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Abstract: We give a characterization of the equilibrium payoffs of a dynamic game, which is
a stochastic game where the transition: function is either ome or zero and players can only use pure
actionsin each stage. The characterization is in terms of convex combinations of connected stationary
strategies; since stationary strategies are not always connected, the equilibrium set may not be convex.,
We show that subgame perfection may reduce the equilibrium set.

1 Introduction

Repeated Games have been used in Game and Economic Theory to model
conflict situations lasting over time. The study of this kind of model has helped us
to increase our understanding of economic phenomena such as cooperation,
reputation, collusion, bounded rationality, and so on. However, a restrictive
assumption in a repeated game is that the nature of the conflict (actions and
payofls) does not change over time; in particular, current actions have effect only
on current payoffs, and thus, do not have any infiuence over the set of possible
future actions and payoffs.

In 1953 Shapley introduced a more general model called a Stochastic (Game.
There is not a single game repeated over time. Players may be involved in
different games. In every period, players have to choose an action (and get
a payoff) from a particular game, but in the next period, the game they will play
depends on a probability distribution over the set of possible games, which in
turn may depend on the joint action taken in the previous period. Therefore,
starting from a initial game, the actions players take do not only determine the
payoffs they obtain but also the possibilities they will face in the future.

The stochastic and dyramic nature of the model makes it a more apt
description of a much larger class of economic situations than the simpler
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repeated game. Nevertheless, less attention has been devoted to stochastic games
{(probably because their richer structure makes them more difficult to analyze);
a vast majority of papers have concentrated on showing the existence of
stationary equilibria rather than characterizing the set of equilibria (see
for example, besides Shapley’s, Bewley and Kohlberg [1976], Jovanovic and
Rosenthal [1988], Mertens and Parthasarathy [1987], Duffie, Geanakoplos,
McLennan and Mas-Colell [1988], etc).

The main objective of this paper 1s to show some preliminary results that may
help to make clear the structure of the equilibrium set of stochastic games. We
analyze a particular type of stochastic game in which the transition function has
the property that, given a joint action, the probability distribution over the set of
games is a vertex in the simplex. Even though this restriction limits the scope of
the paper, we think that, independently of the interest of this particular case, these
results are the first steps in providing a characterization of the equilibria for the
general case. This will be the content of a future paper.

Our characterization has two important related properties. First of all, it is
based upon stationary strategies. In a payoff space, the payoffs of stationary
strategies play a similar role to the payoffs of actions of the one-shot game in the
Folk Theorem. Points on the convex combinations of stationary strategy payoffs
and above the individually rational points emerge as equilibria of the dynamic
game. Second, it utilizes the concept of connected strategies. One cannot obtain,
even as feasible payoffs, the convex combinations of all stationary strategies; only
those that are connected; that is, strategies that have the property that the cycles
they generate have common elements. That is why, in general, the equilibrium set
is not convex and the relevant individually rational point may depend on the
subset of connected stationary strategies oneis looking at. The idea of connection
captures the influence of the transition function on the equilibrium set,

The paper is organized as follows. Section 2 presents what we call a dynamic
game. Sections 3 and 4 characterize the set of feasible and equilibrium payoffs,
respectively. Section 5 concludes with general comments and, through an
example, shows that, in general, subgame perfection reduces the set of equilibria.
Finally, Section 6 consists of an Appendix where the reader will find some proofs
omiited in the text. .

2 Dynamic Games

The main goal of this paper is to give a full characterization (a full Folk Theorem)
of the equilibrium payoffs of a finite stochastic game G, with a deterministic
transition function.

The game G = (W, w?), 4, T) is defined as follows:

i} A finite set of players I ={1,2,...,n}. A generic player will be denoted by i.
ii) A finite set of joint actions A = X,_;A4,, where A, is the set of pure actions of
playeriel.
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iii) A finite set of games W= {w*,...,w*}. Forevery j=1,2,..., K we denote by

iv)
V)

w! = ((D.(A]);.1, (]);.;) a finite game in normal form, where 4] < 4, is the
finite set of actions for player i in the game j. Without loss of generality we
assume that 4 Af = f for every j #f. Define A= X;_,A! as the set of
joint actions io the game j. Let u be the function u:4 —R" defined by:
u(a) = w(a) where j is such that ac 4’. Generic elements of these sets will be
denoted by ale 4], e AT and acA.

An initial game from W, that we will denote it by w'.

A transition function T,? which specifies the new game (state) as a function of
the current game (state) and the joint action taken by all players. The domain
of Tis B={(w,a)e W x AlacA’}. Therefore, T:B — W. We assume that T is
onto. The fact that T{w, a) is an element of W and not a probability dis-

tribution on it, makes the dynamic game a particular case of a stochastic game.

The game G is played as follows. At the beginning players are in the initial game

...eL.

be

A,

and they have to choose simultaneously an action a' in A*. The next game will
T(w,a') = w! from which they have to choose simultaneously an action a’ in
and so on. A similar model has been used in Kalai, Samet and Stanford [1986]

to study issues of bounded compiexity.
The following example illustrates a dynamic game.

Example:
SwH
b, b, by b,
a | 00 0.0 0,0 0.0 .
2] 00 | 21 | o0 0.0 b
' 3
—_— 2, U5
2l 00 | o0 | 12 0,0 ¢ v
a; | 00 0.0 0,0 0.0
3
b B
a 56 1.5
2
w
a 1.3 13

3 Confusion with the use of T as & period of time shoud not arise. The context will always make clear
which is the correct one.
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The set of games is W= {w',w",w®} and the set of players is I ={1,2}. The
transition function is:

Twh(al, b)) =w! formn=1,2,3

Tw',(al, b)) =w® form=1,2,3,4

Twh(al, b))y =w? forn=1,2,3

m._?cmu Anmu vwv =w!

T(w?, (a7, b2)) = T(W?, (a3, b)) = T(w?, (a3, b3)) = w*
TW?, (6%, b¥)) = wb.

For every telN, define H" as the cartesian product of A t-times, i.e. an element
heH'is a history of length 1. We denote by H® = {e} the set of histories of length 0,
with the convention that e stands for the empty history. Let H = Cmohﬁ be the
set of all histories.

Definition 1: A history consistent with G, d =(d,,...,d,, ), is an element of
H such that: d,eA%; d,e A’ where w' = w(d,) = T(w?,d,), and recursively, for
2<1<t,d,, €A where:

wi=w(dy,...,d)=TWwd,,....d. ,).d.). (1.1)

Denote by D° = {e}; for every ¢ > 1, D" is the set of all consistent histories with
G of length ¢ and D = | |2 (D". We assume that the game G = ((W,w?), 4, T) has
the property that for everyj= 1,..., K there exists a consistent history deD such
that w(d) = w’.

A sirategy of player ieT for the game G is a function f;:D — A; such that if deD
has the property that w(d) = w, then f;(d)eA]. Notice that we are assuming here
what has been known in the literature as perfect monitoring; L.e. players decide
current actions knowing all the previous actions and only pure actions are
allowed.

Let F, be the set of all these functions, and denote the set of aggregaie strategies
by F= X, F;

Let feF, define recursively the history of actions generated by f, by
a(f) = {a(f)}2, where a'(f)=f(e) and for every 1> 1, & }(f)=f(@(f),...,
a{f)). Define, also recursively, the sequence of games generated by f by,
w(f)={w'(f)}2, where w'(f)=wle)=w" and for every t>1 w'!(f)=
w(a*(f)....a{f))

Definition 2: A strategy f;eF,; is stationary if for every d,d'sD such that
w(d) = w(d'), we have that f,(d) = f,(d).

Denote by §; the set of stalionary strategies for player i. Given 5,8, and
j=1,2,...,K, define sj) as the action prescribed by s, in all deD such that
w(d) = w. Since we assumed that all games were reachable, s,(}) is well defined
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Fig. 1.

Figure 1 shows the set of feasible payoffs of the example.

The idea behind the proof is simple. For sufficiently, given ve R” feasible, there
exists feF such that v = U(f). For every large T, one looks at the path of average
payoffs generated by f up to period T. One shows that it can be approximated by
a convex combination of payoffs of connected stationary strategies (Lemma 2).
Finally, one has to take care of the limit. In this construction, the assumption that
W is finite is used. For necessity, one starts with rational convex combinations
and constructs f from the set of connected stationary strategies using them in the
“right” proportion. One has to make sure that the stationary strategies used to
connect them are used in a proportion that goes to zero. Non-rational convex
combinations are obtained as a limit of rational ones. The proof of Theorem 1 is
in the Appendix at the end of the paper.

4 Equilibrium Payofis

Definition 5: f*eF is a Nash equilibrium of G if for every icI U, (f*) = U/lg;, f%)
for every g,&F, veR" is an equilibrium payoff of G if there exists a Nash
equilibrium of G, feF, such that U(f)=v.

Let F* be the set of Nash equilibria of G.

For every j=1,..., K one can define a stochastic game G() with initial state
Fby (W, w), A, T). A strategy for player i€l for the game G(j) will be denoted by
7. We can define the other concepts in the same way.

For every j=1,...,K we denote by v;(/) =infy o SUPpep Ui(fLf7 ) the
“minimax” payoff of player i in the game G(j). We let —i denote the n-tuple
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Let # be a Banach limit on {_, let feF and iel; we define the payoff for G by
H T

Ulfy= h%ﬂ 2. wOa(f i vu
t=1 =1
where j(z) is such that w® =wi(f)forall t > 1.

Lemma I: Let seS. Then, there exist M, ReN such that w'* R(s) = w' TR "M (5) for
every t > 1. That is, a stationary strategy produces a finite cycle of length M after
R periods.

Proof: Since W is finite and s is stationary, the result follows easily. [

For every seS, define: b,(s)= {w'(s),...,w™(s)} and c,(s)={w***(s),...,
wR¥¥(5}} as the initial path and cycle of states generated by s, where R and M are
the smallest natural numbers of Lemma 1. Obviously, w(s)={b,,(s),c,(s)
¢,(s)...}. Define b (s) = {a'(s),...,a™(s)} and ¢ (5) = {a®7(s),...,a** ¥(s)}. De-
note by |s| the cardinality of ¢ (s) (that is M).

Remark 1. Let seS. Then, for every icl, U,(s) = (1/|s)ZM , ufY(a® *"(s)), where
Jj(r)is such that w/@ = wR*r(5). That means that the payoff of a stationary strategy
is just the mean of the cycle payoffs.

Definition 3: Let §',s" eS. i) We say that & and §* are directly connected, s ~ s*, if
c(sHne(s™) # . i) We say that s' and s¥ are conmected, s' = s¥, if there exist
s%,...,s"eS such that s' ~ 5! ~ .- ~ §" ~ 5", In this case, we will say that s’ and s"
are connected through st,..., 5™

Two stationary strategies are directly connected if from the cycle of states of
one of them, players have direct access to the cycle of states of the other and vice
versa. If they are connected, players can access, through a path, from the cycle of
states of one of them to the other, and vice versa; those paths may be different. The
| transition function T determines the connections between stationary strategies.

Those concepts will allow us to construct strategies inn G with the property that
their paths have cycles of connected stationary strategies. Hence, our characteriz-
ation will rely on convex combinations of payoffs of stationary connected
strategies. But first, Theorem 1 in Section 3 gives a characterization of the set of
feasible payoffs of G.

3 Feasible Payoffs
Definition 4: A vector veR" is feasible if these exists a strategy feF such that
v=U(f).

Theorem I: A vector veR" is feasible if and only if there exists
Swy={s',...,s*} =5 such that for every §,5eS(t) ¥~ and there exists
(a,...,0Med (the k-dimensional unit simplex) such that

v= W U ().
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without the ith element, ie. fL,=(fL....fl .. 11> f3) as well as sets
obtained by taking a cartesian product, ie. F7,= Xv=1Fj.
i

The next Proposition gives us two important properties related to the mini-
max sirategies. The first one (Lemma 3) is that the strategy by which player
i is punished, as well as his defense sirategy, is stationary. The second one is
that even though the minimax payoff depends on the initial state, the punish-
ment and defense strategies are independent of the injtial state (the rest of the
proof).

Proposition 1: For every iel, there eixist m_;eS _, and m;eS5; such that for every
j=1o, K, Uylmiml ) =1,(j) and Utmf,m ) = U,(f],mL ) for every fleF]

Proof: See the Appendix at the end of the paper. [J

Let se§ and icI; we define b, (s) and ¢, (s) as the set of games available to player
i through a deviation of s from the initial path and cycle, respectively, of s.
Formally,

bi(5) = {wieW\Iw' eb,(s), 3ai e 4] s.t. T(w',(s_ (i) a])) =w'},
notice that b,(s) < bi,(s), and,
¢ (s5) = {weW|Iw'ec,(s), 3af e A] s.t. Tw’,(s_ (/) al))=wi}.

Let v;(5) = maxX,;qpt ot wPi(j) be the highest payoff that player i can guar-
antee by a deviation from s. Let v(b,(s)) =max, ;. v/} and v;(c,(5) =
MR s a0t Vil j) be, respectively, the highest payoff that player i can guarantee by
a deviation from s on the initial path and the cycle. The notation of v,{j), v,(s),
v,(b,.(s)) and v,(c,,(s)) as a function with different domains should not confuse the
reader. It means the highest payoff that player i can be gnarantee by a deviation
from j, 5, b, (s} and ¢, (s} respectively.

Define the set of all cycles generated by all the elements of § as C(S), ie,
C(S)={c,(s)lseS}, and let 2(C(S)) be the power set of C(S). Let s,s'eS,
define the set of connections of s* with s* by

Cpp={c, € PCENNey,y = {e,(5") -, culs)}

such that s ~ s through s',...,s}.
For every iel, define:
el (s, s") = (weW|Inw' ec,(5) and ¢, €C,p st ¢, {s)ee, , and
Jal e A st. Tw (a5 (7)) =w'}

and v(c; ;) = Bmws{,.mnvawge%b.
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Given s' & 5" and iel, ¢’ (s', s") is the set of games that player i has the power to
reach from the sct of all cycles that connect s and s*, and v/(c, ,} is the highest
payofl that player i can guarantee from those games.

Lets’,...,s" S besuch that s* & 52 & - & s¥ and iel; forevery 1= 1,2,... k'
define

i vl
vs%,...,8 3€1,2:€2,355 05 Cpr— 1 13 Cpr 10 1)

=1max MCNAOSAMJV EEES ] ﬁmﬁns_nmw\vvu S.Qu:,ﬁm“vvu emﬁnH.Mwo IERE] cmmnw\_wv _w

08"+ 55%,€1,32€5 53+ -5 G _ 1 4 O 11 IS the highest payoff that player i can
guarantee by himself by deviating while in the cycles of s,s?,...,5%, the cycles
that connect them and the initial path of s* (one of those strategies).

The next theorem gives us the characterization of equilibrium payoffs based
upon stationary strategies,

Theorem 2: Let v be a feasible payoff of G. Then, v is an equilibrium payoff of G if
and only if there exists s',...,s" (K'<n+1), (a)...,a")eA¥ such that
v=23%_,0'U(s) and there exists c,,...,¢,., connections such that v,>
ols’s ., 8,¢0 5,0 1, D) for some I=1,..., K and for every iel.

Proof: See the Appendix at the end of the paper. [

See Figure 2 for a geometric representation of Theorem 2 for our example,
where a; 1s the payoff of a stationary strategy and §, is the minimax payoff of

o
L?N
5] o
&-ll
L «
P 7
«. = ww
Mll.p
o
El
it
«
k4
1
!
i T
I
o ~fL - mu Lo
L 1 1 |
i i T 1 > dp
o 1/2 1 2 5/2
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combining strategies producing as,a¢ and o, f, is the minimax payoff of
combining strategies producing o,,«, and o, and finally, 8, is the minimax of
playing the strategy that gives the payoff of a,.

5 Commenis and Conclusions

Theorem 2 in the previous section gives a characterization of the equilibrium
payoffs of a Dynamic Game based upon convex combinations of connected
stationary strategies. However, we illustrated with an example that the set of
feasible and individually rational payoffs might be disconnected. Nevertheless,
Theorem 1 implies that if the Stochastic Game has the property that every pair of
stationary strategies are connected, then the set of feasible payoffs is connected,
but the set of individually rational payoffs may still be disconnected. This is due
to the fact that payoffs of minimax strategies are not independent of the initial
state.

Most of the earlier papers on Stochastic Games dealt with the existence of
equilibrivm. However, the papers providing a characterization of the equilibrium
set, for example Friedman [1989] and Lockwood [1990], contain different results
to the ones established here concerning the non-convexity of the equilibrium set.

The Time-Dependent supergame models, studied by Friedman, are games in
which the payoff in each period depends upon the actions taken in the present
period as well as those actions taken in onme or more previous periods. In
Friedman’s model the set of actions available for each player is compact and
convex. The time-dependent model with a finite number of one shot actions is an
interesting example, which satisfies the conditions that every pair of strategies are
connected and that for every j, f=1,...,K and every icl, v{j)=uv{})
Theorems 1 and 2 imply that, under these two conditions, the set of Nash equili-
brium payoffs is convex.

Lockwood characterized the equilibrium payoffs with little or no discounting
in a class of stochastic games known as scrambling games. These are games where
no matter what actions are chosen by the players, the transition function has the
property that given any pair of initial states, there is always some positive
probability of moving to a common third state. This property implies that the
payoff of any stationary strategy is independent of the initial state. If one requires
Lockwood’s condition in our model (the transition function has only zeros and
ones), then the resulting stochastic game has the following property: There exists
a one shot game we W such that for any w'e W and ae 4, the transition function is
T(w',a) = w. Cleatly the scrambling games can be reduced to games which repeat
the game w infinitely many times. Therefore, all the results about repeated games
may be applied in this setting.

The Subgame Perfect Folk Theorem for infinitely repeated games (e.g. Rubin-
stein [1977], Aumann and Shapley [1976], etc.) states that every individually
rational payoff can be supported as a subgame perfect equilibrium strategy.
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51 . SPE

Fig. 3.

Similar results have been shown for the class of stochastic games mentioned
above. Nevertheless, the following example shows that, in general, subgame
perfection reduces the set of Nash equilibria (see Figure 3).

Example:
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In the example above, any Nash equilibrium generating a payoff in the convex
hull of {(4,4), (2, 1),(1,2),(1, 1)} is not a subgame perfect equilibrium since player
1 has a deviation that game w? is reached, but from game w* the unique Nash
equilibrium payoff is (3, 5).

By an argument similar to the one used by Ben-Porath and Peleg [1989] and
Fudenberg and Maskin [1986], we can show that, if the stochastic game has the
property that every pair of stationary strategy are connected and for every
i=1,...,K and every icl, 1,(j) = v,(j"), then every individually rational payoff
can be supported as a subgame perfect equilibrium strategy.

6 Appendix

Theorem I: A vector veR" is feasible # and only if there exists
m@ {s%,...,5*} =§ such that for every s,5"eS(v) ¥ ~s and there exists
(o, RJ cAF (the k-dimensional unit simplex) such that v =3%_ «*U(s".

Proof: Sufficiency:

Let v be a feasible payoff. Therefore, there exists a strategy feF such that
v="U{f).

Consider the sequence of actions a(f) = {a'(f)};2, generated by f. Since the
game G is finite there exists a point in the sequence with the property that all the
following actions have already been taken previously, that is, there exists t = 1
such that for every ¢ = 1, there exists 7, < = such that a'(f) = a™(f).

For every icl, define

pr=min{u@(f1<t<t} and P=max{ula(f)l<r<q}

Lemma 2: Forevery T > 1, there exists a set of stationary strategies (depending of
T) s%,...,5 such that:

i) Forevery I ' =1,...,k, we have that s’ = 5%
ii) There exists «f,..., e such that >3, af +t; — 1 =T and for every icl

i 1 & 1 ¢ Pl 13

ﬂa+ M SQ@JIHHM uga Abv‘nla.fnfMHRmQ@u

Proof of Lemma2: Let T=t be given. There exists t,<t such that
wI () =w(f). Define T=T—t,+1 and for every 1<t < T+ 1 w{(f)=
w = 1( £). Hence, we have that w{(f) = w7+ *(f).

Let t] be the smallest index that 1 <, <7} < T+ 1 such that w™(f) = #*(f).

There exists s'eS such that e,(s')={w"(f)..., w:"Hf)}. Consider T, =

{1,2,..., H\rwr:.u%+ 1}.
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Let £, be the smallestindex in T, that 1 <1, <t, < T+ 1 such that t,eT; and
wo(f)=w*(f). Then, there exists s?cS such that c,(s%)={W™(f),.
WETH(f)} = c,(s7)

Let T, =T, —{t,,...,t; — 1}, and continue in a similar manner. This process
stops at some point such that £,=1 and ¢ =T+ 1. We have identified
5(T)={s',....s"} (some of the s* may be repeated).

Let S(T)={s',...,5""} be the set of stationary strategies obtained by deleting
the repeated elements of S(T). m.oH every 1 <k < ky denote by f the number of
times that §* is in §{T). Define o] = f7+|s*| < T and notice that:

5, f >
MQMHMmm._mJHHHHi?;ﬂ.H.
k=1 k=1
Therefore,

for

Yol 41, —1=T

k=1

It is easy to show that for every il we have that:
7

¥, w@ ()= 3, AU

=1
Therefore ii) follows. By construction i} also follows because it is possible to find

a connection between any pair of strategies in S(T) since wi(f) = wl *1(f). This
proves Lemma 2. [

Since for every T >t ii) of Lemma 2 is true, we have that for every icl:

«%@ Pl M&Emw TSSP&QM_ 1y G@L ;

and therefore

sSu%QHm&qEWﬂy

By the finiteness assumption it is easy to show that there exists T > tsuch that
for every T> T, S(T) < S(T). Denote by S the maximal set S(T) = {s*,...,5*}.
Therefore

an-sffs e ]
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for every icl, where

o [af i SeS(T)
%70 if s¢Ss(TY

For every icl, v,=Uf)=2%_ #[{(/T&}2_ JUL(s"), by linearity of the
Banach limit. Now, for every 1<k=<k:0=<#[{(1/T&}7-.]1<1, since
0<al <T. Letting of =a#[{(1/T)&}3-,). it remains to be shown that
SE L #UYDEDE. ] = 1. ]

Notice  that %, #[{(1/T)a0)3=] = #L{(/T)TE &}5-,]  and
HLDRE &l + (U rrpE. =1 because Yf_, &l +t7=T and 7, <.
Hence the equality follows.

Proof: Necessity:

Suppose that there exists a subset of 5, {s,..., 5%}, such that for every 5", s" we
have that & ~s” and there exists (&%,..., ) eA¥ such that v = T _ | o*U(s). We
want to show that there exists feF such that U(f) = v. Assume (¢:,..., 2" )eQ"
Therefore there exists integer numbers (ry,...,7;) and {(g;,...,q;) such that
o =r/q, for every k=1,...,k. Let g=T115_, q, and g_; =TT, 4 Therefore
o =r,q_,/qforeveryk=1,...,k.

Let s, s €S be such that s' & s, define ¢f . = {a',...,a™} where a*e A* for every
k=1,...,m and T(w* d")=w**" for every k=1,...,m—1; wlec,(s) and
Tw™ a™ec,,(s").

Construct the following (constant) aggregate strategy in F:

a(f) = {b (s cals™)s - Cals™), €2 0a(8%) s Co8™), €5 5s s Ch - 1 s
(riq_)-times (roq_,)-times
0 (00 WO (0 W ST SN () ROV (- W - SRR
(r;g _z)-times (rzg _p-times

c(st),... e 5%, ..

It is easy to show that lim,_, ,(1/T)S  u(a(f)) = v; for every iel.

If(al,..., ") ¢ QF take a sequence {v™"}*_, — v where every v™ may be obtained
as a rational convex combination of stationary strategy payoffs. As in Masso
[1993] it is possible to construct a strategy converging tov. [

Lemma 3. For every j=1,..., K, there exists [s7];€S; and [sf]_;eS_; such that
v(J) = ULLsf ]}, [s/3L)-

Proof: Let j=1,...,K and f_,eFi, be given. Then supp. pUlflfL)=
maxy, .5, Ud[$/, f1 ). Therefore,

inf sup U(fL fL}= inf max U(fy¥. /L)) (1)

JieFi fleF] i eFF IsjlieS:
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It is easy to show that for every ([s7, f. ) there exists a subsequence {T,,}=_, of
{T}#_, such that:

i) for every m,m = 1, w5714, fL ) = w™™([s1L, f£ ), and
_HA HJY:
i) Jiminf 3 w(@([si 1 fL)) = lim HP > w071 1))

T—=w u..nlh. m—ow “mi=1

Therefore, for every m > 1, there exist [s/]™7, ..., [7]™*™ such that

~3
E

. 1 ko . 1
w(@ (LM fL) =5 2 UdLgH: [T LT, o0 + =,

z:nw

sh-]l'““
=0
L

K(m) . 1
min {U([s/1}, [57]2)I1 < k < k(m)} 2 HISTIL LT 12 + -6,

k) o 1
Q (L[5 ) X #([sil. [sit-d +
k=1

m

=7,"
1

where [sf17 ,cargmin{U,([s/}, [/ ) [571L,€8L,}, 4, is the sum of payofls for
player i, coming from the path of actions starting in game j until the cycle of one of
the stationary strategies ([sj 1/, [sj17}) is reached, and #([sj/, [s/]1%¥) means the
number of times that the cycle of ([sf], [s71™5) is played from T, to T,,. Notice
that for every m = 1 we are decomposing the actual play generated by {[sj 14, /7 ;)
as an initial path (from 1 to T,) and a collection of cycles of stationary strategies
(from T, to T,).

1 T
ULsi i, 7.9 2 limiof . 3, wi(@([9)] £1.9)
T=w =1
1 T . o
=# |7 L wlellsil L)
me=1 m=1

> UL[s71}: [s/11 ).
Therefore, for every f7;

max U((y: 1) = max U5} [51L)

s/l:e 8 [s/k=5:
implying that
inf max U [g¥,f" )= min max U,([s},[s7)
FIEF7 {sfleeSs [sfl-1eS—¢ [sflieS:
Therefore, by (1),

v ()= inf sup UfLfL)= min max U([sj]L[s711,)k

fieFl fieF] isj1-:€S_i[sfl:eS:
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By the same type of argument, one can show that

min  max U [sT, [571 ) = v

[si}-1€8- [silieS:

Thus, there exist [si],€S; and [s/]_,eS_, such that o,( ) = U,([s]{, [s/}_ ), which
proves Lemma 3. [}

Proposition 1: For every iel, there exist m_;eS_; and m;eS§; such that for

every j=1,...,K, Uymj,m’ )=0,j) and Uyfmi,m’ )= Uffi,m’ ) for every
fleF]

Proof: Consider the set of stationary strategies {[s1],...,[sK]} obtained by
Lemma 3. Since v,(j) = U,([s/]) it must be the case that v,(j) = v,(]) for every
Fee, ([s7]). Assume that 1 <j <j' < K are such that ¢ ([s5]) nc,([57]) # &. This
implies that, for every icI, v{j) = v;( j'). Therefore, define 5€S as follows:

)= ﬁ&s w?mg&ecfﬁé.
[sf1(r) otherwise.

Notics that ¢ (5) = ¢,,(57) = ¢,,([57]), which Implies that U,(5") = U,(7) = v(j) =
v,(j). Construct the new set of strategies ({[s1]....,[sK1} — {151, [s/'] Hu{sh
Repeat this process until one obtains a set of stationary strategies {[51],...,
[§k']} suchthatforevery j, j =1,....k (j #J)onehas ¢, ({51} e s =4.
Pick as m of the Proposition 1 one of the stationary strategies that satisfies
mir) = [§(r) for every w'ee,([§]) and for every j=1,...,k" This proves
Proposition 1. [J

Theorem 2: Let v be a feasible payoff of G. Then, v is an equilibrium payoff of
G if and only if there exists 5,...,5" (K <n+1), (z',...,a")eA" such that
v=Y¥_ «U(s") and there exist ¢, ,,..., ¢ , connections such that v; = z(s",...,

$°,€ 3200 >€p 1, 1) for some [=1,..., k" and for every iel.
Proof: Necessity:

Let v be an equilibrium payoff of G. Then there exists feF* such that v = U(f).
Obviously, v is feasible, therefore by Theorem 1, there exist g, 55,
(@,...,0)eA¥ and (¢y 4,. ..,y ) SUch that v =3%_, «"U(s"). Those are the ones
obtained in the constructive proof of Theorem 1. Consider a(f) = {a*(f),...}. Let
w9 be the game w’ = w(f) such that for every 1 <t <, wi(f)¢|_Ji_, ¢,(s) and let
1 <<k besuch that wec, (s (Ifit does not exist, let w’ = w*.) There exists 'eS
such that ¢ (s") = ¢ (5" and b,(8) = {a'(f)...., & *(f}}.(This can be proved by an
argument similar to the one used in the proof of Theorem 1}.

Change s* by § in the set {s',...,s*}. Notice thai the set of actions
{eash . s eas)aley o) o alCp 1), BafE")} (Where alc, ) is the path of actions
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used in the connection of k with k) is a subset of {¢(f)|te N}. Since feF* is an
equilibrium, we must have v; > v{) for every iel, otherwise there would exist icl
who would have a successful deviation. Notice, that by the Charatheodory
Theorem, one could express v as a convex combination of at most » + 1 points.
Hence, &' < n + 1 (see Figure 2).

Proof: Sufficiency:
We have to construct an strategy fcF such that:

) v=U(f)
i) feF*.

Without loss of generality consider that I=1. Define feF as the strategy
constructed in the proof of Theorem 1, but now players monitor the other players
in such a way that if player ie deviates from this path of actions in the game w/,
all the other players use m_; (Proposition 1 gnarantees that this is independent of
7). Hence, if player iel does not deviate he gets v,, and if he deviates he gets v,(f)
which is smaller or equal than v(s*,. .., 5%, ¢, 5. -5 ¢1»1). Therefore this strategy
isin F*. [
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