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We characterize the class of strategy-proof social choice functions on the domain of sym-
metric single-peaked preferences. This class is strictly larger than the set of generalized
median voter schemes (the class of strategy-proof and tops-only social choice functions on
the domain of single-peaked preferences characterized by Moulin, 1980) since, under the
domain of symmetric single-peaked preferences, generalized median voter schemes can be
disturbed by discontinuity points and remain strategy-proof on the smaller domain. Our
result identifies the specific nature of these discontinuities which allow to design non-onto
social choice functions to deal with feasibility constraints.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Consider a society with n agents who have to collectively choose one alternative from a given set of social alternatives.
Assume that this set is endowed with a natural strict order because alternatives have a common characteristic according to
which pairs of alternatives can be compared in an objective way. For instance, the set of alternatives may consist of physical
locations (a public facility on a road or street), properties of a political project in terms of its left–right characteristics, the
expenditure level on a public good, indexes reflecting the quality of a product, feasible temperatures in a room, and so on.1

In all these cases, and in many others, this linear order structure permits to identify the set of alternatives with a subset
of the real line. Agents have (potentially different) preferences on the set of alternatives. Black (1948) is the first to suggest
that, given the linear order on the set of alternatives, agents’ preferences ought to be single-peaked. The preference of an
agent is single-peaked if there exists an alternative (called the top) which is strictly preferred to any other alternative and
on each side of the top the preference is strictly monotonic, increasing on its left and decreasing on its right.2

Society would like to select an alternative according to agents’ preferences. But since they constitute private information,
agents have to be asked about them. A social choice function on a domain of preferences requires each agent to report a
preference and associates an alternative with the reported preference profile. Hence, a social choice function on a Cartesian
product domain induces an (ordinal) direct revelation game where each agent’s set of strategies is his set of possible prefer-
ences. A social choice function is strategy-proof if no agent has ever incentives to strategically misrepresent his preference;

* Corresponding author. Fax: +34 935812461.
E-mail addresses: jordi.masso@uab.es (J. Massó), i.moreno-de-barreda@lse.ac.uk (I. Moreno de Barreda).

1 There is an extensive literature studying collective choice problems where the set of social alternatives is a linearly ordered set. See Moulin (1980), for
instance. This class of problems also plays a fundamental role in Sprumont (1995) and Barberà (2001, 2010), three excellent surveys on strategy-proofness.

2 The set of single-peaked preferences is extremely large and rich; for instance, for each alternative there are many single-peaked preferences that have
as top this alternative. Moreover, no a priori restriction is imposed on how pairs of alternatives lying in different sides of the top are ordered. Ballester and
Haeringer (forthcoming) identify two properties that are both necessary and sufficient to characterize the domain of single-peaked preference profiles.
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in other words, truth-telling is a (weakly) dominant strategy in the direct revelation game induced by the social choice
function.

Moulin (1980) characterizes the class of strategy-proof and tops-only social choice functions on the domain of single-
peaked preferences as the set of generalized median voter schemes.3 A generalized median voter scheme is, in general,
a non-anonymous extension of the median voter. It can be interpreted as a particular way of distributing the power to
influence the social outcome among all coalitions of agents. In addition, Moulin (1980) also identifies the two nested sub-
classes of strategy-proof, tops-only and anonymous social choice functions, and strategy-proof, tops-only, anonymous and
efficient social choice functions.4 The ranges of all functions in Moulin (1980)’s characterizations are closed intervals. This
implies that if some alternatives were banned or infeasible, either the social choice function would have to request from
the agents more information than just their tops, or there would be a single-peaked preference profile and an agent with
incentives to misreport his preferences.

In many applications however, the domain of preferences can be restricted even further because the linear order struc-
ture of the set of alternatives conveys to agents’ preferences more than just an ordinal content. Often, an agent’s preference
on the set of alternatives is responsive also to the notion of distance, embedding to the preference its corresponding prop-
erty of symmetry. A single-peaked preference is symmetric if the following additional condition holds: an alternative is
strictly preferred to another one if and only if the former is strictly closer to the top. If an indifference class contains two
alternatives then both are located in opposite sides of the top and are at the same distance of the top.5

To restrict further the domain of a social choice function is equivalent to shrink the set of agents’ strategies in its induced
direct revelation game. Thus, strategies that were dominant remain dominant while strategies that were not dominant
in the larger domain may become dominant after the domain reduction. Therefore, two important facts hold. First, any
strategy-proof social choice function on a domain remains strategy-proof on all of its subdomains. Second, a manipulable
social choice function on a domain may become strategy-proof in a smaller subdomain.6 Hence, we ask whether the set
of strategy-proof and tops-only social choice functions on the domain of single-peaked preferences, identified by Moulin
(1980) as the class of generalized median voter schemes, becomes larger when the domain of preferences where we want
the social choice functions to operate is the subdomain of symmetric single-peaked preferences. We answer this question
affirmatively by completely identifying the larger class of functions that emerge after restricting further the domain.

The new class of social choice functions can be described as generalized median voter schemes disturbed by discontinuity
jumps. A social choice function f in the class coincides with a generalized median voter scheme except that at some
(countable number of) discontinuity jumps (for instance, an interval (a,b) with midpoint d), instead of taking the value
prescribed by the generalized median voter scheme, f takes the constant value a at [a,d), either the value a or b at
d, and the constant value b at (d,b]. Our description of the class makes precise that the choice of either a or b at any
of those profiles where the generalized median voter scheme would choose d, must be monotonic in order to preserve
strategy-proofness of the social choice function.

We want to stress the importance for applications of admitting discontinuous social choice functions that are non-onto
because they have a disconnected range, and this range can in fact be any closed subset of alternatives. Besides, this range
can be chosen beforehand. Non-onto social choice functions are indispensable for the design of social choice functions that
require that some subsets of alternatives are never chosen due to feasibility constraints. For instance when the range of the
function has to be finite, or not all locations for a public facility are possible, or the set of indexes reflecting the quality of
a product must be disconnected, or the thermostat controlling for the temperature in a room cannot take all values, and
so on. In all these cases, and in many others, discontinuities cannot be regarded as pathological features of social choice
functions but rather as indispensable requirements to deal with constraints on the set of feasible alternatives to be chosen.7

There is a large literature studying strategy-proofness on domains related to single-peakedness. Border and Jordan (1983)
extend Moulin (1980)’s results to multi-dimensional environments. One of the domains they consider is the set of quadratic
separable preferences that coincides with the domain of symmetric single-peaked preferences when the number of di-

3 A social choice function is tops-only if the chosen alternative only depends on the profile of tops. Tops-only social choice functions are especially
simple in terms of the amount of information they require about individual preferences. Ching (1997) gives an alternative description and several axiomatic
characterizations of generalized median voter schemes; in particular, Ching (1997) shows that in Moulin (1980)’s characterization tops-onlyness can be
replaced by continuity.

4 A social choice function is anonymous if it is independent of the identities of the agents; it is efficient if it always selects a Pareto optimal alternative.
5 The notion of symmetric single-peakedness has already been considered in the context of strategy-proofness; for example in Border and Jordan (1983),

Peters et al. (1992), Klaus et al. (1998), Ehlers (2002), Nisan (2007), Kar and Kibris (2008), and Klaus and Bochet (2010). It has also been considered in
the context of political economy to model voters’ preferences over policies identified with an interval; for example in McKelvey and Ordeshook (1993) and
Krehbiel (2006).

6 Observe two things. First, this is just a possibility. For instance, for the case where the set of social alternatives is the family of all subsets of a given
set of candidates Barberà et al. (1991) show that voting by committees is the class of strategy-proof and onto social choice functions on both, the domain
of separable preferences as well as on the subdomain of additive preferences, although the set of additive preferences is strictly smaller than the set of
separable preferences. No new strategy-proof social choice function appears after the domain reduction in this case. Second, given a tops-only social choice
function on the domain of single-peaked preferences, the set of agents’ strategies in its induced direct revelation game is smaller when single-peaked
preferences are further restricted to be symmetric because the fact that the rule is constant (by tops-onlyness) in a large subset of profiles is unrelated
with the fact that the set of preferences that agents may use to evaluate the outcomes of the social choice function is smaller.

7 Barberà et al. (1997, 1998, 2005) identify subclasses of strategy-proof social choice functions that are able to deal with constrained sets of alternatives
in different environments.
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mensions is equal to one. However, Border and Jordan (1983) only consider social choice functions that respect unanimity
(i.e., if all agents have the same top then the common top should be chosen). Hence, all their results apply only to social
choice functions whose ranges coincide with the set of alternatives. In particular, they show that for the one-dimensional
case strategy-proof social choice functions that respect unanimity on the domain of symmetric single-peaked preferences
are uncompromising,8 and the partial converse that all uncompromising social choice functions are strategy-proof; more-
over, all uncompromising social choice functions on this domain are continuous. Nehring and Puppe (2007a, 2007b) study
strategy-proofness in rich domains satisfying a general notion of single-peakedness based on abstract betweenness relations.
However, their richness condition explicitly excludes as an admitted domain the set of symmetric single-peaked preferences
since it requires that for any triplet of alternatives (y, x, z) with y not being between x and z there must exist a prefer-
ence relation in the domain with top on x such that z is strictly preferred to y. Thus, their results and ours are logically
unrelated.

Our result and its proof are closely related to the following papers. Theorem 1 partly retains the structure of Moulin
(1980)’s characterization of strategy-proof and tops-only social choice functions under the single-peaked domain of prefer-
ences. Our result in Theorem 1 says that strategy-proof social choice functions on the symmetric single-peaked domain that
are manipulable on the larger single-peaked domain consist of generalized median voter schemes that are perturbed by spe-
cific discontinuities. Our result is also related to Theorem 3 in Barberà and Jackson (1994) characterizing all strategy-proof
social choice functions on the domain of single-peaked preferences. Their characterization includes social choice functions
whose range is not an interval; however, the characterization is open because it relies on a family of tie-breaking rules (used
to select between the two extremes of the discontinuity jumps) that are not fully described. Our characterization is closed
because it explicitly describes the exact family of admissible tie-breaking rules needed to preserve strategy-proofness. Yet,
we are able to provide this closed description because our domain contains only symmetric preferences. The proof of our
result relies at some point on Berga and Serizawa (2000)’s characterization of all strategy-proof and onto social choice func-
tions on a minimally rich domain as the class of generalized median voter schemes9; we use their result in the easier case
when the given strategy-proof social choice function is continuous. In addition, our proof is substantially simpler than it
would have been if we were not able to use Barberà et al. (2010) result identifying conditions of preference domains under
which (individual) strategy-proofness is equivalent to group strategy-proofness. Their result allows us to avoid many steps
of individual changes of preferences by instead moving simultaneously the preferences of all members of a given coalition.

The paper is organized as follows. In Section 2 we present preliminary notations and the most basic definitions. In Sec-
tion 3 we state some previous results and give the main definitions and intuitions in order to understand why and how the
class of generalized median voter schemes has to be enlarged in order to identify the full class of strategy-proof social choice
functions on the domain of symmetric single-peaked preferences. In Section 4 we state and prove our main result charac-
terizing the complete class of strategy-proof social choice functions on the domain of symmetric single-peaked preferences
(Theorem 1). After presenting some preliminaries of the proof in Section 4.2, we prove Theorem 1 in Section 4.3. In Sec-
tion 5 we first state as corollaries of Theorem 1 the corresponding characterizations under strategy-proofness and anonymity
(Corollary 1) and under strategy-proofness, anonymity and efficiency (Corollary 2). We then argue about the importance for
applications of allowing for non-onto social choice functions which were ruled out by the combination of strategy-proofness
and tops-onlyness in Moulin (1980)’s characterization under single-peaked preferences and state Corollary 3 characterizing
all strategy-proof social choice functions that are efficient relative to a given closed set of feasible alternatives. We finish
with the remark that, as the consequence of the main result in Barberà et al. (2010), the four statements hold if we replace
in them strategy-proofness by group strategy-proofness.

2. Preliminary notations and definitions

Let N = {1, . . . ,n} be the set of agents of a society that has to choose an alternative x from the interval [0,1].10 Subset
of agents will be denoted by capital letters (like S) and their cardinalities by their corresponding small letters (like s).
The preference of each agent i ∈ N on the set of alternatives [0,1] is a complete, reflexive, and transitive binary relation
(a complete preorder) Ri on [0,1]. Let R be the set of complete preorders on [0,1]. A preference profile R = (R1, . . . , Rn) ∈
Rn is an n-tuple of preferences. To emphasize the role of agent i or subset of agents T , a preference profile R will be
represented by (Ri, R−i) or (RT , R−T ), respectively. As usual, let Pi and Ii denote the strict and indifference preference
relations induced by Ri , respectively. Given Ri ∈ R, the top of Ri (if any) is the unique alternative t(Ri) that is strictly
preferred to any other alternative; i.e., t(Ri)Pi x for all x ∈ [0,1] \ {t(Ri)}.

Given a subset of preferences S ⊆ R, a social choice function (SCF from now on) f on S is a function f : Sn → [0,1]
selecting an alternative for each preference profile in Sn . We will refer to this Cartesian product set Sn (or to the set S itself)

8 A social choice function is uncompromising if an agent’s top lies to the right (respectively, left) of the chosen alternative x, then any change in the top
which leaves it to the right (respectively, left) of x will not affect the choice.

9 A domain is minimally rich if (i) it is a subset of the single-peaked domain, (ii) for each alternative x there is a preference relation in the domain with
top at x, and (iii) for any pair of alternatives x and y (x �= y) there is a preference in the domain that strictly orders x and y and whose top lies between x
and y. Obviously, the set of symmetric single-peaked preferences is a minimally rich domain.
10 Our results also hold for any linearly ordered metric space of alternatives. In particular, for any set of alternatives which is a closed interval of real

numbers (as well as for the set R ∪ {−∞,+∞}).



Author's personal copy

470 J. Massó, I. Moreno de Barreda / Games and Economic Behavior 72 (2011) 467–484

as the domain of preferences. Given an SCF f : Sn → [0,1], denote its range by r f ; i.e., r f = {x ∈ [0,1] | there exists R ∈
Sn such that f (R) = x}.

We will be interested in SCFs that induce truth-telling as a (weakly) dominant strategy in their associated (ordinal) direct
revelation game.

Definition 1. An SCF f : Sn → [0,1] is strategy-proof if for all R ∈ Sn , all i ∈ N , and all R ′
i ∈ S ,

f (Ri, R−i)Ri f
(

R ′
i, R−i

)
.

If f (R ′
i, R−i)Pi f (R) we say that i manipulates f at R via R ′

i . An SCF f : Sn → [0,1] is group strategy-proof if for all R ∈ Sn ,
all T ⊆ N , and all R ′

T ∈ St with R ′
i �= Ri for all i ∈ T ,

f (RT , R−T )Ri f
(

R ′
T , R−T

)
for some i ∈ T .

If f (R ′
T , R−T )Pi f (R) for all i ∈ T we say that T manipulates f at R via R ′

T .

We will also consider other properties of SCFs. An SCF f : Sn → [0,1] is anonymous if it is invariant with respect to
the agents’ names; namely, for all one-to-one mappings σ : N → N and all R ∈ Sn , f (R1, . . . , Rn) = f (Rσ(1), . . . , Rσ(n)).
An SCF f : Sn → [0,1] is efficient if for all R ∈ Sn , there is no z ∈ [0,1] such that, for all i ∈ N , zRi f (R) and zP j f (R) for
some j ∈ N .11 An SCF f : Sn → [0,1] is unanimous if for all R ∈ Sn such that t(Ri) = x for all i ∈ N , f (R) = x. An SCF
f : Sn → [0,1] is onto if for all x ∈ [0,1] there is R ∈ Sn such that f (R) = x (i.e., r f = [0,1]). An SCF f : Sn → [0,1] is
tops-only if for all R, R ′ ∈ Sn such that t(Ri) = t(R ′

i) for all i ∈ N , f (R) = f (R ′). Let S ⊆ R be any subset of preferences
with the property that for each x ∈ [0,1] there exists at least one preference Ri ∈ S such that t(Ri) = x. Then, Sn is called a
rich domain and with some abuse of notation, given a tops-only SCF f : Sn → [0,1] we will refer to it by its corresponding
voting scheme f : [0,1]n → [0,1].

In many applications, a linear order structure on the set of alternatives naturally induces a domain restriction in which
there always exists a top, and at each of the sides of the top the preference is strictly monotonic.

Definition 2. A preference Ri ∈ R is single-peaked if:

(1) there exists the top t(Ri) of Ri , and
(2) for all x, y ∈ [0,1] such that y < x � t(Ri) or t(Ri) � x < y, xPi y.

Let SP be the set of single-peaked preferences on [0,1]. Observe that, given a single-peaked preference Ri ∈ SP , y Pi x
may hold even if |t(Ri) − x| < |t(Ri) − y|; but then, x and y are necessarily located in different sides of the top t(Ri). Often,
the linear order structure of the set of alternatives and a distance conveys to the preference a symmetric property around
the top (coming for instance, from a location interpretation of the set of alternatives) that naturally induces the restriction
that preferences respond to the distance as follows.

Definition 3. A preference Ri ∈ R is symmetric single-peaked if:

(1) there exists the top t(Ri) of Ri , and
(2) for all x, y ∈ [0,1], xPi y if and only if |t(Ri) − x| < |t(Ri) − y|.

Obviously, a symmetric single-peaked preference is single-peaked. Let SSP be the set of symmetric single-peaked pref-
erences on [0,1]. Given any alternative x ∈ [0,1], there is a unique symmetric single-peaked preference Ri with its top
t(Ri) = x (SSP is a rich domain). Hence, there is a one-to-one mapping between the set of symmetric single-peaked pref-
erences SSP and the set of alternatives [0,1]. Thus, we will use ti ∈ [0,1] to identify the (unique) Ri ∈ SSP such that
t(Ri) = ti and t = (t1, . . . , tn) to denote the corresponding symmetric single-peaked preference profile R = (R1, . . . , Rn) such
that t(Ri) = ti for all i ∈ N . Note that, by this one-to-one identification, any SCF f : SSPn → [0,1] is tops-only. Thus, we
will also denote an SCF f : SSPn → [0,1] by its corresponding voting scheme f : [0,1]n → [0,1]. Following Berga and
Serizawa (2000), a subset S ⊆ SP is a minimally rich domain if it is rich and for any pair of alternatives x, y ∈ [0,1], x �= y,
there exists Ri ∈ S such that xPi y and t(Ri) ∈ (min{x, y},max{x, y}). Observe that SSPn is a minimally rich domain.

11 In Section 5.2 we will define the notion of efficiency relative to a subset of alternatives A ⊆ r f by replacing the above condition “there is no z ∈ [0,1]”
by “there is no z ∈ A”.
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3. Previous results and main intuition

3.1. Previous results

Moulin (1980) characterizes the family of strategy-proof and tops-only SCFs on the domain of single-peaked preferences
as well as its anonymous subfamily.12 The two characterizations are useful to develop helpful intuitions to understand our
characterization of strategy-proof SCFs (and its anonymous subfamily) on the domain of symmetric single-peaked prefer-
ences. To state them, we need to define the median of an odd set of numbers and the notion of a monotonic family of
fixed ballots. Given a set of odd real numbers {x1, . . . , xK }, define its median as med{x1, . . . , xK } = y, where y is such that
#{1 � k � K | xk � y} � K

2 and #{1 � k � K | xk � y} � K
2 ; observe that since K is odd the median belongs to the set

{x1, . . . , xK } and it is unique. A collection {pS }S∈2N is a monotonic family of fixed ballots if pS ∈ [0,1] for all S ∈ 2N and T ⊂ Q
implies p Q � pT .

Proposition 1. (See Moulin, 1980.) An SCF f : SPn → [0,1] is strategy-proof, tops-only and anonymous if and only if there exist n +1
fixed ballots 0 � pn � · · · � p0 � 0 such that for all R ∈ SPn,

f (R) = med
{

t(R1), . . . , t(Rn), pn, . . . , p0
}
.

Proposition 2. (See Moulin, 1980.) An SCF f : SPn → [0,1] is strategy-proof and tops-only if and only if there exists a monotonic
family of fixed ballots {pS}S∈2N such that for all R ∈ SPn,

f (R) = min
S∈2N

max
i∈S

{
t(Ri), pS

}
.

The SCFs identified in Propositions 1 and 2 are called median voter schemes and generalized median voter schemes, re-
spectively. A simple way of interpreting them is as follows. Each generalized median voting scheme (and its associated
monotonic family of fixed ballots) can be understood as a particular way of distributing the power among coalitions to
influence the social choice. To see that, take an arbitrary coalition S and its fixed ballot pS . Then, coalition S can make
sure that, by all of its members reporting a top alternative below pS , the social choice will be at most pS , independently
of the reported top alternatives of the members of the complementary coalition.13 An alternative way of describing this
distribution of power among coalitions is as follows. Fix a monotonic family of fixed ballots {pS }S∈2N (i.e., a generalized
median voter scheme) and take a vector of tops (t(R1), . . . , t(Rn)). Start at the left extreme of the interval and push the
outcome to the right until it reaches an alternative x for which the following two things happen simultaneously: (i) there
exists a coalition of agents S such that all its members have reported a top alternative below or equal to x (i.e., t(Ri) � x
for all i ∈ S) and (ii) the fixed ballot pS associated to S is located also below x (i.e., pS � x). Median voter schemes are
the anonymous subclass of generalized median voter schemes. Hence, the fixed ballots of any two coalitions with the same
cardinality of any anonymous generalized median voter scheme are equal. From a monotonic family of fixed ballots {pS }S∈2N

associated to an anonymous generalized median voter scheme f , we can identify the n + 1 ballots pn � pn−1 � · · · � p0
needed to describe f as a median voter scheme as follows: for each 0 � s � n, ps = pS for all S ∈ 2N such that #S = s.
Moreover, if n is odd the (ordinary) median voter is obtained by choosing pn = · · · = p n+1

2
= 0 and p n+1

2 −1 = · · · = p0 = 1

since for any R ∈ SPn ,

med
{

t(R1), . . . , t(Rn), pn, . . . , p0
} = med

{
t(R1), . . . , t(Rn), 0, . . . ,0︸ ︷︷ ︸

n+1
2 -times

, 1, . . . ,1︸ ︷︷ ︸
n+1

2 -times

}

= med
{

t(R1), . . . , t(Rn)
}
.

Finally, the SCF f where agent j ∈ N is the dictator (i.e., for all R ∈ SPn , f (R) = t(R j)) can be described as a generalized
median voter scheme by setting pT = 0 for all T ⊂ N such that j ∈ T and pS = 1 for all S ⊂ N such that j /∈ S . Then, for
any R ∈ SPn , max{t(R j), p{ j}} = t(R j), for any T ⊂ N such that j ∈ T , t(R j) � maxi∈T {t(Ri), pT }, and for any S ⊂ N such
that j /∈ S , maxi∈S{t(Ri), pS } = 1. Thus, minS ′∈2N maxi′∈S ′ {t(Ri′ ), pS ′ } = t(R j).

Moulin (1980) also shows that the class of group strategy-proof and tops-only SCFs on the domain of single-peaked
preferences coincides with the set of generalized median voter schemes. From the main result in Barberà et al. (2010) we
can conclude that any strategy-proof SCF on the domain of symmetric single-peaked preferences is group strategy-proof as
well. Since we will later use this fact we state it here as a remark.14

12 Moulin (1980) also characterizes the subfamily of strategy-proof, tops-only, anonymous and efficient SCFs on the domain of single-peaked preferences.
See Corollary 2 in Section 5 for the characterization of the same class of SCFs on the domain of symmetric single-peaked preferences.
13 See Barberà et al. (1997) for a similar interpretation for the case of a finite number of ordered alternatives.
14 Barberà et al. (2010) give sufficient conditions defining domains of preferences under which strategy-proofness is equivalent to group strategy-proofness.

The domain of symmetric single-peaked preferences satisfies these sufficient conditions.
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Fig. 1.

Remark 1. (See Barberà et al., 2010.) Let f : SSPn → [0,1] be a strategy-proof SCF. Then, f : SSPn → [0,1] is group
strategy-proof.

To see that in the statements of Propositions 1 and 2 tops-onlyness does not follow from strategy-proofness, consider
the SCF f : SPn → [0,1] where for all R ∈ SPn ,

f (R) =
{

0 if #{i ∈ N | 0Ri1} � #{i ∈ N | 1Pi0},
1 otherwise.

(1)

Notice that f is strategy-proof and anonymous but it is not tops-only. It also violates efficiency, unanimity, and ontoness.
In the last section of the paper we will describe how our characterization includes this class of SCFs on the domain of
symmetric single-peaked preferences.

3.2. Main intuition and definitions

Consider Propositions 1 and 2 for the simplest case where n = 1.15 Fig. 1 depicts the voting scheme f : [0,1] → [0,1]
of a strategy-proof and tops-only SCF f : SP → [0,1] with the two associated fixed ballots 0 < p1 < p0 < 1. Observe that
for any pair of fixed ballots 0 � p1 � p0 � 1 the corresponding voting scheme f : [0,1] → [0,1] is always increasing (i.e.,
0 � x < y � 1 implies f (x) � f (y)), continuous, and r f = [p1, p0]. For any n � 1, a voting scheme f : [0,1]n → [0,1] is
increasing if f (t) � f (t′) for all t, t′ ∈ [0,1]n such that ti � t′

i for all i ∈ N .
More generally, let S be a subset of SP . An SCF f : Sn → [0,1] is increasing if f (R) � f (R ′) for all R, R ′ ∈ Sn such that

t(Ri) � t(R ′
i) for all i ∈ N . By Proposition 2 the following remark holds.

Remark 2. Let f : SPn → [0,1] be a strategy-proof and tops-only SCF. Then, its corresponding voting scheme f : [0,1]n →
[0,1] is increasing and continuous.

Lemma 1 below states that, for any n � 1, any strategy-proof SCF is increasing on the domain of symmetric single-peaked
preferences (observe that tops-only is not required explicitly since for each x ∈ [0,1] there exists a unique Ri ∈ SSP such
that t(Ri) = x).

Lemma 1. Let f : SSPn → [0,1] be a strategy-proof SCF. Then, f is increasing.

Proof. The statement follows from the iterated application of Claim A.

Claim A. Let f : SSPn → [0,1] be a strategy-proof SCF. Let t, t′ ∈ SSPn be such that for some i ∈ N, ti < t′
i and t−i = t′

−i . Then,
f (t) � f (t′).

Proof of Claim A. Assume otherwise; that is, there exist t, t′ ∈ SSPn and i ∈ N such that

ti < t′
i, (2)

15 When n = 1 anonymity is vacuous. Indeed, we can uniquely identify the two fixed ballots of the propositions as p1 = p{1} and p0 = p∅ .
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Fig. 2.

t−i = t′
−i and f (t′) < f (t). We distinguish among six possible cases. The first three cases (i) f (t′) < f (t) � ti < t′

i, (ii) ti �
f (t′) < f (t) � t′

i, and (iii) f (t′) < ti � f (t) � t′
i contradict strategy-proofness of f since in all three cases i manipulates f at

t′ via ti . The two cases (iv) ti < t′
i � f (t′) < f (t) and (v) ti � f (t′) � t′

i � f (t) contradict strategy-proofness of f since in both
cases i manipulates f at t via t′

i . The remaining case is (vi) f (t′) � ti < t′
i � f (t). Since ti, t′

i ∈ SSP and f is strategy-proof,

f (t) − ti � ti − f
(
t′),

t′
i − f

(
t′) � f (t) − t′

i .

Adding up,

f (t) − ti + t′
i − f

(
t′) � ti − f

(
t′) + f (t) − t′

i,

t′
i − ti � ti − t′

i,

t′
i � ti,

a contradiction with (2). �
We have shown that the monotonicity of strategy-proof SCFs is preserved when we restrict the domain of single-peaked

preferences to be symmetric. However, continuity (of its corresponding voting scheme) does not follow from strategy-
proofness and tops-onlyness in this smaller domain. Indeed, a special class of discontinuities may arise. It is very easy to
understand why when n = 1. First, take any τ , δ ∈ (0,1) such that δ � min{τ ,1 − τ } and define the SCFs f − : SSP → [0,1]
and f + : SSP → [0,1] where for each ti ∈ SSP ,

f −(ti) =
{

τ − δ if ti � τ ,

τ + δ if τ < ti

and

f +(ti) =
{

τ − δ if ti < τ,

τ + δ if τ � ti .

In Fig. 2 we depict f − . Both f − and f + are strategy-proof on the domain of symmetric single-peaked preferences. At
any ti ∈ SSP such that either ti > τ or ti < τ , agent i cannot manipulate them. Let ti ∈ SSP be such that ti = τ . Then,
(τ − δ)Ii(τ + δ) since (τ − δ) and (τ + δ) are at the same distance δ to τ . The function f − : [0,1] → [0,1] is left-continuous
while the function f + : [0,1] → [0,1] is right-continuous.16 Observe that neither f − nor f + are strategy-proof on the
domain of single-peaked preferences since, for instance, for τ = 1/2, δ = 1/4, and any Ri ∈ SP such that t(Ri) = 3/8 and
3/4Pi1/4 agent i manipulates f − and f + at Ri via any R ′

i such that t(R ′
i) = 7/8 since f −(R ′

i) = f +(R ′
i) = 3/4Pi1/4 =

f +(Ri) = f −(Ri).
More generally, a strategy-proof SCF f : SSP → [0,1] could have a countable number of discontinuities as long as the

midpoint of each discontinuity jump is the discontinuity point itself; namely, for the point d ∈ [0,1] where f is discontinu-
ous at d,

d = limx→d− f (x) + limx→d+ f (x)

2

16 A function g : [0,1] → [0,1] is left-continuous (respectively, right-continuous) if for all x ∈ [0,1] and for any sequence {xm}m∈N such that xm � x (respec-
tively, xm � x) for all m ∈ N, {xm}m∈N → x implies {g(xm)}m∈N → g(x).
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Fig. 3.

must hold, otherwise, f is not strategy-proof. Thus, discontinuity jumps have to be symmetric around the discontinuity
point.

As we will show in Section 4, the class of strategy-proof SCFs on the domain of symmetric single-peaked preferences
is the class of generalized median voter schemes identified by Moulin (1980) plus the SCFs obtained after perturbing each
generalized median voter scheme by admitting these very particular kind of discontinuities. We will call them disturbed
minmax. Formally,

Definition 4. Let {pS }S∈2N be a monotonic family of fixed ballots. A collection of open intervals I = {Im}m∈M , where M is an
indexation set, is a family of discontinuity jumps compatible with {pS }S∈2N if:

(1) M is countable,
(2) for all m ∈ M , Im = (am,bm) ⊂ [pN , p∅],
(3) for all m,m′ ∈ M such that m �= m′ , Im ∩ Im′ = ∅,
(4) for all S ∈ 2N , pS /∈ ⋃

m∈M Im .

Given a family of discontinuity jumps I = {Im}m∈M we denote the midpoint of each open interval Im = (am,bm) by
dm = am+bm

2 and we preliminary perturb the identity function as follows.

Definition 5. Given a family of discontinuity jumps I = {Im}m∈M , the corresponding perturbation function Π I : [0,1] → [0,1]
is defined as follows: for each x ∈ [0,1],

Π I (x) =
⎧⎨
⎩

x if x /∈ ⋃
m∈M Im,

am if x ∈ (am,dm],
bm if x ∈ (dm,bm).

(3)

Let I be a family of discontinuity jumps compatible with the monotonic family of fixed ballots {pS }S∈2N . A possible
perturbation of the generalized median voter scheme associated to {pS }S∈2N that preserves its strategy-proofness in the
symmetric single-peaked domain is as follows: for each t = (t1, . . . , tn) ∈ SSPn ,

f (t1, . . . , tn) = Π I
(

min
S∈2N

max
i∈S

{ti, pS}
)
.

We will show that these perturbed functions (of generalized median voter schemes) are the basis to characterize the
class of all strategy-proof SCFs on the domain of symmetric single-peaked preferences.

Fig. 3 illustrates the perturbation for the case n = 1, M = {m} and I = {Im = (am,bm)}; i.e., f (t) = Π I (med{t, p1, p0}).
Notice that Π I arbitrarily assigns the value am to the point dm . If instead Π I (dm) = bm , the perturbed median voter

scheme would still be strategy-proof. When n = 1, there are just two ways of perturbing the generalized median voter
scheme at each discontinuity jump while preserving its strategy-proofness. When n > 1, the process of assigning values to
the discontinuity points in a way that maintains strategy-proofness is more complex.

Fig. 4 illustrates the perturbation of an anonymous SCF for the case n = 2, M = {m}, I = {Im} and 0 < p2 < am < dm <

bm < p1 < p0 < 1; i.e., f (t1, t2) = Π I (med{t1, t2, p2, p1, p0}). The tops of the two agents are measured on the axes and in
bold-italic is represented the value of the SCF in each region. The bold line indicates the discontinuity points of the SCF.

It is easy to see that if Π I had assigned the value bm, instead of am, to dm the perturbation of the generalized median
voter scheme would still have remained strategy-proof on the domain of symmetric single-peaked preferences. But now
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Fig. 4.

there are more ways of assigning values to the discontinuity points that preserve the strategy-proofness of f . For the
particular case depicted in Fig. 4, the SCF would have remained strategy-proof and anonymous if it had assigned the value
am to the points in the set B1 = {(t1, t2) ∈ [0,1]2 | 0 � t1 < dm and t2 = dm}, as well as to the points in the set B2 = {(t1, t2) ∈
[0,1]2 | t1 = dm and 0 � t2 < dm}, whereas it had assigned bm to the point (dm,dm). Actually, if anonymity was not required
then it could also have assigned the value am to the points in B1, and bm to the rest of points in B2 ∪ {(dm,dm)}. However
assigning the value am to the point (dm,dm) and bm to the rest of points in B1 ∪ B2 would violate strategy-proofness because
at any profile (t1,dm) with 0 < t1 < dm agent 1 could manipulate the SCF via t′

1 = dm .
Intuitively, the perturbation of the generalized median voter scheme should preserve the increasing monotonicity of the

SCF; otherwise, some agent could manipulate it at some profile. We next formalize all these possibilities.
Consider a generalized median voter scheme with its associated monotonic family of fixed ballots {pS }S∈2N . Let I =

{Im}m∈M be a family of discontinuity jumps compatible with {pS }S∈2N , and assume M �= ∅. Fix m ∈ M and define

Dm =
{

t = (t1, . . . , tn) ∈ SSPn
∣∣∣ min

S∈2N
max
i∈S

{ti, pS} = dm

}
;

namely, Dm is the set of symmetric single-peaked preference profiles at which the generalized median voter scheme will
select dm and thus the corresponding perturbation function Π I will generate a discontinuity point. We refer to any set
Dm as a discontinuity set. We want to determine the shape of the discontinuity sets because, in order to maintain strategy-
proofness, we must preserve the increasing monotonicity of the function. To do that we need to track the agents with tops
strictly below, equal, and strictly above dm.

Note that, since no fixed ballot belongs to any discontinuity jump, if t ∈ Dm then there is at least one agent i ∈ N such
that ti = dm .

For each t ∈ Dm define the vector of extreme votes evm(t) = (evm
1 (t), . . . , evm

n (t)) ∈ {0,dm,1}n, where for each i ∈ N ,

evm
i (t) =

⎧⎨
⎩

0 if 0 � ti < dm,

dm if ti = dm,

1 if dm < ti � 1.

The vector evm(t) describes at the profile t the location of the top of each agent relative to dm (0 if it is strictly below, 1 if
it is strictly above, and dm if it is exactly located at dm). Let EV(Dm) denote the set {evm(t) | t ∈ Dm}. Namely, the set EV(Dm)

describes all the extreme votes at which dm is chosen by the generalized median voter scheme associated to the monotonic
family of fixed ballots {pS }S∈2N . Notice that since minS∈2N maxi∈S {ti, pS} = dm , if we reallocate the tops below dm to 0, and
the tops above dm to 1, the minmax is not affected. Therefore, minS∈2N maxi∈S{ti, pS } = dm = minS∈2N maxi∈S{evm

i (t), pS }.
We now turn to describe how strategy-proof SCFs on the symmetric single-peaked domain may choose between am and

bm at those profiles that induce a discontinuity at dm = am+bm
2 . Define the preorder � on Rn as follows: for all x, x′ ∈ Rn ,

x � x′ ⇔ xi � x′
i for all i ∈ {1, . . . , N}
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and, given m ∈ M , denote the restriction of � on the set EV(Dm) by �m . Observe that the natural preorder � on Rn induces
an incomplete, reflexive, and transitive binary relation �m on EV(Dm) with the property that êvm �m evm if and only if evm

represents a shift to the right of some of the extreme votes of êvm . Thus, �m can be read as the relation “to be more rightist
than”.

Let Ym be a non-empty subset of EV(Dm). Denote by Xm = U (Ym) the upper contour set of Ym (according to �m) as

Xm = U (Ym) = {
evm ∈ EV(Dm)

∣∣ êvm �m evm for some êvm ∈ Ym
}
.

By convention, set U (∅) = ∅. Now, given Xm ⊆ EV(Dm) with the property that Xm = U (Xm), define g Xm : Dm → {am,bm} as
follows: for every t ∈ Dm ,

g Xm(t) =
{

bm if evm(t) ∈ Xm,

am otherwise.

The functions g Xm cover all different ways of assigning values am and bm to the preference profiles that generate a
discontinuity point at dm preserving the monotonicity of the perturbation. For each particular m ∈ M there are many such
functions because there are many subsets Xm ⊆ EV(Dm) with the property that Xm = U (Xm). Given a family of discontinuity
jumps I = {Im}m∈M we say that {Xm}m∈M is a family of tie-breaking sets of M if for all m ∈ M , Xm ⊆ EV(Dm) and Xm = U (Xm).

4. Characterization

We are now ready to define disturbed minimax SCFs and state and prove that they constitute the class of all strategy-
proof SCFs on the domain of symmetric single-peaked preferences.

4.1. Definition and statement

Definition 6. An SCF f : SSPn → [0,1] is a disturbed minmax if there exist:

(1) a monotonic family of fixed ballots {pS }S∈2N ;
(2) a family of discontinuity jumps I = {Im}m∈M compatible with {pS}S∈2N ; and
(3) a family of tie-breaking sets {Xm}m∈M of M

such that, for all t = (t1, . . . , tn) ∈ SSPn,

f (t) =
{

Π I (minS∈2N maxi∈S{ti, pS}) if minS∈2N maxi∈S{ti, pS} �= dm for all m ∈ M,

g Xm(t1, . . . , tn) if minS∈2N maxi∈S{ti, pS} = dm for some m ∈ M.
(4)

Theorem 1. An SCF f : SSPn → [0,1] is strategy-proof if and only if it is a disturbed minmax.

Before moving to the proof of Theorem 1 consider again the SCF f defined in (1) but restricted to the domain of
symmetric single-peaked preferences, where for all R ∈ SSPn ,

f (R) =
{

0 if #{i ∈ N | 0Ri1} � #{i ∈ N | 1Pi0},
1 otherwise.

Observe that for any Ri ∈ SSP , 0Ri1 if and only if t(Ri) � 1
2 . It is easy to see that in the domain of single-peaked

preferences f is strategy-proof and anonymous but it is not tops-only. Hence, while it is excluded in Moulin (1980)’s
characterization under the domain of single-peaked preferences stated above as Proposition 2, it has the following repre-
sentation as a disturbed minmax under the domain of symmetric single-peaked preferences. Its family of monotonic fixed
ballots is

pS =
{

0 if #S � �n
2 �,

1 if #S < �n
2 �,

where � n
2 � is the smallest integer larger or equal to n

2 . The family I of discontinuity jumps compatible with the monotonic
family of fixed ballots contains only one discontinuity interval Im = (am,bm) = (0,1) with dm = 1

2 , and the tie-breaking set
of M = {m} is Xm = {ev ∈ {0, 1

2 ,1}n | #{i ∈ N | evi ∈ {0, 1
2 }} < � n

2 �}.
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4.2. Preliminaries of the proof of Theorem 1

We start with some additional notation. Given x ∈ [0,1], S ⊆ N with s = #S , and t ∈ SSPn , define xS ≡ (x, . . . , x︸ ︷︷ ︸
s-times

) and

tS ≡ (t j) j∈S . Thus, (xS , t−S) ≡ (y1, . . . , yn), where y j = x if j ∈ S and y j = t j if j /∈ S . Let f : SSPn → [0,1] be an SCF and
S ⊆ N. Define the SCF �S

f : [0,1] × SSPn−s → [0,1] as follows. For all (x, t−S ) ∈ [0,1] × SSPn−s,

�S
f (x, t−S) = f

(
xS , t−S

)
.

We will denote the diagonal function associated to f by � f ≡ �N
f .

Given t ∈ [0,1]n and x ∈ [0,1], define the subset of profiles of tops Ct,x as:

Ct,x = {
t′ ∈ SSPn

∣∣ x � t′
i � ti for all i such that x � ti and ti � t′

i � x for all i such that ti � x
};

namely, Ct,x is the set of profiles t′ with the property that the top t′
i of each agent i lies between ti and x. Given an SCF

f : SSPn → [0,1], a subset T ⊆ SSPn , and x ∈ [0,1] the notation f |T ≡ x means that for all t ∈ T , f (t) = x.
As a consequence of Remark 1 and Lemma 1 the following statements hold.

Remark 3. Let f : SSPn → [0,1] be a strategy-proof SCF. Then,

(R3.1) f is unanimous on its range r f ; namely, x ∈ r f implies f (xN ) = x;
(R3.2) for all S ⊆ N , �S

f : [0,1] × SSPn−s → [0,1] is strategy-proof; and

(R3.3) if t ∈ SSPn is such that f (t) = x, then f |Ct,x ≡ x.

The two first statements follow from group strategy-proofness (Remark 1) and the last one from monotonicity (Lemma 1)
and (R3.1).

We now state and prove the following three lemmata that will be useful in the proof of Theorem 1. Lemma 2 says that
the range of a strategy-proof SCF and the range of its associated diagonal function coincide and it is a closed subset of [0,1]
(see also Zhou, 1991).

Lemma 2. Let f : SSPn → [0,1] be a strategy-proof SCF. Then, r f = r� f . Moreover, r f is closed.

Proof. By definition of � f , r� f ⊆ r f . Take x ∈ r f . Then, by (R3.1), f (xN ) = x. Thus, x ∈ r� f . Let {xk} → x be such that xk ∈ r f

for all k � 1 and assume x /∈ r f . Define y = f (xN ) �= x and let xk be such that |xk − x| < |y − x|. By (R3.1), f (xN
k ) = xk . Thus,

N manipulates f at x via xk . �
Lemmata 3 and 3′ roughly say that if a strategy-proof SCF is constant and equal to x on one variable over some interval

containing this constant x, but it is not constant over the whole interval [0,1], then there is a discontinuity at some point
z and the discontinuity leaves indifferent the agent with top at z (see Figs. 2 and 3). In the proof of Theorem 1, z will
correspond to the midpoint dm of a discontinuity jump Im = (am,bm), where am = x and bm = 2z − x.

Lemma 3. Let f : SSPn → [0,1] be a strategy-proof SCF with the property that there are i ∈ N, x ∈ [a,b) ⊂ [0,1], and t−i ∈ SSPn−1

such that

(3.1) f (ti, t−i) = x for all ti ∈ [a,b) and
(3.2) f (1, t−i) = y > x.

Then, there exists z ∈ [b,
x+y

2 ] such that f (·, t−i) is discontinuous at z and

f |[a,z)×{t−i} ≡ x,

f |(z,2z−x]×{t−i} ≡ 2z − x.

Proof. Let i ∈ N , x ∈ [a,b), and t−i ∈ SSPn−1 be such that conditions (3.1) and (3.2) hold for f . First note that the interval
[b,

x+y
2 ] is not empty since b � x+y

2 : If b >
x+y

2 then b would be closer to y than to x and for a small enough ε > 0, i would

manipulate f at (b − ε, t−i) via t′
i = 1.

Define z = sup{ti ∈ [0,1] | f (ti, t−i) = x}. Obviously z � b > x and, by the monotonicity of f , limti→z− f (ti, t−i) = x and
f |[a,z)×{t−i} ≡ x. We now prove that limti→z+ f (ti, t−i) = 2z − x. Suppose that limti→z+ f (ti, t−i) < 2z − x. Then, there exists
ε > 0 such that f (z +ε, t−i) < 2z − x−2ε and f (z −ε, t−i) = x. Either f (z +ε, t−i) � z −ε , in which case 0 � f (z +ε, t−i)−
(z − ε) < (2z − x − 2ε) − (z − ε) = (z − ε) − f (z − ε, t−i), and hence, i would manipulate f at (z − ε, t−i) via t′

i = z + ε .
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Or f (z + ε, t−i) < z − ε , and therefore f (z − ε, t−i) = x < f (z + ε, t−i) < z − ε , and i would manipulate f at (z − ε, t−i) via
t′

i = z+ε . Similarly, if limti→z+ f (ti, t−i) > 2z−x, there exists ε > 0 such that f (z+ε, t−i) > 2z−x+2ε and f (z−ε, t−i) = x.
But then f (z + ε, t−i)− (z + ε) > (z + ε)− x = (z + ε)− f (z − ε, t−i) > 0 and hence, i would manipulate f at (z + ε, t−i) via
z − ε . Thus, limti→z+ f (ti, t−i) = 2z − x and f (·, t−i) is discontinuous at z. Now by (R3.3), f |(z,2z−x]×{t−i } ≡ 2z − x. Finally, by
monotonicity of f , 2z − x � y, and hence, z ∈ [b,

x+y
2 ]. �

Lemma 3′ . Let f : SSPn → [0,1] be a strategy-proof SCF with the property that there are i ∈ N, x ∈ (a,b] ⊂ [0,1], and t−i ∈
SSPn−1 such that

(3.1′) f (ti, t−i) = x for all ti ∈ (a,b] and
(3.2′) f (0, t−i) = y < x.

Then, there exists z ∈ [ x+y
2 ,a] such that f (·, t−i) is discontinuous at z and

f |(z,b]×{t−i} ≡ x,

f |[2z−x,z)×{t−i} ≡ 2z − x.

Proof. Omitted since it is symmetric to the proof of Lemma 3. �
4.3. Proof of Theorem 1

It is easy to check that any disturbed minmax SCF is strategy-proof on the symmetric single-peaked domain. To see this
notice that if f is a disturbed minmax SCF, for all t ∈ SSPn,∣∣∣ f (t) − min

S∈2N
max

j∈S
{t j, pS}

∣∣∣ = min
{∣∣∣x − min

S∈2N
max

j∈S
{t j, pS}

∣∣∣ ∣∣∣ x ∈ r f

}
. (5)

Fix a profile t ∈ SSPn and an agent i ∈ N . If ti = minS∈2N max j∈S {t j, pS }, then by (5) i cannot benefit from reporting a
different preference. Suppose that ti < minS∈2N max j∈S {t j, pS } (the case ti > minS∈2N max j∈S {t j, pS } is symmetric). The only
way i can affect the value of the SCF is by reporting a preference t′

i > minS∈2N max j∈S {t j, pS }. Since disturbed minmax SCFs
are increasing, f (t′

i, t−i) � f (t). We distinguish between two cases:
Case 1: f (t) � ti . Then | f (t′

i, t−i) − ti | = f (t′
i, t−i) − ti � f (t) − ti = | f (t) − ti | and the deviation is not profitable.

Case 2: f (t) < ti < minS∈2N max j∈S {t j, pS }. By the definition of the disturbed minmax, it must be that f (t) = am for some
m ∈ M and am < ti < minS∈2N max j∈S {t j, pS } � dm . Hence, either f (t′

i, t−i) = am = f (t), in which case the deviation is not

profitable, or f (t′
i, t−i) � bm and | f (t′

i, t−i) − ti | = f (t′
i, t−i) − ti � bm − ti > bm−am

2 � | f (t) − ti |, and again the deviation is
not profitable.

Thus, any disturbed minmax SCF is strategy-proof.
Let f : SSPn → [0,1] be a strategy-proof SCF. To show that f is a disturbed minmax we first have to identify its

associated monotonic family of fixed ballots {pS}S∈2N , the family I = {Im}m∈M of discontinuity jumps compatible with
{pS}S∈2N , and the family of tie-breaking sets {Xm}m∈M of M . Then, we will show that f coincides with the disturbed
minmax SCF obtained by (4) in Definition 6, applied to all of them.

For each S ∈ 2N , define its associated fixed ballot by setting

pS ≡ f
(
0S ,1N\S); (6)

i.e., pS is the image of f at the profile where all agents in S have their top at 0 and all agents not in S have their top at 1.
Consider the diagonal function � f : SSP → [0,1] associated to f . By (R3.2) � f is strategy-proof. Thus, by Lemma 1,

� f is increasing and hence it has at most a countable number of discontinuities.17 Denote by {dm}m∈M the discontinuity
points of � f , where M is a countable set. For each m ∈ M , define am = limx→d−

m
� f (x) and bm = limx→d+

m
� f (x). Since � f

is discontinuous at dm and increasing on [0,1], am and bm exist and am < bm . By Lemma 2, r� f is closed and therefore
am,bm ∈ r� f and by (R3.1), � f (am) = am and � f (bm) = bm . Moreover, since � f is strategy-proof, dm must be the midpoint

of Im ≡ (am,bm). Otherwise, if dm < am+bm
2 , there would exist an ε > 0 such that dm < am+bm

2 − ε and � f (
am+bm

2 − ε) � bm,

which would imply that � f is manipulable at am+bm
2 − ε via t′ = am . Similarly, if dm > am+bm

2 , there would exist an ε > 0

such that dm > am+bm
2 + ε and � f (

am+bm
2 + ε) � am, which would imply that � f is manipulable at am+bm

2 + ε via t′ = bm .

17 Any real-valued monotone function of a real variable has at most a countable number of discontinuities. This result is due to Froda (1929) although in
the literature it is widely used without Froda’s name being mentioned.
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Notice that the family of discontinuity jumps I = {Im}m∈M is compatible with {pS }S∈2N since:

(1) M is countable.
(2) By the monotonicity of � f , am = � f (am) � � f (0) = pN and bm = � f (bm) � � f (1) = p∅ and therefore Im = (am,bm) ⊂

[pN , p∅].
(3) By the monotonicity of � f and the definition of am and bm , Im ∩ Im′ = ∅ for any m,m′ ∈ M , m′ �= m.
(4) Finally, by (6) and Lemma 2, for each S ∈ 2N , pS ∈ r f = r� f , r f ∩ (am,bm) = r� f ∩ (am,bm) = ∅. Thus, for all S ∈ 2N ,

pS /∈ ⋃
m∈M Im .

In fact,

r f = r� f = [pN , p∅] \
{ ⋃

m∈M

Im

}
. (7)

If M is empty (i.e., � f is continuous and its range is equal to [pN , p∅]), the statement of Theorem 1 follows because f
is a generalized median voter scheme defined on the minimally rich domain SSPn (see Theorem 1 in Berga and Serizawa,
2000).18

Assume M is non-empty and fix m ∈ M . To identify the element Xm in the family of tie-breaking sets of M , consider the
previously defined discontinuity set

Dm =
{

t = (t1, . . . , tn) ∈ SSPn
∣∣∣ min

S∈2N
max
i∈S

{ti} = dm

}
,

the set of profiles of extreme votes that induce dm through the minmax

EV(Dm) = {
evm(t)

∣∣ t ∈ Dm
}
,

and its associated preorder �m . Then, define

Xm = {
evm ∈ EV(Dm)

∣∣ f
(
evm)

> dm
}
. (8)

By Lemma 1, f is increasing and therefore Xm coincides with its upper contour set relative to �m; i.e., Xm = U (Xm).

So far we have identified from f the monotonic family of fixed ballots {pS }S∈2N , the family I = {Im}m∈M of discontinuity
jumps compatible with {pS}S∈2N (we are now assuming that M �= ∅), and the family {Xm}m∈M of tie-breaking sets of M
(and hence, its corresponding family of tie-breaking functions {g Xm : Dm → {am,bm}}m∈M ). Given all of them, let F be the
SCF defined by condition (4) in Definition 6. We want to show that f = F .

Let t = (t1, . . . , tn) ∈ SSPn be arbitrary. To show that f (t) = F (t) define q = minT ∈2N maxi∈T {ti, pT }. We distinguish
among four different cases relating q, t and f (t).

Case 1: q /∈ {t1, . . . , tn}.
Consider S = {i ∈ N | ti < q}. Then pS = q. To see that, observe that if pS < q then maxi∈S{ti, pS } < q contradicting the

definition of q. Further, since q = minT ∈2N maxi∈T {ti, pT } /∈ {t1, . . . , tn}, there exists T̄ ∈ 2N , such that pT̄ = q and t j < pT̄ for
all j ∈ T̄ . But then, T̄ ⊆ S and, by the monotonicity of p = {pT }T ∈2N , pS � pT̄ . Therefore, by the definition of q, pS = pT̄ = q.

By the definition of S and the assumption that q /∈ {t1, . . . , tn}, t j > pS for all j /∈ S . Then, t ∈ C(0S ,1N\S ),pS
and, by (R3.3)

and the definition of pS , f |C
(0S ,1N\S ),pS

≡ pS . Therefore, f (t) = pS .

Moreover, by (7), pS /∈ ⋃
m∈M Im . Hence, by (4) in Definition 6 and the definition of Π I in (3),

F (t) = Π I
(

min
T ∈2N

max
i∈T

{ti, pT }
)

= min
T ∈2N

max
i∈T

{ti, pT } = pS .

Thus, f (t) = F (t).

Case 2: q = ti for some i ∈ N and f (t) = ti .
If ti = f (t), then ti ∈ r f and therefore, by (7), ti /∈ ⋃

m∈M Im . By (4) in Definition 6 and the definition of Π I in (3),
F (t) = Π I (minT ∈2N max j∈T {t j, pT }) = Π I (ti) = ti . Thus, f (t) = F (t).

Case 3: q = ti for some i ∈ N , f (t) ≡ x �= ti and ti /∈ ⋃
m∈M{dm}.

To show that in this case f (t) = F (t) we proceed in two steps. First we prove that f (t) = f (tN
i ) and then we prove that

f (tN
i ) = F (t).

18 Observe that all results in Berga and Serizawa (2000) refer only to onto SCFs. Hence, to be more precise with the application of their result, notice that
the restriction of SSP on the interval [pN , p∅] is a symmetric single-peaked domain (on [pN , p∅]) and it is a minimally rich domain (on [pN , p∅]). Denote
it by SSP |[pN ,p∅] . Thus, we can identify the notation of Berga and Serizawa (2000) for the image set Z = [α,β] with our identified interval [pN , p∅]
and apply their Theorem 1 to the SCF f ∗ : (SSP |[pN ,p∅])n → [pN , p∅]. Finally, observe that their generalized median voter schemes (defined through a
left-coalition system) satisfy voter sovereignty and hence, r f ∗ = [pN , p∅].
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Step 1: f (t) = f (tN
i ).

Define S<
i = { j ∈ N | t j < ti}, S=

i = { j ∈ N | t j = ti} and S>
i = { j ∈ N | t j > ti}. We will denote S�

i = S<
i ∪ S=

i and S�
i =

S>
i ∪ S=

i .
Because ti = minT ∈2N max j∈T {t j, pT }, it must be that ti ∈ [p

S�
i

, pS<
i
]. Otherwise, suppose first that ti < p

S�
i

, and consider

T ∈ 2N . If T ⊂ S�
i , we have that ti < p

S
�
i

� pT , and therefore ti < max j∈T {t j, pT }. If T ∩ S>
i �= ∅, then by the definition

of S>
i , max j∈T {t j, pT } > ti . Hence, we have a contradiction with ti = minT ∈2N max j∈T {t j, pT }. Similarly, if pS<

i
< ti , then

max j∈S<
i
{t j, pS<

i
} < ti again contradicting ti = minT ∈2N max j∈T {t j, pT }.

We now show that f (tN
i ) ∈ [p

S�
i

, pS<
i
]. If f (tN

i ) < p
S�

i
� ti , then N manipulates f at tN

i via (0S�
i ,1S>

i ) since

f (0S�
i ,1S>

i ) = p
S�

i
, and if ti � pS<

i
< f (tN

i ), then N manipulates f at tN
i via (0S<

i ,1S�
i ) since f (0S<

i ,1S�
i ) = pS<

i
.

We prove that f (t) = f (tN
i ) by contradiction. Suppose f (tN

i ) �= f (t) = x. Then, either x < f (tN
i ) � pS<

i
or p

S�
i

�
f (tN

i ) < x. The two cases are symmetric and therefore we omit the proof for the second case (which uses Lemma 3′ instead
of Lemma 3).

Suppose x < f (tN
i ) � pS<

i
. The condition x < f (tN

i ) implies x < ti since we are assuming that x �= ti holds and if x > ti ,

then N would manipulate f at tN
i via t . By (R3.3), the definition of S�

i and f (t) = x,

�
S�

i
f (τ , tS<

i
) = x for all τ ∈ [x, ti].

On the other hand, since t j < ti � pS<
i

for all j ∈ S<
i , (τ S�

i , tS<
i
) ∈ C

(0S<
i ,1S

�
i ),pS<

i

for all τ ∈ [pS<
i
,1], and therefore by (6)

and (R3.3),

�
S�

i
f (τ , tS<

i
) = pS<

i
for all τ ∈ [pS<

i
,1].

By Lemma 3, applied to the strategy-proof SCF �
S�

i
f : [0,1] × [0,1]S<

i → [0,1], where [a,b) = [x, ti) and y = pS<
i

, there

exists z ∈ [ti,
x+pS<

i
2 ] such that �

S�
i

f (·, tS<
i
) is discontinuous at z and

�
S�

i
f

∣∣[x,z)×{tS<
i

} ≡ x and �
S�

i
f

∣∣
(z,2z−x]×{tS<

i
} ≡ 2z − x.

Applying (R3.3) again, if τ ∈ (z,2z − x] and t′
j ∈ [t j,2z − x]19 for all j ∈ S<

i , then

�
S�

i
f

(
τ , t′

S<
i

) = 2z − x. (9)

Note that z is a discontinuity point of � f as well. To see that, observe that by (9), f (w N ) = 2z − x for all w ∈ (z,2z − x].
On the other hand, f (t) = x, and hence, x ∈ r f and by (R3.1), f (xN ) = x. Assume that there exists ŵ ∈ (x, z) such that
f (ŵ N ) �= x. By monotonicity of f , x < f (ŵ N ) � 2z − x. Then, either f (ŵ N ) = 2z − x and N manipulates f at ŵ N via xN , or
f (ŵ N ) < 2z − x and for any 0 < ε < z − ŵ , N manipulates f at (z + ε)N via ŵ N . Thus, f (ŵ N ) = x. Therefore, � f has the
property that

� f (w) =
{

x if w ∈ [x, z),

2z − x if w ∈ (z,2z − x].
This means that � f is discontinuous at z and hence there exists m ∈ M such that dm = z. Since under Case 3, ti is not a
discontinuity point of � f , ti �= z and therefore, by the definition of z, ti < z.

By monotonicity of f and (9), f (tN
i ) � �

S�
i

f (z + ε, t
S<

i
i ) = 2z − x for all sufficiently small ε > 0 (in the next paragraph

we will find an upper bound for such ε ’s). We want to show that the inequality is strict; i.e., f (tN
i ) < 2z − x holds. Suppose

f (tN
i ) = 2z − x; then, since ti < z can be re-written as ti − x < 2z − x − ti , this means that N would manipulate f at tN

i via
t which contradicts strategy-proofness of f .

To sum up, we have shown that if x < f (tN
i ) � pS<

i
, then f (tN

i ) < 2z − x and limτ→z+ �
S�

i
f (τ , t

S<
i

i ) = 2z − x. But then

it is easy to see that for a small ε > 0, S�
i manipulates f at ((z + ε)S�

i , t
S<

i
i ) via t

S�
i

i . Namely, if 0 < ε <
f (tN

i )−x
2 , then

19 Notice that if j ∈ S<
i then t j < ti � 2z − x and therefore the interval is well defined.
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−(2z − x− (z +ε)) < f (tN
i )− (z +ε) < 2z − x− (z +ε) where the first inequality is equivalent to the assumption ε <

f (tN
i )−x
2 ,

and the second inequality follows from f (tN
i ) < 2z − x. Therefore,∣∣ f

(
tN

i

) − (z + ε)
∣∣ < 2z − x − (z + ε),

which means that S�
i manipulates f at ((z + ε)S�

i , t
S<

i
i ) via t

S�
i

i ; a contradiction. This concludes the proof of Step 1.

Step 2: f (tN
i ) = F (t).

By strategy-proofness of f , � f is strategy-proof and since � f (ti) ≡ f (tN
i ) �= ti , by (R3.1), ti /∈ r� f . By (7), there exists

m ∈ M such that ti ∈ (am,bm). By (R3.1), � f (am) = am and � f (bm) = bm . Since � f is strategy-proof,

x = � f (ti) =
{

am if am < ti < dm,

bm if dm < ti < bm,
(10)

which coincides with the value of F (t) = Π I (minT ∈2N max j∈T {t j, pT }) = Π I (ti) = x. Thus, f (tN
i ) ≡ � f (ti) = F (t). This con-

cludes the proof of Step 2.
Putting together Step 1 and Step 2, we have shown that f (t) = F (t).

Case 4: q = ti for some i ∈ N , f (t) ≡ x �= ti and ti = dm for some m ∈ M.

Denote by Im = (am,bm) the discontinuity jump corresponding to dm . Denote S=
m = { j ∈ N | t j = dm}, S<

m = { j ∈ N | t j <

dm} and S>
m = { j ∈ N | t j > dm}, and let ε be such that 0 < ε < min j∈S<

m , k∈S>
m
{dm − am,dm − t j, tk − dm}. Given this ε > 0,

consider the two profiles of tops tε− = (tS<
m
, (dm − ε)S=

m , tS>
m
) and tε+ = (tS<

m
, (dm + ε)S=

m , tS>
m
). By construction of tε− and

tε+ , the fact that ti = minT ∈2N max j∈T {t j, pT }, and since pT /∈ Im for all T ∈ 2N , minT ∈2N max j∈T {tε−
j , pT } = dm − ε and

minT ∈2N max j∈T {tε+
j , pT } = dm + ε. Both dm − ε and dm + ε belong to Im and therefore they do not belong to r f . Moreover,

since Im ∩ Im′ = ∅, neither dm − ε nor dm + ε are discontinuity points of � f . We are therefore under the assumptions of
Case 3, and by Step 1:

f
(
tε−) = � f (dm − ε) = am,

f
(
tε+) = � f (dm + ε) = bm,

where the second equality in both statements follows from the strategy-proofness of � f . By monotonicity, f (tε−) �
f (t) � f (tε+), which together with (7) implies that f (t) ∈ {am,bm}. Thus, we have shown that if t is such that
minT ∈2N max j∈T {t j, pT } = ti = dm for some m ∈ M , then

f (t) ∈ {am,bm}. (11)

To show that f (t) = F (t), assume first that t is such that evm(t) /∈ Xm. By definition of F , F (t) = am. Since evm(t) /∈ Xm,

by (8), f (0S<
m ,d

S=
m

m ,1S>
m ) � dm which means, by (7), that f (0S<

m ,d
S=

m
m ,1S>

m ) � am . Moreover, t′ = (0S<
m ,d

S=
m

m ,1S>
m ) is such that

minT ∈2N max j∈T {t′
j, pT } = dm and, by (11), f (0S<

m ,d
S=

m
m ,1S>

m ) = am. By (R3.3),

f
(
0S<

m ,d
S=

m
m , tS>

m

) = am. (12)

If S<
m = ∅, then (0S<

m ,d
S=

m
m , tS>

m
) = t, and f (t) = am. If S<

m �= ∅ then f (t) = am or otherwise S<
m manipulates f at t via

0S<
m . Thus, we have shown that f (t) = am = F (t). Symmetrically, we can show that if t is such that evm(t) ∈ Xm then

f (t) = F (t) = bm.

This finishes the proof of Theorem 1.

5. Final remarks

As direct consequences of Theorem 1, Corollaries 1, 2 and 3 below characterize three relevant subclasses of strategy-proof
SCFs on the domain of symmetric single-peaked preferences.

5.1. Anonymity and efficiency

Corollaries 1 and 2 characterize two nested subclasses: the class of strategy-proof and anonymous SCFs (Corollary 1) and
the class of strategy-proof, anonymous and efficient SCFs (Corollary 2).

To state Corollary 1 we first need to translate the definitions of extreme votes and tie-breaking sets of M to the anony-
mous case. Consider the family of n + 1 fixed ballots 0 � pn � · · · � p1 � p0 � 1 associated to a median voter scheme and
let m ∈ M. The set of profiles at which the median voter scheme will select dm is

D̃m = {
t = (t1, . . . , tn) ∈ SSPn

∣∣ med{t1, . . . , tn, pn, . . . , p0} = dm
}
.

By anonymity, we only need to track the number of agents with tops strictly below, equal, and strictly above dm . Hence, for
each t = (t1, . . . , tn) ∈ SSPn, define the triple lm(t) = (lm<(t), lm=(t), lm>(t)) where:
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(1) lm<(t) = #{i ∈ N | ti < dm},
(2) lm=(t) = #{i ∈ N | ti = dm}, and
(3) lm>(t) = #{i ∈ N | ti > dm}.

Observe that lm<(t) + lm=(t) + lm>(t) = n and since fixed ballots do not belong to any discontinuity jump, if t ∈ D̃m , then there
is i ∈ N such that ti = dm (i.e., lm=(t) � 1). Let ∇n = {(x, y, z) ∈ {0,1, . . . ,n}3 | x + y + z = n and y � 1} be the set of triplets
with positive integer components adding up to n and whose middle component is equal to or larger than 1 and define

L(D̃m) = {lm(t) ∈ ∇n | t = (t1, . . . , tn) ∈ D̃m}; namely, L(D̃m) describes all anonymous distributions of tops (number of tops
strictly below dm , number of tops at dm , number of tops strictly above dm) at which the median voter selects dm . Define
the preorder �̃ on {0,1, . . . ,n}3 as follows: for all (x, y, z), (x′, y′, z′) ∈ {0,1, . . . ,n}3,(

x′, y′, z′) �̃ (x, y, z) ⇔ z′ � z and x′ � x.

Denote the restriction of the preorder �̃ on the set L(D̃m) by �̃m and let Ỹm be a non-empty subset of L(D̃m). Denote by
X̃m = U (Ỹm) the upper contour set of Ỹm (according to �̃m) as the set of triplets in L(D̃m) such that they are more rightist
than some triplet in Ỹm; namely,

X̃m = U (Ỹm) = {
(l<, l=, l>) ∈ L(D̃m)

∣∣ (x, y, z) �̃m (l<, l=, l>) for some (x, y, z) ∈ Ỹm
}
.

By convention, set U (∅) = ∅. Given X̃m ⊆ L(D̃m) with the property that X̃m = U ( X̃m), define g X̃m : D̃m → {am,bm} as follows:
for every t ∈ D̃m ,

g X̃m(t) =
{

bm if lm(t) ∈ X̃m,

am otherwise.

Given a family of discontinuity jumps I = {Im}m∈M , we say that { X̃m}m∈M is an anonymous family of tie-breaking sets of M if
for all m ∈ M , X̃m ⊆ L(D̃m) and X̃m = U ( X̃m).

Definition 7. An SCF f : SSPn → [0,1] is a disturbed median if there exist:

(1) a family of n + 1 fixed ballots 0 � pn � · · · � p1 � p0 � 1;
(2) a family of discontinuity jumps I = {Im}m∈M compatible with pn, . . . , p1, p0; and
(3) an anonymous family of tie-breaking sets { X̃m}m∈M of M

such that, for all t = (t1, . . . , tn) ∈ SSPn ,

f (t) =
{

Π I (med{t1, . . . , tn, pn, . . . , p0}) if med{t1, . . . , tn, pn, . . . , p0} �= dm for all m ∈ M,

g X̃m(t1, . . . , tn) if med{t1, . . . , tn, pn, . . . , p0} = dm for an m ∈ M.

Corollary 1. An SCF f : SSPn → [0,1] is strategy-proof and anonymous if and only if it is a disturbed median.

Corollary 2. An SCF f : SSPn → [0,1] is strategy-proof, anonymous, and efficient if and only if it is a median voter scheme with the
property that pn = 0 and p0 = 1.

Efficiency requires that f respects unanimity and hence, r f = [0,1]. Thus, (i) its associated family of n + 1 fixed ballots
has the property that 0 = pn � pn−1 � · · · � p0 = 1 and (ii) the family of discontinuity sets M is empty. Observe that
since pn = 0 and p0 = 1 they cancel each other out in the computation of the median at any profile t and therefore, the
generalized median voter scheme can also be described as the median of the n tops and the n − 1 fixed ballots pn−1 �
· · · � p1. This corresponds to Moulin (1980)’s characterization of the class of strategy-proof, anonymous and efficient SCFs
on the domain of single-peaked preferences. Thus, the reduction of the domain does not generate in this case new strategy-
proof, anonymous and efficient SCFs.

5.2. Feasibility constraints

Our result has important implications for the design of strategy-proof SCFs on the domain of symmetric single-peaked
preferences under feasibility constraints. Often, some subsets of alternatives (although conceivable) cannot be chosen due
to feasibility constraints. Then, discontinuities are compulsory rather than pathological because discontinuity jumps on the
range of strategy-proof SCFs are necessary. Our result precisely describes their nature and how the strategy-proof SCF may
select its value at these discontinuity points. However, if f is a strategy-proof and discontinuous SCF then, r f � [0,1]
and hence, f will not be efficient; in particular, f will not respect unanimity. SCFs that are not efficient but they are
efficient relative to the feasible set of alternatives are specially interesting. Thus, let A � [0,1] be a closed set of feasible
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alternatives.20 An SCF f : SSPn → [0,1] is efficient relative to A if r f ⊆ A and for all R ∈ SSPn there is no z ∈ A such that,
for all i ∈ N , zRi f (R) and zP j f (R) for some j ∈ N. The following result follows from Theorem 1.

Corollary 3. Let A be a closed subset of [0,1]. An SCF f : SSPn → [0,1] is strategy-proof and efficient relative to A if and only if it is
a disturbed minmax with r f = A.

Note that the requirement r f = A imposes certain conditions on the monotonic family of fixed ballots {pS}S∈2N and on
the discontinuity jumps. For instance pN = min{x ∈ A}, p∅ = max{x ∈ A} and pS ∈ A for all S ∈ 2N . Moreover since A is
closed the set [pN , p∅] \ A is open and therefore it can be written as a countable and disjoint union of open intervals:
[pN , p∅] \ A = ⋃

m∈M Im where Im is an open interval for all m ∈ M and Im ∩ Im′ = ∅ for all m,m′ ∈ M . This representation
is unique up to permutations in M , and in fact the requirement r f = A implies that the family of discontinuity jumps
compatible with {pS }S∈2N is exactly I = {Im}m∈M .

As an illustration of Corollary 3, suppose that the set of feasible alternatives is A = {0} ∪ {0.1} ∪ [0.2,0.8] ∪ {0.9}. In
that case the only general requirements on the fixed ballots are that pN = 0, p∅ = 0.9 and pS has to belong to A for
all S ∈ 2N . The family of discontinuity jumps is given by I1 = (0,0.1), I2 = (0.1,0.2) and I3 = (0.8,0.9), and therefore
the discontinuity points are d1 = 0.05, d2 = 0.15 and d3 = 0.85. To proceed with the illustration and in order to design
a particular strategy-proof and anonymous SCF f , whose range r f is equal to A, let N = {1,2,3} be the set of agents
and let p3 = p2 = 0 and p1 = p0 = 0.9 be the family of four fixed ballots. In this particular case the ballots cancel each
other and hence, for all (t1, t2, t3) ∈ SSP3, med{t1, t2, t3,0,0,0.9,0.9} = med{t1, t2, t3}. For each discontinuity point dm
the set L(D̃m) consists of four triplets: L(D̃m) = {(1,2,0), (0,3,0), (1,1,1), (0,2,1)} where for example, the triplet (1,2,0)

means that one top is strictly below dm and the remaining two tops are exactly equal to dm . Note, that in all the four
cases the median of the tops coincides with dm , and hence all the profiles of tops that are represented by L(D̃m) re-
sult in discontinuity points. Moreover, and since L(D̃1) = L(D̃2) = L(D̃3), �̃1 = �̃2 = �̃3 as well. Denote it by �̃′ and
observe that (1,2,0)�̃′

(1,1,1)�̃′
(0,2,1), (1,2,0)�̃′

(0,3,0)�̃′
(0,2,1) and that (1,1,1) and (0,3,0) are not comparable

by �̃′ . To assign a value to the SCF on these discontinuity points preserving the monotonicity of the SCF f , we need

to select for each dm a tie-breaking set X̃m such that X̃m = U ( X̃m). Given L(D̃m), there are six different ways of do-
ing so: X̃m ∈ {∅, {(0,2,1)}, {(1,1,1), (0,2,1)}, {(0,3,0), (0,2,1)}, {(1,1,1, ), (0,3,0), (0,2,1)}, L(D̃m)}. For instance, choose
X̃1 = {(1,1,1), (0,2,1)}, X̃2 = {(0,2,1)}, and X̃3 = L(D̃m). Thus, the disturbed median f that we may define applying Def-
inition 7 to the family of four fixed ballots 0 = p3 = p2 < p1 = p0 = 0.9, the family of discontinuity jumps I1 = (0,0.1),

I2 = (0.1,0.2), and I3 = (0.8,0.9), and the anonymous family of tie-breaking sets X̃1 = {(1,1,1), (0,2,1)}, X̃2 = {(0,2,1)},
and X̃3 = L(D̃3) has range equal to A and it is efficient relative to A. The disturbed median f could also be defined as
follows. For all t = (t1, t2, t3) ∈ SSP3, and after setting y ≡ med{t1, t2, t3},

f (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if y < 0.05 or y = 0.05 and #{i | ti � 0.05} = 3,

0.1 if y = 0.05 and #{i | ti � 0.05} < 3 or 0.05 < y < 0.15

or y = 0.15 and either ∃ j s.t. t j < 0.15 or t1 = t2 = t3 = 0.15,

0.2 if y = 0.15 and #{i | ti � 0.15} = 3 and ∃ j s.t. t j > 0.15

or 0.15 < y < 0.2,

y if 0.2 � y � 0.8,

0.8 if 0.8 < y < 0.85,

0.9 if y � 0.85.

The complexity of this description indicates the usefulness of Theorem 1’s characterization.
Finally, by Remark 1, the four statements above (Theorem 1 and Corollaries 1, 2 and 3) also hold after replacing strategy-

proofness by group strategy-proofness.
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