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Abstract The Nobel Prize in Economics 2012 was awarded jointly to Alvin
E. Roth and Lloyd S. Shapley for their contributions to the theory of stable
allocations and the practice of market design. The theory of stable allocations
consists of a family of models that study assignment problems in which two dis-
joint sets of agents (or a set of agents and a set of objects) have to be matched.
For example, men to women, workers to �rms, students to schools, or patients
to live donor kidneys. A matching is stable if no subset of agents can improved
upon their proposed matches by rematching only among themselves. Stability
is an essential property if matching is voluntary. The practice of market de-
sign consists of applying those two-sided matching models to speci�c assignment
problems with the aim of proposing improvements on how they are solved. In
this paper I give a brief description of the academic career of the laureates and
describe their contributions by presenting the most basic two-sided matching
model and some of its market design applications like the organization of a cen-
tralized system to propose kidney transplantations to use kidneys of live donors
that are incompatible with their respective patients, the yearly assignment of
north-american medical students to hospital internship programs, and children
to schools in cities like Boston and New York.
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Alvin E. Roth and Lloyd S. Shapley

Resum El Premi Nobel en Economia 2012 fou otorgat conjuntament a Alvin
E. Roth i Lloyd S. Shapley per les seves contribucions a la teoria de les assigna-
cions estables i la pràctica del disseny de mercats. La teoria de les assignacions
estables consisteix en una família de models que estudien problemes d�assignació
en els que dos conjunts disjunts d�agents (o un conjunt d�agents i un conjunt
d�objectes) han de ser assignats bilateralment. Per exemple, homes a dones,
treballadors a empreses, estudiants a escoles, o pacients a ronyons de donants
vius. Una assignació bilateral és estable si cap subconjunt d�agents pot millo-
rar en relació a la seva assignació proposada, reassignant-se només entre ells.
La estabilitat és una propietat imprescindible si l�assignació bilateral és volun-
tària. La pràctica del disseny de mercats consisteix en aplicar aquests models
d�assignació bilaterals a problemes especí�cs d�assignació amb l�objectiu de pro-
posar millores en la manera en què aquests es resolen. En aquest article primer
dono una breu descripció de la trajectòria acadèmica dels guardonats i descric
les seves contribucions tot presentant el model més bàsic d�assignació bilateral i
alguna de les seves aplicacions de disseny de mercats com la organització d�un
sistema centralitzat per proposar transplantaments de ronyons de donants vius
incompatibles amb els seus respectius pacients, l�assignació anual d�estudiants
de medicina nord-americans a programes hospitalaris d�interns i nens a escoles
en ciutats com Boston i Nova York.



1 Introduction

1.1 The Laureates

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2012 was
awarded jointly to Alvin E. Roth and Lloyd S. Shapley. The main purpose of this article is
to describe Roth and Shapley�s research on �the theory of stable allocations and the practice
of market design�that justi�es the concession of such honor.
Al Roth was born in New York on December 18, 1951. He graduated from Columbia

University in 1971 (when he was 19 years old!) with a degree in Operations Research.
He obtained his Ph.D. in Operations Research from Stanford University in 1974 under the
supervision of Robert B. Wilson. His �rst two jobs were at the Departments of Economics
at the University of Illinois (from 1974 to 1982) and at the University of Pittsburgh (from
1982 to 1998). In 1998 he moved to Harvard University with a joint appointment from the
Economics Department and the Harvard Business School. He has stayed there until the
beginning of 2013 when he moved to the Economics Department at Stanford University.
During this period at Harvard University he has been supervising a large group of Ph.D.
students, most of whom are now working at the best universities in the USA and Europe.
Al Roth thesis was on von Neumann and Morgenstern stable sets. His research interests

have been wide and moved very consistently to include axiomatic bargaining, experimental
economics, learning in non-cooperative games, the theory of stable allocations in matching
markets, and market design. According to the Royal Swedish Academy of Sciences the prize
has been awarded to him for his research on the last two areas, although he has fundamental
contributions in the other ones. See for instance, Roth (1979), Roth and Ockenfels (2002),
and Erev and Roth (1998).1

Lloyd Shapley was born in Cambridge (New England) on June 2, 1923. After serving in
the Army Air Corps in Chengdu, China, during the second world war, he went to Harvard
University where he graduated in 1948 with a degree in Mathematics. He obtained his
Ph.D. in Mathematics from Princeton University in 1953 under the supervision of Albert
W. Tucker. He has had only two a¢ liations: at RAND Corporation (from 1954 to 1981)
and at the Departments of Mathematics and Economics at the University of California, Los
Angeles, since 1981.
Lloyd Shapley thesis was on additive and non-additive set functions. He has made

fundamental contributions in all areas of Game Theory; for instance to the theory of the
Core, the Shapley value, repeated and stochastic games, the potential of a game and the
theory of stable allocations in matching markets. Many game theorists thought that the
fact that Lloyd Shapley had not been awarded the Nobel Prize in Economics yet was a sad
omission. We are now pleased that this has been corrected in 2012.
The concession of the 2012 Nobel Prize to both Al Roth and Lloyd Shapley may be seen

as recognizing two complementary sides of a research: Lloyd Shapley for the theoretical
contributions to the theory of stable allocations in two-sided matching problems and Al Roth
for the applications of this theory to improve the functioning of institutions solving two-sided
assignment real-life problems. The main references of these complementary contributions

1The last paper is still his mot cited paper in Scopus.
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are:

� D. Gale and L. Shapley. �College admissions and the stability of marriage,�American
Mathematical Monthly 69, 9-15 (1962),

� L. Shapley and H. Scarf. �On cores and indivisibilities,� Journal of Mathematical
Economics 1, 23-28 (1974);

for the theory, and

� A. Roth. �The evolution of the labor market for medical interns and residents: a case
study in Game Theory,�Journal of Political Economy 92, 991-1016 (1984),

� A. Roth and E. Peranson. �The redesign of the matching market for American physi-
cians: some engineering aspects of economic design,�American Economic Review 89,
748�80 (1999),

� A. Roth, T. Sönmez and U. Ünver. �Kidney exchange,�Quarterly Journal of Eco-
nomics 119, 457-488 (2004),

for two applications of the theory to the assignment of medical interns to hospital internship
programs and kidney exchanges of incompatible patient-donor pairs.2

Al Roth and Lloyd Shapley did not write jointly, but Al Roth has been closely following
Lloyd Shapley�s research as his fourth paper and his fourth book show. They are:

� A. Roth. �The Shapley Value as a von Neumann-Morgenstern Utility,�Econometrica
45, 657-664 (1977),

� A. Roth (editor). The Shapley Value: Essays in Honor of Lloyd S. Shapley. Cambridge
University Press (1988).

The late David Gale had also fundamental contributions to the theory of stable allo-
cations and it is reasonable to think that he would have also been awarded with the prize
had he been alive in 2012. He was born in New York on December 13, 1921 and died in
Berkeley (California) on March 7, 2008. He obtained hid Ph.D. from Princeton University
in 1949 under the supervision of Albert W. Tucker. He had two main a¢ liations: at Brown
University (from 1954 to 1981) and at the University of California, Berkeley, (from 1965 to
2008). He had also relevant contributions to Mathematical Economics and Game Theory.
Gale (1960) is still a very useful reference on the applications of Linear Programming to
Economics.

2Roth and Sotomayor (1990) contains a masterful review of all matching literature from 1962 to 1990
and it is still the best gateway to the theory and applications of two-sided matching problems.
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1.2 The Theory of Stable Allocations and the Practice of Market
Design

Participants in some markets cannot be divided a priori between buyers and sellers. If the
price of a good changes su¢ ciently a participant can be a seller and a buyer in a few minutes
of di¤erence. Stocks are clear examples of goods exchanged in such markets. However, there
are many other markets without this property: participants are either buyers or sellers,
independently of the price of the good. Physical or legal characteristics of the participants
make them to be in one, and only one side of the market. For instance, a university professor
cannot become a university, even after a dramatic decline of the professors wage, nor the
university can become a university professor after its increase.
There are many two-sided assignment problems, not necessarily solved through markets,

in which participants are divided a priori between two disjoint sets. For instance, men and
women, workers and �rms, and students and colleges. The assignment problem is precisely
to match each participant in one of the two sets with a participant in the other set (or
to remain unmatched) taking into account the preferences that each participant in one set
has on the participants on the other set (plus the prospect of remaining unmatched). But
the matching has to be bilateral: if a is matched with b; b is matched with a. Moreover,
those problems have often two additional properties that distinguish them from conventional
markets. First, the matching between two participants requires mutual agreement: if a
chooses to be matched with b; a has to be chosen by b. Second, prices do not play any role
to facilitate the matching and to resolve the potential disequilibrium of the mutual wills.
Two-sided matching models formalize the main characteristics of these assignment prob-

lems. Lloyd Shapley contributed to the development of the earlier stages of this theory;
speci�cally, Gale and Shapley (1962) propose the notion of stability of an allocation as
the relevant property whenever the assignment has to be voluntary. An assignment (or a
matching) between the two sets of participants is stable at a preference pro�le if: (a) all
participants are either unmatched or matched with a participant that is strictly preferred
to remaining unmatched and (b) there is no pair of participants that are not matched with
each other but they would prefer to be so rather than staying with the partner proposed by
the assignment.
Although Al Roth also has fundamental theoretical contributions to two-sided matching

models he has been the founder and main contributor to market design. This area uses
two sided matching models and other tools to analyse practical assignment problems. It
restricts the attention to speci�c situations by modifying the general and abstract model
to incorporate the speci�c details of the particular problem under consideration. Hence, it
obtains conclusions that do not have general validity (of course) but that by taking into
account the institutional details of the problem at hand allows the researcher to perform a
deeper analysis and recommend possible changes to improve the way that speci�c assign-
ment problems are solved in practice. For instance, Al Roth and his collaborators have
proposed substantial modi�cations on the solutions of problems like the yearly assignment
of north-american medical interns to hospital internship programs, children to schools in
cities like Boston and New York, or the organization of a centralized system to propose
kidney transplantations of live donors that are incompatible with their respective and loved
patients.
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In the remaining of the paper, instead of presenting di¤erent models of two-sided assign-
ment problems and their applications as practices of market design, I will restrict myself
to present some examples. I will start with an application. In Section 2, I will describe
(in my view) one of the most interesting practices of market design: the kidney exchange
problem. To do so, I will present Roth, Sönmez and Ünver (2004) adaptation of the Gale�s
Top Trading Cycle Algorithm as the best solution to solve kidney exchange problems, with
some references to the Spanish case. In Section 3, I will present the notion of stable allo-
cations in the basic marriage model presented by Gale and Shapley (1962) and the main
results in terms of the strategic incentives faced by participants in centralized two-sided
matching markets. At the end of the section, I will brie�y mention two other applications
of this theory: the yearly assignment of medical students to hospital internship programs
in north-america and the yearly assignment of students to schools in Boston and New York
city.

2 Kidney Exchange

There are two treatments for patients with renal disease: dialysis and transplantation. Since
dialysis requires a strong dependence and has many side e¤ects (physical as well as psycho-
logical), transplantation is considered the best treatment. Kidneys for transplantation come
from either deceased or living donors. The �rst successful kidney transplantation took place
on December 23, 1954 in Boston. It was done between two identical twins (to eliminate the
immune reaction) and performed, among others, by Joseph E. Murray, J. Hartwell Harri-
son, and John P. Merrill.3 The patient survived eight years after the transplantation. At
the end of the last century, and after the improvement in immunosuppressive therapies, the
majority of transplanted kidneys in many countries were from deceased donors; for instance,
in 1999 in Spain less than 1% of all kidney transplants were from living donors (only 17
among 2023). However, there is a unanimous agreement that the quality and success-rate
of kidney transplants from living donors are greater than those from deceased ones. In par-
ticular, the likelihood that the transplanted kidney survives 5 years is 0.87 if it comes from
live donors and 0.80 if it comes from deceased donors, and the likelihood that the recipient
will survive 5 years is 0.93 and 0.86, respectively. Furthermore, promoting the donation
of kidneys from living donors may help solve the shortage of kidneys for transplantation.
Indeed, all countries with active transplantation programs su¤er from shortage of kidneys.
Almost everywhere the average time that a patient has to stay in the waiting list for a
kidney transplant is well above two years. In addition, increasing life expectancy as well as
the decrease in mortality due to car and motorcycle accidents has made the shortage even
more severe. For all these reasons, in the last ten years, many countries are promoting living
donation; for instance, in 2011 in Spain already more than 12% of all kidney transplants
were from living donors (312 among 2498).
In the direct donation, the patient receives, if compatible, one of the two kidneys from

a relative or friend (usually, the spouse and siblings of the patient). The most basic incom-

3Joseph E. Murray received the Nobel Prize in Physiology or Medicine in 1990, jointly with E. Donnall
Thomas, �for their discoveries concerning organ and cell transplantation in the treatment of human disease.�
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patibilities are blood and tissue type (the later is related to genetics that produce immune
reaction), although the age of the kidney is also relevant for the graft kidney survival. But
if the kidney is not compatible, the transplant is not possible and the donor�s kidney is
removed from the system. It is estimated that approximately one third of patients with a
friend or family donor are excluded from the system due to di¤erent incompatibilities. Until
very recently this was the only live donation that was taking place, and there was no system
to take advantage of rejected donors, which were simply sent home. In 1986, the doctor
F.T. Rapaport was the �rst to propose kidney exchanges from living donors. The idea is
simple: suppose that one day a nephrologist receives a patient accompanied by a relative
who is willing to donate a kidney. Unfortunately, the analysis shows that they are incom-
patible. The next day, the same doctor receives another patient-donor pair who are also
incompatible. But each patient is compatible with the donor of the other pair, and hence,
a kidney exchange is possible (in this case, by satisfying a cycle of length two). Or even
longer cycles involving three or more incompatible patient-donor pairs could be undertaken.
A kidney exchange problem consists of a set of incompatible patient-donor pairs together

with a pro�le of ordered lists of all donors�kidneys, one list for each patient. Formally, let
N = f1; :::; ng be the set of patients and let K = fk1; :::; kng be the set of live donors
kidneys. Each patient i 2 N has a donor whose kidney ki is not compatible with i: Thus,
f(1; k1); :::; (n; kn)g is the set of n incompatible patient-donor pairs. Each patient i 2 N has
a preference order (a strict) ranking Pi of all donors kidneys. For instance, with n = 4,

P3

k2
k4
k3
k1

indicates that, for patient 3, k2 and k4 are two compatible kidneys, k2 is better than k4; and
k1 is not compatible (the ordering between incompatible kidneys is irrelevant). A patient�s
ordered list of all kidneys (from the best to the worst) re�ects, according to the patient�s
nephrologist, the ex-ante ordinal quality of the match between each kidney and the patient.
The market design question in this case is to determine a systematic way of selecting, for each
kidney exchange problem, a set of compatible transplants with some desirable properties. A
set of compatible transplants can be represented by a matching � : N ! K; where �(i) = kj
means that if i 6= j, i receives kidney kj and if i = j, i does not receive any kidney (and
stays under dialysis waiting for a new run of the match). Note that the set of incompatible
patient-donor pairs can be represented by the matching �; where �(i) = ki for all i 2 N:
An instance of a kidney exchange problem is thus a tuple (N;K; �; P ); where N is the set
of patients, K is the set of kidneys, � represents the set of incompatible patient-donor pairs
and P = (P1; :::; Pn) is the pro�le of agents preferences on K:4 Roth, Sönmez, and Ünver
(2004) study the kidney exchange problem and propose an adaptation of the general model
presented by Shapley and Scarf (1974) as well as of an already known algorithm in matching
theory to solve all kidney exchange problems. The algorithm is known as the Gale�s Top
Trading Cycle Algorithm, and I will refer to it as the TTC algorithm.

4Given i; j; t 2 N and Pi; I will write kjRikt to denote that either kj = kt or else kjPikt:
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Given a kidney exchange problem (remember, a set of incompatible patient-donor pairs
and a pro�le of patients� lists, each list ordering all donors�kidneys) the TTC algorithm
solves the problem (i.e., proposes a set of compatible transplants) in stages. At each stage,
the TTC algorithm roughly works as follows. (1) It constructs a graph whose nodes are the
patient-donor pairs that have not yet been matched in the previous stages; (2) it directs
the graph (a single arrow leaves from each node pointing to a node) by making that each
patient points to the best kidney (according to his ordered list of kidneys) among those still
present in the stage; (3) it identi�es the nodes on the cycles of the directed graph; and (4)
it satis�es the cycles, matching each patient of the nodes of the cycles to his pointed kidney.
The TTC algorithm keeps identifying and satisfying successively the cycles along the stages.
Note that in each stage, there is always at least one cycle, if there are several cycles they
do not intersect each other and a cycle may have a single node whose patient points to the
kidney of his donor (obviously, since they are not compatible, the patient in this case will
not be transplanted and the patient will remain under dialysis). Thus, the input of the
TTC algorithm is an instance of a kidney exchange problem and its output is a solution
of the problem (i.e., a matching) that consists of a proposal of transplants based on the
cycles identi�ed along its stages. I denote by � the matching representing the transplants
proposed by the output of the TTC algorithm applied to the kidney exchange problem at
hand. Example 1 below illustrates how the TTC algorithm works.5

Example 1 Let (N;K; �; P ) be a kidney exchange problem with eight incompatible
patient-donor pairs, �(i) = ki for each i = 1; :::; 8; and the pro�le P represented in Ta-
ble 1 below, where the kidneys inside an square in each agent�preference list indicates the
initial assignment � of agents to kidneys.

P1 P2 P3 P4 P5 P6 P7 P8

k2 k3 k1 k8 k4 k8 k4 k6
k3 k1 k3 k7 k7 k1 k8 k8
k5 k2 k7 k4 k3 k6 k3 k1
k6 k8 k2 k1 k6 k5 k6 k2
k8 k6 k5 k2 k1 k4 k1 k3
k1 k4 k8 k3 k8 k3 k5 k7
k7 k7 k6 k5 k2 k2 k2 k5
k4 k5 k4 k6 k5 k7 k7 k4

Table 1

Figure 1 below represents the three steps of the TTC algorithm applied to pro�le P to
obtain the assignment �.

5Example 1, as well as Example 2 of Section 3, can be found in Massó (2012).
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Figure 1

The TTC algorithm has many desirable properties. First, it is individually rational :
every patient that receives a kidney from another donor at the outcome of the TTC algo-
rithm prefers this situation rather than not receiving a kidney and remaining under dialysis.
Second, it is e¢ cient : all patients can not improve simultaneously; that is, if there is an-
other set of transplants where one patient receives a strictly better kidney then, there must
exist another patient that receives a strictly worse kidney. Third, the output of the TTC
algorithm is an stable assignment (in game-theoretic terms, it belongs to the Core of the
kidney exchange problem): there is no subset of patient-donor pairs that, by reassigning
only the kidneys of the donors of the patients in the subset, can obtain better kidneys;
i.e., no subgroup of the patient-donor pairs (for example those from a hospital, a city or a
region) can object unanimously to the output of the TTC algorithm (Shapley and Scarf,
1974). Moreover, the Core of each kidney exchange problem is unique and coincides with
the output of the TTC algorithm (Roth and Postelwaite, 1977).6 Fourth, the mechanism
associated to the TTC algorithm is strategy-proof: no patient could obtain a strictly better
kidney by reporting (in fact, his nephrologist) a false ordered list of kidneys (Roth, 1982b).
Furthermore, the mechanism that, for each kidney exchange problem, selects the output of
the TTC algorithm is the unique individually rational, e¢ cient, and strategy-proof mecha-
nism (Ma, 1994). Finally, the quality of the kidney received by each patient in the output
of the TTC algorithm depends positively on the quality of his kidney�s donor (Roth and
Postelwaite, 1977).
Roth, Sönmez, and Ünver (2004) also reports some simulations suggesting that the TTC

algorithm performs well and that it can be applied to real kidney exchange problems, and
indeed it is now used in most countries with kidney exchange programs.7 But in addition,

6Note that, by considering the set of all agents and all singleton sets, if an assignment belongs to the
Core it has to be e¢ cient and individually rational.

7They promoted, together with doctors Francis Delmonico and Susan Saidman, the New England Pro-
gram for Kidney Exchange (NEPKE). Many countries have now their corresponding centralized programs;
for instance, Spain, The Netherlands, The United Kingdom, Italy and South Korea.
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the paper has also triggered an already long list of papers studying di¤erent issues related
to the speci�c nature of the kidney exchange problem that may require to adapt the TTC
algorithm. For instance, (1) to deal with the increasing number of altruistic donors (called
�good samaritans�), whose kidney can be used to initiate chains (instead of cycles) of
transplants; The New York Times, on February 18, 2012 contained an article entitled 60
Lives, 30 Kidneys, All Linked describing a chain of 30 transplants initiated one year earlier
by a good samaritan. (2) The consequences of requiring alternative incentive properties
(weaker than strategy-proofness) when patients (their nephrologists) submit the ranked list
of all donors�kidneys. (3) The presence of patients with several potential donors. (4) Ethical
issues related with the ex-ante worse situation faced by O blood type patients since they can
only receive kidneys from O blood type donors. (5) The e¤ects of considering explicitly the
dynamic feature of the problem, where the database of pairs keeps changing by the entrance
and exit of patient-donor pairs.
In any case, kidney exchange has become a natural and successful market design appli-

cation of the theory of stable allocations to help human beings to live longer and better. Al
Roth and Lloyd Shapley�s contributions have made it possible.

3 The Theory of Stable Allocations

Following Gale and Shapley (1962)�s metaphor we will use the marriages between men
and women as the reference example to describe a basic matching problem.8 Let M =

fm1; :::;mng be the set of men and let W = fw1; :::; wmg be the set of women. The set of
agents is N =M [W . We assume that each men m 2M has a strict preference (a ranking)
Pm on the set of women and the prospect of remaining unmatched, that for convenience
we identify as being matched to himself. That is, Pm is a complete, antisymmetric and
transitive binary relation on the set W [ fmg. Given m 2M and w;w0 2 W , we will write
wPmw

0 and mPmw to denote that m prefers to be matched to w rather than to w0 and to be
unmatched instead of being matched to w; respectively. Similarly, each women w 2 W has
a strict preference Pw on the set M [ fwg, where w in the ranking represents the prospect,
for w, of remaining unmatched. Given w 2 W and m;m0 2 M , we will write mPwm0 and
wPwm to denote that w prefers to be matched to m rather than to m0 and to be unmatched
instead of being matched to m; respectively. A (preference) pro�le is a list of preferences
P = (Pm1 ; :::; Pmn ;Pw1 ; :::; Pwm), one for each agent. A market (or matching problem) is
a triple (M;W;P ), where M is the set of men, W is the set of women and P is a pro�le.
Example 2 below contains an instance of a market that will be used later on.

Example 2 Let (M;W;P ) be the market whereM = fm1;m2;m3;m4;m5g; W = fw1; w2; w3; w4g,
8The two basic characteristics of the problem are that agents preferences are ordinal and matching is

one-to-one.
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and P is

Pm1 Pm2 Pm3 Pm4 Pm5 Pw1 Pw2 Pw3 Pw4
w1 w4 w4 w1 w1 m2 m3 m4 m1

w2 w2 w3 w4 w2 m3 m1 m5 m4

w3 w3 w1 w3 w4 m1 m2 m1 m5

w4 w1 w2 w2 m5 m4 m4 m2 m2

m1 m2 m3 m4 w3 m5 m5 m3 m3

w1 w2 w3 w4

where agents�preferences are columns and each column indicates the corresponding agent�s
preference in decreasing order, for instance, w1Pm5w2 and m5Pm5w3.

The assignment problem consists of matching each men with at most a woman and each
women with at most a man with the properties that the matching is bilateral and agents
may remain unmatched. Formally,

De�nition 1 A matching (for market (M;W;P )) is a mapping � :M [W !M [W such
that:

(a) for each m 2M; �(m) 2 W [ fmg;
(b) for each w 2 W; �(w) 2M [ fwg; and
(c) for each pair (m;w) 2M �W; �(m) = w if and only if �(w) = m:
The �gure below illustrates a matching for the market of Example 2.

M W
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m4 w4

m3 w3

m2 w2

m1 w1
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q

Figure 2

A matching is stable if it is individually rational and no pair of agents prefer each other
rather than the partners proposed to each of them by the matching. Formally,

De�nition 2 A matching � is stable at P if

(a) for each m 2M; �(m)Rmm;9

(b) for each w 2 W; �(w)Rww; and
(c) there is no pair (m;w) 2M �W such that wPm�(m) and mPw�(w):

The matching � in Figure 2 is not stable at pro�le P of Example 2 since w2Pm1w3 =

�(m1) and m1Pw2m5 = �(w2): Fix M and W: Given P; let S(P ) be the set of stable

9Given agents x; y; z 2 N; we write xRyz to denote that either x = z or else xPyz; namely, either x and
z are the same agent or else y strictly prefers to be matched to x rather than to z:
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matchings at P . Gale and Shapley (1962) state and prove that the set of stable matchings
is always non-empty.10 Formally,

Theorem 1 Let P be a pro�le. Then, S(P ) is non-empty.

Gale and Shapley (1962) prove that, for any P , the set S(P ) is non-empty by showing
that it contains two stable matchings, the men-optimal stable matching (denoted by �M)
and the women-optimal stable matching (denoted by �W ). The two matchings have the
properties that for any stable matching � 2 S(P ) the following two conditions hold: (a)
for all m 2 M; �M(m)Rm�(m)Rm�W (m) and (b) for all w 2 W; �W (w)Rw�(w)Rw�M(w);
namely, all men agree that the partner that they receive at �M (�W ) is the best (worst)
among all partners that they receive at any stable matching and simultaneously all women
agree that the partner that they receive at �W (�M) is the best (worst) among all partners
that they receive at any stable matching.11 Gale and Shapley (1962) propose two versions
of the Deferred Acceptance Algorithm (DAA) to compute the two optimal stable matchings
�M and �W . I describe the version of the algorithm in which men make o¤ers to women,
denoted by DAAM (the other is symmetric, replacing the role of men and women and it is
denoted byDAAW ). At any step of theDAAM , each man o¤ers himself to his most-preferred
woman amongst the set of women who have not already rejected him, while each woman
accepts the most-preferred men amongst all men whose proposals along the algorithm she
has not rejected yet. The algorithm terminates when no woman rejects a man. It turns out
that the outcome of the DAAM is �M and the outcome of the DAAW is �W :
Table 2 summarizes the 4 steps of the DDAM applied to the market (M;W;P ) of

Example 2, where m ! w represents an o¤er of m to w, Yes means that w accepts it,
and No that w rejects it.

Step 1 Step 2 Step 3 Step 4 Final

m1 ! w1 Yes m1 ! w1 Yes m1 ! w1 Yes m1 ! w1 Yes �M(m1) = w1
m2 ! w4 Yes m2 ! w4 No m2 ! w2 Yes m2 ! w2 Yes �M(m2) = w2
m3 ! w4 No m3 ! w3 Yes m3 ! w3 Yes m3 ! w3 Yes �M(m3) = w3
m4 ! w1 No m4 ! w4 Yes m4 ! w4 Yes m4 ! w4 Yes �M(m4) = w4
m5 ! w1 No m5 ! w2 Yes m5 ! w2 No m5 ! w4 No �M(m5) = w5

Table 2

Table 3 describes the unique step of the DAAW applied to the market (M;W;P ) of
Example 2.

10Moreover, it coincides with the Core of the one-to-one matching problem; namely, intermediate coalitions
of agents have no additional blocking power.

11Knuth (1976) shows that S(P ) is a (dual) complete lattice with the unanimous partial ordering of men
(women) �M (�W ), where for any �; �0 2 S(P ); � �M �0 if and only if �(m)Rm�0(m) (� �W �0 if and
only if �(w)Rw�0(w)). Moreover, � �M �0 if and only if �0 �W �. Then, �M is the supremum and �W is
the in�mum of the set S(P ) according to �M ; and �W is the supremum and �M is the in�mum of the set
S(P ) according to �W :
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Step 1 Final

w1 ! m2 Yes �W (w1) = m2

w2 ! m3 Yes �W (w2) = m3

w3 ! m4 Yes �W (w3) = m4

w4 ! m1 Yes �W (w4) = m1

�W (w5) = m5

Table 3

Observe that �M 6= �W and that �M(w5) = �W (w5) = w5:
12

Al Roth has made relevant contributions to the study of the strategic incentives induced
by the DAAs when they are understood as direct revelation mechanisms.13 Moreover, he
has proposed modi�cations of some mechanisms used to solve real-life assignment problems.
Some of the modi�cations are partially driven by the aim of �xing mechanisms that induce
wrong strategic incentives to agents. At the end of this section I will be a bit more speci�c
about two of these modi�cations. But �rst, to consider the strategic incentives faced by
participants in these markets, observe that whether or not a matching is stable depends
on the agents�preferences. But each agent�s preferences are private information and hence,
they have to be elicited by a mechanism. Fix the sets M and W . LetM be the set of all
matchings among M and W and let P be the set of all preference pro�les. A social choice
function is a mapping f : P !M selecting, for each preference pro�le P 2 P, a matching
f(P ) 2 M. Given a social choice function f : P ! M, a pro�le P 2 P and an agent
x 2M [W we denote by fx(P ) the partner assigned to x by the social choice function f at
pro�le P (i.e., fx(P ) � f(P )(x), because f(P ) is the matching selected by f at P ). Given
agent x 2M [W , a pro�le P 2 P and a preference P 0x; denote by (P 0x; P�x) the new pro�le
obtained from P after substituting Px by P 0x in P . Agent x 2M [W manipulates the social
choice function f : P !M if there exist P 2 P and P 0x such that fx(P 0x; P�x)Pxfx(Px; P�x);
namely, agent x (with preference Px) obtains an strictly preferred partner by reporting to
f a false preference P 0x: A social choice function f : P ! M is strategy-proof if no agent
can manipulate it.14 A social choice function f : P !M is stable if it always selects stable
matchings; namely, for all P 2 P, f(P ) 2 S(P ). Roth (1982a) shows that strategy-proofness
and stability are incompatible.

Proposition 1 (Roth, 1982a) There are no social choice function f : P ! M that is
simultaneously strategy-proof and stable.

However, the two DAAs understood as social choice functions induce good incentive
properties to the side of the market that makes the o¤ers. To state that, let fM : P !M
12The following property of the set of stable matchings S(P ) always holds. For any agent x 2M [W if

� 2 S(P ) and �(x) = x then, for all �0 2 S(P ), �0(x) = x: Namely, to be unmatched is a global property of
the set of stable matchings.
13A direct revelation mechanism asks each agent to report his preferences and proposes a matching

depending on the declared pro�le of preferences.
14That is, truth-telling is a (weakly) dominant strategy in the game induced by the social choice function

f:
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be the social choice function that selects for each preference pro�le the men-optimal stable
matching and let fW : P !M be the social choice function that selects for each preference
pro�le the women-optimal stable matching; namely, for each P 2 P; fM(P ) = �M and
fW (P ) = �W : A social choice function f : P ! M is strategy-proof for the men if it can
not be manipulated by any men and f : P ! M is strategy-proof for the women if it can
not be manipulated by any women. The following result may explain why these two social
choice functions are used so widely to solve many real-life centralized two-sided matching
problems.

Theorem 2 (Dubins and Freedman, 1981; Roth, 1982a) The social choice function fM :

P ! M is strategy-proof for the men and the social choice function fW : P ! M is
strategy-proof for the women.

Before �nishing, I mention two successful market design applications of the theory of
stable allocations.
First, Roth (1984) reports that, since the academic year 1951-1952 (ten years earlier

than Gale and Shapley (1962)�s paper), the problem of matching each year medical stu-
dents with hospital internship programs in north-america was solved by the Association of
American Medical Colleges (AAMC) by asking to medical students and hospital to report
their ranked preferences lists and by applying to the declared preference pro�le the DAA
in which hospitals make o¤ers. Before 1951, and as earlier as the beginning of the 20th
Century, the matching process exhibited lots of problems. In particular, the market unrav-
elled in the sense that hospitals were looking (and making o¤ers in a decentralized setting)
to medical students earlier and earlier while they were still at college, and needed almost
two additional years of college before �nishing. The AAMC tried to stop these practices
without much success until 1953-1954 when the centralized ADD mechanism was adopted
under voluntary basis. The procedure was working well with high participation rates until
the mid 1990�s (around 20,000 medical students were assigned yearly) when more couples
where looking coordinately for hospitals located in the same city, some links had to be done
between di¤erent subspecialities to ful�ll the internship requirements, and students were
arguing that the system was favoring hospitals and that they could �game the system�by
reporting false preference lists. The AAMC asked Al Roth to modify the mechanism to �x
those problems and he redesigned the algorithm to be able to accommodate them satisfac-
torily. In 1998 the match was completed using (with small modi�cations) the DAA in which
students make o¤ers (see Roth and Peranson (1999) for a full description of the redesign).
This intervention may be seen as the �rst (conscious) practice of market design.
Abdulkadiro¼glu and Sönmez (2003) used a two-sided matching model to study the yearly

problem of assigning students to public schools in a city. The main issue of the assignment
problem is to let parents to choose the school of their children. Boston and New York
city were using a centralized mechanism (known as the Boston mechanism) that is similar
to the DAA but with the very important di¤erence that provisional matches along the
application of the algorithm are made de�nitive, and hence, it was highly manipulable.15

15For instance, in the application of the DAAM to the pro�le P of Example 2, m3 is assigned to w3; his
second choice, while in the outcome of the Boston mechanism he is unassigned (his worse choice). However,
under the Boston mechanism m3 could be assigned to w2 by declaring, instead of Pm3

, any preference P 0m3

with w2 as his top choice.
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Abdulkadiro¼glu, Pathak and Roth (2005) and Abdulkadiro¼glu, Pathak, Roth and Sönmez
(2005) report that, following their advice, the two cities changed the assignment procedure
and replaced the Boston mechanism by the DAA in which students make o¤ers. Recently,
many other cities are adopting the DAA to organize the assignment of their students to
public schools.
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