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0.1.- Choice under Certainty

Let X be a choice set.

An agent�s preference on X is a binary relation % on X (i.e.,
%� X � X ).

Given x , y 2 X , we write x % y to denote that (x , y) 2%.

We assume that % is complete and transitive. Namely:

for all x , y 2 X , we have x % y or y % x or both,
for all x , y , z 2 X such that x % y and y % z , it holds that x % z .

We de�ne indi¤erence x � y as x % y and y % x .

We de�ne strict preference x � y as x % y and x � y .
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0.1.- Choice under Certainty

A function u : X ! R represents % on X if for all x , y 2 X ,

x � y if and only if u(x) > u(y) and

x � y if and only if u(x) = u(y).
Result 1: Let X be a choice set and % be a preference on X .
Assume there exists a utility function u : X ! R that represents %.
Then, % is complete and transitive.

Result 2: Assume X is �nite and % is complete and transitive.
Then, there exists a utility function u : X ! R representing %.
Not unique.

A function f : R ! R is strictly increasing if x < y implies
f (x) < f (y).
Assume u : X ! R represents % and let f : R ! R be a strictly
increasing function. Then, f � u : X ! R also represents %, where for
all x 2 X , f � u(x) = f (u(x)).

Jordi Massó (International Doctorate in Economic Analysis (IDEA) Universitat Autònoma de Barcelona (UAB))Game Theory: Choice under Uncertainty 3 / 70



0.1.- Choice under Certainty

Let X be a metric space. A preference % on X is continuos if for all
x 2 X , the sets fy 2 X j y % xg and fy 2 X j x % yg are closed.
Result 3: Let X be a compact metric space and % be a continuous,
complete and transitive preference on X . Then, there exists a
continuous utility function u : X ! R that represents %.
Let T be a set such that for every t 2 T , F (t) is a subset of X .
Result 4: Fix t 2 T. Assume F (t) � X is compact and % is a
continuous, complete and transitive preference on X . Then, there
exists x� 2 F (t) such that x� � y for all y 2 F (t).
This means that the problem

max u(x)

s.t. x 2 F (t),
where u is a (continuous) utility function that represents %, has a
solution.
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0.2.- Basic Lotteries

To model uncertainty we need to enlarge the set X to the set of
lotteries on X , denoted by L(X ).

Fix the set X of outcomes (or sure things). Assume that #X = N.

We assume that the agent faces risky alternatives.

Given x , y 2 X and p 2 [0, 1], a basic lottery is a risky alternative
where the agent receives the prize x with probability p and the prize y
with probability 1� p. We represent a basic lottery by

`(p; x , y) = p � x � (1� p)� y .
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0.3.- Composed Lotteries

Given x , y , z ,w 2 X and p, q,m 2 [0, 1] we de�ne the composed
lottery as the risky alternative where the agent receives the basic
lottery `(q; x , y) with probability p and the basic lottery `(m; z ,w)
with probability 1� p. We represent this lottery
`(p; `(q; x , y), `(m; z ,w)) by

p � [q � x � (1� q)� y ]� (1� p)� [m� z � (1�m)� w ].

Let L(X ) be the set of all composed lotteries. The set L(X ) is
closed; i.e., for all x , y , z ,w 2 X and p, q,m 2 [0, 1]

`(q; x , y), `(m; z ,w) 2 L(X ) =) `(p; `(q; x , y), `(m; z ,w)) 2 L(X ).
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0.3.- Composed Lotteries: Basic Assumptions

We make the following (natural) assumptions on how the agent
perceives basic and composed lotteries.

Alternatively, we could make (equivalent) assumptions directly on
agent�s preferences on lotteries.

For all x , y 2 X and p, q 2 [0, 1] the following holds:
(P.1) p � x � (1� p)� x = x .
(P.2) p � x � (1� p)� y = (1� p)� y � p � x .
(P.3)
q � [p � x � (1� p)� y ]� (1� q)� y = p � q � x � (1� p � q)� y .
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0.4.- Preferences on Risky Alternatives

We assume that the agent has complete and transitive preferences %
on L(X ).
It would be very useful to have a utility representation of a preference
% on L(X ).
But observe that L(X ) is not �nite even when X is �nite. So, we can
not apply Result 2.

We could proceed as we did in Result 3: to identify su¢ cient
conditions under which % on L(X ) is representable by a utility
function. Namely,

Assume X satis�es (BLA 1) and % satis�es (BLA 2). Then, there
exists U : L(X )! R that represents %; i.e., for all
` = `(p; x , y) 2 L(X ) and `0 = `(q; z ,w) 2 L(X ),
` � `0 () U(p � x � (1� p)� y) > U(q � z � (1� p)� w)

and

` � `0 () U(p � x � (1� p)� y) = U(q � z � (1� p)� w).
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0.5.- Expected Utility Property

But this approach would be insu¢ cient. We need that this
representation has an additional property: the expected utility
property.

De�nition Assume that U : L(X )! R represents the preferences % on
L(X ). We say that U satis�es the expected utility property if for all
`(p; x , y) 2 L(X ),

U(p � x � (1� p)� y) = p � U(x) + (1� p) � U(y).

Namely, the utility of a lottery coincides with its expected utility.

Observe that this is much more demanding than just to require that
% has a utility representation.

Question: Under which conditions a preference % on L(X ) has a
utility representation with the expected utility property?
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0.5.- Expected Utility Property: Continuity Axiom

(A.1) A preference % on L(X ) is continuous if for all x , y , z 2 L(X ) with
x � y � z , there exists p 2 (0, 1) such that

[p � x � (1� p)� z ] � y

and for all q, r 2 [0, 1] such that q > p > r , then

[q � x � (1� q)� z ] � y � [r � x � (1� r)� z ].
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0.5.- Expected Utility Property: Independence Axiom

(A.2) A preference % on L(X ) satis�es the independence axiom if for all
x , y , z 2 L(X ) and all p 2 [0, 1],

x � y if and only if [p � x � (1� p)� z ] � [p � y � (1� p)� z ]

and

x � y if and only if [p � x � (1� p)� z ] � [p � y � (1� p)� z ].
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0.5.- Expected Utility Theorem

Theorem (von Neumann and Morgenstern, 1944).

A preference % on L(X ) satis�es axioms (A.1) and (A.2) if and only if
there exists a utility function U : L(X )! R representing % such that U
satis�es the expected utility property.

Moreover, U is unique up to positive a¢ ne transformations.

Let Y be a set. The function g : Y ! R is a positive a¢ ne
transformation of the function f : Y ! R if there exist α 2 R and
β > 0 such that for all y 2 Y ,

g(y) = α+ β � f (y).
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0.5.- Expected Utility Theorem: Proof

((=)
Assume there exists a utility function U : L(X )! R representing %
such that U satis�es the expected utility property.

To show that % is continuous, let x , y , z 2 L(X ) be such that
x � y � z .

Since U represents %, U(x) > U(y) > U(z). The set of real numbers
is convex, hence there exists p 2 (0, 1) such that
p � U(x) + (1� p) � U(z) = U(y).
By the Expected Utility Property,
U(p � x � (1� p)� z) = p � U(x) + (1� p) � U(z) = U(y).
Since U represents �, p � x � (1� p)� z � y .
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0.5.- Expected Utility Theorem: Proof

((=)
Let q, r 2 [0, 1] be such that q > p > r . Then,

q � U(x) + (1� q) � U(z) > p � U(x) + (1� p) � U(z)
> r � U(x) + (1� r) � U(z).

By the Expected Utility Property, and the hypothesis that U represents
�,

q � x � (1� q)� z � y � r � x � (1� r)� z .
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0.5.- Expected Utility Theorem: Proof

((=)
To show that % satis�es independence, let x , y , z 2 L(X ) and
p 2 [0, 1] .

Since U represents %, x � y , U(x) > U(y).

Hence,
x � y , p � U(x) + (1� p) � U(z) > p � U(y) + (1� p) � U(z).
Since U satis�es the Expected Utility Property,
x � y , [p � x � (1� p)� z ] � [p � y � (1� p)� z ].

Since U represents %, x � y , U(x) = U(y).

Hence,
x � y , p � U(x) + (1� p) � U(z) = p � U(y) + (1� p) � U(z).
Since U satis�es the Expected Utility Property,
x � y , [p � x � (1� p)� z ] � [p � y � (1� p)� z ].
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0.5.- Expected Utility Theorem: Proof

(=))
(a) Existence:

For convenience, assume that there exist a best and a worst lottery;
namely, there exist b,w 2 L(X ) such that for all ` 2 L(X ),
b % ` % w and that b � w . The case b � w is trivial.
De�ne U(b) = 1, U(w) = 0 and U(`) = p` for all ` 2 L(X ), where
p` 2 [0, 1] satis�es

[p` � b� (1� p`)� w ] � `. (1)

First, by (A.1), there exists such p`. Second, p` is unique.

Assume otherwise; i.e., (1) holds for p` and p0`, and p` > p
0
`.

Hence, [p` � b� (1� p`)� w ] � ` � [p0` � b� (1� p0`)� w ].
Since b � w , either p` 6= 1 or p0` 6= 0. Assume 1 > p` > p0`. By (A.1),

[1� b� 0� w ] � ` � [p0` � b� (1� p0`)� w ],
a contradiction with ` � [p0` � b� (1� p0`)� w ].
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0.5.- Expected Utility Theorem: Proof

(b) U represents �:
First, assume ` � `0. Then,

U(`) = p` and U(`
0) = p0`,

where p` and p0` are the unique numbers that satisfy

[p` � b� (1� p`)� w ] � ` � `0 � [p0` � b� (1� p0`)� w ]. (2)

To obtain a contradiction, assume U(`) � U(`0). By (2),
U(`) < U(`0).

Either U(`0) 6= 1 or U(`) 6= 0. Assume, U(`) < U(`0) < 1. By (A.1),

[1� b� 0� w ] � `0 � [p` � b� (1� p`)� w ],

a contradiction with (2).
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0.5.- Expected Utility Theorem: Proof

(b) U represents �:

Second, assume ` � `0. Then,

U(`) = p`,

where p` is the unique number such that

[p` � b� (1� p`)� w ] � ` � `0

so that, by de�nition of U, U(`0) = p`.

Hence, U(`) = p` = U(`0).

Jordi Massó (International Doctorate in Economic Analysis (IDEA) Universitat Autònoma de Barcelona (UAB))Game Theory: Choice under Uncertainty 18 / 70



0.5.- Expected Utility Theorem: Proof

(c) U satis�es the expected utility property:
Let x , y 2 L(X ) and p 2 [0, 1] be arbitrary. Then, U(x) = px and
U(y) = py , where

x � [px � b� (1� px )� w ] (3)

and
y � [py � b� (1� py )� w ]. (4)

By (A.2), (3), (4), and (P.3),
[p � x � (1� p)� y ]
� [p � [px � b� (1� px )� w ]� (1� p)� [py � b� (1� py )� w ]
� [(ppx + (1� p)py )� b� (p(1� px ) + (1� p)(1� py ))� w ]
� [(pU(x) + (1� p)U(y))� b� (p(1� U(x)) + (1� p)(1�
U(y))� w ].
Hence, by de�nition of U,

U(p � x � (1� p)� y) = pU(x) + (1� p)U(y).
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0.5.- Expected Utility Theorem: Proof

(d) U is unique up to positive a¢ ne transformations:
We have to show two things.

First, assume U : L(X )! R represents the preferences % and has
the expected utility property and let V : L(X )! R be a positive
a¢ ne transformation of U. We have to show that V represents % and
has the expected utility property.

Since V is a positive a¢ ne transformation of U, there exist α 2 R

and β > 0 such that for all ` 2 L(X ),

V (`) = α+ βU(`).
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0.5.- Expected Utility Theorem: Proof

(d) U is unique up to positive a¢ ne transformations:

Then, for any `, `0 2 L(X )

` � `0

() U(`) > U(`0)

() α+ βU(`) > α+ βU(`0)

() V (`) > V (`0).

and

` � `0

() U(`) = U(`0)

() α+ βU(`) = α+ βU(`0)

() V (`) = V (`0).

Hence, V represents % .
Jordi Massó (International Doctorate in Economic Analysis (IDEA) Universitat Autònoma de Barcelona (UAB))Game Theory: Choice under Uncertainty 21 / 70



0.5.- Expected Utility Theorem: Proof

(d) U is unique up to positive a¢ ne transformations:

We want to show now that V has the expected utility property.

Let x , y 2 L(X ) and p 2 [0, 1] be arbitrary. Then,

V (p � x � (1� p)� y)
= α+ βU(p � x � (1� p)� y)
= αp + α(1� p) + β(pU(x) + (1� p)U(y))
= p(α+ βU(x)) + (1� p)(α+ βU(y))

= pV (x) + (1� p)V (y).

Hence, V has the expected utility property.
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0.5.- Expected Utility Theorem: Proof

(d) U is unique up to positive a¢ ne transformations:
Second, assume that U and V represent % and satisfy the expected
utility property. We want to show that V is a positive a¢ ne
transformation of U; namely, there exist α 2 R and β > 0 such for all
` 2 L(X ),

V (`) = α+ βU(`).

Since U and V represent % there exists a strictly increasing
transformation of U, f : R ! R such that V = f � U represents the
same preference as U.

Since U satis�es the Expected Utility Property, for all x , y 2 L(X )
and all p 2 [0, 1],

V (p � x � (1� p)� y)
= f (U(p � x � (1� p)� y))
= f (pU(x) + (1� p)U(y)).

Jordi Massó (International Doctorate in Economic Analysis (IDEA) Universitat Autònoma de Barcelona (UAB))Game Theory: Choice under Uncertainty 23 / 70



0.5.- Expected Utility Theorem: Proof

(d) U is unique up to positive a¢ ne transformations:

Since V satis�es the expected utility property, for all x , y 2 L(X ) and
all p 2 [0, 1],

V (p � x � (1� p)� y)
= pV (x) + (1� p)V (y)
= pf (U(x)) + (1� p)f (U(y)).

Hence,

f (pU(x) + (1� p)U(y)) = pf (U(x)) + (1� p)f (U(y)).

Thus, f is simultaneously concave and convex. Namely, f is a¢ ne. �
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0.6.- Discussion
Uniqueness

A positive a¢ ne transformation represents a change of the 0
(performed by α) and a change of units (performed by β).

Example: Suppose that x is the temperature measured in Celsius
degrees. The temperature measured in Farenheit degrees is a positive
a¢ ne transformation and represents a change of the 0 and of the
units: namely, g(x) = 32+ 5

9x is the temperature in Farenheit
degrees of the temperature x in Celsius.

We have two comparability notions:

Ordinal: an object is hotter than another one (for instance, 22 degrees
is hotter than 10 degrees the numerical representation does not play
any role; 30 degrees is also hotter than 10 degrees).

Cardinal: 22 degrees is 2.2 times hotter than 10 degrees (the di¤erence
of temperature is 12 degrees).
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0.6.- Discussion
Uniqueness

An strictly increasing transformation of U, f : R ! R where f 0 > 0,
only maintains the sign of the �rst derivative but not of the second
(which is related with the concavity or convexity of f ). V = f � U,
we have signV 0 = signf 0 � signU 0 = signU 0 since f 0 > 0. However,
signV 00 may be di¤erent than signU 00 (if f 00 < 0).

A positive a¢ ne transformation of U, V = α+ βU, maintains the
sign of the �rst and second derivatives since
signV 0 = βsignU 0 = signU 0 and signV 00 = βsignU 00 = signU 00.

Hence, under uncertainty the concavity or convexity of the utility
function representing % will be relevant and, as we will see, this will
be meaningful and crucial.
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0.6.- Discussion
Lotteries and the Expected Utility Property: A Geometric Interpretation

(P.3) says that the risky alternative where the agent receives x with
probability 1

3 , y with probability
1
3 and z with probability

1
3 can be

described as the composed lottery

2
3 �

� 1
2 � x �

1
2 � y

�
� 1

3 � z .

Fix the �nite set of possible outcomes (prizes) X = fx1, ..., xNg.
Denote the (N � 1)�dimensional simplex by

∆N =
�
(y1, ..., yN ) 2 RN j yi � 0 for all i = 1, ...,N and

N
∑
i=1
yi = 1

�
.

De�nition: A simple lottery L is a vector L = (p1, ..., pN ) 2 ∆N , where pi
is interpreted as the probability of outcome xi occurring.

Remark: The set of simple lotteries ∆N is a compact and convex
subset of RN .
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0.6.- Discussion
Lotteries and the Expected Utility Property: A Geometric Interpretation
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0.6.- Discussion
Lotteries and the Expected Utility Property: A Geometric Interpretation
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0.6.- Discussion
Lotteries and the Expected Utility Property: A Geometric Interpretation

The prizes of a simple lottery are certain outcomes. The prizes of a
compound lottery may themselves be simple lotteries.

De�nition: Given K simple lotteries Lk = (pk1 , ..., p
k
N ), k = 1, ...,K , and

probabilities (q1, ..., qK ) 2 ∆K , the compound lottery
(L1, ..., LK ; q1, ...qK ) is the risky alternative where the agent receives each
prize Lk with probability qk .
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0.6.- Discussion
Lotteries and the Expected Utility Property: A Geometric Interpretation

Given a compound lottery (L1, ..., LK ; q1, ...qK ) we can compute the
simple lottery L = (p1, ..., pN ) that generates the same probability
distribution over certain prizes as follows. For each i = 1, ...,N,

pi =
K
∑
k=1

qk � pki .

Therefore, the simple lottery L of any compound lottery
(L1, ..., LK ; q1, ...qK ) can be obtained as the convex combination

L =
K
∑
k=1

qk � Lk 2 ∆N .
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0.6.- Discussion
Lotteries and the Expected Utility Property: A Geometric Interpretation

Example: Consider L1 = ( 12 ,
1
2 , 0),
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0.6.- Discussion
Lotteries and the Expected Utility Property: A Geometric Interpretation

Example: Consider L1 = ( 12 ,
1
2 , 0), L2 = (

1
6 ,
1
6 ,
2
3 )
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0.6.- Discussion
Lotteries and the Expected Utility Property: A Geometric Interpretation

Example: Consider L1 = ( 12 ,
1
2 , 0), L2 = (

1
6 ,
1
6 ,
2
3 ) and q1 = q2 =

1
2 .
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0.6.- Discussion
Lotteries and the Expected Utility Property: A Geometric Interpretation

Example: Consider L1 = ( 12 ,
1
2 , 0), L2 = (

1
6 ,
1
6 ,
2
3 ) and q1 = q2 =

1
2 .
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0.6.- Discussion
Lotteries and the Expected Utility Property: A Geometric Interpretation

The set of all lotteries L(X ) on X can be identi�ed with the set of
simple lotteries ∆N .

A preference % on ∆N can be geometrically represented by an
indi¤erence map.
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0.6.- Discussion
Lotteries and the Expected Utility Property: A Geometric Interpretation

De�nition: The preference relation % on ∆N is continuous if for all
L, L0, L00 2 ∆N the sets�

p 2 [0, 1] j pL+ (1� p)L0 % L00
	
� [0, 1]

and �
p 2 [0, 1] j pL+ (1� p)L0 - L00

	
� [0, 1]

are closed.

De�nition: The preference relation % on ∆N satis�es the independence
axiom if for all L, L0, L00 2 ∆N and all p 2 (0, 1)

L % L0 if and only if pL+ (1� p)L00 % pL0 + (1� p)L00.
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0.6.- Discussion
Lotteries and the Expected Utility Property: A Geometric Interpretation

De�nition Assume that U : ∆N ! R represents the preferences % on ∆N .
We say that U satis�es the expected utility property if there exists a
vector u = (u1, ..., uN ) 2 RN such that for all p = (p1, ..., pN ) 2 ∆N ,

U(p) =
N
∑
i=1
pi � ui .

Namely, U is linear on ∆N .

Theorem (von Neumann and Morgenstern, 1944).

A preference % on ∆N is continuous and satis�es the independence axiom
if and only if there exists U : ∆N ! R representing % such that U
satis�es the expected utility property.

Moreover, U is unique up to positive a¢ ne transformations.
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0.6.- Discussion
Plausibility of the Independence Axiom: Allais Paradox (Allais, 1953)

There are three possible monetary prizes (in millions of Euros):
x1 = 0, x2 = 1 and x3 = 5. Consider the four simple lotteries in ∆3 :

p1 = (0, 1, 0),

p2 = (0.01, 0.89, 0.1)

p3 = (0.9, 0, 0.1)

p4 = (0.89, 0.11, 0).
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0.6.- Discussion
Plausibility of the Independence Axiom: Allais Paradox (Allais, 1953)

Express preferences between p1 and p2 and between p3 and p4.

Often: p1 � p2 and p3 � p4.
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0.6.- Discussion
Plausibility of the Independence Axiom: Allais Paradox (Allais, 1953)

Express preferences between p1 and p2 and between p3 and p4.

Often: p1 � p2 and p3 � p4.
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0.6.- Discussion
Plausibility of the Independence Axiom: Allais Paradox (Allais, 1953)

This is inconsistent with the assumptions of the expected utility
theorem.

Let (u1, u2, u3) be the utility values of the three monetary outcomes.

Then, p1 � p2 implies

u2 > 0.01 � u1 + 0.89 � u2 + 0.1 � u3.

Adding 0.89 � u1 � 0.89 � u2 to both sides, we obtain

0.89 � u1 + 0.11 � u2 > 0.90 � u1 + 0.1 � u3,

hence, any agent with v.N-M utility function must have p4 � p3.
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0.6.- Discussion
Plausibility of the Independence Axiom: Allais Paradox (Allais, 1953)

Four reactions:

Theory should help us to correct mistaken choices if they are proven
to be inconsistent with principles ("to rectify is a sign of smartness").

The choices presented in the Allais paradox are somehow arti�cial and
without much signi�cance for Economics.

We should enlarge the theory to accommodate the fact that the agent
not only values what he receives but also what he receives compared
with what he might have received by choosing di¤erently: regret
theory.

Stay with the model of lotteries but weaken the independence axiom.
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0.7.- Monetary Lotteries

There are many evidences showing that agents don�t like risk.

Saint Petersburg Paradox:

Consider the following lottery L. A coin is tossed repeatedly over time.
Let n be the period in which Tails comes up for the �rst time. Then,
the agent receives 2n Euros.

How much would you pay to participate in such lottery?

Since all tosses are independent, the probability pn of the event �Tails
comes up for the �rst time at period n� is equal to 1

2n .

Suppose the agent�s utility of x Euros is u(x) = x .

Then, the expected utility (and value) of this lottery is

U(L) =
∞
∑
n=1

pn � u(2n) =
∞
∑
n=1

1
2n � 2

n = ∞.

However, if û(x) = ln x then,

2 < Û(L) =
∞
∑
n=1

pn � û(2n) =
∞
∑
n=1

1
2n � ln 2n < 3.
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0.7.- Monetary Lotteries

To study such phenomenon, we are going to consider the special case
of the previous model where the lottery prizes are money (in Euros),
and we will model money as a continuous variable.

Hence, the set of prizes (or outcomes) will be X � R, not necessarily
�nite.

Extension of the previous model to in�nite settings.

Let (Ω,F ,P) be a probability space, where Ω is the sample space or
the set of all possible outcomes, F is a σ�algebra of subsets of Ω (or
the set of events) and P is a probability measure on Ω assigning to
each event in F a number between 0 and 1.
Consider the pair (X ,B), where B is the family of all Borel subsets of
X � R.
Let x̃ : Ω ! R be a random variable; i.e., a measurable function in the
sense that for all B 2 B,

x̃�1(B) = fw 2 Ω j x̃(w) 2 Bg 2 F .
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0.7.- Monetary Lotteries

A monetary lottery (i.e., given (Ω,F ,P) the random variable
x̃ : Ω ! R describes the monetary prize at each state of nature) will
be described by a cumulative distribution function (cdf)
F : X � R ! [0, 1], where for all x 2 X ,

F (x) = P fw 2 Ω j x̃(w) � xg .

If f is the density function of F then, for all x 2 X ,

F (x) =
Z x

�∞
f (t)dt.

Now, a monetary lottery can be identi�ed with a cdf F ; namely, with
its associated distribution of money.
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0.7.- Monetary Lotteries

The distribution of money of the monetary lottery L (or its cdf F )
associated to the compound lottery (L1, ..., LK ; q1, ..., qK ) (with their
cdfs F1, ...,FK ) is the convex combination of the cdfs; namely, for all
x 2 X ,

F (x) =
K
∑
k=1

qk � Fk (x)

Observe that cdfs preserve the linear structure of lotteries.

The set of all monetary lotteries L is the set of all cdfs over an
interval X = [a,+∞).

Jordi Massó (International Doctorate in Economic Analysis (IDEA) Universitat Autònoma de Barcelona (UAB))Game Theory: Choice under Uncertainty 47 / 70



0.7.- Monetary Lotteries
Expected Utility Theorem in this Setting

Fix X and let % be a preference on L. The extension of the v.N-M
Theorem says that if % is continuos and satis�es the independence
axiom then, there exists u : X ! R such that for all F , F̂ 2 L,

F % F̂ if and only if U(F ) =
Z
u(x)dF (x) �

Z
u(x)dF̂ (x) = U(F̂ ).

The following terminology, after Mas-Colell, Whinston and Green, is
becoming standard.

U : L ! R is the v.N-M expected utility function.

u : X ! R is the Bernoulli utility function.

Assumptions:

u is increasing (for all x , y 2 X such that x < y , u(x) � u(y)).
u is continuous.
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0.7.- Monetary Lotteries: Finite Setting

Suppose X = fx1, ..., xNg � R is �nite and for each 1 � k < N,
xk < xk+1.

Then, we can identify a cdf F on X with the probability distribution
(lottery) pF =

�
pF1 , ..., p

F
N

�
2 ∆N , where

F (x1) = pF1

and for each 1 < k � N,

F (xk ) =
k
∑
j=1
pFj .

In this �nite case, for each cdf F 2 L,Z
xdF (x) =

N
∑
k=1

xk � pFk = EF .

and given the Bernoulli utility function u : X ! R,Z
u(x)dF (x) =

N
∑
k=1

u(xk ) � pFk = U(F ).
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0.8.- Risk Aversion

For x 2 X denote by δx the degenerate lottery that gives x for certain.

Namely, δx is the lottery F 2 L where

F (y) =
�
0 if y < x
1 if y � x .

De�nition: An agent is (strictly) risk averse if for any non-degenerate
lottery F 2 L with expected value EF =

R
xdF (x) the agent (strictly)

prefers δEF to F .

De�nition: An agent is risk neutral if for any lottery F 2 L with expected
value EF =

R
xdF (x) the agent is indi¤erent between δEF and F .

De�nition: An agent is (strictly) risk lover if for any non-degenerate
lottery F 2 L with expected value EF =

R
xdF (x) the agent (strictly)

prefers F to δEF .

Jordi Massó (International Doctorate in Economic Analysis (IDEA) Universitat Autònoma de Barcelona (UAB))Game Theory: Choice under Uncertainty 50 / 70



0.8.- Risk Aversion

Let X be an interval of R. Hence, X is a convex set.

De�nition: A function f : X ! R is (strictly) concave if for all x , y 2 X ,
(x 6= y), and all α 2 [0, 1],

f (αx + (1� α)y) (>) � αf (x) + (1� α)f (y).

Proposition: A function u : X ! R is (strictly) concave if and only if for
all F 2 L,

u
�Z

xdF (x)
�
(>) �

Z
u(x)dF (x).

This inequality is called Jensen�s inequality.

An agent is (strictly) risk averse if and only if his Bernoulli utility
function is (strictly) concave.

An agent is risk neutral if and only if his Bernoulli utility function is
linear.
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0.8.- Risk Aversion: A geometric interpretation

Concavity of u means that the marginal utility of money is decreasing.
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0.8.- Risk Neutrality: A geometric interpretation

-

6

q
q

q

x px + (1� p)y y

u(x)

pu(x) + (1� p)u(y)
= u(px + (1� p)y)

u(y)

,
,
,
,
,
,
,
,
,
,
,,

Jordi Massó (International Doctorate in Economic Analysis (IDEA) Universitat Autònoma de Barcelona (UAB))Game Theory: Choice under Uncertainty 53 / 70



0.8.- Risk Aversion: Two de�nitions

De�nition: Let u be a Bernoulli utility function of an agent.

The certainty equivalent of F 2 L, denoted by c(F , u), is the amount
of money for which the agent is indi¤erent between the lottery F and
the certain amount c(F , u). Namely,

u(c(F , u)) =
Z
u(x)dF (x)

For any �xed amount of money x and ε > 0, the probability premium,
denoted by π(x , ε, u), is the excess in winning probability over fair
odds that makes the agent indi¤erent between the amount x with
certainty and a lottery between the two outcomes x � ε and x + ε.
Namely,

u(x) =
� 1
2 + π(x , ε, u)

�
� u(x + ε) +

� 1
2 � π(x , ε, u)

�
� u(x � ε).
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0.8.- Risk Aversion: Certainty equivalent

-

6

.

..............................................

...........................................

.........................................

.......................................

....................................

..................................

..................................

..................................

...................................

...................................

....................................
....................................

....................................
.....................................

q
q

q

x px + (1� p)y yc(F , u)

u(x)

pu(x) + (1� p)u(y)

u(px + (1� p)y)

u(y)

,
,
,
,
,
,
,
,,

Jordi Massó (International Doctorate in Economic Analysis (IDEA) Universitat Autònoma de Barcelona (UAB))Game Theory: Choice under Uncertainty 55 / 70



0.8.- Risk Aversion: Probability premium
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0.8.- Risk Aversion: Characterizations

Proposition: Let u be a Bernoulli utility function of an agent. Then, the
following statements are equivalent:

1 The agent is risk averse.

2 u is concave.

3 c(F , u) �
R
xdF (x) for all F 2 L.

4 π(x , ε, u) � 0 for all x 2 X and ε > 0.
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0.8.- Risk Aversion: Proof of the Characterizations

We have already saw that 1 is equivalent to 2.

To see that 1 and 3 are equivalent, let F 2 L be arbitrary. Then,

c(F , u) �
R
xdF (x)

, u (c(F , u)) � u
�R
xdF (x)

�
since u is increasing

,
R
u(x)dF (x) � u

�R
xdF (x)

�
by de�nition of c(F , u),

but the last inequality is the de�nition of risk aversion.

To show that 2 is equivalent to 4, see Problem Set #0.
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0.8.- Risk Aversion: Its measurement

Recall that if u is twice-di¤erentiable then, u is concave if and only if
u00(x) � 0 for all x 2 X .

De�nition: Given a twice di¤erentiable Bernoulli utility function u the
Arrow-Pratt coe¢ cient of absolute risk aversion at x is de�ned as

rA(x , u) = �
u00(x)
u0(x)

.

A natural measure of risk aversion is the curvature of u at x and
hence u00(x) seems natural. However, the second derivative is not
invariant with respect to positive a¢ ne transformations because if
v(x) = a+ bu(x), for b > 0, then v 0(x) = bu0(x) and
v 00(x) = bu00(x); hence v and u would have di¤erent risk aversions at
x since b > 0. However,

rA(x , v) = �
v 00(x)
v 0(x)

= �bu
00(x)

bu0(x)
= �u

00(x)
u0(x)

= rA(x , u).
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0.8.- Risk Aversion: Its measurement
Absolute Risk Aversion

Consider the family of Bernoulli utility functions

u(x) = β� αe�ax

for some α > 0 and β 2 R.

Then, u0(x) = aαe�ax and u00(x) = �a2αe�ax .

Hence,

rA(x , u) = �
u00(x)
u0(x)

= ��a
2αe�ax

aαe�ax
= a.

A Bernoulli utility function in this family is know as CARA (Constant
Absolute Risk Averse).
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0.8.- Risk Aversion: Comparisons across agents

Objective: To compare agents in terms of its risk aversion. Is it
meaningful to say that agent 1 with u1 is more risk averse than agent
2 with u2?

Proposition: The following �ve statements are equivalent.

1 rA(x , u1) � rA(x , u2) for all x 2 X .
2 There exists an increasing concave function g : R ! R such that for
all x 2 X , u1(x) = g(u2(x)).

3 c(F , u1) � c(F , u2) for all F 2 F .
4 π(x , ε, u1) � π(x , ε, u2) for all x 2 X and ε > 0.
5 Whenever agent 1 �ns a lottery F at least as good as a riskless
outcome x̄ , then agent 2 also �nds F at least as good as x̄ . Namely,
for all F 2 F and all x̄ 2 X ,

R
u1(x)dF (x) � u1(x̄) impliesR

u2(x)dF (x) � u2(x̄).
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0.8.- Risk Aversion: Comparisons across wealth levels

Objective: To compare the risk aversion of an agent at di¤erent
wealth levels.

Consider two wealth levels x < y .

Let u be the Bernoulli utility function of the agent.

We want to compare how the agent evaluates risk at x and at y .

Denote by z the variation of wealth (around x and around y).

Then, the agent evaluates risk at x and at y by, respectively, the
induced Bernoulli utility functions ux (z) = u(x + z) and
uy (z) = u(y + z). That is, it is like if we had two di¤erent individuals
(with their ux and uy ) evaluating his wealth variations.

But the previous Proposition gave an answer to this comparison.
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0.8.- Risk Aversion: Comparisons across wealth levels

De�nition: The Bernoulli utility function u exhibits decreasing absolute
risk aversion if rA(x , u) is a decreasing function of x .

Proposition: The following �ve statements are equivalent.

1 The Bernoulli utility function u exhibits decreasing absolute risk
aversion.

2 Whenever x < y , ux (z) = u(x + z) is a concave transformation of
uy (z) = u(y + z).

3 For any F , �x x 2 X and de�ne cx to be u(cx ) =
R
u(x + z)dF (z)

(the certainty equivalent of the lottery formed by adding z to x).
The expression (x � cx ) is decreasing in x (the higher is x , the less is
the agent willing to pay to get rid of the risk).

4 The probability premium π(x , ε, u) is decreasing in x .
5 For any F , if x < y and

R
u(x + z)dF (z) � u(x), thenR

u(y + z)dF (z) � u(y).
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0.8.- Risk Aversion: Comparisons across wealth levels

De�nition: Given the Bernoulli utility function u, the coe¢ cient of
relative risk aversion at x is

rR (x , u) = �x �
u00(x)
u0(x)

;

namely, rR (x , u) = x � rA(x , u).
Proposition: The following three statements are equivalent.

1 rR (x , u) is decreasing in x .
2 Whenever x < y , bux (t) = u(tx) is a concave transformation ofbuy (t) = u(ty).
3 Given X = R++ the certainty equivalent ĉx de�ned by
u(ĉx ) =

R
u(tx)dF (t) is such that x

ĉx
is decreasing in x .
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0.8.- Risk Aversion: Examples

CARA: u(x) = β� αe�ax .

rA(x , u) = a (CARA).

rR (x , u) = a � x (IRRA).
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0.8.- Risk Aversion: Examples

IARA: u(x) = x � αx2, where α > 0.

u0(x) = 1� 2αx .

u00(x) = �2α.

rA(x , u) = � �2α
1�2αx =

2α
1�2αx .

Thus, r 0A(x , u) =
4α2

(1�2αx )2
> 0 (IARA).

rR (x , u) = 2αx
1�2αx .

Thus, r 0R (x , u) =
2α(1�2αx )�(�2α)�(2αx )

(1�2αx )2 = 2α
(1�2αx )2 > 0 (IRRA).
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0.8.- Risk Aversion: Examples

CRRA: u(x) = ln x .

u0(x) = 1
x .

u00(x) = � 1
x 2 .

rA(x , u) = �
� 1
x2
1
x
= 1

x (DARA).

rR (x , u) = �x
� 1
x2
1
x
= 1 (CRRA).
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0.8.- Comparing Risk Prospects

Objectives: Is it meaningful to say �rst that a distribution F gives
unambiguously higher returns than G and second, F is unambiguously
less risky than G?

The answers to these questions are related to the notions of �rst-order
stochastic dominance and second-order stochastic dominance.

Assumption: from now on we consider only lotteries on X = R+ and
with the property that F (0) = 0 and F (x) = 1 for some x 2 X .

De�nition: The distribution F �rst-order stochastically dominates
distribution G if for every nondecresing function u we haveZ

u(x)dF (x) �
Z
u(x)dG (x).

Proposition: The distribution F �rst-order stochastically dominates G if
and only if F (x) � G (x) for every x 2 X [, 1� F (x) � 1� G (x)].
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0.8.- Comparing Risk Prospects: Example

Consider X = fx1, x2, x3, x4, x5g, where x1 < x2 < x3 < x4 < x5.

f g F G

x5 0.2 0.1 1.0 1.0
x4 0.0 0.1 0.8 0.9
x3 0.4 0.3 0.8 0.8
x2 0.3 0.4 0.4 0.5
x1 0.1 0.1 0.1 0.1

For all u(x1) < u(x2) < u(x3) < u(x4) < u(x5),Z
u(x)dF (x) =

5
∑
i=1
u(xi )f (xi ) �

5
∑
i=1
u(xi )g(xi ) =

Z
u(x)dG (x)
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0.8.- Comparing Risk Prospects

De�nition: We say that the distribution F second-order stochastically
dominates (or is less risky than) distribution G if for every nondecreasing
concave function u we haveZ

u(x)dF (x) �
Z
u(x)dG (x).

Proposition

1 F %FOSD G ) EF � EG .

2 F %FOSD G ) F %SOSD G .
3 F %SOSD G ) EF � EG and VarF � VarG .

Jordi Massó (International Doctorate in Economic Analysis (IDEA) Universitat Autònoma de Barcelona (UAB))Game Theory: Choice under Uncertainty 70 / 70


