

broadband internet connection at a �at service fee to households, to small and medium

enterprises as well as to schools of ten countries in East and Central Africa.1 In all these

cases each agent contribution only depends on whether or not the agent is a user. Thus,

an allocation associated to a binary public good, pure or excludable, is a triple consisting

of: (i) a decision on whether or not the public good is provided, (ii) the set of its users (the

empty set if the public good is not provided and either the empty set or the set of all agents

if the public good is pure), and (iii) a list of agents�contributions (or prices). Society would

like to choose an allocation according to agents�valuations. But since agents�valuations

are private information they have to be elicited through a social choice function that maps

pro�les of valuations into allocations.

1See www.intersatafrica.com
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The �rst desirable property we require a social choice function to satisfy, is strategy-

proofness. A social choice function should induce truthful revelation of individual pref-

erences in dominant strategies; that is, no agent can gain by misrepresenting her true

valuation irrespective of her beliefs about the types of other agents.

Our �rst result (Theorem 1) characterizes, for any binary public good, the class of all

strategy-proof social choice functions. The result is independent of whether the public good

is pure or excludable and of the cost of providing it. Its main consequence (Corollary 1) is

that a strategy-proof social choice function can be roughly described by a family of pairs

of functions, one pair for each agent. The two functions associated with agent i depend on

the vector of all valuations except agent i�s own valuation (this is a well-known requirement

of strategy-proofness). The �rst function selects a cut-o¤ value with the property that if

agent i�s valuation is below this cut-o¤ she is not a user while if it is above, she is a user.

The second function selects a bonus-like contribution for agent i used to determine agent

i�s price: if i is a user, she has to pay a price that is equal to the cut-o¤ value (the one

selected by the �rst function) minus the bonus, and if i is not a user, she receives the bonus

(i.e., she has to pay a price that is equal to the negative value of the bonus). The proof of

Theorem 1 uses the Fundamental Theorem of Calculus and follows arguments already used

elsewhere to prove results on incentive compatibility mechanisms and auctions.2

Equipped with this general characterization of the full class of strategy-proof social

choice functions for binary public goods, we then focus on binary and excludable public

goods with a �xed cost of provision (i.e., the cost of provision is independent of the set of

its users) and restrict our attention to feasible social choice functions (we call them rules)

which satisfy the additional requirement that if the public good is provided then, the sum

of the prices paid by all agents (users and non-users) has to be larger or equal to the �xed

cost of provision. We are interested in rules satisfying, in addition to strategy-proofness

another basic and desirable property related to the voluntary participation of agents. A

rule is individually rational if agents receive always a utility larger or equal to zero (the

utility of not consuming the public good and not paying any price).

For pure public goods a rule is e¢ cient if it prescribes the provision of the public good

2See, for instance, Mussa and Rosen (1978), Myerson (1981), Myerson and Satterthwaite (1983), and
Krishna (2002).
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if and only if the sum of agents�valuations exceeds its cost. A rule is budget balanced if the

sum of the prices is always equal to the cost (after a normalization, 1 if the public good

is provided and 0 otherwise). For pure public goods, Clarke-Groves rules are e¢ cient and

strategy-proof but typically violate individual rationality (as well as budget balancedness).3

It may occur that, at some pro�les of valuations, an agent has to pay a price that is strictly

higher than her valuation when the good is provided and at other pro�les of valuations, an

agent has to pay a price that is strictly positive when the public good is not provided (and

at other pro�les of valuations the total amount paid by agents is strictly larger than the

cost of provision). Hence, when the public good is excludable and no authority can force

agents to participate, we have to restrict ourselves to use individually rational rules. But

then, any rule selecting an allocation in which an agent with a strictly positive valuation is

excluded is not e¢ cient. Thus, we are left with rules which either cannot always guarantee

an e¢ cient decision, or else deal with the fact that agents may bene�t by miss-reporting

their valuations. We insist here on the incentives issue and adopt a second-best type of

approach. Our aim is to identify�among the class of all strategy-proof and individually
rational�a rule that minimizes the maximal welfare loss. The welfare loss of a rule at a
pro�le of valuations is the di¤erence between the aggregate welfare of the �rst best and the

aggregate welfare of the rule, evaluated both at the given pro�le. The maximal welfare loss

of a rule is the supremum, taken over all pro�les of valuations, of its welfare loss. Then,

each rule is evaluated according to its maximal welfare loss and the goal is to select a

rule that minimizes it. Since we are interested in rules satisfying individual rationality it

turns out that ine¢ ciencies arise from the exclusion as users of some (or all) agents who

have strictly positive valuations. The maximal welfare loss of a rule is then the sum of the

valuations of all non-users of the good at the preference pro�le which maximizes this sum.

In Theorem 2 we show that the equal-cost sharing rule minimizes the maximum welfare

loss among all strategy-proof and individually rational rules. Given a pro�le of valuations,

the equal-cost sharing rule chooses the allocation with the (set-inclusion) maximal group

of users for which their contributions are smaller than their valuations, non-users pay a

price equal to zero, and each user pays the cost of provision divided by the number of users

(i.e., the equal-cost share). Observe that the equal-cost sharing rule satis�es many other

3See Clarke (1971), Groves (1973), and Green and La¤ont (1977 and 1979).
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desirable properties; in particular, it is budget balanced.

The worst-case welfare criterion has been extensively used and brings to social choice

theory a very well-established principle in other areas which states that the performance of

a system should be evaluated according to the worst case scenario. The papers by Moulin

and Shenker (2001), Moulin (2008), and Juarez (2008a and 2008b) are applications of this

principle to the theory of public goods. In computer science the worst-case criterion has

been adopted in the recent literature of the price of anarchy, introduced to measure the

e¤ects of sel�sh routing in a congested network (see Koutsoupias and Papadimitriou (1999),

Roughgarden (2002), and Roughgarden and Tardos (2002)).

In the last years there has been an extensive literature on the characterization of cost

sharing rules for excludable public goods. Most of this literature stems from the seminal

paper by Moulin (1994) in which she proves that when the cost of production is convex the

serial mechanism satis�es group strategy-proofness, equal treatment of equals, the stand

alone test4 and Pareto dominates the equal-costs mechanism. Deb and Razzolini (1999a

and 1999b) focus on the case of a binary and excludable public good with �xed cost of

provision and describe the equal-cost sharing rule as an auction like mechanism. Con-

sider an excludable public good with a cost normalized to 1 and let n be the number of

agents. At each step k = 0; 1; 2; :::; n � 1 of the mechanism an auctioneer asks to agents

who does want to be a user at price 1
n�k . The mechanism stops at the smallest k such

that there are n � k agents who accept to be users at price 1
n�k (and in case there is no

such k the public good is not provided). They characterize this mechanism as the unique

one satisfying strategy-proofness, individual rationality, equal treatment of equals, and two

additional conditions (directional nonbossiness and free entry in Deb and Razzolini (1999a),

and upper semicontinuity and non-imposition in Deb and Razzolini (1999b)). Their charac-

terization results show that equal treatment of equals substantially narrows down the class

of strategy-proof mechanisms. Again, for the case of a binary and excludable public good

with �xed cost, Ohseto (2000) characterizes the class of largest unanimous mechanisms as

the set of strategy-proof, individually rational, demand-monotonic, and access-independent

mechanisms. Access-independency requires that each agent should have access to either

4A stronger property than individual rationality: each agent should be guaranteed the utility level given
by the amount of the good that maximizes her utility when she pays the full cost of provision.
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level of the public good regardless of other agents�valuations; demand monotonicity im-

poses restrictions on the set of users when agents�valuations vary (namely, when all agents�

valuations weakly increase then the set of users cannot shrink and when all users�valua-

tions increase and all non-users�valuations decrease then the set of users does not vary).

Largest unanimous mechanisms are such that, given a cost sharing method �,5 the public

good is provided for the largest coalition of agents whose members approve the provision of

the public good coupled with the cost share speci�ed by � at this coalition, and the public

good is not provided if no such coalition exists. Clearly the equal-cost sharing rule belongs

to this class and corresponds to the case in which � equally shares the cost of provision

among the set of users. Moreover, Ohseto (2005) characterizes the class of augmented serial

rules as the set of all strategy-proof, access-independent, envy-free, and non-bossy rules.6

While there are augmented serial rules that are not individually rational all of them are

non-subsidizing. Ohseto (2005) also discusses the trade-o¤s between individual rationality

and the maximal welfare loss in the class of augmented serial rules. Observe that the two

Ohseto�s characterizations, as well as ours, do not use any property related to anonymity,

symmetry or equal treatment of equals. In contrast, and for the case of allocating an in-

divisible unit of a private good, Moulin (2010) shows, among other results, the trade-o¤s

between a notion of fairness and e¢ ciency loss on the class of anonymous and strategy-proof

rules.

The closest paper to our contribution is Moulin and Shenker (2001). They consider the

provision of a binary and excludable public good when the cost function is a submodular

function of the set of users. They show that the rule associated with the Shapley value

cost sharing formula (which corresponds to the equal-cost sharing method for the case

of a binary public good with �xed cost of provision) is the unique rule that satis�es the

property that its maximum welfare loss is minimal among the class of rules that are de�ned

from a cross monotonic cost sharing method and are group strategy-proof, individually

rational, non-subsidizing (the cost shares are non negative), budget balanced, and satisfy

5A cost sharing method speci�es for each set of users the price paid by each user with the property that
the sum of the prices is equal to the cost of provision.

6Envy-freeness requires that no agent prefers to be treated by the rule (in terms of her participation
and contribution) as any other agent is treated. Non-bossiness requires that by changing her valuation, no
agent is able to change the social decision without a¤ecting the way the rule treats her.
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consumer sovereignty. Cross monotonicity imposes that the price paid by each user weakly

decreases when the set of users enlarges. Our result and Moulin and Shenker (2001) result

are logically independent but complementary because we focus on the more restricted case

in which the cost of provision is �xed, but we prove that the equal-cost sharing rule is

worst-case minimizing among a much broader set of rules. Speci�cally, we �rst show that

non-subsidizingness, budget balancedness, and consumer sovereignty are properties that are

implied by the second-best e¢ ciency criterion we adopt. Second, and more importantly, we

do not impose that the rule be de�ned through a cross monotonic method. We show in the

last section of the paper that there are rules that are strategy-proof, individually rational,

and budget balanced which are neither group strategy-proof nor de�ned through a cross

monotonic method. Our result shows that the worst-case minimizing criterion narrows

down an extremely large class of rules to the equal-cost sharing rule. Notice that we reach

this result without imposing any normative criterion to equalize agents�contributions like

an equal treatment of equals property or like a cross monotonicity requirement, which also

goes in the direction of imposing similar treatment (all users should in fact weakly bene�t

from an enlargement of the set of users): the (ex-post) equal treatment of users that

the equal-cost sharing rule imposes, only derives from the (ex-ante) second-best e¢ ciency

criterion we adopt. Third, we only require strategy-proofness and not group strategy-

proofness. We believe that strategy-proofness is a more compelling axiom than group

strategy-proofness from a decision-theoretic perspective. If agents are ignorant of the types

of other agents, assumptions about the ability of coalitions to coordinate their messages

for mutual bene�t require stronger justi�cation. Group strategy-proofness can also be a

demanding requirement in this setting as is shown by the result of Juarez (2008b) who proves

that any group strategy-proof rule (remarkably, without imposing budget balancedness) is

not e¢ cient (except when the cost function is additive). Juarez (2008b) also shows that if

the cost function has decreasing marginal cost then the average cost rule (each agent pays

a unitary price equal to the average cost) is the worst-case minimizing rule among the set

of group strategy-proof rules which satisfy equal treatment of equals.7

The paper is organized as follows. Section 2 introduces the basic model and de�nitions.

7Juarez (2008b) also proves that when the marginal cost is increasing then the sequential average cost
is worst-case minimizing among the set of group strategy-proof rules.
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Section 3 presents the main properties of social choice functions and gives a general charac-

terization of all strategy-proof social choice functions (Theorem 1). Section 4 describes the

e¢ ciency criterion of minimizing the maximal welfare loss, de�nes the equal-cost sharing

rule, and presents Theorem 2 stating that the equal-cost sharing rule minimizes the max-

imal welfare loss among the class of all strategy-proof and individually rational rules. In

Section 5 we prove Theorem 2. Section 6 contains a �nal remark. An appendix at the end

of the paper contains the proof of Theorem 1.

2 Preliminaries

Consider a �nite set of agents N = f1; :::; ng that has to decide on the provision of a binary
public good. The public good is binary because it can either be provided (denoted by 1)

or not provided (denoted by 0). Let X = f0; 1g be the set of the two binary choices and
let x 2 X be a generic choice. The public good is excludable whenever a subset of agents

(called non-users) can be excluded from its use, even when x = 1. The set of agents that

are not excluded are called users. A generic subset of users will be denoted by S. A public

good is pure if no agent can be excluded from its consumption when the public good is

produced; namely, when x = 1 the set of users S is the entire set of agents N . Since

Theorem 1 will apply to any binary public good, independently of the cost of providing it,

we do not make any assumption yet on its cost.

For each agent i 2 N , let �i 2 R+ be the (monetary) valuation that i assigns to the
public good if it is produced and i is a user. By requiring that �i is independent of the set

of users we are implicitly assuming that there is no rivalry in the consumption of the public

good. A pro�le � = (�i)i2N 2 RN+ is a vector of valuations, one for each agent. For each
subset of agents S � N , let 1S : N ! f0; 1g be the indicator function where for all i 2 N ,

1S(i) =

(
1 if i 2 S
0 if i =2 S:

To simplify notation we write 1iS instead of 1S(i). Let p = (pi)i2N 2 RN be a vector of

prices (or contributions).8

8We are admitting the possibility of negative prices. Later, we will impose that prices be positive.
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The set of agents N has to decide whether or not to provide the public good (x 2 X),
its set of users S 2 2N , and the vector of contributions p 2 RN : An allocation is a triple
(x; S; p) 2 X � 2N � RN with the property that x = 0 implies S = ;. Observe that we are
not imposing yet any condition on the vector of prices p nor excluding the possibility that

x = 1 and S = ;. Denote by A � f(x; S; p) 2 X � 2N � RN j x = 0 implies S = ;g the set
of all allocations. Agent i�s preferences on the set of allocations A depend on i�s valuation

�i 2 R+ and they are represented by the utility function vi : A� R+ ! R, where for each
(x; S; p; �i) 2 A� R+;

vi(x; S; p; �i) = 1
i
S � x � �i � pi.

Since the society N will remain �xed, a pro�le � = (�i)i2N 2 RN+ completely describes
a problem. We will write (�i; ��i) to emphasize the role of agent i in the pro�le �, and

(�S; ��S) to emphasize the role of the subset of agents S.

A social choice function f : RN+ ! A selects, for each pro�le � 2 RN+ ; an allocation
f(�) 2 A: Hence, a social choice function f can be identi�ed with its three components

f = (xf ; Sf ; pf ); where xf : RN+ ! f0; 1g, Sf : RN+ ! 2N , and pf : RN+ ! RN : Namely, for
each � 2 RN+ ; f(�) = (xf (�); Sf (�); pf (�)); obviously, the triple must satisfy that for all
� 2 RN+ , if xf (�) = 0 then Sf (�) = ;. When no confusion arises we omit the superscript f
and write f = (x; S; p).

3 Basic Properties and Preliminary Results

A social choice function is strategy-proof if, at all pro�les, to report truthfully is a dominant

strategy for all agents. To state it formally, we need the notion of manipulation. Agent

i 2 N manipulates f : RN+ ! A at pro�le � 2 RN+ if there exists �0i 2 R+ such that

vi(x
f (�0i; ��i); S

f (�0i; ��i); p
f (�0i; ��i); �i) > vi(x

f (�i; ��i); S
f (�i; ��i); p

f (�i; ��i); �i):

In this case we say that i manipulates f at � via �0i.

De�nition 1 A social choice function f : RN+ ! A is strategy-proof if no agent manipulates

f at any pro�le.

Theorem 1 below characterizes the class of all strategy-proof social choice functions. To

state it, we need the following de�nition. A function g : R+ ! R+ is an increasing function

8



of z if z0 > z00 � 0 implies g(z0) � g(z00) � 0:

Theorem 1 A social choice function f : RN+ ! A is strategy-proof if and only if for all

i 2 N the following two conditions hold:

(T1.a) for all ��i 2 RNnfig+ ; 1i
Sf (�i;��i)

� xf (�i; ��i) is an increasing function of �i;
(T1.b) for all � 2 RN+ ,

pfi (�) = 1
i
Sf (�i;��i)

� xf (�i; ��i) � �i �
Z �i

0

1iSf (t;��i) � x
f (t; ��i)dt� hfi (��i); (1)

where hfi : R
Nnfig
+ ! R is an arbitrary function.

As we have already said in the Introduction the proof of Theorem 1 relies on the Funda-

mental Theorem of Calculus in a similar way as the proofs of other incentive compatibility

results do in di¤erent settings like mechanism design and auction theory. For completeness,

the interested reader will �nd the proof of Theorem 1 in an appendix at the end of the

paper.

Theorem 1 is a very powerful result. Observe �rst that the characterization is general

since it includes as particular cases pure and excludable public goods with �xed cost as

well as any cost function (which may depend on the set of users). Moreover, it does not

require any a priori relationship between the sum of the prices and the cost of providing the

public good. Before proceeding, it is useful to describe, given ��i, the increasing function

1i
Sf (�i;��i)

�xf (�i; ��i) of �i identi�ed in Theorem 1 as follows. Given a social choice function
f : RN+ ! A and an agent i 2 N , �x ��i 2 RNnfig+ and let �fi : R+ ! f0; 1g be the function
(of �i, given ��i) such that for all �i 2 R+, �fi (�i) = 1i

Sf (�i;��i)
� xf (�i; ��i). Hence, for

each ��i 2 RNnfig+ there exists a critical value �fi (��i) 2 R+ [ f1g (the point where �
f
i

is discontinuous, if any) such that 1i
Sf (�i;��i)

� xf (�i; ��i) = 1 for all �i > �fi (��i), if any,

and 1i
Sf (�i;��i)

� xf (�i; ��i) = 0 for all �i < �fi (��i), if any. That is, given ��i, there exists

�fi (��i) 2 [0;+1] such that either

�fi (�i) =

(
0 if �i � �fi (��i)

1 if �i > �fi (��i)

or

�fi (�i) =

(
0 if �i < �fi (��i)

1 if �i � �fi (��i):
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Figure 1 illustrates the two relevant cases of these �fi functions depending on whether

�fi is right or left continuous at �
f
i (��i):

-

6

1

�i

�fi (�i)
Given ��i

0

r
b

�fi (��i)

-

6

1

�i

�fi (�i)
Given ��i

0

b
r

�fi (��i)

Figure 1

The two other cases are the constant functions where �fi is always equal to 0 (if �
f
i (��i) = 0)

or equal to 1 (if �fi (��i) = +1).
By (T1.b) in Theorem 1, if �i > �fi (��i) then,

pi(�) = 1iSf (�i;��i) � x
f (�i; ��i) � �i �

Z �i

�fi (��i)

1iSf (t;��i) � x
f (t; ��i)dt� hfi (��i)

= �i � (�i � �fi (��i))� hfi (��i)

= �fi (��i)� hfi (��i):

Moreover, if either (i) �i < �fi (��i) or (ii) �i = �fi (��i) and 1
i

Sf (�fi (�i);��i)
�xf (�fi (��i); ��i) =

0 then, pfi (�) = �h
f
i (��i). Finally, if �i = �fi (��i) and 1

i

Sf (�fi (�i);��i)
� xf (�fi (��i); ��i) = 1

then, pfi (�) = �fi (��i) � hfi (��i). Hence, as a consequence of Theorem 1 we can state

Corollary 1.
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Corollary 1 A social choice function f : RN+ ! A is strategy-proof if and only if for each

i 2 N there exist two functions �fi : R
Nnfig
+ ! R+ [ f1g and hfi : R

Nnfig
+ ! R such that

(C1.a) if �i > �fi (��i) then 1
i
Sf (�i;��i)

� xf (�i; ��i) = 1 and pfi (�) = �fi (��i)� hfi (��i);

(C1.b) if �i < �fi (��i) then 1
i
Sf (�i;��i)

� xf (�i; ��i) = 0 and pfi (�) = �h
f
i (��i); and

(C1.c) if �i = �fi (��i) then either [1
i
Sf (�i;��i)

� xf (�i; ��i) = 1 and pfi (�) = �fi (��i) �
hfi (��i)] or [1

i
Sf (�i;��i)

� xf (�i; ��i) = 0 and pfi (�) = �h
f
i (��i)]:

From now on we will only consider cases where the cost of providing the binary public

good is constant, and independent on the set of users; we normalize the cost of providing

the public good to be equal to 1 while the cost of not providing it to be equal to 0. Thus,

an allocation (x; S; p) 2 A is feasible if x = 1 implies
P

i2N pi � 1: Let FA be the set of

feasible allocations.

De�nition 2 A social choice function f : RN+ ! A is feasible if for all � 2 RN+ ; f(�) 2 FA;
namely, for all � 2 RN+ , xf (�) = 0 implies Sf (�) = ;, and xf (�) = 1 implies

P
i2N p

f
i (�) �

1.

A rule is a feasible social choice function f : RN+ ! FA. From now on we will only

consider social choice functions that are rules.

A rule is individually rational at a pro�le if no agent obtains a lower utility than the

utility she would have obtained by not participating.

De�nition 3 A rule f : RN+ ! FA is individually rational at � 2 RN+ if for all i 2 N;

vi(x
f (�); Sf (�); pf (�); �i) � 0. A rule f : RN+ ! FA is individually rational if it is

individually rational at all pro�les.

Consider a strategy-proof and individually rational rule f = (x; S; p). Fix i 2 N and

��i 2 RNnfig+ . By individual rationality,

vi(x(0; ��i); S(0; ��i); p(0; ��i); 0) � 0:

Hence, 1iS(0;��i) � x(0; ��i) � 0 � pi(0; ��i) � 0; namely, pi(0; ��i) � 0: Then, by (C1.b) if

�i(��i) > 0 or by (C1.c) if �i(��i) = 0, pi(0; ��i) = �hi(��i) � 0: Hence, hi(��i) � 0: We
state this fact as Remark 1 below.

Remark 1 Let f : RN+ ! FA be a strategy-proof and individually rational rule. Then,

for all i 2 N and all ��i 2 RNnfig+ , hfi (��i) � 0:
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Let � be the class of strategy-proof and individually rational rules. We are interested

in selecting among all rules in � a second-best e¢ cient rule.

4 E¢ ciency, Welfare Loss and Equal-cost Sharing

4.1 Purely E¢ cient Rules

There is a natural notion of (�rst-best) e¢ ciency for pure public goods. Remember that a

public good is pure if once the public good is produced no agent can be excluded from its

consumption (x = 1 implies S = N). Assume the public good is pure. Then, the following

notion of e¢ ciency is natural.

De�nition 4 A rule f : RN+ ! FA is (purely) e¢ cient if for all � 2 RN+ :
(i)
P

i2N �i � 1 implies xf (�) = 1 and Sf (�) = N .

(ii)
P

i2N �i < 1 implies x
f (�) = 0 and Sf (�) = ;.

Observe that (purely) e¢ cient rules refer to pure public goods; as soon as there is ex-

clusion (and a non-user has strictly positive valuation) e¢ ciency is violated. In particular,

to see that there is no strategy-proof, individually rational, and (purely) e¢ cient rule con-

sider the case where N = f1; 2; 3g and �1 = �2 = 4=9 and �3 = 2=9: By Corollary 1

and e¢ ciency, any such f has the property that �f1(4=9; 2=9) = �f2(4=9; 2=9) = 3=9 and

�f3(4=9; 4=9) = 1=9: Hence, x
f (�) = 1: By individually rationality, Corollary 1 and Remark

1, pfi (�) � �fi (��i) for all i 2 N: Thus,
P

i2N p
f
i (�) �

P
i2N �

f
i (��i) = 7=9 < 1; which

violates feasibility.

4.2 Minimizing the Maximal Welfare Loss

For any binary public good, pure or excludable, the �rst best at pro�le � 2 RN+ requires
provision of the public good if

P
i2N �i � 1 and non-provision if

P
i2N �i < 1. Given

� 2 RN+ ; let W (FB; �) � maxf
P

i2N �i � 1; 0g be the welfare of the �rst best at pro�le
�. We will show in Theorem 2 that, among the rules in �, the equal-cost sharing rule

minimizes the maximal welfare loss from the �rst best.

Consider again the case of a public good with exclusion. Fix f 2 � and consider � 2 RN+ .

12



The welfare of f at � is

W (f; �) =

8<:
P

i2Sf (�)
�i � 1 if xf (�) = 1

0 if xf (�) = 0:

Hence, the welfare loss from the �rst best of f at � is

WL(f; �) =W (FB; �)�W (f; �) (2)

=

8><>:
maxf

P
i2N

�i � 1; 0g � (
P

i2Sf (�)
�i � 1) if xf (�) = 1

maxf
P
i2N

�i � 1; 0g if xf (�) = 0

=

8><>:
maxf

P
i=2Sf (�)

�i;�
P

i2Sf (�)
�i + 1g if xf (�) = 1

maxf
P
i2N

�i � 1; 0g if xf (�) = 0:

Thus, the maximal welfare loss from the �rst best of f is

MWL(f) = sup
�2RN+

WL(f; �):

We want to minimize the maximal welfare loss on �. That is, we want to �nd a rule f̂ 2 �
with the property that MWL(f̂) �MWL(f) for all f 2 �.

4.3 Equal-cost Sharing for Binary and Excludable Public Goods

The equal-cost sharing rule splits equally the cost of providing the binary and excludable

public good among the maximal set of users for whom equal split is individually rational.

In Theorem 2 below we will show that the equal-cost sharing rule minimizes the maximal

welfare loss among the class of all strategy-proof and individually rational rules. Formally,

for each � 2 RN+ ; de�ne the family of subsets of agents

U(�) = fS 2 2N j �i �
1

#S
for all i 2 S and �j �

1

#S + 1
for all j =2 Sg:

Namely, given � 2 RN+ , U(�) is the family of sets of users that (i) satisfy individual
rationality at � when the cost of the public good is uniformly distributed among the set

13



of users, and (ii) non-users do not strictly prefer to become a user by joining the group of

users and pay the corresponding uniform contribution. Namely, a set in the family U(�)

satis�es an internal and external stability property at � if the cost of providing the binary

and excludable public good is equally shared among the set of users. Observe that for

some pro�le � 2 RN+ , the family U(�) may contain only the empty set while for other
pro�les �0 2 RN+ the family U(�0) may contain more than one subset of agents. However,
if S; S 0 2 U(�0) then S [ S 0 2 U(�0): Therefore, for all � 2 RN+ , there exists a unique
(set-inclusion) maximal set in U(�). Denote it by S�:

De�nition 5 The equal-cost sharing rule fEC : RN+ ! FA is the rule that, for each

� 2 RN+ ,

(xf
EC

(�); Sf
EC

(�)) =

(
(1; S�) if U(�) 6= f;g
(0; ;) if U(�) = f;g

and, for all i 2 N ,

pf
EC

i (�) =

(
1

#SfEC (�)
if i 2 SfEC (�)

0 if i =2 SfEC (�):

Theorem 2 is the main result of the paper.

Theorem 2 The equal-cost sharing rule minimizes the maximal welfare loss among the

set of all strategy-proof and individually rational rules.

5 Proof of Theorem 2

The structure of the proof of Theorem 2 is as follows. We will �rst restrict the rules in the

class of strategy-proof and individually rational rules by successively requiring that they

satisfy additional properties. Namely, we will further restrict our search of a rule that min-

imizes the maximal welfare loss on the class of rules that besides being strategy-proof and

individually rational they are also non-subsidizing, budged balanced, demand monotonic,

cross-monotonic, and satisfy consumer sovereignty. In Lemmata 1 to 4 we will show that to

require that the additional conditions hold can be done without loss of generality because

if a rule f does not satisfy one of these additional properties we can always �nd a rule ~f

satisfying them with an equal or smaller maximal welfare loss than the rule f . Then, we

will show that the equal-cost sharing rule minimizes the maximal welfare loss among all

14



strategy-proof, individually rational, non-subsidizing, budget balanced, demand monotonic,

and cross monotonic rules that satisfy consumer sovereignty. Thus, by Lemmata 1 to 4 the

equal-cost sharing rule minimizes the maximal welfare loss among all strategy-proof and

individually rational rules.

5.1 Non-subsidizingness and budget balancedness

Some rules may require that at some pro�le an agent is subsidized (i.e., pays a negative

price). Rules that exclude this possibility are called non-subsidizing.

De�nition 6 A rule f : RN+ ! FA is non-subsidizing at � 2 RN+ if for all i 2 N ,

pfi (�) � 0: A rule f : RN+ ! FA is non-subsidizing if it is non-subsidizing at all pro�les.

Another basic property of rules is that the sum of the prices be equal to the cost of

providing the public good. For many applications we want to consider rules that balance

the budget.

De�nition 7 A rule f : RN+ ! FA is budget balanced at � 2 RN+ ; if xf (�) = 0 impliesP
i2N p

f
i (�) = 0, and x

f (�) = 1 implies
P

i2N p
f
i (�) = 1: A rule f : RN+ ! FA is budget

balanced if it is budget balanced at all pro�les.

To see that strategy-proofness, individual rationality and budget-balancedness do not

imply non-subsidizingness consider the case where N = f1; 2g and de�ne the rule f by the
quadruple (�f1 ; �

f
2 ; h

f
1 ; h

f
2) of functions where for all � 2 RN+ ; �

f
1(�2) = 4=3; �

f
2(�1) = +1,

hf1(�2) = 0 and

hf2(�1) =

(
1=3 if �1 � 4=3
0 otherwise.

By Corollary 1 and Remark 1, it is immediate to see that f is strategy-proof and individually

rational. Since

pf1(�1; �2) =

(
4=3 if �1 � 4=3
0 otherwise

pf2(�1; �2) =

(
�1=3 if �1 � 4=3
0 otherwise,

f is budget balanced and subsidizing.

15



Lemma 1 below says that for our purpose we can restrict our search to the class of rules

that in addition to be strategy-proof and individually rational they are also non-subsidizing

and budget balanced.

Lemma 1 Let f : RN+ ! FA be a strategy-proof and individually rational rule. Then,

there exists a strategy-proof, individually rational, non-subsidizing, and budget balanced rule
~f : RN+ ! FA that has the same or a smaller maximal welfare loss than f .

Proof To de�ne ~f from f; let � 2 RN+ be arbitrary. Two cases are possible.

Case 1: xf (�) = 0: We now construct ~f(�) = (x ~f (�); S ~f (�); p
~f (�)); individually rational,

non-subsidizing and budget balanced at �, with the property that WL( ~f; �) = WL(f; �):

We do that by applying conditions (C1.a), (C1.b) and (C1.c) in Corollary 1 to the family

of duples (�
~f
i (��i); h

~f
i (��i))i2N de�ned as follows. Set �

~f
i (��i) = �fi (��i) and h

~f
i (��i) = 0

for all i 2 N . Note that x ~f (�) = xf (�), S ~f (�) = Sf (�) = ? and p
~f
i (�) = 0 for all

i 2 N . Moreover, ~f is individually rational and non-subsidizing at �: Since x ~f (�) = 0 andP
i2N p

~f
i (�) = 0, ~f is budget balanced at �. Obviously, WL(f; �) =

P
i2N �i = WL( ~f; �):

Case 2: xf (�) = 1: We now construct ~f(�) = (x ~f (�); S ~f (�); p
~f (�)); individually rational,

non-subsidizing and budget balanced at �; with the property that WL( ~f; �) � WL(f; �):

Again, we do that by applying conditions (C1.a), (C1.b) and (C1.c) in Corollary 1 to the

family of duples (�
~f
i (��i); h

~f
i (��i))i2N de�ned as follows. Set h

~f
i (��i) = 0 for all i 2 N .

Assume �rst that
P

i2N �i < 1: Thus,P
i=2Sf (�) �i < 1�

P
i2Sf (�) �i:

Hence, by (2), WL(f; �) = 1 �
P

i2Sf (�) �i: For i =2 Sf (�); set �
~f
i (��i) = �fi (��i) and

for i 2 Sf (�); set any �
~f
i (��i) > �i: Then, by Corollary 1, x

~f (�) = 0 and S ~f (�) = ?:
Since p

~f
i (�) = 0 for all i 2 N;

P
i2N p

~f
i (�) = 0. Thus, ~f is individually rational, non-

subsidizing and budget balanced at �. Moreover, WL( ~f; �) = maxf
P

i2N �i � 1; 0g = 0 <
1�

P
i2Sf (�) �i = WL(f; �): Hence, ~f has a strictly smaller welfare loss than f at �:

Assume now that
P

i2N �i � 1: Thus,P
i=2Sf (�) �i � 1�

P
i2Sf (�) �i:

Hence, by (2), WL(f; �) =
P

i=2Sf (�) �i: We now distinguish between two subcases.
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Subcase 2.1:
P

i2Sf (�) �i � 1: Then, for all i =2 Sf (�) set �
~f
i (��i) = �fi (�) and for

each i 2 Sf (�) choose any �
~f
i (��i) � �i with the property that

P
i2Sf (�) �

~f
i (��i) = 1:

Then, x ~f (�) = 1 and S ~f (�) = Sf (�): Since p
~f
i (�) = �

~f
i (��i) � �i for all i 2 S

~f (�) and

p
~f
i (�) = 0 for all i =2 S

~f (�); ~f is individually rational and non-subsidizing at �. Since

x
~f (�) = 1 and

P
i2N p

~f
i (�) =

P
i2S ~f (�) �

~f
i (��i) = 1;

~f is budget balanced at �. Moreover,

WL( ~f; �) =
P

i=2S ~f (�) �i =
P

i=2Sf (�) �i = WL(f; �):

Subcase 2.2:
P

i2Sf (�) �i < 1: Then, for all i =2 Sf (�) set �
~f
i (��i) = �fi (�) and for

each i 2 Sf (�) choose any �
~f
i (��i) > �i: Then, x

~f (�) = 0 and S ~f (�) = ?: Since p ~fi (�) =
0 for all i 2 N; ~f is individually rational, non-subsidizing and budget balanced at �.

Finally, since
P

i2N �i � 1; by (2), WL( ~f; �) = maxf
P

i2N �i � 1; 0g =
P

i2N �i � 1 <P
i2N �i �

P
i2Sf (�) �i =

P
i=2Sf (�) �i = WL(f; �); where the strict inequality follows from

the hypothesis of Subcase 2.2.

Thus, we have de�ned a rule ~f that is budget balanced, non-subsidizing, individually

rational and, by Corollary 1, strategy-proof. Moreover, since for all � 2 RN+ , WL( ~f; �) �
WL(f; �), we have that MWL( ~f) �MWL(f): �

Let �NS\BB  � be the set of strategy-proof, individually rational, non-subsidizing,

and budget balanced rules. Let f 2 �NS\BB and � 2 RN+ . Remark 2 below says that the
welfare loss of f at � can be written in a very useful way.

Remark 2 Assume xf (�) = 1. Since f is individually rational, �i � pfi (�) � 0 for all

i 2 Sf (�): Summing up,
P

i2Sf (�) �i �
P

i2Sf (�) p
f
i (�) � 0: By individual rationality, non-

subsidizingness, and budget balancedness,
P

i2Sf (�) �i � 1 � 0: Thus, WL(f; �) can be

written as

WL(f; �) =

8><>:
P

i=2Sf (�)
�i if xf (�) = 1

maxf
P
i2N

�i � 1; 0g if xf (�) = 0:

The following result will be useful in the sequel.

Lemma A Let ~f; f 2 �NS\BB be such that S ~f (�) � Sf (�) for all � 2 RN+ . Then,
MWL( ~f) �MWL(f):

Proof First, note that for all � such that xf (�) = x
~f (�); S

~f (�) � Sf (�) implies that

WL( ~f; �) � WL(f; �): Suppose that x ~f (�) = 1 and xf (�) = 0 (the opposite cannot oc-
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cur since S ~f (�) � Sf (�) for all � 2 RN+ ): Then, WL( ~f; �) =
P

i=2S ~f (�) �i and WL(f; �) =

maxf
P

i2N �i�1; 0g: Since ~f is feasible and individually rational,
P

i2S ~f (�) �i � 1 and there-
fore WL(f; �) =

P
i2N �i � 1 =

P
i=2S ~f (�) �i +

P
i2S ~f (�) �i � 1 �

P
i=2S ~f (�) �i = WL( ~f; �):

�

5.2 Demand Monotonicity

We state now the property of demand monotonicity, introduced by Ohseto (2000), that will

be very useful to prove Theorem 2. Demand monotonicity can be interpreted as a weak

e¢ ciency requirement. Its violation, in fact, implies that at some pro�le the rule excludes

some agent who is willing to join the group of users.

De�nition 8 A rule f : RN+ ! FA is demand monotonic if for all �; �0 2 RN+ the following
two conditions hold:

(DM.1) if �0i � �i for all i 2 N then Sf (�0) � Sf (�); and

(DM.2) if �0i � �i for all i 2 Sf (�) and �0j � �j for all j =2 Sf (�) then Sf (�0) = Sf (�):

Remark 3 Strategy-proofness, individual rationality, non-subsidizingness, and budget

balancedness do not imply demand monotonicity (see Example 3 in Ohseto (2000)).

De�nition 9 A rule f : RN+ ! FA is a semiconstant cost sharing rule if for all �; �0 2 RN+ ;
Sf (�) = Sf (�0) implies f(�) = f(�0):

This is a simple class of rules where agents�contributions only depend on the set of

users. Ohseto (2000) shows that the following remark holds.

Remark 4 Any strategy-proof, individually rational, non-subsidizing, budget-balanced,

and demand monotonic rule is a semiconstant cost sharing rule.

Let�NS\BB\DM ( � be the class of strategy-proof, individually rational, non-subsidizing,
budget balanced, and demand monotonic rules. Lemma 2 below shows that we can restrict

our search of the rule minimizing the maximal welfare loss to the class �NS\BB\DM without

loss of generality, since this class contains all rules which are candidates to minimize the

maximal welfare loss.

Lemma 2 Let f : RN+ ! FA be a strategy-proof, individually rational, non-subsidizing,

and budget balanced rule and assume that f is not demand monotonic. Then, there ex-
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ists a strategy-proof, individually rational, non-subsidizing, budget balanced, and demand

monotonic rule ~f : RN+ ! FA that has a lower or equal maximal welfare loss than f .

Proof Assume f 2 �n�NS\BB\DM . Since f does not satisfy demand monotonicity there
exist �00; �0 2 RN+ such that either
(2.a) �00i � �0i for all i 2 N and Sf (�0) " Sf (�00) or

(2.b) �00i � �0i for all i 2 Sf (�0) and �00i � �0i for all i =2 Sf (�0) and Sf (�0) 6= Sf (�00):

The proof proceeds in 3 steps.

Step 1: Suppose that (2.a) occurs; otherwise, set �f = f and go to Step 2. Let

Inf f(1) = f�0 2 RN+ j there exists �00 2 RN+ such that �00i � �0i for all i 2 N; Sf (�0) " Sf (�00)

and for all �000 2 RN+ such that �0i � �000i for all i 2 N; Sf (�0) � Sf (�000)g

be the set of all smallest pro�les for which (2.a) occurs. For each �0 2 RN+ , let

NoDM f
(1)(�

0) = f�00 2 RN+ j �00i � �0i for all i 2 N and Sf (�0) " Sf (�00)g

be the set of all pro�les for which (2.a) occurs with respect to �0.

Let f�fi gi2N be the family of functions associated to f identi�ed in Corollary 1. By

non-subsidizingness, the corresponding family fhfi gi2N has the property that for all i 2 N ,
hfi (��i) = 0 for all ��i 2 RNnfig+ . From f�fi gi2N , de�ne the rule �f by describing its

associated family of functions f� �fi gi2N as follows.

� For each � =2
S
�02Inff

(1)
NoDM f

(1)(�
0), set for all i 2 N; � �fi (��i) = �fi (��i).

� For each � 2
S
��2Inff

(1)
NoDM f

(1)(��), set for all i 2 N ,

�
�f
i (��i) =

(
�fi (�

0
�i) if i 2 Sf (�0)

0 otherwise,

where �0 is such that � 2 NoDM f
(1)(�

0).

Step 2: Consider �f , the outcome of Step 1, and assume (2.b) occurs for �f ; otherwise, set
~f = �f and go to Step 3. Observe that, by construction, (2.a) does not occur for �f and it
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satis�es conditions (C1.a), (C1.b), and (C1.c) of Corollary 1. Let

Inf
�f
(2) = f�0 2 RN+ j there exists �00 2 RN+ such that �00i � �0i for all i 2 S

�f (�0),

�00i � �0i for all i =2 S
�f (�0), S �f (�0) 6= S

�f (�00) and for all �000 2 RN+nf�0g
such that �000i � �0i for all i 2 S

�f (�000) and �000i � �0i for all i =2 S
�f (�000),

S
�f (�000) = S

�f (�0)g

be the set of all smallest/largest pro�les for which (2.b) occurs. For each �0 2 Inf �f(2); de�ne

NoDM
�f
(2)(�

0) = f�00 2 RN+ j �00i � �0i for all i 2 S
�f (�0); �00i � �0i for all i =2 S

�f (a);

and S �f (�0) 6= S
�f (�00)g

be the set of all pro�les for which (2.b) occurs with respect to �0.

Let f� �fi gi2N be the family of functions associated to �f identi�ed in Corollary 1. From
f� �fi gi2N , de�ne the rule ~f by describing its associated family of functions f�

~f
i gi2N as follows.

� For each � =2
S
�02Inf �f

(2)

NoDM
�f
(2)(�

0), set for all i 2 N , � ~fi (��i) = �
�f
i (��i).

� For each �0 2 Inf �f(2), set for all 2 N ,

�
~f
i (�

0
�i) =

(
�
�f
i (�

0
�i) if i 2 S �f (�0)

0 otherwise.

� For each � 2
S
��2Inf �f

(2)

NoDM
�f
(2)(��)nInf

�f
(2), set for all i 2 N , �

~f
i (��i) = �

~f
i (�

0
�i),

where �0 2 Inf �f2 is such that � 2 NoDM
�f
(2)(�

0).

Step 3: Consider ~f , the outcome of Step 2. It is easy to see that ~f and f� ~fi gi2N satisfy

properties (C1.a), (C1.b), and (C1.c) of Corollary 1. Hence, ~f is strategy-proof. Moreover,
~f is non-subsidizing and individually rational. For all � 2 RN+ there exists �0 2 RN+ such
that

P
i2N p

~f (�) =
P

i2N p
f (�0) and hence, since f is budget balanced, ~f is budget balanced

as well. Furthermore, by construction of ~f , there do not exist �; �0 2 RN+ for which either
property (2.a) or (2.b) of the negation of demand monotonicity holds; thus, ~f is demand

monotonic. Finally, by Lemma A, ~f has a lower or equal welfare loss than f since, for all

� 2 RN+ ; S
~f (�) � Sf (�) holds. �
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From now on, and without loss of generality, we restrict our search to the class�NS\BB\DM :

The following three lemmata will be very useful because they will allow us to pay attention

only to pro�les where the set of users is empty and de�ne the maximal welfare loss of a rule

as its aggregate loss (the maximal sum of non-users�valuations).

Lemma B For all f 2 �NS\BB\DM and all � 2 RN+ such that #Sf (�) � 2 there exists
�0 2 RN+ such that (i) Sf (�0) ( Sf (�) and (ii) WL(f; �) < WL(f; �0).

Proof Let f 2 �NS\BB\DM and assume that � 2 RN+ is such that #Sf (�) � 2: Since f
is individually rational there exists at least one user in Sf (�) who pays a strictly positive

price. Let i 2 Sf (�) be one of such users. Then, by Corollary 1, �i � �fi (��i) > 0. Since

Sf (�) 6= ?; xf (�) = 1 and by Remark 2, WL(f; �) =
P

k=2Sf (�) �k. Let j 2 Sf (�)nfig
and consider any �0j > max f1; �jg : Since f is demand monotonic, (DM.2) implies Sf (�) =
Sf (�0j; ��j): By Remark 4, f(�) = f(�0j; ��j): Hence, p

f
i (�) = pfi (�

0
j; ��j). Thus, by

individual rationality of f and Corollary 1, �fi (��i) = �fi (�
0
j; ��fi;jg):Moreover,WL(f; �) =

WL(f; (�0j; ��j)) =
P

k=2Sf (�) �k: Consider now any pro�le �
0 = (�0i; �

0
j; ��fi;jg) such that

0 < �0i < �fi (�
0
�i) = �fi (�

0
j; ��fi;jg) = �fi (��i). By Corollary 1, i =2 Sf (�0). By (DM.1)

in demand monotonicity, Sf (�0) ( Sf (�0j; ��j) = Sf (�): This proves that (i) holds. If

xf (�0) = 1 then WL(f; �0) =
P

k=2Sf (�0) �
0
k >

P
k=2Sf (�) �k = WL(f; �): If xf (�0) = 0 then

WL(f; �0) =
P

k2N �
0
k � 1 =

P
k=2Sf (�) �

0
k +

P
k2Sf (�) �

0
k � 1 >

P
k=2Sf (�) �

0
k =

P
k=2Sf (�) �k,

where the strict inequality follows since �0j > 1 and j 2 Sf (�) and the last equality holds

by de�nition of �0: This proves that (ii) holds. �

Let f 2 �NS\BB\DM and � 2 RN+ be such that Sf (�) = fig. De�ne

A�(f) = f�0 2 RN+ j �0j = �j for all j 6= i and �0i < 1g:

Lemma C For all f 2 �NS\BB\DM and all � 2 RN+ such that Sf (�) = fig; WL(f; �) =

sup�02A�(f)WL(f; �0).

Proof Let f 2 �NS\BB\DM and assume that � 2 RN+ is such that Sf (�) = fig: By
individual rationality of f and Corollary 1, �fi (��i) = 1 � �i. By Remark 2, and since

xf (�) = 1; WL(f; �) =
P

j 6=i �j: Now, consider any �
0 2 A�. By (DM.1) in demand

monotonicity and Corollary 1, Sf (�0) = ? and xf (�0) = 0. Thus, by Remark 2,WL(f; �0) =
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maxf
P

j 6=i �
0
j + �0i � 1; 0g: Hence,

sup
�02A�(f)

WL(f; �0) = sup
�02A�(f)

maxf
P

j 6=i �
0
j + �0i � 1; 0g =

P
j 6=i �

0
j =

P
j 6=i �j = WL(f; �):

�

Given f 2 �NS\BB\DM , de�ne the set of pro�les where the set of users is empty as
A?(f) � f� 2 RN+ j Sf (�) = ?g: By Corollary 1,

A?(f) = f� 2 RN+ j �i < �fi (��i) for all i 2 Ng: (3)

Observe that for any � 2 RN+ such that Sf (�) = fig,

A�(f) � A?(f): (4)

Lemma D For all f 2 �NS\BB\DM , sup
�2RN+

WL(f; �) = sup
�2RN+

P
i2N

�fi (��i):

Proof Let f 2 �NS\BB\DM : Then,

sup
�2RN+

WL(f; �) = sup
�2f�02RN+ j#Sf (�0)�2g[f�02RN+ j#Sf (�0)=1g[A?(f)

WL(f; �)

= sup
�2f�02RN+ j#Sf (�0)=1g[A?(f)

WL(f; �)

= sup
�2A?(f)

WL(f; �)

= sup
�2RN+

P
i2N

�fi (��i);

where the second equality follows from Lemma B, the third one from Lemma C and condi-

tion (4), and the fourth equality follows from condition (4). �

We now de�ne the aggregate loss of a rule f 2 �NS\BB\DM as

AL(f) � sup
�2RN+

P
i=2Sf (�)

�i:

Then, for any f 2 �NS\BB\DM ;

MWL(f) = sup
�2RN+

WL(f; �)

= sup
�2RN+

P
i2N

�fi (��i)

= sup
�2RN+

P
i=2Sf (�)

�i

= AL(f);
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where the second equality follows from Lemma D. Hence, the following remark holds.

Remark 5 To �nd a rule f̂ 2 �NS\BB\DM such that MWL(f̂) � MWL(f) for all

f 2 �NS\BB\DM is equivalent to �nd a rule f̂ 2 �NS\BB\DM such that AL(f̂) � AL(f)

for all f 2 �NS\BB\DM :

Finally, it is straightforward to check that fEC 2 �NS\BB\DM and that the aggregate

loss for the equal-cost sharing rule is equal to

AL(fEC) = 1 +
1

2
+ :::+

1

n
=

nX
i=1

1

i
: (5)

5.3 Consumer sovereignty

The next property imposes to rules a minimal requirement of being sensible to agents�

valuations: each agent has a valuation that guarantees her that the public good is provided

and she is one of its users.

De�nition 10 A rule f : RN+ ! FA satis�es consumer sovereignty if for all i 2 N there

exists �i 2 R+ such that for all ��i 2 RNnfig+ ; i 2 Sf (�i; ��i).

We state in Lemma 3 below the observation that a rule that minimizes the maximal

welfare loss has to satisfy consumer sovereignty.

Lemma 3 Let f : RN+ ! FA be a rule that minimizes the maximal welfare loss. Then,

f satis�es consumer sovereignty.

Proof Immediate from the de�nition of consumer sovereignty. �

5.4 Cross monotonicity

The last additional property on rules that we consider is cross monotonicity. It imposes

conditions on the price vector chosen by the rule at two pro�les for which the set of users at

one pro�le is contained in the set of users at the other pro�le: the price paid by the users

can not increase if more agents become users at the new pro�le.9

9This property has already been used in a more general public good setting by Moulin and Shenker
(2001). Similar notions have also been used in di¤erent setings under the name of population monotonicity
(see for instance Sprumont (1990)).
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De�nition 11 A rule f : RN+ ! FA satis�es cross monotonicity if for all �; �0 2 RN+ such
that Sf (�) � Sf (�0), pfi (�) � pfi (�

0) for all i 2 Sf (�).

Lemma 4 below says that cross monotonicity is satis�ed by all strategy-proof, individ-

ually rational, non-subsidizing, budget balanced, and demand monotonic rules for which

consumer sovereignty holds.

Lemma 4 Let f : RN+ ! FA be a strategy-proof, individually rational, non-subsidizing,

budget balanced, and demand monotonic rule that satis�es consumer sovereignty. Then, f

is cross monotonic.

Proof Let f be a rule satisfying the hypothesis of Lemma 4 and let �; �0 2 RN+ be such
that Sf (�) � Sf (�0). We want to show that pfi (�) � pfi (�

0) for all i 2 Sf (�). If Sf (�) = N

then, by Remark 4, f is cross monotonic. Let e� 2 RN+ be such that
e�j = ( �j if j 2 Sf (�)

0 if j =2 Sf (�).

By (DM.2), Sf (�) = Sf (e�). By Remark 4, pf (�) = pf (e�): By Theorem 1, for all j 2 Sf (e�),
pfj (e�) = �fj (e��j) and by individual rationality e�j � �fj (e��j). Take any j1 2 Sf (e�) and
let e�1 = (�fj1(e��j1); e��j1). By Corollary 1, j1 2 Sf (e�1). By (DM.2), Sf (e�1) = Sf (e�). By
Remark 4, pf (e�1) = pf (e�): Iterating this argument for all j 2 Sf (e�) we obtain a pro�le b�,
where

b�j = ( �fj (e��j) if j 2 Sf (e�)
0 if j =2 Sf (e�)

such that Sf (b�) = Sf (�) and pf (b�) = pf (�): By consumer sovereignty, for each j 2
Sf (�0)nSf (�) � T , there exists �j such that � de�ned by

�j =

8>><>>:
�fj (��j) if j 2 Sf (e�)
�j if j 2 T
0 if j =2 Sf (e�) [ T

is such that, by (DM.1) in demand monotonicity, Sf (�) � Sf (�0) = Sf (�) [ T . We want
to show that Sf (�) = Sf (�0). De�ne �00 2 RN+ by

�00j =

(
�0j if j 2 Sf (�)
0 if j =2 Sf (�):
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By (DM.2) in demand monotonicity, Sf (�00) = Sf (�0): Consider any pro�le �� such that

��j > maxf�00j ; �jg for all j 2 Sf (�0) and ��j = 0 for all j =2 Sf (�0). By (DM.2) in demand
monotonicity, Sf (��) = Sf (�00) = Sf (�0). Again, by (DM.2), Sf (��) = Sf (�). Thus,

Sf (�) = Sf (�0). By Remark 4, pf (�) = pf (�0). Since for all i 2 Sf (�), �i = pf (�) and, by

individual rationality �i � pf (�), we have that pfi (�
0) = pfi (�) � �i = pfi (�) �

Let �� be the class of all strategy-proof, individually rational, non-subsidizing, budget

balanced, demand and cross monotonic rules that satisfy consumer sovereignty.

5.5 Proof of Theorem 2

By Lemmata 1 to 4 we can restrict our search of a rule in � (all strategy-proof and in-

dividually rational rules) minimizing the maximal welfare loss to the class of rules in ��.

Thus, to proceed with the proof of Theorem 2, consider any f 2 �� such that f 6= fEC : By

Remark 5, We have to show that AL(f) > AL(fEC). By Remark 4, f is a semiconstant

cost sharing rule. Hence, for all �; �0 2 RN+ such that Sf (�) = Sf (�0); f(�) = f(�0):

To show that AL(f) > AL(fEC), pick �� 2 RN+ with the property that for each i 2 N;

i 2 Sf (�i; ��i) for all ��i 2 RNnfig+ . Observe that by consumer sovereignty such �� exists:

Then Sf (��) = N . Let i1 2 N be the agent such that pfi1(��) = maxj2N p
f
j (��): Observe

that, by Remark 4, pf (�) = pf (��) for all � such that Sf (�) = N: Since, by budget bal-

ancedness,
P

j2N p
f
j (��) = 1; then pfi1(��) �

1
n
: By Theorem 1, �fi1(���i1) = pfi1(��) > 0:

Pick now ��1 = (0; ���i1). Observe that by consumer sovereignty, S
f (��1) = Nn fi1g : Let

pfi2(��
1) = maxj2Sf (��1) p

f
j (��

1): Then pi2(��
1) � 1

n�1 : Iterating the above argument we get a

pro�le (pfi1(��); :::; p
f
in
(��n�1)) with the property that pfij(��) �

1
n�j+1 holds for all j = 1; :::; n,

with at least one strict inequality since f 6= fEC and Remark 4. By cross monotonicity, for

su¢ ciently small " > 0; S(pfi1(��) �
"
n
; :::; pfin(��

n�1) � "
n
) = ?: Since this holds for all suf-

�ciently small " > 0; AL(f) � sup�2RN+
P

i=2Sf (�) �i �
Pn

j=1 p
f
ij
(��) > AL(fEC) =

Pn
i=1

1
i
,

where the strict inequality follows because f 6= fEC : Hence, Theorem 2 holds. �

6 Final Remark

We have shown that the equal-cost sharing rule minimizes the maximal welfare loss in the

class of strategy-proof and individually rational rules. With respect to previous character-
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izations in the literature we have considered a much broader set of rules and therefore our

result cannot be derived from already existing ones. In particular, in Example 1 below we

show that the set of rules we consider is strictly larger than the set of rules considered in

Moulin and Shenker�s (2001) because there are rules which are strategy-proof and individ-

ually rational (and they also satisfy budget balanced) that are neither cross monotonic nor

group strategy-proof (it is also easy to exhibit rules which satisfy the three above mentioned

properties and are cross monotonic but not group strategy-proof).

Example 1 A strategy-proof, individually rational, and budget balanced rule f that it

is neither group strategy-proof nor cross monotonic.

Let N = f1; 2; 3g: De�ne f as follows. Let � 2 RN+ :
(i) if �1 < 1

3
and �2; �3 � 1

2
then, f(�) = (1; f2; 3g; (0; 1

2
; 1
2
));

(ii) if �1 < 1
3
and minf�2; �3g < 1

2
then, f(�) = (0;?; (0; 0; 0));

(iii) if �1 � 1
3
, �2 � 1

9
and �3 � 5

9
then, f(�) = (1; N; (1

3
; 1
9
; 5
9
));

(iv) if �1 � 1
3
; �2 � 1

9
, and �3 < 5

9
then, f(�) = (0;?; (0; 0; 0));

(v) if �1 � 1
3
; �2 <

1
9
; and �3 � 5

9
then, f(�) = (0;?; (0; 0; 0)); and

(vi) if �1 � 1
3
; �2 <

1
9
; and �3 < 5

9
then, f(�) = (0;?; (0; 0; 0)):

Observe that, by Theorem 1, f is strategy-proof. To see that f is not cross monotonic,

consider � = (1
3
; 1; 1) and �0 = (0; 1; 1): Then, f(�) = (1; N; (1

3
; 1
9
; 5
9
)) and f(�0) =

(1; f2; 3g; (0; 1
2
; 1
2
)). Moreover, f1; 3g can manipulate f at � by declaring (�01; �03) = (0; 1):

�
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Appendix: Proof of Theorem 1

=)) Assume f = (x; S; p) is strategy-proof. Fix i 2 N . We �rst show that (T1.a)

holds. Let �i; �0i 2 R+ and ��i 2 R
Nnfig
+ be arbitrary. By strategy-proofness,

1iS(�i;��i)x(�i; ��i)�i � pi(�i; ��i) � 1iS(�0i;��i)x(�
0
i; ��i)�i � pi(�

0
i; ��i) (6)

and

1iS(�0i;��i)x(�
0
i; ��i)�

0
i � pi(�

0
i; ��i) � 1iS(�i;��i)x(�i; ��i)�

0
i � pi(�i; ��i): (7)

Adding (6) and (7),

(1iS(�i;��i)x(�i; ��i)� 1
i
S(�0i;��i)

x(�0i; ��i))(�i � �0i) � 0: (8)

Assume without loss of generality that �i > �0i: By (8),

1iS(�i;��i)x(�i; ��i) � 1
i
S(�0i;��i)

x(�0i; ��i):

Namely, for all ��i 2 RNnfig+ , 1iS(�i;��i)x(�i; ��i) is an increasing function of �i. Thus,

(T1.a) holds.

We next show that (T1.b) holds. By (6), for all �i; �0i 2 R+ and all ��i 2 R
Nnfig
+ ;

vi(x(�i; ��i); S(�i; ��i); p(�i; ��i); �i) � 1iS(�0i;��i)x(�
0
i; ��i)�i � pi(�

0
i; ��i): (9)

Since

1iS(�0i;��i)x(�
0
i; ��i)�i � pi(�

0
i; ��i) = vi(x(�

0
i; ��i); S(�

0
i; ��i); p(�

0
i; ��i); �

0
i)

+1iS(�0i;��i)x(�
0
i; ��i)(�i � �0i);

(9) can be written as

vi(x(�); S(�); p(�); �i) � vi(x(�
0
i; ��i); S(�

0
i; ��i); p(�

0
i; ��i); �

0
i)+1

i
S(�0i;��i)

x(�0i; ��i)(�i��0i):
(10)

Similarly, by (7),

vi(x(�
0
i; ��i); S(�

0
i; ��i); p(�

0
i; ��i); �

0
i) � vi(x(�); S(�); p(�); �i)+1

i
S(�)x(�)(�

0
i��i): (11)
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Fix ��i 2 RNnfig+ and assume without loss of generality that �0i > �i. Then, by (10) and

(11),

1iS(�0i;��i)x(�
0
i; ��i) � vi(x(�

0
i; ��i); S(�

0
i; ��i); p(�

0
i; ��i); �

0
i)� vi(x(�); S(�); p(�); �i)

(�0i � �i)
(12)

� 1iS(�i;��i)x(�i; ��i):

By (T1.a), 1iS(t;��i)x(t; ��i) is continuous and di¤erentiable almost everywhere; in fact, and

since 1iS(t;��i)x(t; ��i) 2 f0; 1g for all t 2 R+, it has at most one point of discontinuity.
Call it ��i (��i): We �rst consider the case where 1

i
S(t;��i)

x(t; ��i) is continuous at �̂i; i.e.,

either 1iS(t;��i)x(t; ��i) is a continuous (and constant) function or else �̂i 6= ��i (��i). Let

f�0ki g1k=1 ! �̂i be such that for all k � 1, �0ki > �̂i: Since 1iS(t;��i)x(t; ��i) is continuous at

�̂i, f1iS(�0ki ;��i)x(�
0k
i ; ��i)g1k=1 ! 1iS(�̂i;��i)x(�̂i; ��i). By (12),

@vi(x(�̂i;��i);S(�̂i;��i);p(�̂i;��i);�̂i)
@�i

exists and it is equal to 1iS(�̂i;��i)x(�̂i; ��i): Hence,

@vi(x(�̂i; ��i); S(�̂i; ��i); p(�̂i; ��i); �̂i)

@�i
= 1iS(�̂i;��i)x(�̂i; ��i)

for all �̂i 2 R+ at which 1iS(t;��i)x(t; ��i) is continuous at �̂i. By the Fundamental Theorem
of Calculus,

vi(x(�̂i; ��i); S(�̂i; ��i); p(�̂i; ��i); �̂i) =

Z �̂i

0

1iS(t;��i)x(t; ��i)dt+ hi(��i);

where hi(��i) is a constant (i.e., it does not depend on �i). Since

vi(x(�̂i; ��i); S(�̂i; ��i); p(�̂i; ��i); �̂i) = 1
i
S(�̂i;��i)x(�̂i; ��i)�̂i � pi(�̂i; ��i);

pi(�̂i; ��i) = 1
i
S(�̂i;��i)x(�̂i; ��i)�̂i �

Z �̂i

0

1iS(t;��i)x(t; ��i)dt� hi(��i):

Thus, (T1.b) holds for all �̂i 2 R+ at which 1iS(t;��i)x(t; ��i) is continuous at �̂i. We now
consider the case where 1iS(t;��i)x(t; ��i) is not continuous at ��i � ��i (��i). We distinguish

between two cases.

Case 1: ��i = 0: That is,

1iS(t;��i)x(t; ��i) =

(
0 if t = 0

1 if t > 0:
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By (12), for any �0i > ��i = 0;

1 � �0i � pi(�
0
i; ��i) + pi(0; ��i)

�0i
� 0: (13)

Since 1iS(t;��i)x(t; ��i) is continuous at �
0
i;

pi(�
0
i; ��i) = 1iS(�0i;��i)x(�

0
i; ��i)�

0
i �

Z �0i

0

1iS(t;��i)x(t; ��i)dt� hi(��i)

= �0i � �0i � hi(��i)

= �hi(��i):

Hence, by (13), �0i � �0i + hi(��i) + pi(0; ��i); which implies that 0 � hi(��i) + pi(0; ��i):

Also, by (13), �0i+hi(��i)+pi(0; ��i) � 0 holds for all �0i > 0: Thus, hi(��i)+pi(0; ��i) = 0:
Hence,

pi(0; ��i) = 1
i
S(0;��i)x(0; ��i)0�

Z 0

0

1iS(t;��i)x(t; ��i)dt� hi(��i);

namely, (T1.b) holds for ��i = 0:

Case 2: ��i > 0: We consider two subcases, depending on whether 1iS(t;��i)x(t; ��i) is

left or right continuous at ��i: First, assume it is left continuous; i.e.,

1iS(t;��i)x(t; ��i) =

(
0 if t � ��i

1 if t > ��i:

By (12), for any �i < ��i;

0 � �pi(��i; ��i) + pi(�i; ��i)

��i � �i
� 0:

Hence, pi(��i; ��i) = pi(�i; ��i): Since 1iS(t;��i)x(t; ��i) is continuous at �i and pi(�i; ��i) =

�hi(��i) because 1iS(�i;��i)x(�i; ��i)�i�
R �i
0
1iS(t;��i)x(t; ��i)dt = 0, pi(��i; ��i) = �hi(��i):

Thus, since 1iS(��i;��i)x(��i; ��i)��i �
R ��i
0
1iS(t;��i)x(t; ��i)dt = 0,

pi(��i; ��i) = 1
i
S(��i;��i)x(��i; ��i)��i �

Z ��i

0

1iS(t;��i)x(t; ��i)dt� hi(��i);

namely, (T1.b) holds for ��i > 0 if 1iS(t;��i)x(t; ��i) is left continuous at ��i. Assume

1iS(t;��i)x(t; ��i) is right continuous at ��i; i.e.,

1iS(t;��i)x(t; ��i) =

(
0 if t < ��i

1 if t � ��i:
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By (12), for any �i > ��i;

1 � �i � pi(�i; ��i)� ��i + pi(��i; ��i)

�i � ��i
� 1:

Hence, pi(��i; ��i) = pi(�i; ��i): Since 1iS(t;��i)x(t; ��i) is continuous at �i,

pi(�i; ��i) = 1iS(�i;��i)x(�i; ��i)�i �
Z �i

0

1iS(t;��i)x(t; ��i)dt� hi(��i)

= �i �
Z ��i

0

1iS(t;��i)x(t; ��i)dt�
Z �i

��i

1iS(t;��i)x(t; ��i)dt� hi(��i)

= �i � 0� �i + ��i � hi(��i)

= 1iS(��i;��i)x(��i; ��i)��i �
Z ��i

0

1iS(t;��i)x(t; ��i)dt� hi(��i):

Thus, pi(��i; ��i) = 1iS(��i;��i)x(��i; ��i)��i �
R ��i
0
1iS(t;��i)x(t; ��i)dt� hi(��i); namely (T1.b)

holds for ��i if 1iS(t;��i)x(t; ��i) is right continuous at ��i.

(=) Let f = (x; S; p) be a social choice function and assume that, for all i 2 N , (T1.a)
and (T1.b) hold. We will show that f is strategy-proof. Fix i 2 N and consider �i; �0i 2 R+
and ��i 2 RNnfig+ . By (T1.b), the (truth-telling) payo¤ vi(x(�); S(�); p(�); �i) is equal toZ �i

0

1iS(t;��i)x(t; ��i)dt+ hi(��i);

and the (lying) payo¤ vi(x(�0i; ��i); S(�
0
i; ��i); p(�

0
i; ��i); �i) is equal to

1iS(�0i;��i)x(�
0
i; ��i)�i � 1iS(�0i;��i)x(�

0
i; ��i)�

0
i +

Z �0i

0

1iS(t;��i)x(t; ��i)dt+ hi(��i):

That is, vi(x(�0i; ��i); S(�
0
i; ��i); p(�

0
i; ��i); �i) is equal to

1iS(�0i;��i)x(�
0
i; ��i)(�i � �0i) +

Z �0i

0

1iS(t;��i)x(t; ��i)dt+ hi(��i):

Hence, the di¤erence between the (truthtelling) payo¤ vi(x(�); S(�); p(�); �i) and the (ly-

ing) payo¤ vi(x(�0i; ��i); S(�
0
i; ��i); p(�

0
i; ��i); �i) is equal to

�(�i; �
0
i; ��i) �

Z �i

0

1iS(t;��i)x(t; ��i)dt�
Z �0i

0

1iS(t;��i)x(t; ��i)dt�1
i
S(�0i;��i)

x(�0i; ��i)(�i��0i):
(14)
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We want to show that for all �i; �0i 2 R+ and all ��i 2 R
Nnfig
+ , �(�i; �0i; ��i) � 0. By

(T1.a), 1iS(t;��i)x(t; ��i) �  i(t) is an increasing function of t; hence, it has at most one

point of discontinuity, denote it by ��i � ��i (��i): Obviously, �(�i; �
0
i; ��i) = 0 whenever

�i = �0i or  i is continuous (and thus, it is constant and equal to either 0 or 1): We now

distinguish between the other two remaining cases.

Case 1: �0i < �i and  i is discontinuous at ��i. If �
0
i < �i � ��i then  i is equal to 0 in

the interval [0; �i); thus, by (14), �(�i; �0i; ��i) = 0: If �
0
i < ��i < �i then  i is equal to 0

in the interval [0; ��i) and equal to 1 in the interval (��i; �i]; thus, by (14),

�(�i; �
0
i; ��i) =

Z �i

��i

 i(t)dt�  i(�
0
i)(�i � �0i) = �i � ��i � 0 > 0:

If ��i � �0i < �i then,  i is equal to 1 in the interval (�
0
i; �i]; thus, by (14),

�(�i; �
0
i; ��i) =

Z �i

�0i

 i(t)dt�  i(�
0
i)(�i � �0i) = (�i � �0i)�  i(�

0
i)(�i � �0i):

Hence, if  i(�
0
i) = 1 (because either ��i < �0i or ��i = �0i and  i(��i) = 1) then�(�i; �

0
i; ��i) =

(�i � �0i) � (�i � �0i) = 0 and if  i(�
0
i) = 0 (because ��i = �0i and  i(��i) = 0) then

�(�i; �
0
i; ��i) = �i � �0i > 0:

Case 2: �i < �0i and  i is discontinuous at ��i. If ��i < �i < �0i then,  i is equal to 1 in

the interval [�i; �0i]; thus, by (14),

�(�i; �
0
i; ��i) = �

Z �0i

�i

 i(t)dt�  i(�
0
i)(�i � �0i) = �(�0i � �i)� (�i � �0i) = 0:

If �i � ��i < �0i then  i is equal to 0 in the interval [0; ��i) and equal to 1 in the interval

(��i; �
0
i]; thus, by (14),

�(�i; �
0
i; ��i) = �

Z �0i

��i

 i(t)dt�  i(�
0
i)(�i � �0i) = �(�0i � ��i)� (�i � �0i) = ��i � �i � 0:

If �i < �0i � ��i then  i is equal to 0 in the interval [0; �
0
i): Thus, by (14), if �

0
i = ��i

and  i(��i) = 0 then �(�i; �0i; ��i) = 0: If �0i = ��i and  i(��i) = 1 then �(�i; �0i; ��i) =

�0i � �i > 0: If �i < �0i < ��i then �(�i; �0i; ��i) = 0: Thus, for all i 2 N , �(�i; �0i; ��i) =

vi(x(�); S(�); p(�); �i)� vi(x(�0i; ��i); S(�0i; ��i); p(�0i; ��i); �i) � 0 for all �i; �0i 2 R+ and
all ��i 2 RNnfig+ . Hence, f is strategy-proof. �
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