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Abstract

We study two-sided matching markets among workers and firms. Workers seek
one position at a firm but firms may employ several workers. In many applications
those markets are monotonic: leaving positions unfilled is costly as for instance, for
hospitals this means not being able to provide full service to its patients. A huge lit-
erature has advocated the use of stable mechanisms for clearinghouses. The interests
among workers and firms are polarized among stable mechanisms, most famously
the firm-proposing DA and the worker-proposing DA. We show that for the firm-
proposing DA ex-ante incentive compatibility and ex-post incentive compatibility
are equivalent whereas this is not necessarily true for the worker-proposing DA. The
firm-proposing DA turns out to be more robust than the worker-proposing DA under
incomplete information when incentives of both sides of the market are important.
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1 Introduction

Centralized many-to-one matching markets operate as follows: each participant submits a
ranked list of potential partners and a mechanism matches firms and workers on the basis
of the submitted ranked lists. The participants belong to two sides: the firms (colleges,
hospitals, schools, etc.) and the workers (students, medical interns, children, etc.). In
applications many of the successful mechanisms are stable.1,2 Most markets are monotonic
meaning it is (very) costly to leave positions unfilled and a firm desires to fill as many
positions as possible with acceptable workers. For instance, in medical markets for a certain
speciality hospitals may not be able to provide full medical service in case a position is left
vacant and in school choice funding of a school may depend on the number of students
admitted.

Stability of a matching (in the sense that all agents are matched to acceptable partners
and no unmatched pair of a firm and a worker prefer each other to their proposed partners)
has been considered to be the main feature in order to survive.3 This is puzzling because
there exists no stable mechanism which is ex-post incentive compatible on the full domain
of preferences (Roth, 1982). Therefore, an agent’s (submitted) ranked lists of potential
partners are not necessarily his true ones and the implemented matching may not be
stable for the true profile.4

Complete information is unrealistic and we use the (ordinally) Bayesian approach where
nature selects a preference profile according to a common belief. Since real-life matching
markets require to report ranked lists and not their specific utility representations, we
follow the ordinal setting. Probability distributions are evaluated according to the first-
order stochastic dominance criterion. Then a mechanism is monotonic ordinal Bayesian
incentive compatible (monotonic OBIC) iff truth-telling is a monotonic ordinal Bayesian
Nash equilibrium (monotonic OBNE) for any realized preference profile.5

Our main result shows that for the firm-proposing deferred-acceptance mechanism
(firm-proposing DA) monotonic OBIC is equivalent to ex-post incentive compatibility on
the support of the common belief. Hence, Bayesian incentive compatibility of the firm-

1See Roth (1984a), Roth and Peranson (1999), and Roth (2002) for a careful description and analysis
of the American entry-level medical market. Roth (1991), Kesten (2005), Ünver (2005), and Ehlers (2008)
describe and analyze the equivalent UK markets.

2Abdulkadiroğlu and Sönmez (2003) introduce school choice which is further studied by Chen and
Sönmez (2006), Abdulkadiroğlu, Pathak, and Roth (2009) and Abdulkadiroğlu, Che, and Yosuda (2011).
For college admissions, see Roth and Sotomayor (1989, 1990) and recently Chen and Kesten (2017).

3See, for instance, Roth (1984a).
4The literature has studied intensively Nash equilibria of direct preference revelation games induced by

different stable mechanisms under complete information. See Dubins and Freedman (1981), Roth (1982,
1984b, 1985), Shin and Suh (1996), Sönmez (1997), Ma (1995, 2002), and Alcalde (1996).

5This means that for every von Neumann Morgenstern (vNM)-utility function of an agent’s preference
ordering (his type), submitting the true ranking maximizes his expected utility in the direct preference
revelation game induced by the common prior and the mechanism given that all other agents truth-tell.
This notion was introduced by d’Aspremont and Peleg (1988). Majumdar and Sen (2004) use it to relax
strategy-proofness in the Gibbard-Satterthwaite Theorem and Ehlers and Massó (2007, 2015) use it to
study strategic behavior in matching markets.
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proposing DA does not depend on exact probabilities of the common belief for profiles
in the support (and is detail-free à la Wilson’s doctrine). We show that this does not
necessarily hold for the worker-proposing DA, and the firm-proposing DA is more robust
than the worker-proposing DA when incentives of both sides of the market are taken into
account.

The paper is organized as follows. Section 2 describes monotonic many-to-one matching
markets with incomplete information. Section 3 states our main result, Theorem 1. It shows
that Theorem 1 does not hold for the worker-proposing DA and that the firm-proposing
DA is more robust. Section 4 concludes and the Appendix contains all proofs.

2 Monotonic Many-To-One Matching Markets

Let F denote the set of firms, W denote the set of workers, and V ≡ F ∪W denote the
set of agents. For each firm f , there is a maximum number qf ≥ 1 of workers that f may
hire, f ’s quota. Let q = (qf )f∈F denote the vector of quotas. Each worker w has a strict
preference ordering Pw over F ∪{∅}, where ∅ stands for being unmatched. Each firm f has
a strict preference ordering Pf over W ∪{∅}, where ∅ stands for leaving a position unfilled.
A profile P = (Pv)v∈V is a list of preference orderings. Given S ⊆ V , we sometimes write
(PS, P−S) instead of P . Let Pv be the set of all preference orderings of agent v. Let
P = ×v∈VPv be the set of all profiles and let P−v = ×v′∈V \{v}Pv′ . Let Rv denote the weak
preference associated with Pv. Given w ∈ W , Pw ∈ Pw, and v ∈ F ∪ {∅}, let B(v, Pw)
denote the weak upper contour set of Pw at v; i.e., B(v, Pw) = {v′ ∈ F ∪{∅} | v′Rwv}. Let
A(Pw) be the set of acceptable firms for w according to Pw; i.e., A(Pw) = {f ∈ F | fPw∅}.
Given a subset S ⊆ F ∪ {∅}, let Pw|S denote the restriction of Pw to S. Similarly, given
Pf ∈ Pf , v ∈ W ∪ {∅}, and S ⊆ W ∪ {∅}, we define B(v, Pf ), A(Pf ), and Pf |S. Given Pf
and w,w′ ∈ W , let Pw↔w′

f stand for f ’s ordering where w and w′ switch positions in Pf .
6

For example, if Pf : w1w2w3w4∅, then Pw1↔w3
f : w3w2w1w4∅.7

A many-to-one matching market (or college admissions problem) is a quadruple (F,W, q, P ).
Because F , W and q remain fixed, a problem is simply a profile P ∈ P . If qf = 1 for all
f ∈ F , (F,W, q, P ) is called a one-to-one matching market.

A matching is a function µ : V → 2V satisfying the following: (m1) for all w ∈ W ,
µ(w) ⊆ F and |µ(w)| ≤ 1; (m2) for all f ∈ F , µ(f) ⊆ W and |µ(f)| ≤ qf ; and (m3)
µ(w) = {f} if and only if w ∈ µ(f). We will write µ(w) = f instead of µ(w) = {f}. If
µ(w) = ∅, we say that w is unmatched at µ. If |µ(f)| < qf , we say that f has qf − |µ(f)|
unfilled positions at µ. Let M denote the set of all matchings. Given P ∈ P and µ ∈M,
µ is stable (at P ) if (s1) for all v ∈ V , µ(v) ⊆ A(Pv) (individual rationality); and (s2)
there exists no pair (w, f) ∈ W ×F such that fPwµ(w) and either [wPf∅ and |µ(f)| < qf ]
or [wPfw

′ for some w′ ∈ µ(f)] (pairwise stability). Let C(P ) denote the set of stable

6Formally, (i) Pw↔w
′

f |W ∪ {∅}\{w,w′} = Pf |W ∪ {∅}\{w,w′}, (ii) wPfw
′ iff w′Pw↔w

′

f w′, (iii) for all

v ∈W ∪ {∅}\{w,w′}, vPfw iff vPw↔w
′

f w′, and (iv) for all v ∈W ∪ {∅}\{w,w′}, vPfw′ iff vPw↔w
′

f w.

7We will use the convention that Pf : w1w2w3w4∅ means w1Pfw2Pfw3Pfw4Pf∅.
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matchings at P (or the core of P ). A (direct) mechanism is a function ϕ : P → M. A
mechanism ϕ is stable if for all P ∈ P , ϕ[P ] is stable at P . The most popular stable
mechanisms are the deferred-acceptance algorithms (DA) (Gale and Shapley, 1962): the
firm-proposing DA is denoted by DAF and the worker-proposing DA is denoted by DAW .

A mechanism matches each firm f to a set of workers, taking into account only f ’s
preference ordering Pf over individual workers. To study firms’ incentives, preference
orderings of firms over individual workers have to be extended to preference orderings
over subsets of workers. The preference extension P ∗f over 2W is monotonic responsive to
Pf ∈ Pf if for all S ∈ 2W , all w ∈ S, and all w′ /∈ S: (r1) S ∪ {w′}P ∗f S ⇔ |S| < qf
and w′Pf∅; (r2) (S\{w}) ∪ {w′}P ∗f S ⇔ w′Pfw; and (r3) SP ∗f S

′ if |S ′| < |S| ≤ qf and
S ⊆ A(Pf ). Let R∗f denote the weak preference associated with P ∗f and mresp(Pf ) denote
the set of all monotonic responsive extensions of Pf . Moreover, given S ∈ 2W , let B(S, P ∗f )
be the weak upper contour set of P ∗f at S; i.e., B(S, P ∗f ) = {S ′ ∈ 2W | S ′R∗fS}.

Any mechanism and any true profile define a direct (ordinal) preference revelation game
under complete information for which we can define the natural (ordinal) notion of Nash
equilibrium. We denote such a game by (P , ϕ, P ) where P is the true profile, ϕ is a
mechanism and any agent v’s set of strategies is Pv. Given a mechanism ϕ and P, P ′ ∈ P ,
P ′ is a monotonic Nash equilibrium (monotonic NE) in the mechanism ϕ under complete
information P if (n1) for all w ∈ W , ϕ[P ′](w)Rwϕ[P̂w, P

′
−w](w) for all P̂w ∈ Pw; and

(n2) for all f ∈ F and all P ∗f ∈ mresp(Pf ), ϕ[P ′](f)R∗fϕ[P̂f , P
′
−f ](f) for all P̂f ∈ Pf .

Truth-telling is a monotonic NE in ϕ under P if P is a monotonic NE in ϕ under P .
A common prior is a probability distribution P̃ over P . Given P ∈ P , let Pr{P̃ = P}

denote the probability that P̃ assigns to P . Given v ∈ V , let P̃v denote the marginal
distribution of P̃ over Pv. Given a common prior P̃ and Pv ∈ Pv, let P̃−v|Pv denote the
probability distribution which P̃ induces over P−v conditional on Pv. It describes agent v’s
(Bayesian) uncertainty about the preferences of the other agents, given that v’s preference
ordering is Pv.

8

A random matching η̃ is a probability distribution over the set of matchings M.
Given µ ∈ M, let Pr{η̃ = µ} denote the probability that η̃ assigns to µ. Let η̃(w)
denote the distribution which η̃ induces over w’s set of potential partners F ∪ {∅}, and
let η̃(f) denote the distribution which η̃ induces over f ’s set of potential partners 2W .
Given two random matchings η̃ and η̃′, (fo1) for w ∈ W and Pw ∈ Pw we say that
η̃(w) first-order stochastically Pw−dominates η̃′(w), denoted by η̃ (w)P sd

w η̃
′ (w), if for all

v ∈ F ∪ {∅},
∑

v′∈F∪{∅}:v′Rwv
Pr{η̃ (w) = v′} ≥

∑
v′∈F∪{∅}:v′Rwv

Pr{η̃′ (w) = v′}; and (fo2)

for f ∈ F and Pf ∈ Pf , η̃(f) first-order stochastically Pf−dominates η̃′(f), denoted by
η̃ (f)P sd

f η̃
′ (f), if for all P ∗f ∈ mresp(Pf ) and all S ∈ 2W ,

∑
S′∈2W :S′R∗fS

Pr{η̃ (f) = S ′} ≥∑
S′∈2W :S′R∗fS

Pr{η̃′ (f) = S ′}.9

8This formulation does not require symmetry nor independence of priors; conditional priors might be
very correlated if agents use similar sources to form them (i.e., rankings, grades, recommendation letters,
etc.).

9It is well-known that (fo1) is equivalent to that for any vNM-representation of Pw the expected utility
of η̃ is greater than or equal to the expected utility of η̃′ (and similarly for (fo2) and all vNM-representations
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A mechanism ϕ and a common prior P̃ define a direct (ordinal) preference revelation
game under incomplete information. Given a mechanism ϕ : P → M and a common
prior P̃ over P , truth-telling induces a random matching ϕ[P̃ ] in the following way: for all
µ ∈M,

Pr{ϕ[P̃ ] = µ} =
∑

P∈P:ϕ[P ]=µ

Pr{P̃ = P}.

Using Bayesian updating, the relevant random matching for agent v, given his type Pv and
report P ′v, is ϕ[P ′v, P̃−v|Pv ]; namely Pr{ϕ[P ′v, P̃−v|Pv ] = µ} =

∑
P−v∈P−v :ϕ[P ′v ,P−v ]=µ Pr{P̃−v|Pv =

P−v}.

Definition 1 (Monotonic OBIC) Let P̃ be a common prior. Then mechanism ϕ
is monotonic ordinal Bayesian incentive compatible (monotonic OBIC) under incomplete
information P̃ if and only if truth-telling is a monotonic ordinal Bayesian Nash equilibrium
(monotonic OBNE) under incomplete information P̃ , namely for all v ∈ V and all Pv ∈ Pv
such that Pr{P̃v = Pv} > 0,10

ϕ[Pv, P̃−v|Pv ](v)P sd
v ϕ[P ′v, P̃−v|Pv ](v) for all P ′v ∈ Pv. (1)

3 Ex-ante and Ex-post Incentive Compatibility

The support of a common prior P̃ is the set of profiles on which P̃ puts positive probability:
P ∈ P belongs to the support of P̃ if and only if Pr{P̃ = P} > 0.

Our main result shows that for monotonic matching markets there is a strong link
between complete and incomplete information for the firm-proposing DA.

Theorem 1. Let P̃ be a common belief. Then DAF is monotonic OBIC under incomplete
information P̃ if and only if the support of P̃ is contained in the set of all profiles where
truth-telling is a monotonic NE in DAF under complete information.

For DAF to be ex-ante incentive compatible under a common belief, DAF restricted
to the support of the common belief must be ex-post incentive compatible. This in turn
implies that exact probabilities of the common belief do not matter and any agent may
have a private belief as long as its support is contained in the “common support”. This
means that for DAF to be monotonic OBIC under common belief is robust subject to
perturbations of the probabilities as along as the support(s) of the private beliefs coincide.

of any monotonic responsive extension of Pf ). See for instance, Theorem 3.11 in d’Aspremont and Peleg
(1988).

10In Definition 1 optimal behavior of agent v is only required for the preferences of v which arise with
positive probability under P̃ . If Pv ∈ Pv is such that Pr{P̃v = Pv} = 0, then the conditional prior P̃−v|Pv

cannot be derived from P̃ . However, we could complete the prior of v in the following way: let P̃−v|Pv
put

probability one on a profile where all other agents submit lists which do not contain v.
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3.1 Truth-telling under Stable Mechanisms

For one-to-one matching markets, Ehlers and Massó (2007, Theorem 1) implies that a
stable mechanism is monotonic OBIC under P̃ if and only if the support of P̃ is contained
in the set of profiles with singleton core. Theorem 1 implies that if DAF is monotonic OBIC
under common prior P̃ , then the support of P̃ must be contained in the set of preference
profiles having a singleton core.11

We show that for any stable mechanism to be monotonic OBIC, it is necessary for the
common belief to put positive probability only on profiles with singleton core. In monotonic
matching markets the core is unique for any realized (or observed) profile under ex-ante
incentive compatibility.

Theorem 2. Let P̃ be a common belief. If the stable mechanism ϕ is monotonic OBIC
under incomplete information P̃ , then the support of P̃ is contained in the set of all profiles
with a singleton core.

It is natural to ask whether the link in Theorem 1 breaks for stable mechanisms other
than DAF . We provide an example of a market in which our main result is not true.

Recall that Roth (1985) exhibits an example of a profile in a many-to-one matching
market with a singleton core where a firm profitably manipulates any stable mechanism
and truth-telling is not a monotonic NE under complete information. Below we exhibit
an example of a many-to-one matching market where (i) DAW is monotonic OBIC under
the common belief (and any profile in the support has a singleton core) and (ii) there is
a profile belonging to the support of the common belief at which truth-telling is not a
monotonic NE under complete information for DAW . Therefore, parallel to Roth (1985),
the link in Theorem 1 is broken in one direction12 when all firms have only monotonic
responsive extensions and one firm has a capacity of at least two.

Example 1. Consider a many-to-one matching market with three firms F = {f1, f2, f3}
and four workers W = {w1, w2, w3, w4}. Firm f1 has capacity qf1 = 2 and firms f2 and
f3 have capacity qf2 = qf3 = 1. Consider the common belief P̃ with Pr{P̃ = P} = p and
Pr{P̃ = P̄} = 1− p, where p < 1/2, and P and P̄ are the following profiles:

Pf1 Pf2 Pf3 Pw1 Pw2 Pw3 Pw4 P̄f1 P̄f2 P̄f3 P̄w1 P̄w2 P̄w3 P̄w4

w1 w1 w3 f3 f2 f1 f1 w1 w2 w4 f1 f2 f1 f3

w2 w2 w1 f1 f1 f3 f2 w2

w3 w3 w2 f2 f3 f2 f3 w3

w4 w4 w4 w4

.

11If for some P belonging to the support of P̃ , we have |C(P )| ≥ 2, then there exist µ ∈ C(P ) and
w ∈ W such that µ(w)PwDAF [P ](w). Then µ(w) 6= w. Let P ′w ∈ Pw be such that A(P ′w) = {µ(w)}.
Then µ ∈ C(P ′w, P−w) and by the fact that the set of unmatched workers is identical for any two stable
matchings, µ(w) = DAF [P ′w, P−w](w)PwDAF [P ](w). Hence, truth-telling is not a monotonic NE under
P .

12It is clear that the other direction is true for any arbitrary game of incomplete information.
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Note that Pf1 = P̄f1. It is straightforward to verify that both profiles have a singleton core
and C(P ) = {µ} and C(P̄ ) = {µ̄}, where

µ =

(
f1 f2 f3

{w3, w4} {w2} {w1}

)
and µ̄ =

(
f1 f2 f3

{w1, w3} {w2} {w4}

)
.

Let ϕ be a stable mechanism. Thus, by stability of ϕ, ϕ[P ] = µ and ϕ[P̄ ] = µ̄. On the one
hand, we will show that truth-telling is not a monotonic NE under complete information
P . Let P ′f1 ∈ Pf1 be such that P ′f1 : w1w2w4∅w3. Then C(P ′f1 , P−f1) = {µ′} where

µ′ =

(
f1 f2 f3

{w1, w4} {w2} {w3}

)
.

Hence, by stability of ϕ, ϕ[P ′f1 , P−f1 ] = µ′. Obviously, for all monotonic responsive exten-
sions P ∗f1 of Pf1 we have {w1, w4}P ∗f1{w3, w4}, which is equivalent to ϕ[P ′f1 , P−f1 ](f1)P ∗f1ϕ[P ](f1).
Therefore, truth-telling is not a monotonic NE in any stable mechanism ϕ under complete
information P (and profile P belongs to the support of the common belief P̃ ).

On the other hand, we will show that DAW is monotonic OBIC under incomplete
information P̃ . Note that for all v ∈ V \{f1}, if v observes his preference relation, then v
knows whether P was realized or P̄ was realized. Since at both of P and P̄ the core is a
singleton and firms f2 and f3 have quota one, it follows that v cannot gain by a deviation.

Next consider firm f1. All arguments except for the last one apply to any stable mech-
anism ϕ. Observe that Pf1 = P̄f1 and the random matching ϕ[Pf1 , P̃−f1|Pf1

] assigns to
f1 the set {w3, w4} with probability p and the set {w1, w3} with probability 1 − p. Let
P ∗f1 ∈ mresp(Pf1

) and P ′′f1 ∈ Pf1 be arbitrary. We show

ϕ[Pf1 , P̃−f1 |Pf1
](f1)P sd

f1
ϕ[P ′′f1 , P̃−f1|Pf1

](f1). (2)

We distinguish two cases. First, suppose that |ϕ[P ′′f1 , P−f1 ](f1)| = 1 or |ϕ[P ′′f1 , P̄−f1 ](f1)| =
1. Now if (2) does not hold, then by monotonicity of P ∗f1 and the fact that when sub-
mitting Pf1, f1 is matched to the set {w3, w4} with probability p and to the set {w1, w3}
with probability 1− p (where 1− p > 1/2), we must have that ϕ[P ′′f1 , P−f1 ](f1)P ∗f1{w1, w3}
or ϕ[P ′′f1 , P̄−f1 ](f1)P ∗f1{w1, w3}. Obviously, from the definition of P̄−f1, the last is im-
possible. Thus, ϕ[P ′′f1 , P−f1 ](f1)P ∗f1{w1, w3} and, by responsiveness of P ∗f1, we must have
ϕ[P ′′f1 , P−f1 ](f1) = {w1, w2}. But then, without loss of generality, we would have DAF [P ′′f1 , P−f1 ](f1) =
{w1, w2} (because DAF chooses the most preferred stable matching from the firms’ point of
view).13 Since we have C(P ) = {µ} and DAF [Pf1 , P−f1 ](f1) = {w3, w4}, this would imply
that in the corresponding one-to-one matching problem DAF is group manipulable by the
two copies of f1 (with each copy gaining strictly), a contradiction to the result of Dubins
and Freedman (1981).14

13If DAF [P ′′f1 , P−f1 ](f1) 6= {w1, w2}, then choose P ′′′f1 ∈ Pf1 such that A(P ′′′f1 ) = {w1, w2}. Then we
obtain DAF [P ′′′f1 , P−f1 ](f1) = {w1, w2}.

14Their result says that in a marriage market no group of firms can profitably manipulate DAF at the
true profile under complete information (with strict preference holding for all firms belonging to the group).
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Second, suppose that |ϕ[P ′′f1 , P−f1 ](f1)| = 2 and |ϕ[P ′′f1 , P̄−f1 ](f1)| = 2. Then by defini-
tion of P̄−f1 and |ϕ[P ′′f1 , P̄−f1 ](f1)| = 2, we must have ϕ[P ′′f1 , P̄−f1 ](f1) = {w1, w3}. Thus,
by stability of ϕ, {w1, w3} ⊆ A(P ′′f1).

If for all µ′′ ∈ C(P ′′f1 , P−f1), µ′′(w4) = ∅, then w4 /∈ A(P ′′f1). By definition of P−f1 and
w3 ∈ A(P ′′f1), DAW [P ′′f1 , P−f1 ](f1) = {w3}. Then f1 does not fill all its positions at the
worker-optimal matching and by Roth and Sotomayor (1990), f1 is matched to the same
set of workers at all stable matchings. Hence, ϕ[P ′′f1 , P−f1 ](f1) = {w3} and (2) holds. To
see that observe first that when submitting P ′′f1, firm f1 is matched with probability p to
{w3} and with probability 1− p to {w1, w3} while when submitting Pf1, firm f1 is matched
with probability p to {w3, w4} and with probability 1−p to {w1, w3}. Since {w3, w4}P ∗f1{w3}
for all monotonic responsive extensions of Pf1 , (2) holds.

If for some µ′′ ∈ C(P ′′f1 , P−f1), µ′′(w4) 6= ∅, then by definition of P−f1, µ′′(w4) = f1;
otherwise the pair (w2, f2) would block µ′′ at (P ′′f1 , P−f1) if µ′′(w4) = f2 and the pair (w1, f3)
would block µ′′ at (P ′′f1 , P−f1) if µ′′(w4) = f3. Thus, by {w3, w4} ⊆ A(P ′′f1), µ ∈ C(P ′′f1 , P−f1)

and DAW [P ′′f1 , P−f1 ] = µ. Therefore, the probability distribution DAW [Pf1 , P̃−f1 |Pf1
](f1)

and DAW [P ′′f1 , P̃−f1 |Pf1
](f1) coincide with the distribution in which f1 is matched to {w3, w4}

with probability p and to {w1, w3} with probability 1− p. Hence, (2) holds for DAW . �

Observe that in Example 1 DAF is not monotonic OBIC under incomplete information
P̃ : for the preference P ′′f1 : w1w2w4w3∅ in Example 1 we have

DAF [P ′′f1 , P−f1 ] =

(
f1 f2 f3

{w1, w4} {w2} {w3}

)
and DAF [P ′′f1 , P̄−f1 ] =

(
f1 f2 f3

{w1, w3} {w2} {w4}

)
.

Thus,

Pr{DAF [P ′′f1 , P̃−f1|Pf1
](f1) ∈ B({w1, w4}, P ∗f1)} = 1

Pr{DAF [Pf1 , P̃−f1|Pf1
](f1) ∈ B({w1, w4}, P ∗f1)} = 1− p

for all monotonic responsive extensions P ∗f1 of Pf1 (i.e. this is an unambiguous deviation
for firm f1 because it does not depend on the choice of the responsive extension of Pf1).
Thus, we do not have DAF [Pf1 , P̃−f1|Pf1

](f1)P sd
f1
DAF [P ′′f1 , P̃−f1|Pf1

](f1) and DAF is not

monotonic OBIC under P̃ . Roughly speaking, in Example 1 firm f1 manipulates DAF by
reordering its acceptable workers whereas this is not possible for DAW (when keeping the
same set of acceptable workers).

3.2 Robust Design

For monotonic matching markets we establish an equivalence result for (payoff) type spaces
on robust mechanism design à la Bergemann and Morris (2005).15 Instead of the termi-
nology of payoff type spaces, in (ordinal) matching markets it is natural to use the term
“preference type spaces”.

15We refer the interested reader to Bergemann and Morris (2012) for a comprehensive introduction to
robust mechanism design.
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Let Q ⊆ P denote a set of possible preference type profiles. Let Qv = {Pv|P ∈ Q}
be the set of agent v’s possible preference types in Q. Let Q−v|Pv = {P−v|(Pv, P−v) ∈ Q}
denote the set of the other agents’ preference types in Q when v’s preference type is Pv.
Let ∆(Q−v|Pv) denote the set of all probability distributions on Q−v|Pv . In our setting a
preference type space is simply given by (Q, (π̂v)v∈V ) where Q denotes the agents’ possible
preference profiles and π̂v describes agent v’s priors, i.e. for any Pv ∈ Qv, π̂v(Pv) ∈
∆(Q−v|Pv) is agent v’s prior about the other agents’ preference types when v’s preference
type is Pv. A preference type space (Q, (π̂v)v∈V ) is a product space if Q = ×v∈VQv.
Although Bergemann and Morris (2005) only focussed on product preference type (or
payoff type) spaces where Qv = Pv for all agents v, we allow for non-product preference
type spaces. In applications (such as in matching markets), preference type profiles may
be correlated and not necessarily be independent from each other, i.e. some preference
type profiles might be regarded as impossible a priori. Furthermore, Qv may be a strict
subset of Pv for an agent v and thus, agent v’s set of possible true preference types may
be a strict subset of the rankings agent v may report to the mechanism.

A preference type space (Q, (π̂v)v∈V ) is said to be “common prior” if there exists a
common prior P̃ on Q such that π̂v(Pv) = P̃−v|Pv for all v ∈ V and all Pv ∈ Qv. Obviously,
for π̂v to be well-defined, we must have Pr{P̃v = Pv} > 0 for all Pv ∈ Qv because by Bayes’
rule we have for all Pv ∈ Qv and all P−v ∈ Q−v|Pv ,

π̂v(Pv)[P−v] =
Pr{P̃ = (Pv, P−v)}

Pr{P̃v = Pv}
.

We denote a common prior preference type space simply by (Q, P̃ ). We adapt Bergemann
and Morris (2005)’s definitions of interim incentive compatibility and ex-post incentive
compatibility to our ordinal matching environment.

Definition 7 (Interim Incentive Compatibility) Let (Q, (π̂v)v∈V ) be a preference
type space. A mechanism ϕ : P → M is interim incentive compatible on (Q, (π̂v)v∈V ) if
for all v ∈ V and all Pv ∈ Qv,

ϕ[Pv, π̂v(Pv)](v)P sd
v ϕ[P ′v, π̂v(Pv)](v) for all P ′v ∈ Pv. (3)

Note that interim incentive compatibility reduces to monotonic OBIC for common prior
preference type spaces. Instead of defining ex-post incentive compatibility for all possible
profiles (or all types), we define ex-post incentive compatibility for subdomains of the set
of all profiles.

Definition 8 (Ex-post Incentive Compatibility on Subdomains) Let Q ⊆ P . A
mechanism ϕ : P →M is ex-post incentive compatible on Q if for each profile P ∈ Q, we
have for all w ∈ W , ϕ[Pw, P−w](w)Rwϕ[P ′w, P−w](w) for all P ′w ∈ Pw, and for all f ∈ F and
all P ∗f ∈ mresp(Pf ), ϕ[Pf , P−f ](f)R∗fϕ[P ′f , P−f ](f) for all P ′f ∈ Pf .

Note that ex-post incentive compatibility on P is incentive compatibility. WhenQ 6= P ,
then both interim incentive compatibility and ex-post incentive compatibility are stronger
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than the corresponding versions of Bergemann and Morris (2005) because any agent v’s set
of preference types Qv may be a strict subset of agent v’s set of possible reports Pv (and
not only Qv) to the mechanism.

Corollary 1. Let Q ⊆ P. Then the following are equivalent.

(a) DAF is interim incentive compatible on all preference type spaces (Q, (π̂v)v∈V ).

(b) DAF is interim incentive compatible on all common prior preference type spaces
(Q, P̃ ).

(c) DAF is interim incentive compatible on one common prior preference type space
(Q, (π̂v)v∈V ).

(d) DAF is ex-post incentive compatible on Q.

Proof. (a)⇒(b) follows by definition because we are asking for interim incentive compati-
bility on a smaller collection of preference type spaces, and similarly for (b)⇒(c). (c)⇒(d)
follows from Theorem 1 by considering a common prior preference type space (Q, P̃ ) where
P̃ has support Q. (d)⇒(a) is trivial for matching markets. �

Note that Corollary 1 differs in the following sense from Bergemann and Morris (2005,
Corollary 1) for social choice functions and all payoff type spaces: if DAF is interim
incentive compatible for one common prior preference type space,16 then DAF is interim
incentive compatible on all preference type spaces (with the same support). This is a
strong robustness feature for DAF (and for DAW , Corollary 1 does not hold by Example
1). Two other important qualifications between Bergemann and Morris (2005, Corollary
1)17 and Corollary 1 are that (i) our equivalence result allows for non-product preference
type spaces whereas their result does not and (ii) our incentive compatibility notions are
stronger than theirs. Again, non-product preference type spaces are especially important
for matching markets.

4 Conclusion

Ehlers and Massó (2015) study matching markets where all responsive extensions are al-
lowed (i.e. where only (r1) and (r2) are imposed on the responsive preference extension).

16As one may check, instead we could have replaced (c) by DAF is interim incentive compatible on one
preference type space (Q, (π̂v)v∈V ) such that for any v ∈ V and Pv ∈ Qv, the support of π̂v(Pv) coincides
with Q−v|Pv .

17Bergemann and Morris (2005) allow for larger type spaces which can be given here for Q by

(Tv, θ̂v, π̂v)v∈V where for each v ∈ V , Tv is a non-empty set, θ̂v : Tv → Qv specifies for each tv ∈ Tv
a payoff type θ̂v(tv) in Qv and a belief π̂v(tv) ∈ ∆(T−v) such that for any t−v in the support of π̂v(tv)

we have θ̂−v(t−v) ∈ Q−v|θ̂v(tv). It is easy to see that in Corollary 1 for a fixed Q, a stable mechanism ϕ
is interim incentive compatible on all type spaces if and only if ϕ is interim incentive compatible on all
preference type spaces. The reason is that preference type spaces are type spaces and larger type spaces
can be replicated by a collection of preference type spaces.
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From Ehlers and Massó (2015, Theorem 1) it follows that a stable mechanism ϕ is OBIC
under incomplete information P̃ if and only if the support of P̃ is contained in the set
of profiles where truth-telling is a NE under complete information (where all responsive
extensions are considered). Ehlers and Massó (2015, Theorem 1) crucially depends on
firms having responsive extensions which are not monotonic. Example 1 does not contra-
dict their result: when considering the non-monotonic responsive extension P ∗f1 such that

{w1}P ∗f1{w3, w4}, then firm f1 gains by submitting the list P̂f1 where worker w1 is the unique

acceptable worker (i.e. A(P̂f1) = {w1}). Then, since C(P̂f , P−f ) = C(P̂f , P̄−f ) = {µ̂} and

µ̂(f1) = {w1}, we have both ϕ[P̂f1 , P−f1 ](f1) = {w1} and ϕ[P̂f1 , P̄−f1 ](f1) = {w1}, which
means that no stable mechanism ϕ is OBIC under incomplete information P̃ .

Often in real-life matching markets it is costly to leave positions unfilled and respon-
sive extensions are necessarily monotonic. For instance, in medical markets for a certain
speciality hospitals may not be able to provide full medical service in case a position is
left vacant. Once we focus on monotonic OBIC, the firm-proposing DA turns out to be
more robust than the workers-proposing DA when incentives of both sides of the market
are important.

APPENDIX.

A Proof of Theorem 1

Let P̃ be a common belief.

(⇐) Suppose that for all profiles in the support of P̃ , truth-telling is a monotonic NE
in DAF under complete information. Let P be such that Pr{P̃ = P} > 0. Then, for
all w ∈ W and all P ′w ∈ Pw, DAF [P ](w)RwDAF [P ′w, P−w](w) and for all f ∈ F and all
P ′f ∈ Pf , DAF [P ](f)R∗fDAF [P ′f , P−f ](f) for all P ∗f ∈ mresp(Pf ). Hence, for all w ∈ W
and all Pw ∈ Pw such that Pr{P̃w = Pw} > 0, we have that for all P ′w ∈ Pw,

DAF [Pw, P̃−w|Pw ](w)P sd
w DAF [P ′w, P̃−w|Pw)](w),

and for all f ∈ F and all Pf ∈ Pf such that Pr{P̃f = Pf} > 0, we have that for all P ′f ∈ Pf ,

DAF [Pf , P̃−f |Pf
](f)P sd

f DAF [P ′f , P̃−f |Pf
)](f).

That is, P is a monotonic OBNE in DAF under P̃ , the desired conclusion.

(⇒) Let DAF be monotonic OBIC under incomplete information P̃ . Let P be such that
Pr{P̃ = P} > 0. By Theorem 2, |C(P )| = 1. To obtain a contradiction suppose that P is
not a monotonic NE in DAF under complete information P . We first show in Lemma 1
below that then some firm with quota of at least two has a profitable deviation such that (i)
the firm is only matched to acceptable workers, (ii) the firm is matched to qf workers and
(iii) for some monotonic responsive extension the firm strictly prefers the assigned workers
to the set received under truth-telling.
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Lemma 1. Let P be such that |C(P )| = 1. If P is not a monotonic NE in DAF under
complete information P , then there exists a firm f ∈ F such that qf ≥ 2 and for some P̂f
we have

(i) DAF [P̂f , P−f ](f) ⊆ A(Pf ),

(ii) |DAF [P̂f , P−f ](f)| = qf = |DAF [P ](f)|, and

(iii) DAF [P̂f , P−f (f)P ∗fDAF [P ](f) for some P ∗f ∈ mresp(Pf ).

Proof of Lemma 1. Let P ∈ P be such that |C(P )| = 1. Then, using a similar argument
to the one used in the sufficiency proof of Ehlers and Massó (2007, Theorem 1), it can be
seen that no worker has a profitable deviation from P in DAF . The same argument applies
to any firm with quota one. Thus, if P is not a monotonic NE in DAF under complete
information P , then for some f ∈ F with qf ≥ 2 and P̂f , we have

DAF [P̂f , P−f ](f)P ∗fDAF [P ](f) (4)

for some P ∗f ∈ mresp(Pf ), which is (iii) of the lemma. Because P ∗f is responsive, DAF [P̂f , P−f ](f)∩
A(Pf )R

∗
fDAF [P̂f , P−f ](f). Thus, by (4) and monotonicity of P ∗f ,

|DAF [P̂f , P−f ](f) ∩ A(Pf )| ≥ |DAF [P ](f)|. (5)

But then we may suppose w.l.o.g. that DAF [P̂f , P−f ](f) ⊆ A(Pf ). To see that, assume

DAF [P̂f , P−f ](f) * A(Pf ). Then, choose any preference P ′f ∈ Pf such that A(P ′f ) =

DAF [P̂f , P−f ](f) ∩ A(Pf ). Now consider the matching market where the set of work-

ers Ŵ = DAF [P̂f , P−f ](f)\A(Pf ) is not present with profile (P ′f , P−Ŵ∪{f}). Then, it

is easy to see that DAF [P ′f , P−Ŵ∪{f}](f) = A(P ′f ). Now letting workers in Ŵ reenter

the market, firms should weakly gain meaning that DAF [P ′f , P−f ](f) = A(P ′f ).
18 Since

DAF [P ′f , P−f ](f)P ∗fDAF [P ](f), f has a profitable deviation from P in DAF where f is

only matched to acceptable workers. Hence, we can replace in (4) P̂f by P ′f . Thus,

DAF [P̂f , P−f ](f) ⊆ A(Pf ) holds. But the inclusion is (i) of the lemma.

Next we show that |DAF [P̂f , P−f ](f)| = |DAF [P ](f)|. To obtain a contradiction,

assume otherwise. By (5) and (i), we have |DAF [P̂f , P−f ](f)| > |DAF [P ](f)|. Then at
DAF [P ] firm f has some positions unfilled and the ranking of Pf over A(Pf ) is irrelevant

for the stability of DAF [P ] under P . Let k = |DAF [P̂f , P−f ](f)|. In particular, DAF [P ]
is stable under P if firm f ’s quota is reduced from qf to k. W.l.o.g. we may suppose that

A(P̂f ) = DAF [P̂f , P−f ](f). Now again in any matching which is stable under (P̂f , P−f )

firm f is matched to DAF [P̂f , P−f ](f). Again firm f ’s quota may be reduced to k. But

now consider P ′f such that A(P ′f ) = A(Pf ) and DAF [P̂f , P−f ](f) are the first k most

18See Theorem 2.25 in Roth and Sotomayor (1990).

12



preferred workers under P ′f . But then both DAF [P̂f , P−f ] and DAF [P ] must be stable

under (P ′f , P−f ), which is a contradiction because |DAF [P̂f , P−f ](f)| 6= |DAF [P ](f)| and
any firm is matched to the same number of workers at all stable matchings under the profile
(P ′f , P−f ).

We have shown |DAF [P̂f , P−f ](f)| = |DAF [P ](f)|. Furthermore, if |DAF [P ](f)| <
qf , then, by (i), both matchings DAF [P ] and DAF [P̂f , P−f ] are stable under P. By (4),

DAF [P̂f , P−f ](f) 6= DAF [P ](f) which means that |C(P )| 6= 1, a contradiction. Hence,

|DAF [P ](f)| = qf = |DAF [P̂f , P−f ](f)| (which is (ii)). �

We now proceed with the proof of Theorem 1. Let f ∈ F, with qf ≥ 2, and P̂f be the
firm and its preferences identified in Lemma 1, for which (i), (ii) and (iii) hold. Letting
µ̂ = DAF [P̂f , P−f ] and µ = DAF [P ], order the workers in µ̂(f) and µ(f) according to Pf :
let µ̂(f) = {ŵ1, . . . , ŵqf} and µ(f) = {w1, . . . , wqf}. Furthermore, because of (i)-(iii) and
we are using DAF , we may assume w.l.o.g. that

(a) A(P̂f ) = B(wqf , Pf ) ∪B(ŵqf , Pf ),

(b) P̂f |µ̂(f) = Pf |µ̂(f),

(c) P̂f |B(ŵqf , P̂f ) = Pf |B(ŵqf , P̂f ),

(d) P̂f |A(P̂f )\B(ŵqf , P̂f ) = Pf |A(P̂f )\B(ŵqf , P̂f ), and

(e) ŵP̂fw for all ŵ ∈ B(ŵqf , P̂f ) and all w ∈ A(P̂f )\B(ŵqf , P̂f ).

Note that since µ̂(f) ⊆ B(ŵqf , P̂f ), (c) implies (b), which in turn implies µ̂(f) ⊆
B(ŵqf , Pf ).

We distinguish two cases: ŵqfPfwqf and wqfRf ŵqf .

Case 1: ŵqfPfwqf .

Let W̄ ∗ consist of the qf workers which are Pf -least preferred inB(wqf , Pf )\{wqf}. Then
choose the monotonic responsive extension P̄ ∗f of Pf such that W ′R̄∗fW̄

∗ iff W ′ contains
qf workers in B(wqf , Pf )\{wqf}. Let P ′′f be such that A(P ′′f ) = B(wqf , Pf )\{wqf} and

P ′′f |A(P ′′f ) = P̂f |A(P ′′f ). Then µ̂ ∈ C(P ′′f , P−f ) and by construction, DAF [P ′′f , P−f ](f)
contains qf workers in A(P ′′f ), but DAF [P ](f) contains at most qf − 1 workers in A(P ′′f ).
Hence, by definition of W̄ ∗ and since wqf /∈ A(P ′′f ),

DAF [P ′′f , P−f ](f)R̄∗fW̄
∗P̄ ∗fDAF [Pf , P−f ](f). (6)

To obtain a contradiction with the fact that DAF is monotonic OBIC under incom-
plete information P̃ , we consider any profile P ′−f such that Pr{P̃ = (Pf , P

′
−f )} > 0 and

restrict the attention to the upper contour set of P̄ ∗f at W̄ ∗. We want to show that if
DAF [Pf , P

′
−f ](f)R̄∗fW̄

∗, then DAF [P ′′f , P
′
−f ](f)R̄∗fW̄

∗. By the definitions of W̄ ∗ and P̄ ∗f ,
DAF [Pf , P

′
−f ](f)R̄∗fW̄

∗ implies that DAF [Pf , P
′
−f ](f) contains qf workers in A(P ′′f ). If
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DAF [P ′′f , P
′
−f ](f) contains at most qf−1 workers in A(P ′′f ), then the ranking does not mat-

ter and the matching DAF [P ′′f , P
′
−f ] is also stable under (P ′′′f , P

′
−f ), where P ′′′f is obtained

by letting A(P ′′′f ) = A(P ′′f ) and P ′′′f |A(P ′′′f ) = Pf |A(P ′′′f ). Furthermore, DAF [Pf , P
′
−f ]

is stable under (P ′′′f , P
′
−f ) and

∣∣DAF [Pf , P
′
−f ]
∣∣ = qf , by definition of W̄ ∗. But then f

would be matched to different numbers of workers under different matchings belonging
to C(P ′′′f , P

′
−f ), a contradiction. Thus, DAF [P ′′f , P

′
−f ](f) contains qf workers in A(P ′′f ).

Now by our choice of W̄ ∗ and P̄ ∗f , we obtain for any profile P ′−f in the support of P̃−f |Pf
,

DAF [Pf , P
′
−f ](f)R̄∗fW̄

∗ impliesDAF [P ′′f , P
′
−f ](f)R̄∗fW̄

∗. Then, together with (6) and Pr{P̃ =

(Pf , P−f )} > 0, this implication means that DAF is not monotonic OBIC under P̃ because
not DAF [Pf , P̃−f |Pf

](f)P sd
f1
DAF [P ′′f , P̃−f |Pf

](f) since for the monotonic responsive exten-
sion P̄ ∗f of Pf ,

Pr{DAF [P ′′f , P̃−f |Pf
](f) ∈ B(W̄ ∗, P̄ ∗f )} > Pr{DAF [Pf , P̃−f |Pf

](f) ∈ B(W̄ ∗, P̄ ∗f )}.

Case 2: wqfRf ŵqf .

Let k be the first index such that ŵkPfwk. By (iii) in Lemma 1, k exists. Note
that k < qf and ŵkPfwkRfwqf . Let P ′′f be such that A(P ′′f ) = B(ŵqf , Pf ), B(ŵk, Pf ) ∪
µ̂(f)P ′′f A(P ′′f )\(B(ŵk, Pf ) ∪ µ̂(f)),19 P ′′f |B(ŵk, Pf ) ∪ µ̂(f) = Pf |B(ŵk, Pf ) ∪ µ̂(f), and
P ′′f |A(P ′′f )\(B(ŵk, Pf ) ∪ µ̂(f)) = Pf |A(P ′′f )\(B(ŵk, Pf ) ∪ µ̂(f)). We illustrate P ′′f below:

P ′′f
Pf |B(ŵk, Pf )

Pf |µ̂(f)\B(ŵk, Pf )
Pf |A(P ′′f )\(B(ŵk, Pf ) ∪ µ̂(f))

,

i.e. P ′′f ranks first all elements inB(ŵk, Pf ) according to Pf , then all elements in µ̂(f)\B(ŵk, Pf )
according to Pf , and then the remaining P ′′f -acceptable workers according to Pf . Because
ŵ1, . . . , ŵk belong to B(ŵk, Pf ), we have µ̂(f)\B(ŵk, Pf ) = {ŵk+1, . . . , ŵqf} (and this set
consists of exactly qf − k workers).

If f is matched to fewer than qf workers in any matching belonging to C(P ′′f , P−f ), then
the differences between ranking P ′′f and Pf do not matter and f would be matched to fewer
than qf workers in DAF [P ](f), the unique matching in C(P ), a contradiction. Thus, f is
matched to qf workers in any matching belonging to C(P ′′f , P−f ).

If µ̂ ∈ C(P ′′f , P−f ), then by construction and (4), DAF [P ′′f , P−f ](f)R∗f µ̂(f)P ∗f µ(f) im-
plying

DAF [P ′′f , P−f ](f)P ∗f µ(f). (7)

Suppose that µ̂ /∈ C(P ′′f , P−f ). Then, some (w, f̂) blocks µ̂ under (P ′′f , P−f ). By the

definition of P ′′f , f̂ = f and w ∈ B(ŵk, Pf ). We show that DAF [P ′′f , P−f ](f) contains at
least k workers in B(ŵk, Pf ). We show this with the following two steps:

Step 1 : Let w1 be the Pf -highest ranked worker such that (w1, f) forms a blocking pair
of µ̂ under (P ′′f , P−f ). Let µ̂0 = µ̂. Then match w1 to f and consider µ̂1 such that (i)

19Here we use the convention SP ′′f T iff sP ′′f t for all s ∈ S and all t ∈ T .
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µ̂1(w1) = f and (ii) µ̂1(w) = µ̂(w) for all w 6= w1. In other words, f does not reject
any worker and we allow f to have capacity qf + 1 (i.e., µ̂1(f) = µ̂0(f) ∪ {w1}). If µ̂1

does not contain any blocking pair, set µ̄ = µ̂1 and q̄f = qf + 1 and then go to Step 2.
Otherwise, µ̂1 contains a blocking pair, say (w2, f 2). Again, let w2 be the Pf2-highest
ranked worker such that (w2, f 2) forms a blocking pair of µ̂1. But then it must be that
either (a) f 2 = f (which would mean that w2 /∈ µ̂1(f)) or (b) f 2 6= f and w2 ∈ µ̂1(f)
or (c) f 2 6= f and w2 /∈ µ̂1(f). Note that if f 2 6= f , then we must have f 2 = µ̂(w1).
Now consider µ̂2 such that (i) µ̂2(w2) = f 2 and (ii) µ̂2(w) = µ̂1(w) for all w 6= w2. For
(b) f 2 6= f and w2 ∈ µ̂1(f), then µ̂2 is stable under (P ′′f , P−f ) and µ̂2(f) contains at least
k workers in B(ŵk, Pf ) since µ̂2(f) = (µ̂0(f) ∪ {w1})\{w2} and µ̂0(f) contains at least
k workers in B(ŵk, Pf ). By construction, the same is true for DAF [P ′′f , P−f ](f) since for
worker w, the member of the original blocking pair, w1Rfw and w ∈ B(ŵk, Pf ) imply that
w1 ∈ B(ŵk, Pf ). Otherwise, if (a) f 2 = f and w2 /∈ µ̂1(f), then µ̂2(f) = µ̂0(f) ∪ {w1, w2},
we now allow f to have capacity qf + 2, and so on. For (c) f 2 6= f and w2 /∈ µ̂1(f),
we continue the above vacancy chain dynamics in the same manner until we go to Step 2
or we again reduce the capacity of f to qf or the worker belonging to the blocking pair
was previously assigned to f . In other words, we never reject a worker and only vacant
positions are filled (where we allow “overbooking” for f). At the same time, we reduce f ’s
capacity by one whenever one of the workers assigned to f leaves. Note that this process
terminates as the workers’ preference always weakly improves at each iteration (because f
rejects no worker). If at some point exactly qf workers are matched to f , then we must
have found a stable matching for (P ′′f , P−f ). Let µ̄ denote the resulting matching, and say
|µ̄(f)| = q̄f . Then µ̄ is stable under (P ′′f , P−f ) where f has q̄f ≥ qf positions (instead of
qf ). By construction, µ̄(f) contains at least k workers in B(ŵk, Pf ).

Step 2 : Let q̄f and µ̄ be the outcomes of Step 1. Let µ̄(f) = {w̄1, . . . , w̄q̄f} where the
workers are listed according to the ranking in P ′′f . Now consider the matching market
where W̄ = {w̄qf+1, . . . , w̄q̄f} is not present. Let µ̄′ be defined by µ̄′(f) = {w̄1, . . . , w̄qf}
and µ̄′(f ′) = µ̄(f ′) for all f ′ 6= f . Then µ̄′ ∈ C(P ′′f , P−W̄∪{f}). Since µ̄′ contains at least
k workers in B(ŵk, Pf ) and by definition of P ′′f , DAF [P ′′f , P−W̄∪{f}](f) contains at least k
workers in B(ŵk, Pf ). Bringing back in {w̄qf+1, . . . , w̄q̄f}, all firms must weakly benefit, i.e.
DAF [P ′′f , P−f ](f) must contain at least k workers in B(ŵk, Pf ), the desired conclusion.

Now let W̄ ∗ consist of the k workers which are Pf -ranked least in B(ŵk, Pf ) and the
qf − k workers Pf -ranked least in B(ŵqf , Pf ). Obviously, ŵk, ŵqf ∈ W̄ ∗. Let P̄ ∗f be a
monotonic responsive extension of Pf such that W ′R̄∗fW̄

∗ iff W ′ ⊆ B(ŵqf , Pf ), |W ′| = qf
and W ′ contains at least k workers in B(ŵk, Pf ). Now we have DAF [P ′′f , P−f ](f)R̄∗fW̄

∗. By
the definition of k, ŵkPfwk. Hence, DAF [Pf , P−f ](f) does not contain at least k workers
in B(ŵk, Pf ), which implies that

DAF [P ′′f , P−f ](f)R̄∗fW̄
∗P̄ ∗fDAF [Pf , P−f ](f).

Summarizing, we have already showed in the case wqfRf ŵqf that there exist (Pf , P−f ) ∈
supp(P̃ ), P ′′f ∈ Pf , W̄ ∗ ⊆ W and P ∗f ∈ mresp(Pf ) such thatDAF [P ′′f , P−f ](f) ∈ B(W̄ ∗, P̄ ∗f )
and DAF [Pf , P−f ](f) /∈ B(W̄ ∗, P̄ ∗f ) simultaneously hold.
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Now consider (Pf , P
′
−f ) ∈ supp(P̃ ). Let µ′ = DAF [Pf , P

′
−f ] and µ′′ = DAF [P ′′f , P

′
−f ].

Suppose that µ′(f)R̄∗fW̄
∗. By construction, µ′(f) contains at least k workers in B(ŵk, Pf ),

|µ′(f)| = qf and µ′(f) ⊆ B(ŵqf , Pf ). We need to show µ′′(f)R̄∗fW̄
∗.

By construction, µ′′(f) ⊆ B(ŵqf , Pf ) = A(P ′′f ). Furthermore, if |µ′′(f)| < qf , then the
ranking of P ′′f does not matter and we would have that µ′′ ∈ C(Pf , P

′
−f ). By Theorem 2,

C(Pf , P
′
−f ) = {µ′} which is contradiction because |µ′′(f)| < qf = |µ′(f)|. Thus, |µ′′(f)| =

qf .
It remains to be shown that µ′′(f) contains at least k workers in B(ŵk, Pf ). Now if

µ′ ∈ C(P ′′f , P
′
−f ), then, by definition of P ′′f , B(ŵqf , P

′′
f ) = B(ŵqf , Pf ) and the fact that

µ′(f) contains at least k workers in B(ŵk, Pf ), µ
′′(f) must contain at least k workers in

B(ŵk, Pf ), the desired conclusion. Suppose that µ′ /∈ C(P ′′f , P
′
−f ). Note that we cannot

have µ′(f) ⊆ µ̂(f) ∪ B(ŵk, Pf ) as otherwise µ′ ∈ C(Pf , P
′
−f ), P

′′
f |µ̂(f) ∪ B(ŵk, Pf ) =

Pf |µ̂(f) ∪B(ŵk, Pf ), and µ̂(f) ∪B(ŵk, Pf )P
′′
f A(P ′′f )\(µ̂(f) ∪B(ŵk, Pf )) would imply µ′ ∈

C(P ′′f , P−f ), a contradiction.20

To obtain a contradiction, assume µ′′(f) does not contain at least k workers inB(ŵk, Pf ).
In particular, this means that µ′(f) 6= µ′′(f). Then, since |µ̂(f)\B(ŵk, Pf )| = qf − k,
µ′′(f) 6⊆ B(ŵk, Pf )∪ µ̂(f) as otherwise f is assigned k workers in B(ŵk, Pf ). Let w′′ denote
the P ′′f -least preferred worker in µ′′(f). By the above we have w′′ /∈ µ̂(f) ∪B(ŵk, Pf ).

Case 2.1: w′′ is the Pf -least preferred worker in µ′′(f).
Because Pr{P̃ = (Pf , P

′
−f )} > 0, Theorem 2 and µ′ = DAF [Pf , P

′
−f ] imply that

C(Pf , P
′
−f ) = {µ′}. Hence, µ′′ /∈ C(Pf , P

′
−f ). Then some pair (w̃, f) blocks µ′′ under

(Pf , P
′
−f ). Because w′′ is the Pf -least worker in µ′′(f), we have w̃Pfw

′′. If w̃ ∈ B(ŵk, Pf )∪
µ̂(f), then by construction and w′′ /∈ µ̂(f) ∪ B(ŵk, Pf ) we have w̃P ′′f w

′′ and (w̃, f) blocks
µ′′ under (P ′′f , P

′
−f ), a contradiction to µ′′ ∈ C(P ′′f , P

′
−f ). If w̃ /∈ B(ŵk, Pf ) ∪ µ̂(f), then

by construction and w′′ /∈ µ̂(f) ∪ B(ŵk, Pf ) we have w̃P ′′f w
′′ and (w̃, f) blocks µ′′ under

(P ′′f , P
′
−f ), a contradiction to µ′′ ∈ C(P ′′f , P

′
−f ). Thus, Case 2.1 cannot occur.

Case 2.2: w′′ is not the Pf -least preferred worker in µ′′(f).
Let ŵ denote the Pf -least preferred worker in µ′′(f). By ŵ 6= w′′, and the fact that by

definition of P ′′f , P
′′
f |W\(B(ŵk, Pf ) ∪ µ̂(f)) coincides with Pf |W\(B(ŵk, Pf ) ∪ µ̂(f)), we

have ŵ ∈ B(ŵk, Pf )∪ µ̂(f). Furthermore, by w′′ /∈ B(ŵk, Pf )∪ µ̂(f) and w′′Pf ŵ, we cannot
have ŵ ∈ B(ŵk, Pf ). Then by construction we must have ŵ ∈ µ̂(f). But now we may just

exchange the positions of ŵ and w′′ and consider P ′′ŵ↔w
′′

f . We have µ′′ ∈ C(P ′′ŵ↔w
′′

f , P ′−f ).

In µ′′(f) the Pf -least preferred worker and the P ′′ŵ↔w
′′

f -least preferred worker coincide and
is ŵ. But now we are in Case 2.1 and this is a contradiction (where µ̂(f) is replaced by
µ̂(f)w̃↔w

′′
= (µ̂(f)\{ŵ}) ∪ {w′′}).

Thus, DAF [P ′′f , P
′
−f ](f) contains qf workers inA(P ′′f ) and at least k workers inB(ŵk, Pf ).

Now by our choice of W̄ ∗ and P̄ ∗f we obtain that, for any profile P ′−f in the support of

P̃−f |Pf
, DAF [Pf , P

′
−f ](f)R̄∗fW̄

∗ implies DAF [P ′′f , P
′
−f ](f)R̄∗fW̄

∗.

20Here we use again the convention SP ′′f T iff sP ′′f t for all s ∈ S and all t ∈ T .
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Since DAF [P ′′f , P−f ](f)R̄∗fW̄
∗P̄ ∗fDAF [Pf , P−f ](f) and P ∈ supp(P̃ ), we have

Pr{DAF [P ′′f , P̃−f |Pf
](f) ∈ B(W̄ ∗, P̄ ∗f )} > Pr{DAF [Pf , P̃−f |Pf

](f) ∈ B(W̄ ∗, P̄ ∗f )}.

Hence, not DAF [Pf , P̃−f |Pf
](f)P sd

f DAF [P ′′f , P̃−f |Pf
](f) and DAF is not monotonic OBIC

under P̃ , a contradiction. �

B Proof of Theorem 2

Let ϕ be a stable mechanism and P̃ be a common belief. To obtain a contradiction, suppose
that there is some P ∈ P such that both Pr{P̃ = P} > 0 and |C(P )| ≥ 2 hold. By stability
of ϕ, ϕ[P ] ∈ C(P ). Let µ ∈ C(P )\{ϕ[P ]} be arbitrary. If there is some w ∈ W such that
µ(w)Pwϕ[P ](w), then similarly to Ehlers and Massó (2007, Theorem 1) we can show that
ϕ is not monotonic OBIC under P̃ . Thus, for all µ ∈ C(P )\{ϕ[P ]},

ϕ[P ](w)Rwµ(w) (8)

for all w ∈ W. Hence, and since DAW [P ] is the worker-optimal stable matching,

ϕ[P ] = DAW [P ]. (9)

Observe that (9) needs to hold for all profiles belonging to the support of P̃ .
Fix a matching µ ∈ C(P )\{ϕ[P ]}. Since µ 6= ϕ[P ] and ϕ[P ] = DAW [P ], there exists

some f ∈ F such that µ(f) 6= ϕ[P ](f). Then, by Roth and Sotomayor (1990, Theorems
5.12 and 5.13), |µ(f)| = |ϕ[P ](f)| = qf . Note that DAW [P ] matches each firm f with f ’s
worst set of partners−according to any monotonic responsive extension of Pf−, among all
partners that f is matched to across all stable matchings. Thus, by (9),

µ(f)P ∗fϕ[P ](f) (10)

for all monotonic responsive extensions P ∗f of Pf .
Let w̄ ∈ µ(f) be such that wRf w̄ for all w ∈ µ(f). Let P ′f ∈ Pf be such that (i)

A(P ′f ) = B(w̄, Pf ) and (ii) P ′f |A(P ′f ) = Pf |A(P ′f ). By construction of P ′f , µ ∈ C(P ′f , P−f ).
Hence, either ϕ[P ′f , P−f ](f) = µ(f), in which case, by (10),

ϕ[P ′f , P−f ](f)P ∗fϕ[P ](f)

for all monotonic responsive extensions P ∗f of Pf , or else ϕ[P ′f , P−f ](f) 6= µ(f). We want
to show that ϕ[P ′f , P−f ](f)P ∗f µ(f) for all monotonic responsive extensions P ∗f of Pf . Sup-

pose otherwise; since ϕ[P ′f , P−f ](f) 6= µ(f), this means that µ(f)P̂ ∗fϕ[P ′f , P−f ](f) for some

monotonic responsive extension P̂ ∗f of Pf . Then, by Roth and Sotomayor (1989, Theorem
4), for all w ∈ µ(f) and all w′ ∈ ϕ[P ′f , P−f ](f)\µ(f),

wP ′fw
′. (11)
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Consider any w′ ∈ ϕ[P ′f , P−f ](f)\µ(f). Since ϕ[P ′f , P−f ] is individually rational under
(P ′f , P−f ), the definition of P ′f implies that w′ ∈ B(w̄, Pf ). Hence, by P ′f |B(w̄, Pf ) =
Pf |B(w̄, Pf ), w

′Rf w̄, which either contradicts (11) or else it means that ϕ[P ′f , P−f ](f)  
µ(f). Then,

∣∣ϕ[P ′f , P−f ](f)
∣∣ < |µ(f)| . But this contradicts Theorem 5.13 in Roth and So-

tomayor (1990). Thus, ϕ[P ′f , P−f ](f)P ∗f µ(f) for all monotonic responsive extensions P ∗f of
Pf . By (10),

ϕ[P ′f , P−f ](f)P ∗fϕ[P ](f) (12)

for all monotonic responsive extensions P ∗f of Pf .

We have already shown that there exist P ∈ P with Pr{P̃ = P} > 0, f ∈ F and
P ′f ∈ Pf such that (12) holds for all P ∗f ∈ mresp(Pf ). To obtain a contradiction with
truth-telling being a monotonic OBNE, we will find a P̄ ∗f ∈ mresp(Pf ) such that for all

P ′−f ∈ P−f with Pr{P̃ = (Pf , P
′
−f )} > 0 and ϕ[Pf , P

′
−f ](f) ∈ B(µ(f), P̄ ∗f ), we have that

ϕ[P ′f , P
′
−f ](f) ∈ B(µ(f), P̄ ∗f ). This would imply then that the inequality∑

{S′∈2W |S′R̄∗fµ(f)}

Pr{ϕ[P ′f , P̃−f |Pf
] (f) = S ′} ≥

∑
{S′∈2W |S′R̄∗fµ(f)}

Pr{ϕ[Pf , P̃−f |Pf
] (f) = S ′}

(13)
holds. Since ϕ[P ′f , P−f ](f) ∈ B(µ(f), P̄ ∗f ), ϕ[Pf , P−f ](f) /∈ B(µ(f), P̄ ∗f ) and Pr{P̃ = P} >
0, we could conclude then that the inequality in (13) is strict and hence, ϕ[Pf , P̃−f |Pf

] (f)

does not first order stochastically dominate ϕ[P ′f , P̃−f |Pf
] (f) .

For showing this, let P̄ ∗f be the monotonic responsive extension of Pf such that for all
W ′ ∈ 2W , W ′P̄ ∗f µ(f) if and only if (i) |W ′| = qf (note that |µ(f)| = qf ) and (ii) there
is a one-to-one mapping h : W ′ → µ(f) such that w′Rfh(w′) for all w′ ∈ W ′ with strict
preference holding for some worker in W ′. In other words, W ′ is strictly preferred to µ(f)
under P̄ ∗f only if W ′ is unambiguously strictly preferred to µ(f) for all monotonic responsive
extensions of Pf .

Let P ′−f ∈ P−f be such that both Pr{P̃ = (Pf , P
′
−f )} > 0 and ϕ[Pf , P

′
−f ](f) ∈

B(µ(f), P̄ ∗f ). We want to show that ϕ[P ′f , P
′
−f ](f) ∈ B(µ(f), P̄ ∗f ). Let µ̂ = ϕ[Pf , P

′
−f ] and

µ′ = ϕ[P ′f , P
′
−f ] and assume µ̂ 6= µ′ (otherwise, the statement follows trivially). By the def-

initions of P̄ ∗f and P ′f , we have that µ̂(f)R̄∗fµ(f), µ̂(f) ⊆ A(P ′f ) and |µ̂(f)| = qf . Thus, by
A(P ′f ) = B(w̄, Pf ) and P ′f |A(P ′f ) = Pf |A(P ′f ), µ̂ ∈ C(P ′f , P

′
−f ). Hence, µ′, µ̂ ∈ C(P ′f , P

′
−f ).

We distinguish between two cases.

Case 1: µ′(f)P̄ ∗f µ̂(f). Since µ̂(f) ∈ B(µ(f), P̄ ∗f ), we have that µ′(f) ∈ B(µ(f), P̄ ∗f ).

Case 2: µ̂(f)P̄ ∗f µ
′(f). But then µ′(f) ⊆ A(P ′f ) = B(w̄, Pf ) ⊆ A(Pf ) and by P ′f |A(P ′f ) =

Pf |A(Pf ), we have µ′ ∈ C(Pf , P
′
−f ). Note that (Pf , P

′
−f ) is a profile belonging to the

support of P̃ and thus, by (9), µ̂ = ϕ[Pf , P
′
−f ] = DAW [Pf , P

′
−f ]. Hence, µ̂(w)Rwµ

′(w) for
all w ∈ W, and again, by the same argument we used for (12), µ′(f)P̄ ∗f µ̂(f), a contradiction.

Cases 1 and 2 show that if P ′−f ∈ P−f is such that Pr{P̃ = (Pf , P
′
−f )} > 0 and

ϕ[Pf , P
′
−f ](f) ∈ B(µ(f), P̄ ∗f ), then ϕ[P ′f , P

′
−f ](f) ∈ B(µ(f), P̄ ∗f ). Since Pr{P̃−f |Pf

=
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P−f} > 0, ϕ[P ](f) /∈ B(µ(f), P̄ ∗f ), and ϕ[P ′f , P−f ](f) ∈ B(µ(f), P̄ ∗f ), it follows that

Pr{ϕ[P ′f , P̃−f |Pf
](f) ∈ B(µ(f), P̄ ∗f )} > Pr{ϕ[Pf , P̃−f |Pf

](f) ∈ B(µ(f), P̄ ∗f )},

which means ϕ is not monotonic OBIC under P̃ , a contradiction. �
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