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MS. MACHIAVELLI AND THE STABLE MATCHING PROBLEM
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Department of Mathematics, Pontificia Universidade Catolica do Rio de Janeiro, Brazil

This paper is a sequel to a paper, “Machiavelli and the Gale-Shapley Algorithm,” written by
Dubins and Freedman [1] in 1981. That paper was, in turn, a sequel to “College Admissions and
the Stability of Marriage,” by Gale and Shapley [2], 1962. For the benefit of readers who may
have missed the previous installments, a brief recapitulation is given in the following section.

1. The Story So Far. Paper [2] above was concerned with a situation in which there are two
sets of “agents”, such as students and universities or workers and employees, or women and men.
For the sake of concreteness, we will describe the problem in terms of this last group. It is
assumgd that each man and woman has prepared a list (possibly empty) containing the names of
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those people of the opposite sex that he or she would accept as a marriage partner and that the
names appear on the list in order of preference. The lists are then submitted to a matchmaker who
has the job of finding a suitable pairing of the participants. If we think of an unmatched person as
being matched with him or herself, then the only requirement for the matching is that it should be
free of instability; that is, there should not be any man m and woman w who are not matched
with each other but prefer each other to their mates. The matchings are thus, “divorce-proof”. The
main result of [2] is an existence theorem which shows that for any sets M and W of men and
women and any preference pattern, there is always at least one stable matching. The proof is
constructive, giving an algorithm for finding the desired matching.

Since we know that stable matchings exist, it is an instructive and rather easy exercise to show
that the set of stable matchings forms a lattice in the following sense: if p and p’ are matchings,
we write u = ' if every man likes his p-mate at least as well as his p’-mate. It turns out that this

M
partial ordering of stable matchings is a lattice, as we will show shortly. Further, it is not hard to
show that if p = w’, then ' = p, meaning that if all men prefer u to p’, then all women prefer y’ to

u (these obser]gations are dvge to J. H. Conway and are contained in [4]). As a corollary, since
every finite lattice has a largest and a smallest element, it follows that among all stable matchings
there is one which is preferred to all others by the men and another by the women. These will be
called the M(W)-optimal matchings. The algorithms of [2] always arrive at one of these extreme
matchings.

Some twenty years later, Dubins and Freedman considered the following question: suppose it
is known that the matchmaker will impose the M-optimal stable matching and suppose some
participants have full knowledge of the preference of all of the others. Will it ever be possible for
an individual or group of individuals to obtain a preferred mate by falsifying preference lists? It
was shown in [1] that there are cases in which a woman can do better by falsifying. On the other
hand, the main result showed that no man or coalition of men can ever be made better off by
falsifying their true preferences. The conclusion is that Machiavellian behavior on the part of the
men is not profitable and they can do no better than to list their true preferences, regardless of
what the women do. The purpose of the present paper is to give a detailed analysis of the strategic
possibilities for the women. It will turn out that it will almost always pay for some of the women
to be “Machiavellian”, and under certain plausible assumptions we will describe their best
competitive behavior.

2. Some History. The scenario described above involving marriages is, of course, rather
fanciful, but there are genuine real world situations in which the matching problem comes up
regularly. The problem of assigning students to colleges (which was the original motivation for
these investigations) is an example. The difficulty here is that, as is so often the case, there are
complicating factors such as the possibility of financial aid of various kinds. However, there is at
least one situation where the methods of [2] are not only applicable but are actually being applied
and have been for more than thirty years. The “National Residents Matching Program”,
headquarters in Evanston, Illinois, has the task each year of assigning graduates of medical
schools throughout the country to hospital programs in which they are to fulfill a residency
requirement! It turns out that the procedure used by NRMP is precisely the one described in [2],
except that their procedure leads to the hospital-optimal rather than the student-optimal matching
of [2]. The Dubins-Freedman Theorem shows that when the student optimal procedure is used the
students can do no better than to list the hospitals they are interested in in their true order of
preference. Under the NRMP system, on the other hand, the results presented here show that in
general there will be some students who can get into a preferred hospital by suitably falsifying
their preferences.

It should be pointed out that the student-college problem is more general than the marriage
problem in that the colleges are “polygamous” and may admit any number of students up to some
fixed quota g. Many of the properties of the marriage problem carry over to the polygamous case,
including those to be presented here. However, not all results carry over to the more general case.
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In particular, Roth has recently shown [6] by an example that even when the college optimal
matching is used, as in the case of NRMP, it may still be possible for a college to get a better class
by appropriate misrepresentation of preferences.

We now return to our main subject.

3. Preliminaries. In this section we present two propositions which will be needed later and
which are of some interest in themselves. These are special cases of some results of [3]. The first is
rather surprising. Recall that in general there may be many stable matchings for a given set of
men and women. Our result asserts, however, that the people who are unmatched or, as we shall
say, self-matched, are the same for all of these matchings. This is particularly striking in the
context of the student-hospital situation. Suppose NRMP were to change its policy and impose
the student rather than hospital-optimal matching. Of course this would make all the students at
least as well off, but those students who were not accepted by any hospital would still not be
accepted and, on the other hand, each hospital would end up admitting the same number of
students, though in general not the same set, under the student-optimal as under the hospital-opti-
mal scheme. This rather non-obvious fact turns out to be quite easy to prove. Our second
proposition, by contrast, seems extremely plausible. It asserts that if additional women are added
to the “pool”, this can never make any of the men worse off. The proof of this, however, is not so
straightforward.

We will need a little terminology. A preference pattern will consist of a triple (M, W; P) where
M and W are the men and women and P represents their preferences, that is, the ordered lists of
the members of M U W. Because of our convention that an unmatched person is considered to be
self-matched, we may define a matching p as a bijection of M U W onto itself which is of order 2,
that is, p - p = identity, and such that if m or w is not self-matched, then p(m) € W and
p(w) € M. We call p(m) (u(w)) the mate of m (w) under p. We say that a pair (m,w) blocks
the matching p if m prefers w to p(m) and w prefers m to u(w). The matching p is then stable
if it is not blocked by any pair. If p and p’ are matchings, we say that m (w) prefers p’ to p if he
(she) prefers p'(m) to p(m) (p'(w) to p(w)). We write p > p’ if every man is at least as well off
under p as under p’. A key result is now the following.

LEMMA 1. Suppose W C W’ and p is a stable matching for (M, W; P) and u’ for (M, W’; P")
where P’ agrees with P on W. Let M, be all men who prefer u to ' and let W, be all women who
prefer W to . Then p and | are bijections between M, and W,,.

This is a sort of decomposition lemma represented schematically by the diagram below.

=

A d ’
M—M3Ww - W,
®

It will suffice to show that u(M,) € W, and p'(W, ) € M,, for since M, and W, are finite
and p and p’ are injective, they must be surjective as well. For m in M, we know p(m) # m
since m prefers p(m) to u'(m); so let w = p(m). Then w € W and w # p’(m). Further, w
prefers p'(w) to m for if not (m,w) would block p’, so w € W,. A symmetric argument shows

that w/(W,) € M,.0
Our first result is an immediate consequence of the lemma.

PROPOSITION 1. If n and p' are stable matchings for (M,W), then the people who are
self-matched are the same for both.
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O Suppose p’'(m) = m but u(m)=w. Then m € M, but then, by the Lemma for the case
W= W’ m e y(W,), contradicting p’(m) = m. O

LEMMA 2. Let p and W be as in Lemma 1 and define u’ to agree with p on M, U W, and with
pwoon (M— M)V W — W,). Then p” is stable for (M, W’).

O Clearly p” restricted to M, U W, or (M — M,)U (W’ — W,) is stable, so if there is a
blocking pair, we must have either m € M,, w & W, or m & M, and w € W,,. Suppose w
prefers m to w’(w).

Casel. m e M,, w € W,/ — W,.. Then m prefers p(m) to p’(m) whom he likes at least as well
as w, so (m,w) does not block u”.

Case 2. m & M,, w € W, Then m likes p’(m) at least as well as u(m) whom he prefers to w,
since p is stable so, again, (m,w) does not block p”. O

The lattice property is a consequence of Lemma 2, for note that p” assigns each man his
favorite of u(m) and p'(m), so in usual lattice notation we write u” = p V p’. As stated in the
introduction, it now follows that for any (M, W; P) there exist matchings p,, and p, which are
M-optimal and W-optimal, respectively. We now have

PROPOSITION 2. With the hypothesis of Lemma 1 let p,, be the M-optimal matching for
(M, W; P) and let ', be the M-optimal matching for (M, W’; P’). Then every man is at least as
well off under 'y, as under u,,.

O From Lemma 2, u,, V u), is stable for (M, W’; P’) and

pzp , wzp .0
M w

4. The Matching Game. Since the Dubins-Freedman Theorem shows that it is never advanta-
geous for the men to falsify their preferences, we will assume from here on that the men always
submit their true preference list. For the special case where there is only one stable matching, the
Dubins-Freedman Theorem implies that honesty is also the best policy for the women. In all other
cases, however, this is not so.

THEOREM 1. If there is more than one stable matching, then there is at least one woman who will
be better off by falsifying, assuming the others tell the truth.

O By hypothesis p,, # py, so let w be any woman such that p,, (w) # p,,(w). Now let w
falsify by removing from her preference list all men who rank below u,, (w). Clearly the matching
py will still be stable under these preferences (there are now fewer possible blocking pairs).
Letting p), be the M-optimal matching for these new preferences, it follows from Proposition 1
that w is not self-matched by p}, and hence she is matched with someone she likes at least as well
as py, (w), since all other men have been removed from her list, and she prefers g, (w) to p, (w)
so she prefers p,, to u,,. O

Theorent 1 shows that the policy of honest revelation of preference is “unstable” for the
women in a different sense of instability, namely, if each woman expects the others to be honest, it
will in general be possible for at least one woman to improve her position by lying. This leads one
to ask the following question: if honesty is not the best policy, is there any set of policies or
“strategies” which have the property that once they are adopted by the women there will be no
advantage to any one woman in changing her strategy? It will be useful here to introduce some
standard game theoretic-terminology and we will henceforth refer to our model as the matching
game. We are dealing here with perhaps the most important concept in game theory, that of an
equilibrium point. An abstract game consists of a set of players each of whom has a certain set of
strategies. In a play of the game each player selects one of her strategies and the “rules of the
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game” then assign her some payoff which may be a number (“score”) or, as in our case, a mate. A
set of strategies, one for each player, forms an equilibrium point if no player can, by changing her
strategy, achieve a better payoff, assuming the other players do not change theirs. The strategies
form a strong equilibrium point if no subset of players by changing its strategies can achieve a
better payoff for all of its members. Are there any equilibrium point strategies for the women in
the matching game? The next two theorems answer this question.

THEOREM 2. Let p be any stable matching for (M, W, P) and suppose each woman in u(M)
chooses the strategy of listing only n(m) on her preference list. This is an equilibrium point.

O It is clear that p is stable under these falsified preferences which we will denote by P’.
Further, p is the only stable matching for (M, W; P’), for any other matching would leave some w
in p(M) unmatched, which is not possible by Proposition 1. Hence p is the M-optimal matching
for (M, W; P’).

To see that P’ is an equilibrium point, suppose some w now changes her preference list
leading to a new M-optimal matching pu’ which gives her a mate m’ = p’(w) whom she prefers to
p(w) under true preference. Then m’ must have been matched by p to some w’, for if not (m’, w)
would have blocked y in (M, W;.P). But then w’ is self-matched under u’ since m’ was the only
man on her P’-list. This means m’ prefers w to w’, but if this were so, again (m’, w) would have
blocked p, a contradiction. O

Theorem 2 says that the women can force any matching u which is stable under the true
preferences by equilibrium point strategies. We now present a sort of converse.

THEOREM 3. Suppose the women choose any set of strategies P;, ( preference lists) that form an
equilibrium point for the matching game. Then the corresponding M-optimal matching for (M, W; P’)
is one of the stable matchings of (M, W, P).

This theorem has been proved by Roth [5] making use of the properties of the matching
algorithm of [2]. We present here a direct proof.

O Suppose p’ is the M-optimal matching for (M, W; P’) but (m, w) blocks & under w’s true
preference. We will show that P’ is not an equilibrium point. Namely, let w refalsify by listing
only m on her preference list. Then she will get him, for let u”” be the M-optimal matching for the
new preference P”. If w does not get m, then she is self-matched by p”” so by stability of u’, m
prefers p”(m) to w and by assumption m prefers w to p’(m), so m prefers w”’(m) to w(m). But
clearly the matching ' would be stable for (M, W — w; P’), where P’ is restricted to W — w.
Thus m’ is worse off under the M-optimal matching for (M, W; P’) than he is under u” for
(M, W — w, P”), which directly contradicts Proposition 2 of the previous section. O

To summarize this section, we see that by falsifying appropriately the women can achieve by
equilibrium point strategies any stable matching, thus, in particular, the W-optimal matching. On
the other hand, the women cannot get too greedy for if any set of strategies gives some woman w a
mate whom she likes better than u, (w), this will not be an equilibrium point, by Theorem 3, so
some other woman can change the matching to her advantage by choosing a different strategy.

5. Strong Equilibrium Points. By Theorem 2, the women can achieve any stable matching p by
equilibrium point strategies. However, unless p = p,,, the equilibrium point will not be strong. To
see this note that if u # u,, then p(w) # u, (w) for at least two women, for say, u(w,) #
ty (wy) = my. By Proposition 1, m, is not self-matched by p and hence u(m,) = w,_and
p(wy) = m; # wy, (wy). To show p is not the matching of a strong equilibrium point we let W be
all w such that p(w) # p,, (w). Let all w’s in ¥ refalsify by pretending ,U.W(w) is the only man
on their list. Then p,, is stable for this new preference and hence since all ¥ are matched by py,
they are matched by the M-optimal matching for the new preference.

Do there exist strong equilibrium points? Yes.
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THEOREM 4. Let each woman w submit a preference list in true order of preference but removing
all men who are ranked below p.,,(w). These preferences P’ are a strong equilibrium point.

0O We claim that p,, is the only stable matching for (M, W; P’), for clearly p,, is stable and
any other stable matching p’ must have p'(w) # p, (w) for some w; hence if w is not
self-matched, then p’(w) is preferred by w to p,, (w). Since u,,, is the W-optimal stable matching,
this means p’ is unstable under true preferences, hence is blocked by some pair (m,w). But by
construction of P’, this means (m,w) blocks p’ under P’ preferences, contradicting P’-stability
of u'.

Now since p,, is the only stable matching for (M, W; P’) it is the W-optimal matching for P’.
If some subset W could get a better payoff by falsifying, then it would get a better payoff than
from the W-optimal matching of (M, W; P’), but by the Dubins-Freedman Theorem this is
impossible. O

It seems reasonable to consider the falsification of P’ of Theorem 4 as the best method of play
for the women. It is (a) a strong equilibrium point so no woman or set of women would be
tempted to deviate from P’, and, (b) among all equilibrium point strategies it gives the women the
highest possible payoff. It would have been nice to be able to assert that the matching p,, is the
only matching obtainable from a strong equilibrium point. Unfortunately this is not the case, as
shown by the following example. The true preferences are given by Table 1.

TABLE 1
! Wy w3 Wy
m, 2,2 13 3.x X,x
m, 1,3 3,2 2,3 4,x
ny X, X X, X 1.2 2,x
My 31 4,1 2,1 1.1
TABLE 2
wy Wy Wy Wy
ny X 2 X X
m, 2 x 2 X
sy X x 3 he
My 1 1 1 1

The first entry in box i, j is the ranking of w, on the list of m,. If it is x, this means that w, is
not in the list of m,. Thus, m, ranks w, in third place and w, is not in the list of m,. The second
entry is the ranking of m, by w. If it is x, this signifies that m, is not in the list of w,. So, w,
ranks m,; in second place and m; is not in the list of w,. For these preferences the matching u,,
is given by (my,w,), (my,wy), (my,w;), (m,,w,). Now suppose all women use the system of
preferences, P’, given by Table 2 above. The entry in box i,/ is the ranking of m, by w,. The
M-optimal matching for these new preferences is given by (m,, w)), (my,wy), (m5, wy), (M4, w,).
We assert that P’ is a strong equilibrium point. In fact, no subset W’ C W which contains w,, by
falsifying, can improve the situation of all its members, since the mate of w, is the best possible; if
W’ contains w,, it cannot improve the situation of wj, for if so (m,,w,) would block the new
matching. If W’ contains w,, it cannot get a better mate for w, by falsifying, for if so (m,, w,) or
(m,,w;) would block the new matching. If W’ contains w, it is not possible to improve the
payoff of w,, for if so (m4,w,) or (m;,w,) would block the new matching.

6. Dominated Strategies. There is one more important game-theoretic concept which is il-
lustrated by the Matching Game. Let o and o’ be two strategies for some player w in a general
n-person game. We say that o dominates o’ if the payoff to w when she plays ¢ is at least as high
as when she plays ¢’ no matter what strategies the other players play, and o strictly dominates o’
if the payoff to w when she plays o is higher than when she plays ¢’ for at least one set of
strategies for the other players. A strategy is called dominant if it dominates all other strategies.
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As an illustration of these concepts, the Dubins-Freedman Theorem shows that for each man
revealing true preferences is a dominant strategy. For the women there are no dominant strategies
except for the special case where |W|= 1. If there is only one woman w, then revealing true
preferences strictly dominates any other strategy, for if she submits her true preferences, she will
get the highest man on her list who has listed her. If she falsifies by, for example, listing m’ > m
instead of m > m’, she will be worse off in the case where m and m’ are the only men who are
willing to marry her. From now on it will be assumed that there are at least two women in W. We
will show that the strategy of listing only one man, as in Theorem 2, is dominated unless that man
happens to be the woman’s true first choice. In fact, we can essentially characterize the dominated
strategies of the women by the following theorems, where a > b means that x prefers a to b
under the true preference P,.

THEOREM 5. Any strategy P, in which w does not list her true first choice at the head of her list is
strictly dominated.

O This has been proved by Roth [5] using the matching algorithm. We present here a direct
proef. :

Let P be a strategy described above. We will show that P is strictly dominated by P/’ which
lists m; (w’s favorite man) in first place and leaves the rest of the list unchanged. Let y' and p”’
be the corresponding M-optimal matchings (the strategies of all other players are assumed

unchanged). If y”(w) = m,, there is nothing to prove so we suppose that p”’(w) # m,. Then
(1) w’('m,) is preferred by m; to w or w is not on m,’s list,

for if not (m;,w) would block p”. Hence p” is stable under preference P.’. So,

(2) w(m,) Z w(m),

from the M-optimality of p’. Furthermore, from (1) and (2) it follows that u’(m,) oW, and since

all the other elements different from m, are ranked in the same ordering in both lists P/ and P/,
it follows that p’ is stable under P, and hence p”(w) = p’(w); so w is no worse off using P
than using P/.

To show that P/ strictly dominates P., let m’ be the first element in P/. Consider the

following preference pattern: m’: {w}, m; = {w} and no other man lists w. Then we can see that
1 = w7 (w) > p/(w) = m’, which concludes the proof. O

Our final result states that Theorem 5 describes essentially all the dominated strategies.

THEOREM 6. Let P be any strategy for w in which (a) m, (w’s favorite man) is listed first, (b)
P, contains only men m who are on w’s true preference list P,. Then P! is not dominated.

w

0O We will show that for any other strategy P’ there exists strategies P for the other players
such that p'(w) > p”(w), where u” and p” are the M-optimal matchings for (M, W; P, U P ) and

(M,W,P” U P), respectively. There are three cases. We first suppose P/ also satisfies (a) above.

¢ -
Case 1. P] contains some m not on P/’. Then for P we suppose that m lists w as first choice
and no other man lists w. Then p'(w) = m while w is self-matched under p” (here we used that
me€ P)). :

Case 2. P/ contains some m not on P.. Then for P suppose m has preference list {w > w’}
for some w’, m, has preference list {w’ > w}, and w’ has preference list { m > m, } and no other
man lists w or w’. Then one verifies that p’(w) = m, >p(w)=m.

W

Case 3. Let lists P, and P, be the same but w prefers m to m’ in P/ and m’ to m in P
Then suppose preference list for m, is {w’ > w}, for m is {w > w’}, for m’ is {w > w’}, and for
w’ is {m’ > m; > m}, and no other men list either w or w’. It is an instructive exercise to verify



268 DAVID GALE AND MARILDA SOTOMAYOR

that p’(w) = m, while p”(w) = m’.

We have seen that if P/ satisfies (a) and (b) and P, satisfies (a), then for some P,
wiw) > w’(w). If P/ does not satisfy (a), then by Theorem 5 there is some P,/ which dominates

P and P;” satisfies (a) so we construct P so that w'(w) > p”(w) but p” (w) Z W(w) by
dominance. The proof is now complete. O

REMARK 1. Condition (b) above is needed to avoid cases in which P = {m; > m} where m is
not in P,. It is clear that this is strictly dominated by P/ = {m, }.

REMARK 2. Note that the counterexample of Section 4 uses only undominated strategies for the
women. Thus we do not have a unique strong equilibrium point for W even when restricting to the
use of undominated strategies.
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144. MISCELLANEA

Inflation

The growth of mathematics is producing discontent:

The inflation rate per annum is pushing 10 per cent.

Faced with so much information, it’s not easy to succeed

In locating any theorem that you appear to need.

Our plethora of indices can leave you in the lurch,

For it takes less time to prove it than to go and make a search.
I can offer a solution, but it’s totally upsetting:

We need to introduce a way of constantly forgetting

The results that won’t be needed for another 20 years,

At the end of which they’ll surface with appropriate loud cheers,
While the ones that won’t be needed till forever and a day,
Once their authors get their tenure will be firmly thrown away.

—R. P. Boas
Department of Mathematics
Northwestern University
Evanston, IL 60201



