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Until about a decade ago, children in the United States were assigned to public schools by the 
district they live in, without taking into account the preferences of their families. Such systems 
overlooked reallocations of seats which could Pareto improve welfare. Motivated by such con-
cerns, several US cities, including New York City, Boston, Cambridge, Charlotte, Columbus, 
Denver, Minneapolis, Seattle, and St. Petersburg-Tampa, started centralized school choice pro-
grams. Typically in these programs, each family submits a preference list of schools, including 
those outside their district, and then a centralized mechanism assigns students to schools based 
on the preferences. The mechanisms initially adopted by school choice programs were ad hoc, 
and did not perform well in terms of efficiency, incentives, and/or stability. Atila Abdulkadiroğlu 
and Tayfun Sönmez (2003) brought these issues to light, which triggered an interest in the match-
ing literature about further analysis and design of school choice mechanisms.�

A school choice problem consists of a set of students and a set of schools where each school x  
has a quota qx of available seats. Each student has a preference ranking over schools and her out-
side option, which corresponds to remaining unassigned or going to a private school, and each 
school has a priority ranking over students. The school choice model is closely related to the 
college admissions model of David Gale and Lloyd S. Shapley (�962). The important difference 
between the two models is that in school choice, the priority rankings are determined by local 
(state or city) laws and education policies, and do not reflect the school preferences, whereas in 
the college admissions model these rankings correspond to college preferences.2 As a conse-
quence, in the college admissions model, the preferences of students as well as colleges are taken 
into account in welfare considerations. On the other hand, in the school choice model, schools 

� See Abdulkadiroğlu, Parag A. Pathak, and Alvin E. Roth (2005, 2008), Abdulkadiroğlu et al. (2005, 2006), Ergin 
(2002), Ergin and Sönmez (2006), and Onur Kesten (2005, 2006).

2 There are certain exceptions like New York City, where a number of schools determine their own priority orders. 
See Abdulkadiroğlu and Sönmez (2003), Michel Balinski and Sönmez (�999), and Ergin (2002) for a more detailed 
discussion of the relationship between the two models.
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are treated as indivisible objects to be consumed by the students, and only student preferences 
constitute the welfare criteria.

Given a priority ranking for each school and a preference profile of the students, a matching 
violates the priority of student i, if there are a student j and a school x such that i prefers x to her 
current assignment, and j is assigned to x while he has less priority for school x than i. A match-
ing is stable if (a) it does not violate any priorities, (b) every student weakly prefers his assigned 
seat to remaining unassigned, and (c) no student would rather be matched to a school that has 
empty seats. Stability has been a property of central interest in the college admissions model 
and, in general, in two-sided matching markets. In addition to the theoretical plausibility of the 
notion, Roth (2002) draws from both empirical and experimental evidence to show how stabil-
ity has been an important criterion for a successful clearinghouse in matching markets ranging 
from the entry level labor market for new physicians in the United States to college sorority 
rush. In the context of school choice, legal and political concerns appear to strongly favor stable 
mechanisms. For instance, if the priority of student i for school x is violated, then the family of 
student i has incentives to seek legal action against the school district for not assigning her a seat 
at school x, and the district authorities seem to be extremely averse to such violations of priori-
ties. Along those concerns, Boston officials decided to adopt a mechanism that always produces 
stable matchings at the expense of efficiency, rather than a mechanism—namely the top trading 
cycles mechanism—that could guarantee efficiency, yet not stability.

Gale and Shapley (�962) gave a constructive proof of the existence of a stable matching by 
describing a simple algorithm. This is known as the student proposing deferred acceptance (DA) 
algorithm:

At the first step, every student applies to her favorite acceptable school. For each school x, 
qx applicants who have highest priority for x (all applicants if there are fewer than qx) are 
placed on the hold list of x, and the others are rejected.

At step t . �, those applicants who were rejected at step t 2 � apply to their next best 
acceptable schools. For each school x, the highest priority qx students among the new appli-
cants and those in the hold list are placed on the new hold list and the rest are rejected.

The algorithm terminates when every student is either on a hold list or has been rejected by 
every school that is acceptable to her. After this procedure ends, schools admit students on their 
hold lists, which yields the desired matching.

Gale and Shapley (�962) show that, when preferences and priorities are strict, the DA algo-
rithm yields the unique stable matching that is Pareto superior to any other stable matching from 
the viewpoint of the students. Hence, the outcome of the student proposing DA algorithm is 
also called the student optimal stable matching, and the mechanism that associates the student 
optimal stable matching to any school choice problem is known as the student optimal stable 
mechanism (SOSM).3 Beside the fact that it gives the most efficient stable matching, another 
appealing feature of the SOSM, when priorities are strict, is that it is strategy-proof, that is, no 
student has an incentive to misstate her true preference ranking over schools (Lester E. Dubins 
and David A. Freedman �98�; Roth �982). Due to these desirable features, the DA algorithm has 
been adopted by the school choice programs of New York City (in 2003) and Boston (in 2005), 
in consultation with economists Abdulkadiroğlu, Pathak, Roth, and Sönmez.�

3 The SOSM has played a key role in the redesign of the US hospital-intern market in �998. See Roth and Elliott 
Peranson (�999) and Roth (2003).

� See Abdulkadiroğlu, Pathak, and Roth (2005), Abdulkadiroğlu et al. (2005, 2006), and The Boston Globe article 
“School assignment flaws detailed,” September �2, 2003.
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The DA algorithm, as described above, requires that both the preference orders and priority 
orders be strict for it to be deterministic and single-valued. This is because whenever a student 
proposes, she chooses her next best school, and a school rejects the lowest priority students 
among those who applied. Obviously, indifference classes would create ambiguities in those 
choices. In the context of school choice, it might be reasonable to assume that the students have 
strict preferences, but school priority orders are typically determined according to criteria that 
do not provide a strict ordering of all the students. Instead, school priorities are weak orderings 
with quite large indifference classes. For instance, in Boston there are mainly four indifference 
classes for each school in the following order: (a) the students who have siblings at that school 
(sibling) and are in the reference area of the school (walk zone), (b) sibling, (c) walk zone, and 
(d) all other students.5 Common practice in these cases is to exogenously fix an ordering of the 
students, chosen randomly, and break all the indifference classes according to this fixed strict 
ordering. Then, one can apply the DA algorithm to obtain the student optimal stable matching 
with respect to the strict priority profile derived from the original one. Since the breaking of 
indifferences does not switch the positions of any two students in any priority order, the outcome 
would also be stable with respect to the original priority structure.

The following example illustrates that, although tie-breaking seems like a quick solution to 
having indifferences in priority orders, it is not costless.

Example 1: Consider a school choice problem with three students, three schools each having 
one seat, and the following priority orders:

	 s,x s,y s,z

 � ∞ 2 ∞ 3

 2, 3 �, 3 �, 2 .

If the ties in the priority orders are broken favoring � over 2 over 3, then we obtain the strict 
priority structure s,9 below. Consider the following preference profile R of the students:

 R� R2 R3 s,9x s,9y s,9z

 y ∞ z ∞ y � ∞ 2 ∞ 3

 x ∞ y ∞ z 2 ∞ � ∞ �

 z x x 3 3 2 .

The student optimal stable matching for the preference profile R and the strict priority structure 
s,9 is

 � 2 3
 m 5 a    b .
 x y z

5 There are also students who have a guaranteed priority to a given school. For a complete description, see 
Abdulkadiroğlu et al. (2006) or “Introducing the Boston Public Schools 2007: A Guide for Parents and Students,” 
available at http://www.boston.k�2.ma.us/schools/assign.asp (accessed September �2, 2007).
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However, there is another matching:

 � 2 3
 n 5 a    b ,
 x z y

which Pareto dominates m and is stable with respect to s, and R.
When priorities are allowed to have indifferences, we define a student optimal stable matching 

to be a stable matching that is not Pareto dominated by any other stable matching. In Example �, 
n is a student optimal stable matching, whereas m is not, since it is Pareto dominated by the stable 
matching n. Given a profile of weak priorities, we define the student optimal stable mechanism 
(SOSM) to be the mechanism that associates the set of student optimal stable matchings with 
every preference profile. The SOSM may be multivalued because of the indifferences in the 
priority orders.

The example above showed how the arbitrariness of the tie-breaking rule may cause an effi-
ciency loss. How can one find a stable matching that avoids such inefficiency? The computer 
science literature on matching mostly includes results showing how introducing ties makes vari-
ous problems computationally hard.6 In contrast with those, we will be giving a strikingly fast 
solution to the problem of finding a student optimal stable matching, which also shows that not 
all problems become highly complex when indifferences exist.

Suppose, for instance, that at a stable matching, (i) student � would rather have a seat at school 
x in which student 2 has a seat; (ii) student 2 would rather have a seat at school y in which student 
3 has a seat; and (iii) student 3 would rather have a seat at school z in which student � has a seat. 
It is Pareto improving to carry out the corresponding cyclic trade of seats among �, 2, and 3, 
which would reallocate the seats so that � is assigned to x, 2 is assigned to y, and 3 is assigned to 
z. However, even if the matching we started with is stable, in general, there is no guarantee that 
the resulting matching after executing this cyclic trade will also be stable. For instance, there 
could be a student � who also desires to be assigned to x in the initial matching and has less x-
priority than 2, but strictly more x-priority than �. In this case, the exchange would violate the 
priority of � for x, since � prefers x to her current assignment and � is assigned to x while he has 
less priority for school x than �.

We call a cycle consisting of (i), (ii), (iii) as the one above a stable improvement cycle if at 
the original matching: (i9) � was among the highest x-priority students among those who desire 
a seat at x, (ii9) 2 was among the highest y-priority students who desire a seat at y, and (iii9) 3 
was among the highest z-priority students who desire a seat at z. If we start at a stable matching 
and execute a stable improvement cycle, it is guaranteed that we will end up at a stable match-
ing since conditions (i9), (ii9), and (iii9) make sure that there are no intermediate students like � 
whose priority would be violated after carrying out the cyclic trade.

We show in our main result that if a stable matching is not in the student optimal stable set, 
then it admits a stable improvement cycle. Hence, starting at any stable matching, we can con-
struct a sequence of Pareto improving stable matchings by carrying out stable improvement 
cycles, until we reach a student optimal stable matching. The procedure, which we call the stable 
improvement cycles mechanism, is polynomial in the number of students plus schools; hence, it 
is computationally very simple. Since our model is finite, exhaustive verification methods also 
give finite time algorithms that compute a student optimal stable matching. In contrast with our 
stable improvement cycles algorithm, however, we note that these exhaustive algorithms are 
computationally quite complex and infeasible even for school choice problems consisting of a 
small number of students and schools.

6 See for instance Magnús Halldórsson et al. (2003) and David F. Manlove et al. (2002).
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We can start the stable improvement cycles procedure with a random tie-breaking followed 
by the DA algorithm to obtain a stable matching to Pareto improve upon. This initial tempo-
rary matching is essentially what is returned in the New York City and Boston School Choice 
Programs. Therefore, the search for stable improvement cycles also provides an optimality test 
for these mechanisms. Furthermore, as each cycle Pareto improves the initial match, one can 
provide a measure of the efficiency loss due to random tie-breaking.

Using preference data from the New York City High School Match, Abdulkadiroğlu, Pathak, 
and Roth (2008) carry out this empirical exercise. They document that, on average, over �,700 
students would have been matched with schools higher on their preference lists without hurting 
others had the stable improvement cycles mechanism been applied to the reported preferences. 
Thus, the efficiency cost from an arbitrary tie-breaking can be significant.

Table � shows how many students’ matches could have been improved via the stable improve-
ment cycles in the years where the DA algorithm was used following a random tie-breaking. To 
complement this empirical finding, we report a number of sensitivity analyses using simulations. 
In particular, we investigate how the size of the Pareto improvement varies as the correlation 
among student preferences and the weight given to locational proximity change.

We next turn to analyze the strategic properties of the SOSM when priorities are weak. We 
show that, in general, there may not exist a deterministic or stochastic selection from the SOSM, 
which is strategy-proof. We also show that, given any such selection, it is a Nash equilibrium for 
all students to state their true preferences at profiles where the outcome of the SOSM is a singleton. 
Hence, the former negative result seems to be intimately related to multiplicities in the student 
optimal stable set.

Even when there is room for manipulation, this would require a particular kind of information 
about the preferences and the priority rankings of the other students. As a theoretical benchmark, 
we show that if a student has symmetric beliefs about two schools, then under an anonymous ran-
dom selection from the SOSM, she can not benefit by a misstatement that switches the ranking of 
these two schools in her true preference profile. Accordingly, under low information, when it is 
common knowledge that everyone prefers being assigned to a school to staying unmatched, the 
preference revelation game induced by the stable improvement cycles mechanism has truth-tell-
ing as a Bayesian Nash equilibrium.

Throughout the paper, our welfare considerations take only student preferences into account, 
and we have a one-sided perspective in that sense. In Erdil and Ergin (2006), we model both sides 
as economic agents, such as workers versus firms. In two-sided matching literature, it has been 
a standard assumption that agents are not indifferent between any two members of the opposite 
side, despite the existence of such indifferences in various actual settings. A number of issues 
arise if agents are not assumed to have strict preferences on the opposite side. Most importantly, 
stability no longer implies Pareto efficiency, and the deferred acceptance algorithm can not be 
applied to produce a Pareto efficient or a worker/firm optimal stable matching. In Erdil and Ergin 
(2006), we allow ties in preference rankings on both sides and explore the Pareto domination 
relation on stable matchings, as well as the two relations defined via workers’ welfare and firms’ 

Table �—Improvements via Stable Improvements Cyclesa

 Number of Number of Percent of
Year assigned students improving students improving students

2003–200� 63,7�9 �,693 2.7
200�–2005 76,83� �,986 2.6
2005–2006 73,378 �,8�8 2.5
2006–2007 73,��5 �,�87 2.0

a These numbers are from Abdulkadiroğlu, Pathak, and Roth (2008).
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welfare. Our structural results lead to fast algorithms to compute a Pareto efficient and stable 
matching, and a worker (or firm) optimal stable matching.

In general, insisting on stability would have efficiency costs (from the perspective of students) 
regardless of the tie-breaking rule. A complete characterization of priority structures for which 
the stability constraints do not lead to such an efficiency loss is given in Erdil (2008).

I. The Model and Preliminary Observations

Let n denote a finite set of students and X a finite set of schools. Let qx $ � denote the num-
ber of available seats in school x. Throughout, we will maintain the assumption that student 
preferences are strict: A preference profile is a vector of linear orders (complete, transitive, and 
antisymmetric relations) R 5 1Ri 2 i[n, where Ri denotes the preference of student i over X < 5i6. 
Being assigned to oneself is interpreted as not being assigned to any school. Let pi denote the 
asymmetric part of Ri. A matching is a function m : n S X < n satisfying: (i) 5i [ n : m 1i 2 [ 
X < 5i6 and (ii) 5x [ X : Z m2�1x 2 Z # qx. A mechanism f is a function that associates a non-empty 
set of matchings with every preference profile. A random mechanism f associates a probability 
distribution over matchings with every preference profile R.

A priority structure is a profile of weak orders (complete and transitive relations) s, 5 
1s,x 2 x[X, where for each x [ X, s,x ranks students with respect to their priority for x. Let sx 
denote the asymmetric part of s,x. We say that s, is strict if for any x [ X, s,x is antisymmet-
ric. Let T1s,2 denote the set of strict priority profiles s,9 obtained by breaking the ties in s,.7 
Given s, and R, the matching m violates the priority of i for x, if there is a student j such that 
j is assigned to x, whereas i both desires x and has strictly higher priority for it, i.e., m 1 j 2 5 x, 
xpi m 1i 2 , and i sx j. The matching m is stable if (i) it does not violate any priorities, (ii) m 1i 2Ri i 
for any i, and (iii) there do not exist i and x such that xpi m 1i 2 and qx . Z m2�1x 2 Z. Let s, denote 
the stable mechanism, i.e., the mechanism that associates to each R the set of stable matchings 
with respect to s, and R.

Given R, the matching m9 Pareto dominates the matching m if m9 1i 2Ri m 1i 2 for every i [ n, 
and m9 1 j 2pj m 1 j 2 for some j [ n. Given s, and R, the matching m is constrained efficient (or 
student optimal stable) if (i) m [ s, 1R2 and (ii) m is not Pareto dominated by any other m9 [ 

s, 1R2 . Let f s, denote the SOSM, i.e., the mechanism that associates to each R the set of con-
strained efficient matchings with respect to s, and R. Given s,, a mechanism f is constrained 
efficient if for any R, f 1R2 , f s, 1R2 .

THEOREM 0 (Gale and Shapley �962): for any strict s, and R, f s, 1R2 consists exactly of the 
matching given by the DA algorithm.

The following are well-known facts about how tie-breaking affects the stable and the student 
optimal stable mechanisms. Their variants can be found in Gale and Shapley (�962), Roth and 
Marilda Sotomayor (�990), and Lars Ehlers (2006). We explain the arguments behind them 
below for completeness.

OBSERvATION �: s, 5 hs,9[T1s,2
s,9.

OBSERvATION 2: f s, , hs,9[T1s,2 f
s,9.

7 Formally, T1s,2 is the set of strict priority structures s,9 such that i sx j implies i sx9 j for all x [ X and i, j [ n.
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When one breaks ties in s, to obtain s,9, the constraints required by stability weakly increase. 
Hence, stability becomes weakly more difficult to be satisfied under s,9, which gives the “.” part 
in Observation �. To see the “,” part of Observation �, take any preference profile R and let m be 
a stable matching with respect to R and s,. For each school x, break the ties among the students 
within each indifference class of s,x by favoring those who are assigned to x under m, if any. By 
stability of m prior to the tie-breaking, if a student i strictly prefers a school x to her match, then 
any other student j who is assigned to x must have weakly higher s,x-priority than i. Since j is 
matched to x under m, she can not have less s,x9-priority than i after the tie-breaking above. This 
shows that m [ s,91R2 .

To see Observation 2, take any R and let m [ f s, 1R2 . From Observation �, there exists a tie-
breaking s,9 for which m continues to be stable. Since any other matching m9 that is stable with 
respect to s,9 is also stable with respect to s,, constrained efficiency of m under s, implies con-
strained efficiency of m under the tie-breaking s,9. We conclude that f s,91R2 5 5m6. As illustrated in 
Example �, applying the DA algorithm after breaking the ties in s, may lead to outcomes that are 
not constrained efficient under s,. Hence, the inclusion in Observation 2 might in fact be proper.

II. A Constrained Efficient Solution

Let m be a stable matching for some fixed s, and R. We will say that a student i desires school 
x if she prefers x to her assignment at m, that is xpi m 1i 2 . For each school x, let Dx denote the set 
of highest s,x-priority students among those who desire x. We will suppress the dependence of 
Dx on m.

DEFINITION �: A stable improvement cycle consists of distinct students i�, … , in K i0 (n $ 2) 
such that:

 (i) m 1i/2 [ X (each student in the cycle is assigned to a school);

 (ii) i/ desires m 1i/1�2; and

 (iii) i/ [ Dm 1i/1�2 ,

for any / 5 0, … , n 2 �.

Given a stable improvement cycle, define a new matching m9 by:

 m 1 j 2 if j o 5i�, … , in6
 m9 1 j 2 5 •          .
 m 1i/1�2 if j 5 i/

Note that the matching m9 continues to be stable and it Pareto dominates m. We are now ready to 
present our main result.

THEOREM �: fix s, and R, and let m be a stable matching. If m is pareto dominated by another 
stable matching n, then it admits a stable improvement cycle.8

8 We could actually “squeeze in” a stable improvement cycle between any two Pareto-ranked stable matchings. 
Formally, we could guarantee that the new stable matching m9, obtained from m by applying the stable improvement 
cycle, lies weakly below n in a Pareto sense.
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If a stable matching is not constrained efficient, then there must exist a Pareto improvement 
which is still stable. Theorem � tells us that to find such a Pareto improvement, it is enough to 
look for a stable improvement cycle. By successive application of this result, we can define a 
procedure that produces a constrained efficient matching, which we call the stable improvement 
cycles algorithm.

Step 0. Select a strict priority structure s,9 from T1s,2 . Run the DA algorithm and obtain a 
temporary matching m0.

Step t # 1.
(t.a) Given mt2�, let the schools stand for the vertices of a directed graph, where for each pair 

of schools x and y, there is an edge x S y if and only if there is a student i who is matched to x 
under mt2�, and i [ Dy .

(t.b) If there are any cycles in this directed graph, select one. For each edge x S y on this cycle, 
select a student i [ Dy with mt2�1i 2 5 x. Carry out this stable improvement cycle to obtain mt, and 
go to step (t1�.a). If there is no such cycle, then return mt2� as the outcome of the algorithm.

In the description above, we leave it open how the procedure should select s,9 in step 0, and how 
it should select the cycle and the student in step (t.b). Therefore, one can think of the description 
above as corresponding to a class of algorithms, where an algorithm is determined only after we 
fully specify how to act when confronted with multiplicity. One can imagine these selections to 
be random or dependent on the earlier selections. Let fs, denote the random mechanism induced 
by our algorithm when the selections are made independently and randomly with equal prob-
abilities each time the algorithm faces a multiplicity. In Section Iv, we will analyze the strategic 
behavior of the students under the random mechanism fs,. Remember that given s,, R, and m [ 
f s, 1R2 , there is a tie-breaking s,9 [ T1s,2 such that the DA algorithm applied to 1R, s,92 returns m. 
Since each tie-breaking has positive probability of being selected at step 0 of the algorithm cor-
responding to fs,, fs, 1R2 gives positive probability to every constrained efficient matching.

Note that Observation 2 also yields an algorithm to find a student optimal stable matching. 
Namely, one could apply the DA algorithm to all possible tie-breakings of the given priority struc-
ture, record the outcomes, and Pareto compare them to find a student optimal stable matching. 
Even with a single indifference class of only �00 students, however, this would amount to running 
the DA algorithm more than �090 times, a computationally infeasible task. From a practical per-
spective, the value of our algorithm comes from its remarkably small computational complexity.9

Stable improvement cycles are closely related to Gale’s top-trading cycles, originally intro-
duced in Shapley and Herbert Scarf (�97�) and later studied in detail by Szilvia Pápai (2000) and 
Abdulkadiroğlu and Sönmez (2003). At a matching m, a top-trading cycle consists of students 
i�, … , in K i0 (n $ 2) such that conditions (i) and (ii) in our definition of a stable improvement 
cycle are satisfied, and additionally m 1i/1�2 is student i/’s top ranked school for / 5 0, … , n 2 �. 
Suppose that matching m is stable to start with. There are two reasons for which we could not 
make use of top-trading cycles in our construction. First, since condition (iii) is not required 
in a top-trading cycle, there is no guarantee that the matching m9 obtained after executing the  

9 In addition to the DA algorithm used in practice, it involves a repetition of cycle search in a directed graph. The lat-
ter is known to be of complexity O 1 Z V Z 1 Z E Z 2 where V is the set of vertices and E the set of edges (Thomas H. Cormen 
et al. 200�). This obviously is very fast; the question, then, is how many times one has to repeat the cycle search. Notice 
that with every cycle, at least two students improve; therefore, each cycle brings at least two moves up with respect to 
the students’ preferences. Since there are Z n Z students and the student preferences involve Z X Z schools, there could be at 
most Z n Z 1 Z X Z 2 �2 moves up. Therefore, cycle search has to be repeated at most 1/2 Z n Z 1 Z X Z 2 �2 times.
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top-trading cycle will continue to be stable. Second, top-trading cycles are too demanding for 
our purposes, since even when there exist Pareto improving trading cycles that preserve stability, 
there may not exist such a cycle where all participating students receive their top choices.

III. Simulations

In order to compare the performance of the stable improvement cycles algorithm to that of the 
DA algorithm applied with random tie-breaking, we design a random environment and employ 
computer simulations. Upon consulting the experts, both the New York City Department of 
Education (in 2003) and the Boston Public School System (in 2005) adopted mechanisms that 
first randomly pick an ordering of the students according to which they break the ties between 
students of the same priority, and then apply the student proposing DA algorithm to the derived 
school choice problem with strict priority structure and preferences.�0 For brevity, let us call this 
mechanism RDA, standing for Randomize and apply the DA algorithm.

Recall that our algorithm begins like RDA, but goes further, and Pareto improves on the 
outcome of RDA by allowing exchanges of school seats through stable improvement cycles as 
described in Section II. It stops once it reaches a student optimal stable matching. Whenever 
RDA fails to return a student optimal stable matching, our mechanism will improve on it. In 
comparing the performance of the two mechanisms, we will ask several questions. First of all, 
how significant is the improvement, that is, how many students are affected by it, and how many 
moves up in their preferences are achieved? And, second, how do the number of students, the 
number of schools, correlation in preferences, and preferences for locational proximity affect the 
size of the Pareto improvement?

In developing our setup for the computational experiments, we aim to account for a number of 
aspects of real life school choice problems. For instance, in order to ensure that certain schools 
are demanded more than others, we will allow for correlation in student preferences. We also 
account for locational preferences, since, ceteris paribus, a student is more likely to prefer a 
school located closer to her residence to schools that are located farther away. We also make sure 
that preferences for proximity are consistent with the priority structure in the following sense: if 
a student has a high priority at a school because she is in the walk zone of that school, then she 
should in turn be more likely to favor that school because of its locational proximity.

Let the students be indexed by i 5 �, … , n, and the schools be indexed by x 5 �, … , m, where, 
for simplicity, we assume that q 5 n/m is an integer equal to the number of seats in each school. 
For each student i and school x, we represent the locations of the student and the school in a 
two-dimensional map by points / i, /x [ R2, respectively. Let i 5 0 denote an artificially created 
dummy student with average tastes. Let Zix be i.i.d. normally distributed random variables with 
mean zero and variance one for i 5 0, �, … , n; x 5 �, … , m. We define the utility of student i 5 
�, … , n for school x 5 �, … , m by:

(�)  Uix 5 2bd 1/i, /x 2 1 1� 2 b 2 3aZ0x 1 1� 2 a 2Zix 4 ,
where d 1., .2 denotes the usual Euclidean distance, and a, b [ 30, �4 are fixed common param-
eters. The parameter a captures the correlation in student preferences and the parameter b cap-
tures student preferences’ sensitivity to locational proximity.�� We assume that each student is in 

�0 See Abdulkadiroğlu, Pathak, and Roth (2005, 2008) and Abdulkadiroğlu et al. (2005).
�� It is easy to see that for any two students i and j, and school x, if b , �, then correlation between Uix and Ujx is given 

by a2/ 3a2 1 1� 2 a 224 . Hence, correlation is strictly increasing in a; it is 0 at a 5 0, and � at a 5 �. Similarly, students 
put zero weight on location if b 5 0, they evaluate schools solely based on proximity if b 5 �, and intermediate values 
of b qualitatively capture the weight given to proximity in student preferences.



JUnE 2008678 THE AMERICAn ECOnOMIC REVIEW

the walk zone of the school located closest to her residence. Each school’s priority order consists 
of only two indifference classes determined by its walk zone.

Given parameters n, m, a, and b, in each simulation experiment, we go through the following 
steps:

 �. Generate locational parameters of students and schools by using the i.i.d. uniform distribution 
on 30, �4 3 30, �4 ;

 2. Determine the priority structure from the locational parameters;

 3. Generate the i.i.d normal variables Zix and determine the utility values from formula (�). Define 
the preference of each student i by: xpi  y 3 Uix . Uiy, where all schools are acceptable;

 �. Randomly pick an ordering of the students and apply RDA;

 5. Pareto improve over RDA by using the stable improvement cycles algorithm. Compute the 
percentage of students who improve from RDA, as well as the average number of steps up the 
preference list of the improving students.

Unlike earlier computational simulations in the literature such as Yan Chen and Sönmez 
(2006) with 36 students and 7 schools, and Kesten (2005) with 2�0 students and �2 schools, 
we conducted experiments with relatively large sets of schools and students. We ran a number 
of experiments where the number of schools ranges from �0 to �00, and the number of students 
per school from 5 to 200. We report a few of them in Figure �, which shows how the parameters 
a and b affect the percentage of improving students for a school choice problem consisting of 
�,000 students and 20 schools. For each (a, b) pair, the plotted percentage improvement corre-
sponds to an average over 200 simulation experiments.

In Figure �, first consider the curve corresponding to b 5 0. For a 5 0, we do not observe 
almost any stable improvement cycles. This is not surprising, because in this case, the prefer-
ences are independent and schools are symmetric; therefore students’ top choices are evenly 

Figure �. Percent of Improving Students as a Function of Alpha

(1,000 students and 20 schools)
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distributed across schools, leading to little conflict. As correlation in preferences increases, some 
schools are more in demand than others. As a result, how the ties are broken at these schools 
becomes critical, and we observe an increase in the number of students who can be improved via 
stable improvement cycles. Figure � also suggests that the efficiency loss peaks for some value 
of a, and starts decreasing thereafter. This is due to the fact that, for values of a close to �, the 
preferences start becoming so similar that exchanging seats becomes less likely to be mutually 
profitable. In the extreme case when a 5 �, the preferences are identical and there is no stable 
improvement cycle at all.

Note that as b increases, the preferences of students who live close to each other become more 
similar and the preferences of those who live far from each other become less similar. Hence, b 
can be thought of as adding a positive correlation in the preferences of students who live close 
to each other, and a negative correlation in the preferences of those who live far from each other. 
Since priorities are also based on location, an increase in b increases the correlation in the pref-
erences of students within the same priority class and decreases the correlation in the preferences 
of students within different priority classes. Figure � suggests a direction in which these two 
effects systematically play out: the single-peaked pattern in a shifts “southwest” (i.e., the peak 
of the graph drops and it is reached for lower values of a) as b increases.

When b 5 �, students’ preferences are determined solely by locational proximity. In this case, 
note that in Figure �, the percentage improvement is identically zero for every value of a. The 
reason is that when preference for proximity is extreme, for each school x the students in the walk 
zone of x top rank x. It is possible to show that this fact, along with the assumption that priorities 
have two indifference classes, implies that RDA is unconstrained Pareto efficient; hence there is 
no room for Pareto improvement.�2

Figure 2 reports the average number of steps up the preference lists of the improving students, 
which is seen to vary between one and three in the simulations above. For a robustness check, 
we ran �2 simulations analogous to those that generated Figures � and 2, where the number of 
students was 200, �00, �,000, and 2,000, and the number of schools was �0, 20, and �0. In these 
simulations, there were no qualitative changes in the observations above.

�2 Note, however, that when b 5 �, it might not be possible to assign everyone to her district school since a school 
could have more students in its walk zone than the number of students it can accommodate.

Figure 2. Total Steps Up/Number of Improving Students as a Function of Alpha

(1,000 students and 20 schools)



JUnE 2008680 THE AMERICAn ECOnOMIC REVIEW

IV. Strategic Properties

A single-valued mechanism f is strategy-proof if, for any preference profile R, student i and Ri9, 
we have fi 1Ri, R2i 2Ri  fi 1Ri9, R2i 2 . We know from Dubins and Freedman (�98�) and Roth (�982) that 
in the case of strict priorities, the constrained efficient mechanism f s, is strategy-proof. When we 
allow the priority orders to be weak, the constrained efficient set is not necessarily a singleton. In 
this case, it is natural to ask whether there is a single-valued mechanism f , f s, that is strategy-
proof. The following example gives a negative answer to this question.

Example 2. Consider a school choice problem with three schools, x, y, z, each having one seat, 
three students, �, 2, 3, who find all schools acceptable, and

 R� R2 R3 s,x s,y s,z

 y ∞ y ∞ x � ∞ 3 ∞ 3

 z ∞ z ∞ y 2 ∞ �, 2 ∞ 2

 x x z 3   � .

The constrained efficient set consists of only two matchings:

 � 2 3 � 2 3
 f s, 1R2 5 e a    b , a    b f .
 y z x z y x

Consider the following manipulations:

 R9�  R92

 y ∞ y

 x ∞ x

 z  z .

If student � announces R�9 when the other students announce truthfully, then

 � 2 3
 f s, 1R�9, R2�2 5 e a    b f .
 y z x

Similarly, if student 2 announces R92 when the other students announce truthfully, then

 � 2 3
 f s, 1R92, R222 5 e a    b f .
 z y x

Consider any single-valued mechanism f , f s,. For the preference profile R, f has to select one 
of the matchings, (�y, 2z, 3x) or (�z, 2y, 3x). If it selects (�y, 2z, 3x), then student 2 has an incen-
tive to misrepresent her preference and submit R92. On the other hand, if it selects (�z, 2y, 3x), 
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then student � has an incentive to misrepresent her preference and submit R�9. Therefore, f is not 
strategy-proof.

For each student i, our model specifies only an ordinal ranking Ri over X < 5i6. Assuming that 
the student is an expected utility maximizer, we need to know her cardinal (vNM) utility func-
tion ui : X < 5i6 S R to fully specify her risk preferences. Given two probability distributions p 
and q over X < 5i6, p [strictly] first-order stochastically dominates q with respect to Ri if

     a    p 1y 2 $     a    q 1y 2
 y[X<5i 6 : yRiz y[X<5i 6 : yRiz

for all z [ X < 5i6 [with strict inequality for some z [ X < 5i6]. It is a standard fact that p 
[strictly] first-order stochastically dominates q with respect to Ri if and only if, for any vNM 
utility function ui that gives the same ordinal ranking as Ri, the expected utility of p is [strictly] 
weakly more than the expected utility of q. Given a random mechanism f, a preference profile 
R, and a student i, let fi 1R2 denote the random allocation of i with respect to f 1R2 . The argument 
in Example 2 can be adapted to conclude that the impossibility above persists even for random 
mechanisms.

OBSERvATION 3: Let n, X, and s, be as in Example 2 and let f be any random mechanism 
that gives a constrained-efficient allocation with probability one in each preference profile. 
Then there exist R, i, and Ri9, such that fi 1Ri9, R2i 2 strictly first-order stochastically dominates 
fi 1Ri, R2i 2 with respect to Ri .

Hence, strategy-proofness and constrained efficiency are incompatible.�3 In the example above, 
the strategic manipulation was aimed at ruling out the less preferred constrained efficient alloca-
tion and, consequently, singling out the preferred one. Could a student manipulate her submitted 
ranking to induce a new matching where she is assigned to a school preferable to every school 
she could possibly be assigned to under her truthful statement? It turns out that she cannot hope 
for more than her best possibility in the constrained efficient set.

THEOREM 2: for any n [ f s, 1Ri9, R2i 2 , there is m [ f s, 1R2 such that m 1 i 2Ri n 1 i 2 .

Remember the random mechanism fs,. Even when a student has perfect knowledge of the 
priority structure and the preferences of all students, since the algorithm involves random selec-
tions, there is uncertainty as to what outcome will be returned. The computation of the likelihood 
of a particular constrained efficient solution being returned is highly involved, and when faced 
with such uncertainty, what would an “optimist” do? Someone who tends to base her actions on 
her best assignment possible among the student-optimal solutions would consider manipulating 
only if such strategic announcement brought her a school preferable to any school she could be 
assigned under her truthful revelation. So Theorem 2 could be interpreted to conclude that an 
optimist would not manipulate. Moreover, if for a particular preference profile there is only one 
constrained efficient matching, then no student would have any incentives to unilaterally mis-
state her preferences.

�3 A related result by Abdulkadiroğlu, Pathak, and Roth (2008) leads to the same conclusion: if f is the SOSM with 
respect to a fixed strict priority profile, then there is no strategy-proof mechanism that Pareto dominates f at every 
preference profile.
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COROLLARY �: Given s,, let f be any random mechanism that returns a student optimal 
stable matching with probability one. Then, if R, i, and Ri9 are such that m 1 i 2 is the same for 
all m [ f s, 1Ri, R2i 2 , then fi 1Ri, R2i 2 first-order stochastically dominates fi 1Ri9, R2i 2 with respect 
to Ri . In particular, if f s, 1R2 is a singleton, then at R, truth-telling is a nash equilibrium of the 
preference revelation game induced by f.

We have seen in Example 2 that every selection from the SOSM was manipulable, but stu-
dent � needed significant information regarding the preferences of students 2 and 3 in order to 
be able to correctly evaluate the consequences of her switching schools x and z in her preference 
list.�� One may ask if a student with low information about the preferences and priorities of oth-
ers would find it profitable to employ such manipulation.

As a benchmark for a low information environment, we adopt the framework of Roth and 
Uriel Rothblum (�999). A student’s beliefs about two schools x and y are symmetric if when one 
changes the roles of x and y in the random variable interpreted as her beliefs on 1s,, R2i 2 , the 
distribution of the random variable does not change.�5 When this is the case, it turns out that 
under our random mechanism fs,, it is not profitable for a student to misstate her preferences by 
switching those two schools in her preference.

THEOREM 3: Assume that i has symmetric beliefs about schools x and y, and that Ri9 is obtained 
from Ri by switching the places of x and y. Then, fi

s, 1Ri, R2i 2 first-order stochastically dominates 
fi

s, 1Ri9, R2i 2 with respect to Ri .

In the firms-workers model of Roth and Rothblum (�999) with strict preferences on both sides, 
it was found that under the firm-proposing DA algorithm it may be profitable for a worker to 
submit a truncated preference, where a truncation of a preference list Ri containing r acceptable 
firms is a list Ri9 containing r9 # r acceptable firms such that the r9 firms in Ri9 are the top r9 in Ri 
with the same order. Since we are analyzing the SOSM, with strict priorities a truthful statement 
of a student would be her dominant strategy, ruling out any manipulation, including truncation 
strategies. It turns out that also in the case of weak priorities, truncation strategies are never prof-
itable for students, independent of their beliefs about preferences and priorities of others.

THEOREM �: If Ri9 is a truncation of Ri , then for any belief of i over 1s,, R2i 2 , fi
s, 1Ri, R2i 2 first- 

order stochastically dominates fi
s, 1Ri9, R2i 2 with respect to Ri .

However, another set of strategies might emerge, even when the student has almost no infor-
mation allowing her to distinguish between others’ priorities and preferences. Formally, an 
extension of a preference list Ri containing r acceptable schools is a list Ri9 containing r9 $ r 
acceptable schools such that the r elements of Ri are the top r in Ri9 with the same order. Under 
fs,, manipulation by announcing an extension strategy may be profitable even under symmetric 
information. We next present an example illustrating this observation.

�� It is possible that a student may have an incentive to manipulate the mechanism fs
, under an incomplete infor-

mation environment without having detailed information about the others’ preferences. An example is when certain 
schools are commonly recognized as being popular, i.e., ex ante more likely to be highly ranked by the students. In 
that case, a student i who has high priority at a popular school x may find it profitable to lift school x in her submitted 
ranking. The rationale is that she may gain if she is temporarily assigned to x at step 0 of the algorithm and if she is able 
to “trade” x at subsequent stages of the algorithm. Such a manipulation would be profitable only if student i does not 
rank x very highly but has sufficient confidence on the popularity of x. Hence, one would expect the ex ante likelihood 
of this manipulation to be low.

�5 See Appendix A3 for a precise definition.
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Example 3. Consider three students, �, 2, and 3, and two schools, x and y, each having one 
seat. Suppose that every student has equal priority for all schools. Student �’s vNM preference is 
given by u�1y 2 5 �, u�1�2 5 0, and u�1x 2 5 2e for some e . 0; hence, her true ordinal preference 
R� is such that yp��p�x. Her beliefs over s,x , s,y , R2, and R3 are independent and uniform over 
the respective domains; in particular, they are symmetric for x and y. Suppose that the random 
mechanism fs, is being used and that student � is contemplating manipulating her true ranking 
and announcing the extension R�9 such that yp�9xp�9�.

Recall the algorithm corresponding to our random mechanism and fix a realization of s,, R2�, 
and s,9 [ T1s,2 . Conditional on 1R2�, s,92 , if student � submits R� and the algorithm assigns her 
to y, then this assignment must have been reached in step 0 as a result of the DA algorithm being 
applied to 1R�, R2�, s,92 . In this case, if she submits R�9, the algorithm would again assign her to 
y in step 0 as a result of the DA algorithm being applied to 1R�9, R2�, s,92 . Therefore, student � 
can lose by announcing R�9 instead of R�, only if the realization 1R2�, s,92 is such that she is left 
unassigned if she announces R�. Before the realization of 1R2�, s,92 , this expected loss is bounded 
above by e from the point of view of student �.

On the other hand, if the realization of 1R2�, s,92 is such that

 R2  R3 s,9x  s,9y

 x ∞ y � ∞ 2

 y ∞ x 3 ∞ 3

 2  3 2  � ,

then student � is left unassigned if she submits R� and she is assigned to y if she submits R�9. Let p 
. 0 denote the probability of the realization above. If the student’s risk preferences are such that 
e , p, then she will prefer to announce R�9 when her true ordinal ranking is R�.

From the proofs of Theorems 3 and �, it follows that the only profitable strategic manipula-
tion in a low information environment is to lengthen one’s list. If, in addition, it is common 
knowledge that all schools are acceptable for all students, then being truthful is a Bayesian Nash 
equilibrium of the preference revelation game, under the random mechanism fs,.�6

V. Conclusion

versions of the DA algorithm are being adopted in several school choice districts in the United 
States, and to our knowledge, all of them employ a random tie-breaking rule when faced with 
indifferences. We have pointed out that this may cause a significant loss of efficiency by return-
ing a matching that is not in the student optimal stable set with respect to the original priority 
structure. We introduced the stable improvement cycles algorithm which Pareto improves upon 
a stable matching whenever it is possible to do so without violating priorities, and eventually 
returns an element of the student optimal stable set. A strategic analysis shows that there need 
not be a strategy-proof selection from the SOSM. A consequence is that there is a trade-off 
between efficiency and strategy-proofness. We were able to show that in the benchmark sym-
metric information environment, being truthful is a Bayesian Nash equilibrium. Developing an 

�6 We thank John Hatfield for suggesting this corollary.
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understanding of informational environments approximating real life situations and the kind of 
manipulation strategies that arise in those contexts is an important open question.

Appendix

A�. proof of Theorem 1

In the case of strict priorities, it is well known that the set of school seats filled is the same at 
every stable outcome, as is the set of students who are assigned seats. This is no longer the case 
for weak priorities. However, the following lemma implies that the conclusion holds between 
Pareto comparable stable matchings.

LEMMA �: Let s, and R be given. Suppose that m is a stable matching that is pareto dominated 
by a (not necessarily stable) matching n. Let n9 denote the set of students who are strictly better 
off under n and let X9 5 m 1n92 be the set of schools to which students in n9 are assigned under 
m. Then we have:

 (i) Students who are not in n9 have the same match under m and n;

 (ii) The number of students in n9 who are assigned to a school x are the same in m and n; in 
particular, X9 5 n 1n92;

 (iii) Each student in n9 is assigned to a school (i.e., not to herself ) in m and in n.

PROOF:
Part (i) follows from the facts that i [ n \ n9 is indifferent between m 1i 2 and n 1i 2 , and her 

preferences are strict.
For part (ii), let us first show that Z n9 > m2�1x 2 Z $ Z n9 > n2�1x 2 Z for any school x. Suppose, to 

the contrary, that Z n9 > m2�1x 2 Z , Z n9 > n2�1x 2 Z for some school x. Together with part (i), this 
implies that the number of students in n who are assigned to x in m is less than the number of 
students who are assigned to x in n. Hence, x must have empty seats under m. However, for any i 
[ n9 > n2�1x 2 , x 5 n 1i 2pi m 1i 2 , that is, i desires x which has empty seats under m, a contradiction 
to the stability of m.

Now, suppose that the inequality Z n9 > m2�1x 2 Z $ Z n9 > n2�1x 2 Z holds strictly for some school 
x*. Summing across all schools we have:

 a
x[X

 Z n9 > m2�1x 2 Z . a
x[X

 Z n9 > n2�1x 2 Z .

In other words, the number of students in n9 who are assigned to some school in m is more than 
the number of students in n9 who are assigned to some school in n. Hence, there exists a student 
i in n9 who is assigned to a school in m, but not in n. Since i 5 n 1i 2pi m 1i 2 , this contradicts the 
stability of m.

We already know from part (ii) that:

  Z n9 Z $ a
x[X

 Z n9 > m2�1x 2 Z 5 a
x[X

 Z n9 > n2�1x 2 Z .

To prove part (iii), we need only show that the inequality above cannot hold strictly. Suppose for 
a contradiction that:

  Z n9 Z . a
x[X

 Z n9 > m2�1x 2 Z 5 a
x[X

 Z n9 > n2�1x 2 Z .
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Hence, there exists a student i [ n9 who is unmatched in n. Note that i has to be matched in m; 
otherwise, she would be indifferent between m and n, a contradiction to her being in n9. But then 
i 5 n 1i 2pi m 1i 2 , a contradiction to the stability of m.

PROOF OF THEOREM �:�7

Suppose that m and n are stable matchings and that n Pareto dominates m. As in Lemma �, 
let n9 denote the set of students who are strictly better off under n. Let X9 5 m 1n92 be the set of 
schools to which students in n9 are assigned to under m.

For any x [ X9, let nx9 denote the highest s,x-priority students among those in n9 that desire x 
at m. nx9 is non-empty since x is desired by (at least) the students in n9 who are assigned to x in n. 
We know such students exist since x [ X9 5 n 1n92 by part (ii) of the Lemma above.

Fix an arbitrary student ix [ nx9 and let the school m 1ix 2 point to x.�8 Note that m 1ix 2 [ X9 by 
part (iii) of the Lemma above and m 1ix 2 Z x, since ix desires x. We can repeat this for each school 
x [ X9 and fix a school y [ X9 \ 5x6 that points to x.

Since each school in X9 is pointed to by a different school in X9, there exists a cycle of distinct 
schools x�, … , xn K x0 in X9, where x/ points to x/1� for / 5 0, … , n 2 � and n $ 2. Let i/ 5 ix/1�

 
for / 5 0, … , n 2 �. Since x/ points to x/1� and i/ K ix/1�

, we have m 1i/2 5 x/. In particular, i�, … , in  
are distinct and they are all assigned to a school. Moreover, by construction, i/ K ix/1�

 desires 
m 1i/1�2 5 x/1�.

Let Dx denote the set of highest s,x-priority students among those who desire x at m. Let Bx 
denote the set of students who desire x and are strictly below Dx with respect to s,x at m. Note that 
i/ [ Dm 1i/1�2 < Bm 1i/1�2 , which implies that Dm 1i/1�2 is nonempty. It remains to show that i/ [ Dm 1i/1�2 . 
Suppose for a contradiction that i/ lies in Bm 1i/1�2 . By construction, i/ is a highest s,m 1i/1�2 -priority 
student among those in n9 who desire m 1i/1�2 ; hence, Dm 1i/1�2 has an empty intersection with n9.

Choose any j [ Dm 1i/1�2 . From above, j o n9 and j sm 1i/1�2 k for any k [ n9 who desires m 1i/1�2 . 
Since m 1i/1�2 [ X9 5 n 1n92 by part (ii) of the Lemma above, there is k [ n9 who is matched to 
m 1i/1�2 under n. In particular, k desires m 1i/1�2 at m; hence j sm 1i/1�2 k. Since j desires m 1i/1�2 at m 
and m 1  j 2 5 n 1  j 2 by part (i) of the Lemma above, she also desires m 1i/1�2 at n. This contradicts 
the stability of n, since j has higher s,m 1i/1�2 -priority than k, who is matched to m 1i/1�2 at n.�9

A2. proof of Theorem 2

Let x be the best school that student i can be assigned to among her assignments from f s, 1R2 . 
Suppose that there is a preference ordering Ri9 such that n [ f s, 1Ri9, R2i 2 and n 1i 2pi x. We know 
that n 5 f s,91Ri9, R2i 2 for some tie-breaking s,9 [ T1s,2 . But in the case of strict priority orders, 

�7 In the following footnotes, we indicate the necessary modifications in the proof in order to guarantee that the new 
stable matching m9, obtained from m by applying the improvement cycle, lies weakly below n in a Pareto sense.

�8 In order to guarantee that the new stable matching m9, obtained from m by applying the improvement cycle, lies 
weakly below n in a Pareto sense, we need to select ix slightly more carefully: if there is a student i [ nx9 who is assigned 
to x in n, fix ix to be one of those students; otherwise fix ix arbitrarily.

�9 To show that the new stable matching m9, obtained from m by applying the improvement cycle, may be guaranteed 
to lie weakly below n in a Pareto sense, it is enough to prove that n 1i/2Ri/m 1i/1�2 1/ 5 0, … , n 2 �2 under the more care-
ful selection of ix’s indicated in the footnote above. To prove this, remember that x/1� 5 m 1i/1�2 , ix/1� 5 i/, and suppose 
that x/1� pix/1�  

n 1ix/1�2 . Since n 1ix/1�2 Z x/1�, there must be no student in nx9/1� who is assigned to x/1� at n. Therefore, 
by construction of nx9/1�, any student k [ n9 who is assigned to x/1� at n (and hence desires x/1� at m) has strictly less 
s
,x/1�-priority than ix/1�. This contradicts the stability of n, since ix/1� desires x/1� at n and n 1k 2 5 x/1�. (The existence of 
such a k is again guaranteed since x/1� [ X9 5 n 1n92 by part (ii) of the Lemma.)
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we also know that the only constrained efficient assignment is the student optimal one, and it is a 
dominant strategy to reveal one’s preferences truthfully. Hence, if m9 5 f s,91R2 , then

 m9 1i 2Ri n 1i 2pi x.

Since x is the best school that student i could expect from the assignments in f s, 1R2 , m9 must not 
be constrained efficient with respect to R and s,. It is stable since it is the outcome of the DA 
algorithm applied to a tie-breaking s,9. Therefore it must be Pareto dominated by an assignment 
n9 [ f s, 1R2 which implies xRi n9 1i 2Ri m9 1i 2 leading to a contradiction with our earlier conclusion 
m9 1i 2pi x.

A3. proof of Theorem 3

We will use the shorthand M for a pair 1s,, R2 . We continue to suppress the quota qx of each 
school x within the notation s,x. For any two schools x and y, let Rx4y denote the preference pro-
file obtained from R by switching x and y in each student’s preference. Similarly, let s,

x4y denote 
the priority structure obtained from s, by switching the quotas and priority orders of x and y. Let 
Mx4y stand for 1s,x4y, Rx4y 2 . Then, Ri

x4y is the preference order of student i obtained from Ri by 
switching x and y, and M2i

x4y 5 1s,x4y, R2i
x4y 2 is obtained from M2i by switching the roles of x and 

y in s, and in the preferences of all students except i.
We summarize the beliefs of student i about the stated preferences and priorities of the others 

by a random variable M̃2i. For any two schools x and y, we say that M̃2i is 5x, y 6-symmetric if the 
distributions of M̃2i and M̃2i

x4y coincide. This assumption can be interpreted as saying that stu-
dent i’s beliefs cannot distinguish between these two schools, from the preferences and priorities 
of the other students. The 5x, y 6 -symmetry assumption does not necessarily imply that student 
i has no information concerning x and y; for instance, it is consistent with beliefs where certain 
students always prefer x and y to a third school z, or where with a certain probability student i has 
higher priority than another student j for both x and y, and so on.

Given M̃2i and Ri, the probability that student i is matched to x [ X < 5i6 is

 pi 1Ri , M̃2i2 1x 2 K a Pr EM̃2i 5 1s,, R2i2 F Pr Efi
s, 1Ri, R2i 2 5 xF,

where the sum is taken across all possible realizations 1s,, R2i2 of M̃2i. The following lemma 
states that if a student i prefers school y to x, regardless of M2i, her probability of receiving y 
when she announces Ri

x4y is less than or equal to her probability of receiving y when she is truth-
ful. Symmetrically, her probability of receiving x when she announces Ri

x4y is at least as much 
as her probability of receiving x when she is truthful.20

LEMMA 2: If x, y [ X and ypi x, then

 (i) pi 1Ri
x4y, M2i2 1y 2 # pi 1Ri, M2i2 1y 2 ;

 (ii) pi 1Ri
x4y, M2i2 1x 2 $ pi 1Ri, M2i2 1x 2 .

20 Theorems 3 and � are stated for the random mechanism fs
,. Remember that in the stable improvement cycles 

algorithm leading to fs
,, we have assumed that a selection is made independently and randomly with equal probabilities 

each time the algorithm faces a multiplicity. In proving these results, we use only the facts that these randomizations are 
made independently and anonymously, i.e., they do not depend on the particular labeling of students and schools. For 
instance, the same conclusions hold for the random mechanism Gs

,, which differs from fs
, only in that the algorithm 

leading to it selects a cycle in step (t.b) independently and randomly with equal probabilities from among the largest 
stable improvement cycles.
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PROOF:
We start by proving part (i). Recall that the algorithm associated with fs, starts with the selec-

tion of a tie-breaking of s,. For a fixed tie-breaking s,9 [ T1s,2 , we will compare, for Ri and 
Ri

x4y, the probabilities with which the rest of the algorithm will return an assignment m with m 1i 2 
5 y. Let m0 5 f s,91R2 and Ri9 5 Ri

x4y. We consider four cases depending on m0 1i 2 .
If m0 1i 2 5 z, where zpi ypi x, then f s,91Ri9, R2i 2 1i 2 5 z due to well known properties of the DA 

algorithm for strict priority structures. Since the mechanism will be employing stable improving 
cycles dominating m0, her preferences regarding schools less preferable than z will not matter at 
all. In particular, in this case her probability of obtaining y will be zero regardless of her switch-
ing or not switching x and y in her preference.

If m0 1i 2 5 x, then it is not hard to see again that f s,91Ri9, R2i 2 1i 2 5 m0 1i 2 5 x. If she announces 
Ri9 5 Ri

x4y, she will never obtain y by participating in a stable improvement cycle in steps t $ � 
of our algorithm, since xpi9y. Therefore, her probability of eventually being assigned to y in this 
case is zero if she announces Ri

x4y.
If m0 1i 2 5 z where yRi zpi x, since the outcome of the mechanism will be a weak Pareto improve-

ment of m0 with respect to the announced preferences, by announcing Ri
x4y, her probability of 

getting school y will be zero.
Last, let m0 1i 2 5 z where ypi xpi z. At step 0 of the algorithm, the pictures are identical for her 

announcing Ri and Ri
x4y since she prefers both x and y to z. Similarly, at any stage of the updating 

of the directed graph, the pictures look alike when the temporary assignment at that stage is less 
preferable than both x and y. Therefore, for all those steps, the probabilities of the next step are 
identical for Ri and Ri

x4y. Those probabilities would matter when, at a temporary assignment, she 
is assigned to a school w such that yRiwRi x. For that very step, announcing Ri

x4y would equal her 
probability of obtaining y to zero, as she would not appear to be desiring y anymore. And, finally, 
if her temporary assignment were to be wpi y, it would not matter if she announced Ri or Ri

x4y.
This argument is independent of s,9 [ T1s,2 , and we have shown for each tie-breaking that 

her probability of receiving y by announcing Ri
x4y is less than or equal to what it would be when 

she announces Ri. Therefore, part (i) follows. To see part (ii), let M9 5 1Ri
x4y, M2i2 . Since xpi9y, 

by part (i), 

 pi 1Ri9
x4y, M92i 2 1x 2 # pi 1M92 1x 2 ,

which could be rewritten as (ii).

LEMMA 3: for any distinct x, y, z [ X and Ri , if M̃2i is 5x, y 6 -symmetric, then

 pi 1Ri
x4y, M̃2i2 1z 2 5 pi 1Ri, M̃2i2 1z 2 .

PROOF:
By the anonymous specification of the random mechanism fs,, for any fixed M, we have

 pi 1Mx4y 2 1z 2 5 pi 1M2 1z 2 .

Hence, if we apply the identity above to the profile 1Ri
x4y, M2i2 , we obtain

 pi 1Ri
x4y, M2i 2 1z 2 5 pi 1Ri, M2i

x4y 2 1z 2 .

By 5x, y 6 -symmetry of beliefs, integrating each side over possible realizations of M̃2i yields the 
desired equality.
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PROOF OF THEOREM 3:
The proof follows from Lemma 2 and Lemma 3 above.

A�. proof of Theorem 4

Suppose that x is the school at the bottom of her truncated preference list Ri9. We will prove 
that, for any school yRi x,

 Pr 5i receives y Z 1Ri9, M2i 2 6 < Pr 5i receives y Z 1Ri, M2i 2 6,

which in turn would imply the desired stochastic dominance. As in the proof of Lemma 2, we 
will prove the inequality above conditional on a fixed tie-breaking selected at the beginning of 
the mechanism. As our argument will be independent of which tie-breaking is chosen, integrat-
ing over all possible tie-breakings would yield the inequality.

Let s,9 be the tie-breaking, and let f s,91R2 5 m0 and f s,91Ri9, R2i 2 5 n0. If n0 1i 2 5 zRi x, by the 
DA algorithm, n0 5 m0 and in particular m0 1i 2 5 z. So the rest of our algorithm looks identical 
starting from m0 or n0, implying

 Pr 5i receives y Z 1Ri9, M2i 2 , s,9 selected6 5 Pr 5i receives y Z 1Ri, M2i 2 , s,9 selected6.

If m0 1i 2 5 z where xpi z, then n0 1i 2 5 i; that is, i will not be assigned to any school under n0. By 
part (ii) of Lemma �, she will continue to be assigned to herself for any stable improvement of 
n0; therefore, her probability of receiving any school is zero, verifying the desired inequality 
trivially.
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Abdulkadiroğlu, Atila, Parag A. Pathak, and Alvin E. Roth. 2005. “The New York City High School 
Match.” American Economic Review, 95(2): 36�–67.
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