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Abstract A multiple-partners assignment game with heterogeneous sales and multi-
unit demands consists of a set of sellers that own a given number of indivisible units
of potentially many different goods and a set of buyers who value those units and want
to buy at most an exogenously fixed number of units. We define a competitive equi-
librium for this generalized assignment game and prove its existence by using only
linear programming. In particular, we show how to compute equilibrium price vectors
from the solutions of the dual linear program associated to the primal linear program
defined to find optimal assignments. Using only linear programming tools, we also
show (i) that the set of competitive equilibria (pairs of price vectors and assignments)
has a Cartesian product structure: each equilibrium price vector is part of a competitive
equilibrium with all optimal assignments, and vice versa; (ii) that the set of (restricted)
equilibrium price vectors has a natural lattice structure; and (iii) how this structure is
translated into the set of agents’ utilities that are attainable at equilibrium.
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1 Introduction

We study competitive equilibria of markets with indivisible goods. The multiple-part-
ners assignment game with heterogeneous sales and multi-unit demands (a market)
is a many-to-many assignment problem with transferable utility in which agents can
be partitioned into two disjoint sets: the set of buyers and the set of sellers. Sellers
deliver indivisible units of (potentially different) goods to buyers who pay a given
amount of money for every unit of each good. Each seller owns a given number of
indivisible units of each good and each buyer may buy different units of the goods
up to an exogenously fixed number which comes from constraints on his capacity for
transport, storage, etc. Each seller assigns a per-unit value (or reservation price) to
each of the different goods that he owns. Each buyer assigns a valuation (or maximal
willingness to pay) to each unit of the different goods.

There are many assignment problems with these characteristics.1 Namely, each
agent can be assigned to (i.e., perform a transaction with) many agents of the other
side of the market, utility is transferable because money may be used as a means of
exchange, a unit of a particular good owned by a seller may be different from a unit of
another good owned by the same seller, and buyers may be willing to buy several units
of different goods. Given an initial distribution of units of the goods among all sellers,
the main questions to be answered are: (i) what is the optimal assignment of goods to
buyers? (ii) what are the prices (if any) that would clear the market?, (iii) what is the
subset of goods that are indeed exchanged?, and (iv) what is the set of (total) utilities
that agents might receive?

Given a market, an assignment is a description of how many units of each of the
goods are exchanged between every pair formed by a buyer and a seller. An assignment
is feasible if it satisfies the quantity and capacity constraints of all agents. A feasible
assignment is optimal if it maximizes the total net value (the sum of the valuations
minus the reserve price of all exchanged units). It turns out that the set of optimal
assignments of a market can be identified with the set of integer solutions of a natural
primal linear program where the objective function (to be maximized) is the total net
value, which depends linearly on the assignment, subject to non-negativity constraints
and to feasibility constraints.2 Results on integer programming (see Schrijver 1996)
guarantee that the primal linear program has at least one solution with integer com-
ponents, since the set of all real-valued solutions of the primal linear program is a
polytope whose vertices have all integer-valued coordinates.

To choose an optimal assignment requires information about valuations, reserva-
tion prices, and quantity and capacity constraints. Hence, competitive markets may

1 For instance, a primary market of blood, a local market of fresh products that operates once or twice per
week, and a clothing market in a city with wholesalers and retailers.
2 Gale (1960) is still a useful reference for the use of linear programming techniques in the analysis of
many linear economic models.
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emerge (or be used) as a way of selecting an optimal assignment with low infor-
mational requirements. We will assume that buyers and sellers exchange units of the
goods with money through competitive markets in which a price vector (a non-negative
price for each good) is announced. Given the price vector, each seller determines the
optimal number of units he wants to sell of each of the goods he owns and each
buyer determines the optimal number of units he wants to buy of each good, without
exceeding his capacity constraints. A price vector p is an equilibrium price vector
of the market if the plans of all sellers and buyers are compatible at p; namely, the
market of each good clears in the sense that all optimal plans constitute a feasible
and compatible set of exchanges (they constitute a feasible assignment). In this case
we say that the equilibrium price vector and the feasible assignment are compatible.
A competitive equilibrium of the market is a pair formed by an equilibrium price vector
and a compatible assignment. We show using well-known duality theorems of linear
programming that each market has at least a competitive equilibrium.3 All our proofs
rely only on well-know results of linear programming. First, we observe that the dual
linear program has a non-empty set of solutions; second, we give a procedure to con-
struct an equilibrium price vector from a given solution of the dual linear program; and
third, we show that any optimal solution of the primal linear program is compatible
with this equilibrium price vector. Thus, the set of competitive equilibria of a market
is intimately related to the set of solutions of the primal linear program (compatible
optimal assignments) and the dual linear program (equilibrium price vectors).4

We next show that the set of competitive equilibria of a market has a Cartesian
product structure: each equilibrium price vector is compatible with all optimal assign-
ments and each optimal assignment is compatible with all equilibrium price vectors.
Moreover, the set of equilibrium price vectors has a lattice structure with the natu-
ral order of vectors ≥ (a reflexive, transitive, antisymmetric, and incomplete binary
relation) on the n−dimensional Euclidian space, where n is the number of goods and
given two vectors x, y ∈ R

n , x ≥ y if and only if x j ≥ y j for all j = 1, . . . , n.
As a consequence of this lattice structure, the set of equilibrium price vectors contains
two extreme elements: the sellers-optimal equilibrium price vector with each compo-
nent being larger or equal to the corresponding component of all other equilibrium
price vectors and the buyers-optimal equilibrium price vector with each component
being smaller or equal to the corresponding component of all other equilibrium price
vectors. We observe that, in contrast to the Shapley and Shubik (1972)’s assignment
game, this natural order ≥ does not translate into the set of utilities of buyers (nor the
set of utilities of sellers) that can be attainable at equilibrium. Partly, this is because
there is an insubstantial multiplicity of equilibrium prices of the goods that are not
interchanged in any equilibrium assignment. We solve this multiplicity by defining the
set of restricted equilibrium price vectors as those equilibrium price vectors for which

3 Milgrom (2010) establishes the existence of competitive equilibrium prices for a more general model
which also includes multi-unit auctions and exchange economies as special cases (see Sect. 2 for a brief
description of Milgrom (2010)’s model).
4 Shapley and Shubik (1972) already pointed out the relationships among the set of competitive equilibria
of a one-to-one assignment game, the core of its associated TU-game, and the solutions of the corresponding
primal and dual linear programs.
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the price of the goods that are never interchanged in equilibrium is equal to their max-
imal one without altering the equilibrium property of the full price vector. We show
that the set of restricted equilibrium price vectors has a complete lattice structure with
the natural order ≥ of vectors. Then, we show that the set of total utilities of buyers
that are attainable at equilibrium embeds the lattice structure of the set of restricted
equilibrium price vectors. However, we also show that the set of total utilities of the
sellers that are attainable at equilibrium does not inherit this structure.

There are several papers that have studied generalized versions of Shapley and
Shubik (1972)’s one-to-one assignment game to many-to-one or many-to-many mod-
els. Camiña (2006), Sotomayor (1992, 1999, 2002, 2007, 2009a,b), Bikhchandani
and Ostroy (2002), Milgrom (2010), and Fagebaume et al. (2010) are some of them.
However, part of the emphasis of this literature has been put on the study of alternative
cooperative solutions of the associated TU-game, although Camiña (2006), Sotomayor
(2007, 2009b), Bikhchandani and Ostroy (2002), and Milgrom (2010) also study the
competitive equilibria of their generalized assignment games. At the end of Sect. 2 and
in Sect. 5.1 we describe some of this very related literature as well as its connections
with our model and results.

The paper is organized as follows. In Sect. 2 we define the multiple-partners assign-
ment game with heterogeneous sales and multi-unit demands (a market) and compare
our model with existing related models in the literature. In Sect. 3, we define optimal
assignments and the associated primal linear program of a market. In Sect. 4 we pres-
ent the notion of a competitive equilibrium and show its existence by using duality
theorems of linear programming. In Sect. 5 we study the structure of the set of com-
petitive equilibria by showing that it is a Cartesian product of the set of equilibrium
price vectors times the set of optimal assignments, and that the set of restricted equi-
librium price vectors has a complete lattice structure with the natural partial order ≥;
we also show how this partial order endows a lattice structure to the set of total utilities
of the buyers (but not to the set of total utilities of the sellers) that are attainable at
equilibrium.

2 Preliminaries and related models

The multiple-partners assignment game with heterogeneous sales and multi-unit
demands (a market) consists of seven objects. The first three are three finite and
disjoint sets. The set of m buyers B = {b1, . . . , bm}, the set of n type of goods
G = {g1, . . . , gn}, and the set of t sellers S = {s1, . . . , st }. We identify buyer bi with
i , good g j with j , and seller sk with k.

For each buyer i ∈ B and each good j ∈ G, let vi j ≥ 0 be the monetary valuation
that buyer i assigns to each unit of good j ; namely, vi j is the maximum price that
buyer i is willing to pay for each unit of good j . We denote by V = (

vi j
)
(i, j)∈B×G

the matrix of valuations. Each buyer i ∈ B can buy at most di > 0 units in total. The
amount di should be interpreted as a capacity constraint of buyer i due to limits on
his ability for transport, storage, etc. We denote by d = (di )i∈B the vector of maximal
demands. We are assuming that buyers have a constant marginal valuation of each
good in the sense that the additional value for buyer i of an extra unit of good j is
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constant and equal to vi j , as long as the total consumption of buyer i is strictly smaller
than di .

For each good j ∈ G and each seller k ∈ S, let r jk ≥ 0 be the monetary val-
uation that seller k assigns to each unit of good j ; namely, r jk is the reservation
(or minimum) price that seller k is willing to accept for each unit of good j . We denote
by R = (

r jk
)
( j,k)∈G×S the matrix of reservation prices . Each seller k ∈ S has a

given number q jk ∈ Z+ of indivisible units of each good j ∈ G, where Z+ is the
set of non-negative integers. We denote by Q = (q jk)( j,k)∈G×S the capacity matrix.
Observe that we are admitting the possibility that seller k may have zero units of some
of the goods. However, we require that the reservation price for seller k of a good that
he has no units to sell has to be equal to zero; namely, for all k ∈ S and all j ∈ G,

if q jk = 0 then r jk = 0. (1)

Moreover, we assume that there is a strictly positive amount of each good; namely,

for each j ∈ G there exists k ∈ S such that q jk > 0. (2)

A market M is a 7-tuple (B, G, S, V, d, R, Q) satisfying (1) and (2). This con-
stitutes a many-to-many generalization of Shapley and Shubik (1972)’s (one-to-one)
assignment game in which each buyer only wants to buy at most one unit (i.e., di = 1
for all i ∈ B), there is only one unit of each good and the set of goods and sellers
can be uniquely identified with each other because each seller only owns the unique
available unit of a good (i.e., n = t and for all ( j, k) ∈ G × S, q jk = 1 if j = k and
q jk = 0 if j �= k).

There are other papers that have extended Shapley and Shubik (1972)’s model. For
example, Camiña (2006) studies an instance of our model in which there is a unique
seller that owns n different indivisible objects and each buyer wants to buy at most one
object (i.e., t = 1, q j1 = 1 for all j = 1, . . . , n, and di = 1 for all i ∈ B). Sotomayor
(1992, 1999, 2007, 2009a) and Fagebaume et al. (2010) study another extension of the
assignment game in which buyers may want to buy several goods, although they are
not interested in acquiring more than one unit from a given seller, and each seller owns
a number of identical and indivisible objects; thus, a partnership between a buyer and
a seller is binary: either it is formed (and the buyer receives one unit of the unique good
owned by the seller) or it is not. In contrast, to describe a partnership between a buyer
and a seller in our market, we have to specify how many units of each good the buyer
receives from the seller. Sotomayor (2002, 2009b) considers the multiple time-sharing
assignment game, which is roughly a continuous extension of the previous model.
If a partnership between a buyer (a worker) and a seller (a firm) is formed, both agents
have to contribute with the same amount of units of labor time and each firm offers
only one type of service; partnerships may have a continuum of intensities but they are
still one-dimensional. Milgrom (2010) introduces and studies the space of assignment
messages to investigate (and solve) the difficulty that agents face, in some mechanism
design settings, when reporting their “types ”(or valuations of goods, or sets of goods).
The model is very general and contains as particular cases multi-unit auctions (with
substitutable goods), exchange economies, and integer assignment games. The last one
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generalizes the Shapley and Shubik (1972)’s model in many ways; in particular, agents
may buy some good and sell others (there are no a priori sets of buyers and sellers)
and may trade many units of each good, instead of just one unit. For our model, which
is a particular instance of Milgrom (2010), we obtain additional results; for instance,
that the set of competitive equilibria is the Cartesian product of the set of equilibrium
price vectors and optimal assignments and that the sets of agents’ utilities that are
attainable at equilibrium partly inherit the lattice structure of the set of equilibrium
price vectors.5

3 Optimal assignments

In this section we define optimal assignments of a market and show using linear pro-
gramming that they do exist.

An assignment for market M is a matrix A = (Ai jk)(i, j,k)∈B×G×S ∈ Z
m×n×t+ .

Given an assignment A, each Ai jk should be interpreted as follows: buyer i receives
Ai jk units of good j from seller k. When no confusion can arise, we omit the sets
to which the subscripts belong to and write, for instance,

∑
i jk Ai jk and

∑
i Ai jk

instead of
∑

(i, j,k)∈B×G×S Ai jk and
∑

i∈B Ai jk , respectively. We are only interested
in assignments satisfying all demand and supply restrictions of feasibility.

Definition 1 The assignment A is feasible for market M if:
(Demand Feasibility) For all i ∈ B,

∑
jk Ai jk ≤ di .

(Supply Feasibility) For all ( j, k) ∈ G × S,
∑

i Ai jk ≤ q jk .

We denote the set of all feasible assignments of market M by F .
For each (i, j, k) ∈ B × G × S, let

τi jk =
{

vi j − r jk if q jk > 0
0 if q jk = 0

(3)

be the per unit gain from the trade of good j between buyer i and seller k; observe
that if seller k does not have any unit of good j the per unit gain from trade of good
j with all buyers is equal to zero and that τi jk is negative if vi j < r jk . Let M be a
market and A ∈ F be a feasible assignment. We define the total gain from trade of
market M at assignment A as

T (A) =
∑

i jk

τi jk · Ai jk .

Definition 2 A feasible assignment A∗ is optimal for market M if, for any feasible
assignment A ∈ F , T (A∗) ≥ T (A).

We denote by F∗ the set of all optimal assignments for market M . In order to find
F∗ we consider the following primal linear program (PLP).

5 See Sect. 5.1 for a more detailed comparison of our results with the main results of these related models.
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Primal linear program (PLP):

max
(Ai jk )(i, j,k)∈B×G×S∈Rm×n×t

∑
i jk τi jk · Ai jk

s.t. (P.1)
∑

jk Ai jk ≤ di for all i ∈ B,

(P.2)
∑

i Ai jk ≤ q jk for all ( j, k) ∈ G × S,

(P.3) Ai jk ≥ 0 for all (i, j, k) ∈ B × G × S.

Results in linear programming guarantee that the set of (real-valued) solutions of
the (PLP) is non-empty (see for instance Dantzig 1963). Moreover, results in integer
programming guarantee that at least one of these solutions has integer components
(see Schrijver 1996); namely, F∗ �= ∅. Thus, we state without proof the following
result.

Proposition 1 Every market M has a nonempty set of optimal assignments.

4 Competitive equilibria

4.1 Definition and existence

We consider the situation where buyers and sellers trade through competitive markets.
That is, there is a unique market (and its corresponding unique price) for each of the
goods. Hence, a price vector is an n−dimensional vector of non-negative real num-
bers. Buyers and sellers are price-takers: given a price vector p = (p j ) j∈G ∈ R

n+
sellers supply units of the goods (up to their capacity) in order to maximize revenues
at p and buyers demand units of the goods (up to their maximal demands) in order to
maximize the total net valuation at p.

Supply of seller k: For each price vector p = (p j ) j∈G ∈ R
n+, seller k supplies of

every good j any feasible amount that maximizes revenues; namely,

S jk(p j ) =
⎧
⎨

⎩

{
q jk

}
if p j > r jk{

0, 1, . . . , q jk
}

if p j = r jk

{0} if p j < r jk .
(4)

To define the demands of buyers we need the following notation. Let p ∈ R
n+ be

given and consider buyer i . Let

∇>
i (p) = { j ∈ G | vi j − p j = max

j ′∈G
{vi j ′ − p j ′ } > 0} (5)

be the set of goods that give to buyer i the maximum (and strictly positive) net valuation
at p. Obviously, for some p, the set ∇>

i (p) may be empty. Let

∇≥
i (p) = { j ∈ G | vi j − p j = max

j ′∈G
{vi j ′ − p j ′ } ≥ 0} (6)
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be the set of goods that give to buyer i the maximum (and non-negative) net valuation
at p. Obviously, for some p, the set ∇≥

i (p) may also be empty. Moreover,

∇>
i (p) ⊆ ∇≥

i (p). (7)

Demand of buyer i : For each price vector p = (p j ) j∈G ∈ R
n+, buyer i demands

any feasible amounts of the goods that maximize the net valuations at p; namely,

Di (p) = {α = (α jk)( j,k)∈G×S ∈ Z
n×t | (D.a)∀( j, k) ∈ G × S, α jk ≥ 0,

(D.b)
∑

jk α jk ≤ di ,

(D.c)∇>
i (p) �= ∅ �⇒ ∑

jk α jk = di , and
(D.d)

∑
k α jk > 0 �⇒ j ∈ ∇≥

i (p)}.

Thus, Di (p) describes the set of all trades that maximize the net valuation of buyer
i at p. Observe that the set of trades described by each element in the set Di (p) gives
the same net valuation to buyer i ; i.e., i is indifferent among all trade plans specified
by each α ∈ Di (p).

Let A be an assignment and let i be a buyer. We denote by A(i) = (A(i) jk)( j,k)∈G×S

the element in Z
n×t+ such that, for all ( j, k) ∈ G × S, A(i) jk = Ai jk .

Definition 3 A competitive equilibrium of market M is a pair (p, A) ∈ R
n+ × F ⊆

R
n+ × Z

m×n×t+ such that:
(E.D) For each buyer i ∈ B, A(i) ∈ Di (p).
(E.S) For each good j ∈ G and each seller k ∈ S,

∑
i Ai jk ∈ S jk

(
p j

)
.

We say that a price vector p and a feasible assignment A are compatible if (p, A)

is a competitive equilibrium of market M . The vector p ∈ R
n+ is an equilibrium price

of market M if there exists A ∈ F such that (p, A) is a competitive equilibrium of
market M .

Let P∗ be the set of equilibrium price vectors of market M . Theorem 1 below states
that the set P∗ is always non-empty.

Theorem 1 For every market M, P∗ �= ∅.

Milgrom (2010) proves Theorem 1 for a more general model by showing that equi-
librium price vectors are the optimal solutions of a non-linear and continuous function
of p restricted to a compact set.6 However, in Sect. 4.3 below we include our proof
because it only uses linear programming arguments and it is based on computing an
optimal assignment, as one of the integer solutions of the primal linear program (PLP),
and a particular equilibrium price vector in P∗ associated to one of the solutions of
the dual linear program (DLP) that we present below.

6 Sotomayor (2007) contains an existential proof of the nonemptyness of the set of equilibrium price vectors
for her related model based on Tarski (1995)’s fixed point theorem.
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4.2 The dual linear program

In this subsection we present the dual linear program (DLP) and state for our setting
two well-known results of linear programming: the strong duality theorem and the
complementary slackness theorem. Using these two theorems we will show in Theo-
rem 2 that there exists a strong link between the set of competitive equilibria and the
set of solutions of the (PLP) and the (DLP).7

Let M = (B, S, G, V, d, R, Q) be a market. Let γ = (γi )i∈B ∈ R
m be an

m−dimensional vector and π = (
π jk

)
( j,k)∈G×S ∈ R

n×t be a (n × t)−matrix (below
we give an interpretation of these two objects). Observe that the following linear
program is the dual of the (PLP) defined above.

Dual linear program (DLP):

min
(γ,π)∈Rm×Rn×t

∑
i di · γi + ∑

jk q jk · π jk

s.t. (D.1) γi + π jk ≥ τi jk for all (i, j, k) ∈ B × G × S,

(D.2) γi ≥ 0 for all i ∈ B,

(D.3) π jk ≥ 0 for all ( j, k) ∈ G × S.

Let D be the set of dual feasible solutions, i.e., the set of vectors γ ∈ R
m and

matrices π ∈ R
n×t that satisfy conditions (D.1), (D.2), and (D.3), and let D∗ be the

set of solutions of the (DLP). Results in linear programming guarantee that the (DLP)
has at least a solution (see for instance Schrijver 1996); namely, D∗ �= ∅. Moreover,
D∗ is a convex subset of R

m ×R
n×t . Thus, we state without proof the following result.

Proposition 2 For every market M the set of solutions D∗ of the (DLP) is non-empty
and convex.

A dual solution (γ, π) ∈ D∗ can be interpreted as a way of sharing the gains
of trade among buyers and sellers associated to a particular competitive equilibrium
(p, A). The i th component of vector γ describes the (unique) per unit gain of buyer
i of all units that he buys and the ( j, k)th element of matrix π describes the (unique)
per unit gain of seller k of good j . For instance, assume that (γ, π) ∈ D∗ and (p, A)

is a competitive equilibrium with Ai jk > 0. Then, as we will formally show later,
γi = vi j − p j and π jk = p j − r jk . Thus, we can identify each dual solution with
one equilibrium price vector, and vice versa. As we will see, this identification is not
unique. A first (but insubstantial) reason of why this identification is not unique is the
following. Let (γ, π) ∈ D∗ and assume that q jk = 0 for some ( j, k) ∈ G × S. Let
π ′

jk ≥ 0 be arbitrary. Define (π− jk, π
′
jk) as the (n × t)−matrix obtained from π after

replacing π jk by π ′
jk . Then, (γ, (π− jk, π

′
jk)) ∈ D∗; that is, if q jk = 0 then the value

of the ( j, k)th entry of π is irrelevant. Hence, we assume without loss of generality
that

π jk = 0 whenever q jk = 0. (8)

7 In Thompson (1980) the dual solutions are called the core of a many-to-many assignment game.
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Under this convention, the following result holds.

Proposition 3 For every market M the set of solutions D∗ of the (DLP) is a compact
subset of R

m × R
n×t .

Let M be a market and (γ, π) ∈ D be a dual feasible solution. We write T d(γ, π)

to denote the value of the objective function of the (DLP) at (γ, π); that is,

T d (γ, π) =
∑

i
di · γi +

∑

jk
q jk · π jk .

The strong duality theorem and the complementary slackness theorem of linear
programming (see Dantzig 1963 and Schrijver 1996) applied to our setting say the
following.

Strong Duality Theorem Let M be a market and assume A ∈ F and (γ, π) ∈ D.
Then,

A ∈ F∗ and (γ, π) ∈ D∗ if and only if T (A) = T d(γ, π). (9)

Complementary Slackness Theorem Let M be a market and assume that A ∈ F
and (γ, π) ∈ D. Then, A ∈ F∗ and (γ, π) ∈ D∗ if and only if
(CS.1) for all (i, j, k) ∈ B × G × S, Ai jk · (

γi + π jk − τi jk
) = 0,

(CS.2) for all i ∈ B, (
∑

jk Ai jk − di ) · γi = 0, and
(CS.3) for all ( j, k) ∈ G × S, (

∑
i Ai jk − q jk) · π jk = 0.

4.3 Proof of Theorem 1

Before proving Theorem 1 we define for each solution (γ ∗, π∗) ∈ D∗ of the (DLP)

its associated price vector p(γ ∗,π∗) = (p(γ ∗,π∗)
j ) j∈G as follows. For each j ∈ G,

p(γ ∗,π∗)
j = min{k∈S|q jk>0}{π

∗
jk + r jk}. (10)

Observe that when computing the minimum among all sellers, we have to exclude
those that do not have good j; otherwise, the price of good j would be equal to 0

since, by (1) and (8), r jk = 0 and π∗
jk = 0. Moreover, we define p(γ ∗,π∗)

j to be the
minimum because, even if q jk > 0, we may have that Ai jk = 0 for all i ∈ B in all
optimal assignments A ∈ F∗; for instance, if r jk > vi j for all i ∈ B.

Proof of Theorem 1 Let A∗ ∈ F∗ and (γ ∗, π∗)∈ D∗ be solutions of (PLP) and (DLP),
respectively. By Propositions 1 and 2, they exist. To show that P∗ �= ∅, we will show
that (p(γ ∗,π∗), A∗) is a competitive equilibrium of M . We first show that for all i ∈ B,
A∗(i) ∈ Di (p(γ ∗,π∗)).

Fix i ∈ B. Since A∗ is feasible, (D.a) and (D.b) hold.
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Before proceeding, observe that by (D.1), for all ( j ′, k′) ∈ G×S, γ ∗
i ≥ τi j ′k′−π∗

j ′k′ .
If q j ′k′ > 0 then, by (3), γ ∗

i ≥ vi j ′ − (π∗
j ′k′ + r j ′k′). Thus, for all j ′ ∈ G,

γ ∗
i ≥ vi j ′ − min{k∈S|q j ′k>0}{π

∗
j ′k + r j ′k}. (11)

To show that (D.c) holds assume that
∑

jk A∗
i jk < di . By (CS.2),

γ ∗
i = 0. (12)

By (10) and (11), γ ∗
i ≥ vi j − p(γ ∗,π∗)

j for all j ∈ G. By (12), 0 ≥ vi j − p(γ ∗,π∗)
j for

all j ∈ G. Hence, ∇>
i (p(γ ∗,π∗)) = ∅.

To show that (D.d) holds, fix j ∈ G and assume that
∑

k A∗
i jk > 0. We want to show

that j ∈ ∇≥
i (p(γ ∗,π∗)). By assumption, there exists k′ ∈ S such that A∗

i jk′ > 0. Thus,
q jk′ > 0. By (CS.1), γ ∗

i + π∗
jk′ = τi jk′ = vi j − r jk′ . Thus, γ ∗

i = vi j − (π∗
jk′ + r jk′).

Hence, γ ∗
i ≤ vi j −min{k∈S|q jk>0}{π∗

jk+r jk}. By (11), γ ∗
i = vi j −min{k∈S|q jk>0}{π∗

jk+
r jk}. By (10),

γ ∗
i = vi j − p(γ ∗,π∗)

j . (13)

By (10) and (11), γ ∗
i ≥ vi j ′ − p(γ ∗,π∗)

j ′ for all j ′ ∈ G. By (13), vi j − p(γ ∗,π∗)
j ≥

vi j ′ − p(γ ∗,π∗)
j ′ for all j ′ ∈ G. By (D.2), γ ∗

i ≥ 0. Hence, j ∈ ∇≥
i (p(γ ∗,π∗)).

To show that (E.S) holds fix ( j, k) ∈ G × S. We want to show that
∑

i A∗
i jk ∈

S jk(p(γ ∗,π∗)
j ). We distinguish among three cases.

Case 1: p(γ ∗,π∗)
j > r jk . We have to show that

∑
i A∗

i jk = q jk . Assume that
∑

i A∗
i jk <

q jk . Then, by (CS.3), π∗
jk = 0. Since, by definition, p(γ ∗,π∗)

j = min{k′∈S|q jk′>0}{π∗
jk′ +

r jk′ }, p(γ ∗,π∗)
j ≤ π∗

jk′ +r jk′ for all k′ such that q jk′ > 0. But since 0 ≤ ∑
i A∗

i jk < q jk

and π∗
jk = 0, p(γ ∗,π∗)

j ≤ r jk . Contradicting the assumption.

Case 2: p(γ ∗,π∗)
j = r jk . Then (E.S) holds trivially since

∑
i A∗

i jk ∈ {0, . . . , q jk}.
Case 3: p(γ ∗,π∗)

j < r jk . We have to show that
∑

i A∗
i jk = 0. By (1), q jk > 0. To

obtain a contradiction, assume there exists i ∈ B such that A∗
i jk > 0. By (CS.1)

and (3) γ ∗
i + π∗

jk = τi jk = vi j − r jk . By hypothesis, and since by (D.3), π∗
jk ≥ 0,

γ ∗
i ≤ γ ∗

i +π∗
jk < vi j − p(γ ∗,π∗)

j . Thus, γ ∗
i < vi j − p(γ ∗,π∗)

j , contradicting (11). Thus,

for all i ∈ B, A∗
i jk = 0. Hence,

∑
i A∗

i jk = 0 ∈ {0} = S jk(p(γ ∗,π∗)
j ).

Thus p(γ ∗,π∗) ∈ P∗. ��

The proof of Theorem 1 shows that the following statement holds.
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Corollary 1 Let (γ, π) ∈ D∗. Then, p(γ,π) ∈ P∗

4.4 Competitive equilibria and solutions of the linear programs

Theorem 2 below says that the set of competitive equilibria (pairs of equilibrium price
vectors and compatible assignments) is strongly related to the set of solutions of the
two linear programs. In order to state and prove it, we need to relate price vectors with
dual solutions.

Define the mappings γ (·) : R
n+ → R

m+ and π(·) : R
n+ → R

n×t+ as follows.
Let p ∈ R

n+ be given. For each i ∈ B, define

γi (p) =
{

vi j − p j if there exists j ∈ ∇>
i (p)

0 otherwise,
(14)

and for each ( j, k) ∈ G × S, define

π jk (p) =
{

p j − r jk if p j − r jk > 0
0 otherwise.

(15)

The number γi (p) is the gain obtained by buyer i from each unit that he wants to buy
at p (if any) and the number π jk(p) is the profit obtained by seller k from each unit
of good j that he wants to sell at p (if any).

Theorem 2 Let M be a market and let p ∈ R
n+ be a price vector.

(2.1) Assume p ∈ P∗. Then, A ∈ F∗ if and only if p and A are compatible.
(2.2) p ∈ P∗ if and only if (γ (p), π(p)) ∈ D∗.

Proof The statements of Theorem 2 will follow from Lemmata 2, 3, 4 and 5 below.
We start with a lemma that will be used in the proofs of Lemmata 4 and 5. ��
Lemma 1 Assume (γ (p), π(p)) ∈ D∗ and A ∈ F∗. Then, p and A are compatible.

Proof of Lemma 1 Assume (γ (p), π(p)) ∈ D∗ and A ∈ F∗. To show that p and A are
compatible, we first show that for all i ∈ B, A(i) ∈ Di (p). Since A is feasible, (D.a)
and (D.b) hold. To show that (D.c) holds, assume ∇>

i (p) �= ∅. Then, vi j − p j > 0 for
some j ∈ G. By definition, γi (p)>0. By (CS.2),

∑
jk Ai jk =di ; namely, (D.c) holds.

To show that (D.d) holds, fix (i, j) ∈ B × G and assume
∑

k Ai jk > 0. We want
to show that j ∈ ∇≥

i (p). Since
∑

k Ai jk > 0, there exists a seller k ∈ S such that
Ai jk > 0. Thus, q jk > 0 holds. Moreover, by (CS.1), γi (p) + π jk(p) = τi jk . By (3),

γi (p) + π jk(p) + r jk = vi j . (16)

We distinguish between two cases.

Case 1: p j − r jk ≥ 0. Then, π jk(p) = p j − r jk ≥ 0. By (16), γi (p) = vi j − p j .
If γi (p) = vi j − p j > 0 then j ∈ ∇>

i (p). By (7), j ∈ ∇≥
i (p). If γi (p) = vi j − p j = 0

then ∇>
i (p) = ∅. Hence, for all ( j ′, k′) ∈ G × S, 0 ≥ vi j ′ − p j ′ . Thus, j ∈ ∇≥

i (p).
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Case 2: p j − r jk < 0. Then, π jk(p) = 0. By (16), γi (p) + r jk = vi j . Hence,
γi (p) + p j < vi j . Thus, γi (p) < vi j − p j . Hence, by definition of γi (p), there exists
j ′ ∈ ∇>

i (p) such that γi (p) = vi j ′ − p j ′ < vi j − p j , but this is impossible (i.e., Case
2 never occurs).

Hence, (D.d) holds for i ∈ B. Thus, A(i) ∈ Di (p) for all i ∈ B.
We want to show now that, for all ( j, k) ∈ G × S,

∑
i Ai jk ∈ S jk

(
p j

)
holds. Fix

( j, k) ∈ G × S. Since A is feasible, 0 ≤ ∑
i Ai jk ≤ q jk . Assume p j = r jk . Then,∑

i Ai jk ∈ S jk
(

p j
)

holds trivially. Assume p j > r jk . Then, π jk(p) = p j − r jk > 0.
By (CS.3),

∑
i Ai jk = q jk . Thus,

∑
i Ai jk ∈ S jk(p j ) = {q jk}. Finally, assume

p j < r jk.. Then, π jk(p) = 0 and S jk(p j ) = {0}. Suppose Ai jk > 0. Then, q jk > 0.
By (CS.1), γi (p) + π jk(p) = τi jk = vi j − r jk ≥ 0. Since p j < r jk,

vi j − p j > vi j − r jk = γi (p) ≥ 0,

a contradiction with the definition of γi (p). Thus, for all i ∈ B, Ai jk = 0 and∑
i Ai jk = 0 ∈ S jk(p jk) = {0} ��

Lemma 2 [⇐� of (2.1)] Assume p ∈ P∗ and A ∈ F are compatible. Then, A ∈ F∗.

Proof of Lemma 2 Let p ∈ P∗ and A ∈ F be compatible. We first show in Claim 1
that (γ (p), π(p)) ∈ D. Then, we show in Claim 2 that T (A) = T d(γ (p), π(p)), and
hence, by the Strong Duality Theorem, A ∈ F∗.

Claim 1 (γ (p), π(p)) ∈ D.

Proof of Claim 1 By their definitions, γi (p) ≥ 0 for all i ∈ B and π jk(p) ≥ 0 for
all ( j, k) ∈ G × S; namely, (D.2) and (D.3) of the (DLP) hold. To show that, for all
(i, j, k) ∈ B × G × S,

γi (p) + π jk(p) ≥ τi jk (17)

holds, fix i ∈ B and assume first that γi (p) = 0. Then, vi j − p j ≤ 0 for all j ∈ G.
If q jk > 0 then, by (3), τi jk = vi j −r jk ≤ p j −r jk ≤ π jk(p). Thus, since γi (p) = 0,

(17) holds. If q jk = 0 then, by (3), τi jk = 0. Thus, by definition of π jk(p) and since
γi (p) = 0, (17) holds. Hence, if γi (p) = 0 then (17) holds.

Assume now γi (p) > 0. Then, there exists j ∈ ∇>
i (p) such that γi (p)= vi j −

p j > 0. By definition of ∇>
i (p), for all ( j ′, k′) ∈ G × S,

vi j − p j + π j ′k′(p) ≥ vi j ′ − p j ′ + π j ′k′(p)

≥ vi j ′ − p j ′ + p j ′ − r j ′k′

= vi j ′ − r j ′k′ .

If q j ′k′ > 0 then, by (3), τi j ′k′ = vi j ′ − r j ′k′ and hence, vi j − p j + π j ′k′(p) ≥ τi j ′k′ .
If q j ′k′ = 0 then τi j ′k′ = 0, and since vi j − p j > 0 and π j ′k′(p) ≥ 0, vi j − p j +
π j ′k′(p) ≥ τi j ′k′ holds as well. Thus, for all (i, j ′, k′) ∈ B ×G ×S, γi (p)+π j ′k′(p) ≥
τi j ′k′ . Hence, (17) holds as well when γi (p) > 0. Thus, (γ (p), π(p)) ∈ D. This ends
the proof of Claim 1.
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Claim 2 T (A) = T d(γ (p), π(p)).

Proof of Claim 2 By the Strong Duality and the Complementary Slackness Theorems
it is sufficient to show that (CS.1), (CS.2) and (CS.3) hold. Since p ∈ P∗ and A ∈ F
are compatible, A(i) ∈ Di (p) for every i ∈ B, and

∑
i Ai jk ∈ S jk(p j ) for every

( j, k) ∈ G × S.

(CS.1) Assume Ai jk > 0. Then,
∑

i Ai jk > 0. By the definition of S jk(p j ), p j ≥ r jk .
Because q jk > 0 and (3),

τi jk = vi j − r jk = (
vi j − p j

) + (
p j − r jk

)
. (18)

Moreover, by p j ≥ r jk and (15),

π jk(p) = p j − r jk . (19)

Since A(i) ∈ Di (p) and
∑

k Ai jk > 0, j ∈ ∇≥
i (p). Thus,

γi (p) = vi j − p j . (20)

Then, by (18), (19), and (20), τi jk = γi (p) + π jk(p).

(CS.2) Assume
∑

jk Ai jk−di > 0. Since A(i) ∈ Di (p), (D.c) implies that ∇>
i (p)=∅,

and hence, max j ′∈G{vi j ′ − p j ′ } ≤ 0. Thus, by (14), γi (p) = 0.

(CS.3) Assume
∑

i Ai jk < q jk . Since
∑

i Ai jk ∈ S jk(p j ), p j ≤ r jk . Thus, by (15),
π jk(p) = 0.

The statement of Lemma 2 follows from Claims 1 and 2. ��
Lemma 3 [�⇒ of (2.2)] Assume p ∈ P∗. Then, (γ (p), π(p)) ∈ D∗.

Proof of Lemma 3 Assume p ∈ P∗ and let A ∈ F be any assignment compatible
with p. Thus, the hypothesis of Lemma 2 hold. By Claims 1 and 2 in the proof of
Lemma 2, (γ (p), π(p)) ∈ D and T (A) = T d(γ (p), π(p)). By the Strong Duality
Theorem, (γ (p), π(p)) ∈ D∗. ��
Lemma 4 [�⇒ of (2.1)] Assume p ∈ P∗ and A ∈ F∗. Then, p and A are compatible.

Proof of Lemma 4 Follows from Lemmata 1 and 3. ��
Lemma 5 [⇐� of (2.2)] Assume (γ (p), π(p)) ∈ D∗. Then, p ∈ P∗.

Proof of Lemma 5 Let p ∈ R
n+ be such that (γ (p), π(p)) ∈ D∗. To see that p is an

equilibrium price vector of M let A ∈ F∗ be arbitrary. By Lemma 1, p and A are
compatible. Hence, by definition, p ∈ P∗. ��

Theorem 2 holds since condition (2.1) follows from Lemmata 2 and 4, and condition
(2.2) follows from Lemmata 3 and 5. ��
Corollary 2 The set of equilibrium price vectors P∗ is a convex and compact subset
of R

n+.
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5 Structure of the set of competitive equilibria

5.1 Previous results

Recall that the assignment game of Shapley and Shubik (1972) is a particular instance
of our model where each seller owns one indivisible object and each buyer wants to
buy at most one object. Since objects owned by different sellers may be perceived
differently by different buyers (or they may, indeed, be different), we can identify the
set of goods G with the set of sellers S. Namely, a market M is an assignment game
if di = 1 for all i ∈ B, n = t and for all ( j, k) ∈ G × S,

q jk =
{

1 if j = k
0 if j �= k.

Hence, each seller j ∈ S has a reservation value r j ≥ 0 of the indivisible object j ∈ G
that he owns. Thus, an assignment game can be identified as an (m × t)−matrix a,
where for all (i, j) ∈ B × S, ai j = max{0, vi j − r j }.

The set of competitive equilibria of a (one-to-one) assignment game a has the
following four properties.

(1) The set of equilibrium price vectors is a non-empty, convex and compact subset
of R

n+.
(2) The set of competitive equilibria is the Cartesian product of the set of equilibrium

price vectors times the set of optimal assignments.
(3) The set of equilibrium price vectors P∗ endowed with the partial order ≥ on R

n+
(where p ≥ p′ if and only if p j ≥ p′

j for all j ∈ G) is a complete lattice.8 In par-
ticular, given p, p′ ∈ P∗, (max{p j , p′

j }) j∈G ∈ P∗ and (min{p j , p′
j }) j∈G ∈ P∗.

Moreover, the set of equilibrium price vectors contains two extreme vectors
pB and pS with the property that for any equilibrium price vector p ∈ P∗,
pS ≥ p ≥ pB .

(4) The lattice structure of P∗ is translated into the set of utilities that are attain-
able at equilibrium as follows. Given p ∈ P∗ and an optimal assignment
μ = (μi j )(i, j)∈B×S , define for each i ∈ B,

ui (p) =
{

vi j − p j if μi j = 1 for some j ∈ S
0 otherwise,

and for each j ∈ S,

w j (p) =
{

p j − r j if μi j = 1 for some i ∈ B
0 otherwise.

It turns out that these utilities are independent of the chosen optimal assignment μ

(see Lemma 6 below for a proof of this statement in our more general many-to-many

8 Let X be a non-empty set and let � be a partial order on X . The pair (X, �) is a complete lattice if for
any non-empty subset Y ⊆ X, sup�Y and inf�Y belong to Y .
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setting). Thus, we can write them as depending only on the equilibrium price vector p.
Then, for all p, p′ ∈ P∗, the following three statements are equivalent:

(a) p j ≥ p′
j for all j ∈ G.

(b) ui (p′) ≥ ui (p) for all i ∈ B.
(c) w j (p) ≥ w j (p′) for all j ∈ S.

Hence, we can define two binary relations �u and �w on P∗ as follows: for p, p′ ∈ P∗,

p �u p′ ⇐⇒ ui (p) ≥ ui (p′) for all i ∈ B,

and

p �w p′ ⇐⇒ w j (p) ≥ w j (p′) for all j ∈ S.

Then, the set P∗ endowed with the partial order �u (or �w) is a complete lattice.
Moreover, �u and �w are dual in the sense that p �u p′ ⇐⇒ p′ �w p.

Consider again our model. We have already seen (in Theorem 1 and Corollary 1)
that property (1) still holds while Milgrom (2010) shows using Topkis (1978)’s theo-
rem that property (3) holds as well. In this section we will show that property (2) is
satisfied while property (4) only holds partially. In particular, the equivalences between
the statements (a), (b), and (c) above do not hold anymore on P∗. One of the reasons
is because there may be goods that are never exchanged in equilibrium; for instance,
because the smallest reservation price r j = mink∈S r jk of good j is strictly larger
than its largest valuation v j = maxi∈B vi j . Then, the price of good j can be equal
to any number in the interval [v j , r j ] without affecting the equilibrium property of
the full vector. We shrink the set of equilibrium price vectors by fixing the price of
the goods that are never exchanged at equilibrium at the highest possible one that
keeps the equilibrium properties of the full price vector. We call it the set of restricted
equilibrium price vectors and denote it by P∗∗. Then, we show in Theorem 3 that P∗∗
has also a complete lattice structure with the natural order ≥ of vectors.9 Moreover,
we show that the equivalence of (a) and (b) above holds on P∗∗ and that property (c)
above is not anymore equivalent to properties (a) and (b) on the set P∗∗; i.e., for all
p, p′ ∈ P∗∗, (a) and (b) are equivalent and each implies (c) but (c) neither implies (a)
nor (b).

Before proceeding we compare these results with similar results obtained in related
models. Camiña (2006) shows that in her model with one seller and unit-demands the
set of core utilities has the following properties: (i) it is non-empty, (ii) it may not
coincide with the set of utilities that are attainable at equilibrium, and (iii) it forms a
complete lattice. In Sotomayor (2007)’s model where each buyer is interested only on
buying at most one unit from each seller, each seller only owns (potentially many) units
of one good and exchanges are binary (i.e., Ai jk ∈ {0, 1} for all (i, j, k) ∈ B × G × S)
it is showed that the sets of agents’ utilities attainable at equilibrium have a dual
lattice structure with the partial order ≥ on R

n . In this model, as already described

9 Our proof is direct and it does not use Topkis (1978)’s theorem. In addition, with a few slight modifications
it can be adapted to prove directly that P∗ has a complete lattice structure with the order ≥.
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in Sotomayor (1992), an agent payoff is represented by a vector of utilities, each
component coming from each of the partnerships that the agent forms with agents
in the other side of the market (a dummy agent is added to each of the two sets of
agents to represent feasible but unfilled partnerships with agents in the other side of
the market). Sotomayor (1999) proves the lattice property of the set of stable payoffs
after conveniently represent each of them as a vector of an Euclidian space, whose
dimension depends on the specific quota of the agent. Sotomayor (2007) shows that
the set of competitive equilibrium payoffs (notice again that each agent’s payoff is a
vector of utilities, not a total payoff) is a non-empty subset of the set of stable pay-
offs (the proof of its nonemptyness uses the Duality and Complementary Slackness
Theorems) and it has the lattice property (this proof uses Tarski’s theorem). Sotomayor
(2002, 2009b) extends her previous results to a more general model (called the time-
sharing assignment game) in which any two agents from opposite sides of the market
may form a partnership, contribute with an (identical) amount of labor (that may be
perfectly divisible) and generate an amount of income which has to be divided among
the two agents. Sotomayor (2009b) shows that, in the time-sharing assignment game,
alternative solution concepts are non-empty (this is done using again the Duality and
Complementary Slackness Theorems) and that these solution concepts are related by
a nested inclusion relationships. Finally, Milgrom (2010) does not address properties
(2) and (4), and complements property (3) by showing, using Topkis (1978)’s theorem,
that in his general setting the set of market-clearing prices is a non-empty, closed, and
convex sublattice (a subset of a lattice that is itself a lattice).

The main contribution of our paper is twofold. First, it presents a many-to-many
extension of Shapley and Shubik (1972)’s assignment game where a partnership
between a buyer and a seller may involve exchanges of several units of different
goods. Second, it is also methodological since all our results on this generalized many-
to-many assignment game with more complex partnerships are exclusively based on
linear programming arguments.

5.2 Cartesian product structure of the set of competitive equilibria

We first establish that in our model the set of competitive equilibria has a Cartesian
product structure; namely, if (p, A) and (p′, A′) are two competitive equilibria of M
then, (p, A′) and (p′, A) are also two competitive equilibria of M . This follows imme-
diately from Lemmata 2 and 4 used to prove Theorem 2. We state it as Proposition 4
below.

Proposition 4 Let M be a market. Then, (p, A) is a competitive equilibrium of M if
and only if p ∈ P∗ and A ∈ F∗.

Proof Assume (p, A) is a competitive equilibrium of M . By definition, p ∈ P∗. More-
over, p and A are compatible. By Lemma 2, A ∈ F∗. Assume p ∈ P∗ and A ∈ F∗.
By Lemma 4, p and A are compatible. Thus, (p, A) is a competitive equilibrium of
M . ��
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5.3 Sets of equilibrium utilities

Let p ∈ R
n+ be a price vector and A ∈ F a feasible assignment of market M . We

define the utility of buyer i ∈ B at the pair (p, A) as the total net gain obtained by i
from his exchanges specified by A at price p. We denote it by ui (p, A); namely,

ui (p, A) =
∑

jk

(vi j − p j ) · Ai jk .

We define the utility of seller k ∈ S at the pair (p, A) as the total net gain obtained by
k from his exchanges specified by A at price p. We denote it by wk(p, A); namely,

wk(p, A) =
∑

i j

(p j − r jk) · Ai jk .

Define

G> = { j ∈ G | there exists A ∈ F∗ such that Ai jk > 0 for some (i, k) ∈ B × S}

as the set of goods that are exchanged at some optimal assignment. For each seller
k ∈ S, define

G>
k = { j ∈ G | there exists A ∈ F∗ such that Ai jk > 0 for some i ∈ B}

as the set of goods of which k sells strictly positive amounts at some optimal assign-
ment. Obviously, G> = ∪k∈SG>

k .
Next lemma states that equilibrium utilities are independent of the particular opti-

mal assignment chosen since they only depend on the equilibrium price vector, which
determines the associated solution of the (DLP).

Lemma 6 Let p ∈ P∗ be an equilibrium price vector of M and let A ∈ F∗ be an
optimal assignment of M. Then, the following two conditions hold:
(L6.1) For each buyer i ∈ B, ui (p, A) = γi (p) · di .
(L6.2) For each seller k ∈ S, wk(p, A) = ∑

j∈G>
k
(p j − r jk) · q jk .10

Proof of Lemma 6 Let (p, A) ∈ P∗ × F∗. Note that p and A are compatible. To prove
(L6.1), fix i ∈ B. By definition, ui (p, A) = ∑

jk(vi j − p j ) · Ai jk . Let ( j, k) ∈ G × S
be given. If Ai jk = 0 then (vi j − p j ) · Ai jk can trivially be written as γi (p) · Ai jk .
If Ai jk �= 0 then by (D.d), j ∈ ∇≥

i (p), which implies that (vi j − p j ) = γi (p), and

ui (p, A) = γi (p) ·
⎛

⎝
∑

jk

Ai jk

⎞

⎠ .

10 Observe that wk (p, A) can also be written as
∑

j∈G π jk (p) · q jk .
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If γi (p) = 0 then the statement holds because γi (p) · (
∑

jk Ai jk) = γi (p) · di = 0.
By (CS.2), if γi (p) �= 0 then

∑
jk Ai jk = di . Thus,

ui (p, A) = γi (p) · di .

To prove (L6.2), fix k ∈ S. By definition, wk(p, A) = ∑
i j (p j − r jk) · Ai jk . Then,

∑

i j

(p j − r jk) · Ai jk =
∑

j

(p j − r jk) ·
(

∑

i

Ai jk

)

.

Since p ∈ P∗, by (E.S), if (p j −r jk) > 0 then
∑

i Ai jk = q jk . If (p j −r jk) < 0 then,
S jk(p j ) = {0}, and hence, since p and A are compatible,

∑
i Ai jk = 0. Therefore,

wk(p, A) =
∑

j∈{ j ′∈G|p j ′−r j ′k≥0}
(p j − r jk) · q jk =

∑

j∈G>
k

(p j − r jk) · q jk . (21)

Condition (21) holds because { j ′ ∈ G | q j ′k > 0 and p j ′ − r j ′k > 0} ⊆ G>
k ⊆ { j ∈

G | p j − r jk ≥ 0}. To see that, let j ∈ G>
k . Hence, there exists Ā ∈ F∗ such that

Āi jk > 0, which implies, since p and Ā are compatible, p j − r jk ≥ 0. Thus, the
second inclusion holds. To prove the first one, assume j ∈ { j ′ ∈ G | q j ′k > 0 and
p j ′ − r j ′k > 0}. Then, since p ∈ P∗, by (E.S),

∑
i Ai jk = q jk . Thus, j ∈ G>

k . ��
By Lemma 6, we can write the utilities of buyers and sellers as functions only of

the equilibrium price vector p; namely, given p ∈ P∗, we write for each i ∈ B and
each k ∈ S,

ui (p) = γi (p) · di (22)

and

wk(p) =
∑

j∈G>
k

(p j − r jk) · q jk . (23)

5.4 The set of restricted equilibrium price vectors

We start this subsection with an example that illustrates two important facts. First, it
shows that, in contrast with the Shapley and Shubik (1972)’s assignment game, there
are markets with two equilibrium price vectors p, p′ ∈ P∗ with the property that
wk(p′) > wk(p) for all k ∈ S while ui (p′) > ui (p) for some i ∈ B (the equivalence
between statements (b) and (c) at the beginning of Sect. 5 does not hold on P∗).11

Second, it also shows that the (incomplete) binary relation ≥ on the set of vectors in
R

n+ is not imbedded into the set of attainable equilibrium utilities (the equivalence

11 See Example 3 in Sotomayor (1992) for a similar example in the multiple-partners game.
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between statements (a) and (b) at the beginning of Sect. 5 does not hold on P∗).
These two facts will have consequences for the lattice structures of the set(s) of
(restricted) equilibrium price vectors and the sets of attainable equilibrium utilities
that will be analyzed at the end of this subsection.

Example 1 Let M = (B, G, S, V, d, R, Q) be a market where B = {b1, b2},

G = {g1, g2, g3}, S = {s1}, V =
(

8 0 2
0 5 3

)
, d = (2, 3), R =

⎛

⎝
1
2

10

⎞

⎠, and Q =
⎛

⎝
2
3
1

⎞

⎠.

It is easy to see that, for all p3, p′
3 ∈ [3, 10], p = (5, 4, p3) and p′ = (7, 2, p′

3) are
two equilibrium price vectors of M and 14 = w1(p) > w1(p′) = 12. Furthermore,
γ (p) = (3, 1) and γ (p′) = (1, 3). Then, u1(p) = 3 · 2 = 6, u2(p) = 1 · 3 = 3,
u1(p′) = 1 · 2 = 2, and u2(p′) = 3 · 3 = 9. Thus, w1(p) > w1(p′), u1(p) > u1(p′)
and u2(p′) > u2(p). Moreover, observe that, for all i ∈ {1, 2}, ui (7, 2, p3) =
ui (7, 2, p′

3) for all 1 < p3 < p′
3 ≤ 10 but p = (7, 2, p3) < (7, 2, p′

3) = p′.
This is because no unit of good 3 is exchanged in any equilibria and hence, the equi-
librium price vector p = (7, 2, p3) is equivalent (in terms of its induced demands and
supplies) to the equilibrium price vector p′ = (7, 2, p′

3) as long as 1 < p3 < p′
3 ≤ 10.

In order to restore the interesting property that the (incomplete) binary relation ≥
on R

n+ reproduces itself in terms of buyers utilities (in the corresponding space) we
have to eliminate an insubstantial multiplicity of equilibrium prices of the goods that
are not exchanged at any equilibrium assignment. We do it by setting the prices of
each non-exchanged good equal to the highest possible one (keeping the equilibrium
property of the price vector).12 Formally, given an equilibrium price vector p ∈ P∗,
define p = (p j ) j∈G as follows:

p j =
{

p j if j ∈ G>

pS
j if j /∈ G>,

(24)

where pS
j = sup

p∈P∗
p j .13 Proposition 5 below says that this distortion does not affect

the equilibrium property of the original price vector.

Proposition 5 Let M be a market and let p ∈ P∗. Then, p ∈ P∗.

Proof Let A ∈ F∗ be an optimal assignment of M . We will prove that (p, A) is a
competitive equilibrium of M by showing that conditions (E.D) and (E.S) are satisfied
by p with respect to A.

(E.D) For every i ∈ B, A(i) ∈ Di (p).

12 The choice of the highest price is arbitrary. The important fact is to select, for each of these goods, just
one of its potentially many equilibrium prices.
13 The vector pS = (pS

j ) j∈G is called the sellers-optimal equilibrium price. Similarly, define for each

j ∈ G, pB
j = inf

p∈P∗ p j . The vector pB = (pB
j ) j∈G is called the buyers-optimal equilibrium price. By

Milgrom (2010), the price vectors pS and pB do exist and they are the two extreme equilibrium prices of
the complete lattice (P∗, ≥).
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Fix i ∈ B. Since A is feasible, (D.a) and (D.b) hold.
To show that (D.c) holds, assume ∇>

i (p) �= ∅. Then, there exists j ∈ ∇>
i (p)

such that vi j − p j > 0. Since either p j = p j or p j = pS
j we have that either

0 < vi j − p j = vi j − p j or 0 < vi j − p j = vi j − pS
j , which implies that either

∇>
i (p) �= ∅ or ∇>

i (pS) �= ∅. By hypothesis, p ∈ P∗ and, by Milgrom (2010),
pS ∈ P∗. Hence, p and pS are both compatible with A. Thus,

∑
jk Ai jk = di , which

means that (D.c) holds for p.
To show that (D.d) holds, let (i, j) ∈ B × G be such that

∑
k Ai jk > 0. Thus,

j ∈ G>. We have to show that j ∈ ∇≥
i (p). Since p and pS are both compatible with

A, j ∈ ∇≥
i (p) ∩ ∇≥

i (pS). By definition of ∇≥
i (p),

vi j − p j ≥ 0 (25)

and

vi j − p j ≥ vi j ′ − p j ′ for every j ′ ∈ G. (26)

By definition of ∇≥
i (pS), vi j − pS

j ≥ 0 and vi j − pS
j ≥ vi j ′ − pS

j ′ = vi j ′ −maxp∈P∗ p j ′

for every j ′ ∈ G. We next show that:

vi j − p j ≥ 0

and

vi j − p j ≥ vi j ′ − p j ′ for every j ′ ∈ G.

Since j ∈ G>, p j = p j . Thus, by (25), vi j − p j ≥ 0. We distinguish between two
cases.
Case 1: j ′ ∈ G>. Then, p j ′ = p j ′ and

vi j − p j = vi j − p j by definition of p j
≥ vi j ′ − p j ′ by (26)

= vi j ′ − p j ′ by definition of p j ′ .

Hence, vi j − p j ≥ vi j ′ − p j ′ for every j ′ ∈ G>.
Case 2: j ′ /∈ G>. Then, p j ′ = pS

j ′ = maxp∈P∗ p j ′ and

vi j − p j = vi j − p j by definition of p j
≥ vi j ′ − p j ′ by (26)

≥ vi j ′ − maxp∈P∗ p j ′
= vi j ′ − p j ′ by definition of p j ′ .

Hence, vi j − p j ≥ vi j ′ − p j ′ for every j ′ /∈ G>.
Thus, j ∈ ∇≥

i (p).
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(E.S) For every j ∈ G,
∑

i Ai jk ∈ S jk(p j ).

Assume first that j ∈ G>. Then, p j = p j and S jk(p j ) = S jk(p j ). Since p and
A are compatible,

∑
i Ai jk ∈ S jk(p j ). Thus,

∑
i Ai jk ∈ S jk(p j ). Assume now that

j /∈ G>. Then, p j = pS
j and S jk(p j ) = S jk(pS

j ). Since pS and A are compatible,
∑

i Ai jk ∈ S jk(pS
j ). Thus,

∑
i Ai jk ∈ S jk(p j ). ��

Proposition 6 shows that the distortion in (24) coincides with the one produced
in p by computing its associated price vector p(γ (p),π(p)) from its dual solution
(γ (p), π(p)).

Proposition 6 For every p ∈ P∗, p(γ (p),π(p)) = p.

Proof Let p ∈ P∗ be given and let A∗ ∈ F∗ be any compatible assignment. By
definition, for all j ∈ G , p̃ j ≡ p(γ (p),π(p))

j = min{k∈S|q jk>0}{π jk(p) + r jk}.
Assume first that j /∈ G>. Then,

∑
ik A∗

i jk = 0. By (CS.3), π∗
jk = 0 for all k ∈ S

and all π∗
jk such that there exists γ ∗ with the property that (γ ∗, π∗) ∈ D∗. Thus, by

(2.2), π jk(p) = 0. Hence, p̃ j = min{k∈S|q jk>0} r jk . By Corollary 2 and definition of
pS , p̃ j ≤ pS

j . To obtain a contradiction, assume p̃ j < pS
j . Then, there exists k ∈ S

such that q jk > 0 and r jk < pS
j . Since, by Milgrom (2010), P∗ is a complete lattice,

pS ∈ P∗, (E.S) implies that
∑

i A∗
i jk = q jk > 0, a contradiction.

Assume now that j ∈ G>. It is immediate to see that, for all p′ ∈ P∗,

G> ⊆
⋃

i∈B

∇≥
i (p′) (27)

holds. Next, we show that the following claim holds.

Claim 3 Let p′ ∈ P∗ and (i, j) ∈ B × G be such that j ∈ ∇≥
i (p′), then vi j − p′

j =
γi (p′).

Proof of Claim Since j ∈∇≥
i (p′), vi j−p′

j ≥ 0 and for all j ′ ∈G, vi j−p′
j ≥ vi j ′ − p′

j ′ .
If vi j − p′

j = 0, then vi j ′ − p′
j ′ ≤ 0 for all j ′ ∈ G. Thus, γi (p′) = 0 = vi j − p′

j . If
vi j − p′

j > 0, then j ∈ ∇>
i (p′). Thus, γi (p′) = vi j − p′

j . ��
By (D.1), for all (γ, π) ∈ D∗ and all (i, j, k) ∈ B × G × S, γi +π jk ≥ τi jk . Thus,

by (3), for all i ∈ B and all ( j, k) such that q jk > 0, γi + π jk ≥ vi j − r jk . Hence,

π jk + r jk ≥ vi j − γi . (28)

Since j ∈ G>, (27) implies that there exists (i ′, k′) ∈ B × S such that q jk′ > 0,

A∗
i ′ jk′ > 0 and j ∈ ∇≥

i (p′). Thus, by (28) applied to (γ (p′), π(p′)) and i ′ ∈ B,
π jk(p′) + r jk ≥ vi ′ j − γi ′(p′) for all k ∈ S such that q jk > 0. By the claim above,
π jk(p′) + r jk ≥ vi ′ j − γi ′(p′) = p′

j . Thus,

min{k∈S|q jk>0}{π jk(p′) + r jk} ≥ p′
j . (29)
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Moreover, by (CS.1), γi ′(p′)+π jk′(p′) = τi ′ jk′ = vi ′ j −r jk′ . Thus, π jk′(p′)+r jk′ =
vi ′ j − γi ′(p′), and by the claim above, π jk′(p′) + r jk′ = vi ′ j − γi ′(p′) = p′

j . Thus,
by (29), min{k∈S|q jk>0}{π jk(p′) + r jk} = p′

j , which implies that p′
j = p j . Hence,

p(γ (p),π(p)) = p. ��
Given a market M , we can define the set of restricted equilibrium price vectors P∗∗

as those that are obtained from equilibrium price vectors after setting the price of the
goods that are not exchanged at any optimal assignment equal to their sellers-optimal
equilibrium price. Namely,

P∗∗ = {p ∈ P∗ | p j = pS
j for every j /∈ G>}.

Theorem 3 below states that the set P∗∗ has a complete lattice structure with the
natural order ≥ on R

n+.

Theorem 3 The pair (P∗∗,≥) is a complete lattice.

Proof Let Z ⊆ P∗∗ be a non-empty subset of restricted equilibrium price vectors
of M . Define pB (Z) = (pB

j (Z)) j∈G ∈ R
n+ and pS (Z) = (pS

j (Z)) j∈G ∈ R
n+ as

follows: for each j ∈ G, let

pB
j (Z) = inf

p∈Z
p j and pS

j (Z) = sup
p∈Z

p j . (30)

Lemma 7 Let M be a market. Then, for all ∅ �= Z ⊆ P∗∗, pB(Z), pS(Z) ∈ P∗∗.

Proof of Lemma 7 Let A ∈ F∗ be an optimal assignment of M . Given a non empty
subset Z ⊆ P∗∗, we will first prove that pB (Z) is an equilibrium price vector of M by
showing that (E.D) and (E.S) are satisfied by pB (Z) with respect to A. The proof that
pS(Z) is also an equilibrium price vector of M uses similar arguments and therefore
it is omitted.

(E.D) for pS (Z): For every i ∈ B, A(i) ∈ Di (pS (Z)).
Fix i ∈ B. Since A is feasible, (D.a) and (D.b) hold.
To show that (D.c) holds, assume ∇>

i (pS (Z)) �= ∅. Then, there exists
j ∈ ∇>

i (pS (Z)) such that vi j − pS
j (Z) > 0. Since pS

j (Z) = supp∈Z p j , we have

that for every p ∈ Z , 0 < vi j − pS
j (Z) ≤ vi j − p j , which implies that ∇>

i (p) �= ∅.

Because p and A are compatible,
∑

jk Ai jk = di . Thus, (D.c) holds for pS (Z).
To show that (D.d) holds, let j ∈ G be such that

∑
k Ai jk > 0. We have to show

that j ∈ ∇≥
i (pS (Z)). Since for all p ∈ Z , p and A are compatible, j ∈ ∇≥

i (p) for
every p ∈ Z . By definition of ∇≥

i (p), vi j − p j ≥ 0 and vi j − p j ≥ vi j ′ − p j ′ for
every j ′ ∈ G. For every j ′ ∈ G,

vi j ′ − p j ′ ≥ vi j ′ − sup
p̂∈Z

p̂ j ′ (31)

holds for all p ∈ Z . Let {pm}m∈N be a sequence such that, for all m ∈ N, pm ∈ Z
and {pm

j }m∈N → supp∈Z p j . By (31), vi j ′ − pm
j ′ ≥ vi j ′ − supp∈Z p j ′ for all m ∈ N.

Since j ∈ ∇≥
i (p) for every p ∈ Z , j ∈ ∇≥

i (pm) for every m ∈ N. Thus, vi j − pm
j ≥

123

Author's personal copy



D. Jaume et al.

vi j ′ − pm
j ′ for all m ∈ N. Thus, vi j − pm

j ≥ vi j ′ − supp∈Z p j ′ for all m ∈ N. Hence,

vi j − supp∈Z p j ≥ vi j ′ − supp∈Z p j ′ . Thus, j ∈ ∇≥
i (pS (Z)).

(E.S) for pS (Z): For every ( j, k) ∈ G × S,
∑

i Ai jk ∈ S jk(pS
j (Z)).

Fix ( j, k) ∈ G × S. If pS
j (Z) < r jk then, for all p ∈ Z , p j ≤ pS

j (Z) < r jk . Thus,
∑

i Ai jk = 0 ∈ S jk(p j ). Thus,
∑

i Ai jk ∈ {0} = S jk(pS
j (Z)). If pS

j (Z) > r jk, let
{pm}m∈N be a sequence such that, for all m ∈ N, pm ∈ Z and {pm

j }m∈N → supp∈Z p j .
Then, there exists m̄ ∈ N such that for all m > m̄, pm

j > r jk . Thus,
∑

i Ai jk ∈ {q jk} =
S jk(pm

j ) for all m > m̄. Hence,
∑

i Ai jk ∈ {q jk} = S jk(pS
j (Z)).

We now prove that indeed pB(Z), pS(Z) ∈ P∗∗. That is, that pB
j (Z) = pS

j and

pS
j (Z) = pS

j for every j /∈ G>. Let j /∈ G>. Since pB
j (Z) = inf p∈Z p j and

p ∈ Z ⊆ P∗∗ implies p j = pS
j , inf p∈Z p j = pS

j . Thus, pB
j (Z) = pS

j . Hence,

pB(Z) ∈ P∗∗. Similarly, pS(Z) ∈ P∗∗. ��
By Lemma 7 above we can write, for each ∅ �= Z ⊆ P∗∗ and j ∈ G, pS

j (Z) =
maxp∈Z p j and pB

j (Z) = minp∈Z p j . In particular, pS
j (P∗∗) = maxp∈P∗∗ p j for all

j ∈ G and pB
j (P∗∗) = minp∈P∗∗ p j for all j ∈ G> and pB

j = pS
j for all j /∈ G>.

To show that (P∗∗,≥) is a lattice let p, p′ ∈ P∗∗ and set Z = {p, p′}, p ∨ p′ ≡
pS(Z), and p∧ p′ ≡ pB(Z). By Lemma 7, p∨ p′ ∈ P∗∗ and p∧ p′ ∈ P∗∗. Moreover,
it is immediate to check that ∨ and ∧ are idempotent, commutative, associative, and
absorbing binary operations on P∗∗. Thus, by Birkhoff (1979), (P∗∗,≥) is a lattice. To
prove that it is complete, consider any ∅ �= Z ⊆ P∗∗. By definition, lub�Z = pS(Z)

and llb�Z = pB(Z), where lub and llb denote the least upper bound and the largest
lower bound, respectively. By Lemma 7, pS(Z), pB(Z) ∈ P∗∗. Thus, (P∗∗,≥) is a
complete lattice. ��

Our objective in the remaining of this subsection is to show how the complete
lattice structure with the natural order ≥ on R

n+ (and on P∗ and P∗∗) translates into
the set of of agents’ utilities that are attainable at equilibrium. The fact that the lattice
structure of the set of equilibrium price vectors is inherited in a dual way by the sets
of equilibrium utilities of buyers and sellers is an important property because it says
that there is a conflict of interests between the two sides of the market (and unanimity
in each of the sides) with respect to two comparable equilibrium price vectors.

Define the partial orders �u and �w on P∗ as follows: for any pair p, p′ ∈ P∗,

p �u p′ if and only if ui (p) ≥ ui (p′) for every i ∈ B

and

p �w p′ if and only if wk(p) ≥ wk(p′) for every k ∈ S.

Example 1 has showed that we may have p, p′ ∈ P∗ with the property that p �= p′,
but ui (p) = ui (p′) for all i ∈ B; i.e., the binary relation �u is not a partial order on
P∗ because it is not antisymmetric since p �u p′, p′ �u p and p �= p′ hold. Hence,
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the lattice structure of the set P∗ with the binary relation ≥ is not inherited by the set
of utilities of buyers that are attainable at equilibrium. However, next proposition says
that the partial order ≥ on the set of restricted equilibrium price vectors translates into
the set of utilities of the buyers that are attainable at equilibrium (i.e., the statements
(a) and (b) at the beginning of Sect. 5 are equivalent on this subset of P∗). Formally,

Proposition 7 Let p, p′ ∈ P∗∗ be two restricted equilibrium price vectors of
market M. Then,

ui (p) ≥ ui (p′) for every i ∈ B if and only if p′
j ≥ p j for every j ∈ G.

Proof It follows from the definition of P∗∗ and Lemma 8 below. ��
Lemma 8 Let p, p′ ∈ P∗ be two equilibrium price vectors of market M. Then,

ui (p) ≥ ui (p′) for every i ∈ B if and only if p′
j ≥ p j for every j ∈ G>.

Proof of Lemma 8 Let p, p′ ∈ P∗.
�⇒) Assume ui (p) ≥ ui (p′) for every i ∈ B. By (22), γi (p) ≥ γi (p′) for every

i ∈ B. By part (2.2), (γ (p), π(p)) ∈ D∗ and (γ (p′), π(p′)) ∈ D∗. Assume j ∈ G>

and let k ∈ S be such that j ∈ G>
k . Then, there exist A ∈ F∗ and i ∈ B such

that Ai jk > 0. Thus, and since (p, A) and (p′, A) are competitive equilibria of M,∑
i ′ Ai ′ jk ∈ S jk(p j ) and

∑
i ′ Ai ′ jk ∈ S jk(p′

j ) imply that

p j ≥ r jk and p′
j ≥ r jk . (32)

By (CS.1),

γi (p) + π jk(p) − τi jk = 0 (33)

and

γi (p′) + π jk(p′) − τi jk = 0. (34)

Thus,

γi (p) + π jk(p) = γi (p′) + π jk(p′).

Since γi (p) ≥ γi (p′) for every i , π jk(p′) ≥ π jk(p) holds. By definition of π jk(p′)
and π jk(p), and since (32) holds, π jk(p′) = p′

j − r jk ≥ p j − r jk = π jk(p). Thus,
p′

j ≥ p j .
⇐�) Assume p′

j ≥ p j for every j ∈ G>. Hence, for every i ∈ B and every
j ∈ G>,

vi j − p j ≥ vi j − p′
j . (35)
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Fix i ∈ B and assume ∇>
i (p′) �= ∅. Then, there exists j ′ ∈ G> such that vi j ′−p′

j ′ > 0.
By (35), vi j ′ − p j ′ > 0, which implies that ∇>

i (p) �= ∅. Hence, if ∇>
i (p′) �= ∅ there

exists j ′ ∈ G> such that

γi (p′) = vi j ′ − p′
j ′ ≤ vi j ′ − p j ′ = γi (p).

Thus, by (22), ui (p) ≥ ui (p′). Assume now that ∇>
i (p′) = ∅. Then, since by defini-

tion 0 ≤ γi (p), γi (p′) = 0 ≤ γi (p). Hence, by (22), ui (p) ≥ ui (p′). Thus, for every
i ∈ B, ui (p) ≥ ui (p′). ��

Consider now the restriction of the partial order �u on the set P∗∗. Then, P∗∗ is a
complete lattice with �u . Formally,

Theorem 4 The pair (P∗∗,�u) is a complete lattice.

Proof It follows from Theorem 3 and Proposition 7. ��
Next proposition shows that the conflict of interests between the two sides of the

market on the set of equilibrium price vectors holds partially in our general model
(statement (b) in the beginning of Sect. 5 implies statement (c) on P∗); namely, if
buyers unanimously consider the equilibrium price vector p as being at least as good
as equilibrium price vector price p′ then all sellers consider p′ as being at least as
good as p (remember that Example 1 shows that the converse does not hold).

Proposition 8 Let p, p′ ∈ P∗ be two equilibrium price vectors of market M such
that ui (p) ≥ ui (p′) for all i ∈ B. Then, wk(p′) ≥ wk(p) for all k ∈ S.

Proof Let p, p′ ∈ P∗ and assume that ui (p) ≥ ui (p′) for every i ∈ B. By Lemma 8,
p′

j ≥ p j for every j ∈ G>. Fix k ∈ S. Then, p′
j − r jk ≥ p j − r jk for every j ∈ G>

k .
Thus, by (23), wk(p′) ≥ wk(p). ��

Proposition 9 states that utilities associated to the two extreme equilibrium price
vectors pB and pS are extreme and opposite utilities.

Proposition 9 Let M be a market. Then, for every p ∈ P∗, the following properties
hold.

(9.1) For every i ∈ B, ui (pB) ≥ ui (p) ≥ ui (pS).
(9.2) For every k ∈ S, wk(pS) ≥ wk(p) ≥ wk(pB).

Proof Consider any p ∈ P∗. By their definitions, pB
j ≤ p j ≤ pS

j for all j ∈ G. In par-

ticular, these inequalities hold for all j ∈ G>. By Lemma 8, ui (pB) ≥ ui (p) ≥ ui (pS)

for all i ∈ B. Thus, (9.1) holds. By Proposition 8, wk(pB) ≤ wk(p) ≤ wk(pS) for all
k ∈ S. Thus, (9.2) holds. ��

Consider again Example 1. Take p = (3, 2, 10) and p′ = ( 3
2 , 3, 10

)
and observe

that p, p′ ∈ P∗∗ and w1(p) = w1(p′) = 4. Hence, p �w p′, p′ �w p, and p �= p′.
Thus, the binary relation �w is not a partial order on P∗∗ because it is not antisym-
metric. Hence, the set P∗∗ does not have a lattice structure with the binary relation
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�w. Observe that this is a direct consequence of the fact that in our model sellers may
own units of different goods. Therefore, two unrelated equilibrium price vectors in
P∗∗ may give the same utility to a seller because the losses in revenues from selling
one good with a lower price are compensated with the gains from selling another good
with a higher price. Obviously, this can not occur whenever each seller only owns
units of a unique good, as in Sotomayor (2007, 2009b).
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