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Abstract

We introduce incomplete information to centralized many-to-one matching

markets. This is important because in real life markets (i) any agent is uncertain

about the other agents’ true preferences and (ii) most entry-level matching

is many-to-one (and not one-to-one). We show that given a common prior,

a strategy profile is an ordinal Bayesian Nash equilibrium under incomplete

information in a stable mechanism if and only if, for any true profile in the

support of the common prior, the submitted profile is a Nash equilibrium under

complete information in the direct preference revelation game induced by the

stable mechanism.

JEL Classification: C78, D81, J44.
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1 Introduction

Centralized many-to-one matching markets operate as follows to match the agents

from two sides, the firms (colleges, hospitals, schools, etc.) and the workers (stu-

dents, medical interns, children, etc.): a centralized clearinghouse collects for each

participant a ranked list of potential partners and matches via a mechanism firms

and workers on the basis of the submitted ranked lists. In applications many of

the successful mechanisms are stable.12 The literature has considered stability of a

matching (in the sense that all agents have to be matched to acceptable partners and

no unmatched pair of a firm and a worker prefer each other rather than the proposed

partners) to be its main characteristic in order to survive.3 This is puzzling because

there exists no stable mechanism which makes truth-telling a dominant strategy for

all agents (Roth, 1982). Therefore, an agent’s (submitted) ranked lists of potential

partners are not necessarily his true ones and the implemented matching may not

be stable for the true profile. The literature has studied intensively Nash equilibria

of direct preference revelation games induced by different stable mechanisms under

complete information.4

We use the (ordinally) Bayesian approach in many-to-one matching markets by

assuming that nature selects a preference profile according to a commonly known

probability distribution on the set of profiles (a common prior).5 Since matching

1See Roth (1984a), Roth and Peranson (1999), and Roth (2002) for a careful description and

analysis of the American entry-level medical market. Roth (1991), Kesten (2005), Ünver (2005),

and Ehlers (2008) describe and analyze the equivalent UK markets.
2Chen and Sönmez (2006), Ergin and Sönmez (2006), and Abdulkadiroğlu, Che, and Yosuda

(2011) study the case of public schools in Boston, Abdulkadiroğlu and Sönmez (2003) studies the

cases of public schools in Boston, Lee County (Florida), Minneapolis, and Seattle, and Abdulka-

diroğlu, Pathak, and Roth (2005, 2009) study the case of public high schools in New York City.
3See, for instance, Roth (1984a) and Niederle and Roth (2003).

4See Dubins and Freedman (1981), Roth (1982, 1984b, 1985), Gale and Sotomayor (1985), Shin

and Suh (1996), Sönmez (1997), Ma (1995, 2002), and Alcalde (1996).
5Roth (1989) is the first paper studying strategic incentives generated by stable mechanisms
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markets require to report ranked lists and not their specific utility representations,

we stick to the ordinal setting and assume that probability distributions are evaluated

according to the first-order stochastic dominance criterion. Then, a strategy profile is

an ordinal Bayesian Nash equilibrium (OBNE) if, for every von Neumann Morgenstern

(vNM)-utility function of an agent’s preference ordering (his type), the submitted

ranked list maximizes his expected utility in the direct preference revelation game

induced by the common prior and the mechanism.6 For direct preference revelation

games under incomplete information induced by a stable mechanism, our main result

shows a link between Nash equilibria under complete information and OBNE under

incomplete information. More precisely, Theorem 1 states that, given a common prior,

a strategy profile is an OBNE under incomplete information in a stable mechanism if

and only if for any profile in the support of the common prior, the submitted profile

is a Nash equilibrium under complete information at the true profile in the direct

preference revelation game induced by the stable mechanism.

The paper is organized as follows. Section 2 describes the many-to-one matching

market with responsive preferences and introduces incomplete information and the

notion of ordinal Bayesian Nash equilibrium. Section 3 states our main result, Theo-

rem 1, and its applications. Section 4 discusses variations of our main result and the

Appendix contains all proofs.

under incomplete information. He shows that for particular vNM-utility representations of the

ordinal preferences, Bayesian Nash equilibria under incomplete information may not satisfy appealing

properties of Nash equilibria under complete information. Chakraborty, Citanna, and Ostrovsky

(2010) study two-sided matching markets with interdependent preferences.
6This notion was introduced by d’Aspremont and Peleg (1988) who call it “ordinal Bayesian

incentive-compatibility”. Majumdar and Sen (2004) use it to relax strategy-proofness in the

Gibbard-Satterthwaite Theorem. Majumdar (2003), Pais (2005), and Ehlers and Massó (2007)

have already used this ordinal equilibrium notion in one-to-one matching markets.
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2 Many-To-One Matching Markets

Let W denote the set of workers, F denote the set of firms, and V ≡ F ∪W denote the

set of agents. For each firm f , there is a maximum number qf ≥ 1 of workers that f

may hire, f ’s quota. Let q = (qf )f∈F denote the vector of quotas. Each worker w has

a strict preference ordering Pw over F ∪ {∅}, where ∅ stands for being unmatched.

Each firm f has a strict preference ordering Pf over W ∪ {∅}, where ∅ stands for

leaving a position unfilled. A profile P = (Pv)v∈V is a list of preference orderings.

Given S ⊆ V , we sometimes write (PS, P−S) instead of P . Let Pv be the set of all

preference orderings of agent v. Let P = ×v∈VPv be the set of all profiles and let

P−v = ×v′∈V \{v}Pv′ . Let Rv denote the weak preference associated with Pv. Given

w ∈ W , Pw ∈ Pw, and v ∈ F ∪ {∅}, let B(v, Pw) denote the weak upper contour

set of Pw at v; i.e., B(v, Pw) = {v′ ∈ F ∪ {∅} | v′Rwv}. Let A(Pw) be the set of

acceptable firms for w according to Pw; i.e., A(Pw) = {f ∈ F | fPw∅}. Given a subset

S ⊆ F ∪ {∅}, let Pw|S denote the restriction of Pw to S. Similarly, given Pf ∈ Pf ,

v ∈ W ∪{∅}, and S ⊆ W ∪{∅}, we define B(v, Pf ), A(Pf ), and Pf |S. A many-to-one

matching market (or college admissions problem) is a quadruple (F,W, q, P ). Because

F , W and q remain fixed, a problem is simply a profile P ∈ P . If qf = 1 for all f ∈ F ,

(F,W, q, P ) is called a one-to-one matching market.

A matching is a function µ : V → 2V satisfying the following: (m1) for all w ∈ W ,

µ(w) ⊆ F and |µ(w)| ≤ 1; (m2) for all f ∈ F , µ(f) ⊆ W and |µ(f)| ≤ qf ; and

(m3) µ(w) = {f} if and only if w ∈ µ(f). We will often write µ(w) = f instead of

µ(w) = {f}. If µ(w) = ∅, we say that w is unmatched at µ. If |µ(f)| < qf , we say that

f has qf−|µ(f)| unfilled positions at µ. LetM denote the set of all matchings. Given

P ∈ P and µ ∈ P , µ is stable (at P ) if (s1) for all v ∈ V , µ(v) ⊆ A(Pv) (individual

rationality); and (s2) there exists no pair (w, f) ∈ W × F such that fPwµ(w) and

either [wPf∅ and |µ(f)| < qf ] or [wPfw
′ for some w′ ∈ µ(f)] (pairwise stability). Let

C(P ) denote the set of stable matchings at P (or the core of P ). A (direct) mechanism

is a function ϕ : P →M. A mechanism ϕ is stable if for all P ∈ P , ϕ[P ] is stable at
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P . The most popular stable mechanisms are the deferred-acceptance algorithms (DA-

algorithms) (Gale and Shapley, 1962): the firm-proposing DA-algorithm is denoted

by DAF and the worker-proposing DA-algorithm is denoted by DAW .

A mechanism matches each firm f to a set of workers, taking into account only f ’s

preference ordering Pf over individual workers. To study firms’ incentives, preference

orderings of firms over individual workers have to be extended to preference orderings

over subsets of workers. The preference extension P ∗f over 2W is responsive to Pf ∈ Pf
if for all S ∈ 2W , all w ∈ S, and all w′ /∈ S: (r1) S ∪ {w′}P ∗f S ⇔ |S| < qf and

w′Pf∅; and (r2) (S\{w}) ∪ {w′}P ∗f S ⇔ w′Pfw. Let R∗f denote the weak preference

associated with P ∗f and resp(Pf ) denote the set of all responsive extensions of Pf .

Moreover, given S ∈ 2W , let B(S, P ∗f ) be the weak upper contour set of P ∗f at S; i.e.,

B(S, P ∗f ) = {S ′ ∈ 2W | S ′R∗fS}.

Any mechanism and any true profile define a direct (ordinal) preference revelation

game under complete information for which we can define the natural (ordinal) notion

of Nash equilibrium. Given a mechanism ϕ and P, P ′ ∈ P , P ′ is a Nash equilibrium

(NE) in the mechanism ϕ under complete information P if (n1) for all w ∈ W ,

ϕ[P ′](w)Rwϕ[P̂w, P
′
−w](w) for all P̂w ∈ Pw; and (n2) for all f ∈ F and all P ∗f ∈

resp(Pf ), ϕ[P ′](f)R∗fϕ[P̂f , P
′
−f ](f) for all P̂f ∈ Pf . Truth-telling is a NE in ϕ under

P if P is a NE in ϕ under P .

A common prior is a probability distribution P̃ over P . Given P ∈ P , let Pr{P̃ =

P} denote the probability that P̃ assigns to P . Given v ∈ V , let P̃v denote the

marginal distribution of P̃ over Pv. Given a common prior P̃ and Pv ∈ Pv, let P̃−v|Pv
denote the probability distribution which P̃ induces over P−v conditional on Pv. It

describes agent v’s (Bayesian) uncertainty about the preferences of the other agents,

given that his preference ordering is Pv.
7

A random matching η̃ is a probability distribution over the set of matchings

7This formulation does not require symmetry nor independence of priors; conditional priors might

be very correlated if agents use similar sources to form them (i.e., rankings, grades, recommendation

letters, etc.).
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M. Given µ ∈ M, let Pr{η̃ = µ} denote the probability that η̃ assigns to µ.

Let η̃(w) denote the distribution which η̃ induces over w’s set of potential part-

ners F ∪ {∅}, and let η̃(f) denote the distribution which η̃ induces over f ’s set of

potential partners 2W . Given two random matchings η̃ and η̃′, (fo1) for w ∈ W

and Pw ∈ Pw we say that η̃(w) first-order stochastically Pw−dominates η̃′(w), de-

noted by η̃ (w) mPw η̃
′ (w), if for all v ∈ F ∪ {∅},

∑
v′∈F∪{∅}:v′Rwv Pr{η̃ (w) = v′} ≥∑

v′∈F∪{∅}:v′Rwv Pr{η̃′ (w) = v′}; and (fo2) for f ∈ F and Pf ∈ Pf , η̃(f) first-order

stochastically Pf−dominates η̃′(f), denoted by η̃ (f)mPf η̃
′ (f), if for all P ∗f ∈ resp(Pf )

and all S ∈ 2W ,8
∑

S′∈2W :S′R∗fS
Pr{η̃ (f) = S ′} ≥

∑
S′∈2W :S′R∗fS

Pr{η̃′ (f) = S ′}.9

A mechanism ϕ and a common prior P̃ define a direct (ordinal) preference rev-

elation game under incomplete information. A strategy of agent v is a function

sv : Pv → Pv specifying for each type Pv of v a list that v submits to the mechanism,

sv(Pv). We restrict our analysis to pure strategies in the main text. The Appendix

generalizes our main result to mixed strategies and random mechanisms. A strategy

profile is a list s = (sv)v∈V of strategies specifying for each true profile P a submitted

profile s(P ). Given a mechanism ϕ : P → M and a common prior P̃ over P , a

strategy profile s : P → P induces a random matching ϕ[s(P̃ )] in the following way:

for all µ ∈M,

Pr{ϕ[s(P̃ )] = µ} =
∑

P∈P:ϕ[s(P )]=µ

Pr{P̃ = P}.

Using Bayesian updating, the relevant random matching for agent v, given his type Pv

and a strategy profile s, is ϕ[sv(Pv), s−v(P̃−v|Pv)] (where s−v(P̃−v|Pv) is the probability

distribution over P−v which s−v and P̃ induce conditional on Pv).

Definition 4 (Ordinal Bayesian Nash Equilibrium) Let P̃ be a common prior.

8Observe that this definition requires that η̃ first-order stochastically dominates η̃′ according to

all responsive extensions of Pf .
9It is well-known that (fo1) is equivalent to that for any vNM-representation of Pw the expected

utility of η̃ is greater than or equal to the expected utility of η̃′ (and similarly for (fo2) and all vNM-

representations of any responsive extension of Pf ). See for instance, Theorem 3.11 in d’Aspremont

and Peleg (1988).
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A strategy profile s is an ordinal Bayesian Nash equilibrium (OBNE ) in the mecha-

nism ϕ under incomplete information P̃ if and only if for all v ∈ V and all Pv ∈ Pv
such that Pr{P̃v = Pv} > 0,10

ϕ[sv(Pv), s−v(P̃−v|Pv)](v) mPv ϕ[P ′v, s−v(P̃−v|Pv)](v) for all P ′v ∈ Pv. (1)

Truth-telling is an OBNE in the mechanism ϕ under incomplete information P̃ if

and only if for all v ∈ V and all Pv ∈ Pv such that Pr{P̃v = Pv} > 0,

ϕ[Pv, P̃−v|Pv ](v) mPv ϕ[P ′v, P̃−v|Pv ](v) for all P ′v ∈ Pv. (2)

In general for arbitrary mechanisms there is no connection between NE under

complete information and OBNE under incomplete information. For instance, sup-

pose that the common prior P̃ u is uniform in the sense that it puts equal probability

on all preference profiles. Furthermore, suppose that the mechanism ϕ matches a

worker and a firm if and only if they rank each other as their most preferred choice

(and ϕ leaves all other positions unfilled and all other workers unmatched). Then it

is easy to verify that truth-telling is an OBNE in the mechanism ϕ under the uniform

prior P̃ u.11 However, truth-telling is not always a NE in the mechanism ϕ under com-

plete information since for some profiles, a firm may rank a worker first and a worker

the firm second, and if the worker is unmatched, then she profitably manipulates by

moving the firm to the first position of her submitted ranking. Our main result will

show that such a disconnection between NE and OBNE is only possible for unstable

mechanisms.

10In the definition of OBNE optimal behavior of agent v is only required for the preferences of v

which arise with positive probability under P̃ . If Pv ∈ Pv is such that Pr{P̃v = Pv} = 0, then the

conditional prior P̃−v|Pv cannot be derived from P̃ . However, we could complete the prior of v in

the following way: let P̃−v|Pv
put probability one on a profile where all other agents submit lists

which do not contain v.

11For any agent v and any Pv ∈ Pv, P̃u
−v|Pv is uniform over P−v. For all agents belonging to the

opposite side of the market, the probability that she ranks v first is identical. Hence, v cannot do

better than submitting the true preference relation.
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3 The Main Result and Its Applications

The support of a common prior P̃ is the set of profiles on which P̃ puts positive

probability: P ∈ P belongs to the support of P̃ if and only if Pr{P̃ = P} > 0.

Theorem 1 Let P̃ be a common prior, s be a strategy profile, and ϕ be a stable mech-

anism. Then, s is an OBNE in the stable mechanism ϕ under incomplete information

P̃ if and only if for any profile P in the support of P̃ , s(P ) is a Nash equilibrium in

the stable mechanism ϕ under complete information P .

Theorem 1 has several consequences and applications. One immediate conse-

quence is that for determining whether a strategy profile is an OBNE, we only need

to check whether for each realization of the common prior the submitted preference

orderings constitute a Nash equilibrium under complete information. This means that

the uniquely relevant information for an OBNE is the support of the common prior

and no calculations of probabilities are necessary. This consequence is very important

for applications because we need to check equilibrium play only for the realized (or

observed) profiles. Furthermore, by Theorem 1, we can use properties of NE (under

complete information) to deduce characteristics of OBNE.

Observe that, given a common belief P̃ , the set of OBNE in a stable mechanism

is non-empty. For instance, imagine that the workers and the firms are divided into

“local” matching markets as follows: let (Wf )f∈F be a partition of the set of workers

(allowing Wf = ∅ for some firms f) where Wf denotes the set of workers belonging

to the “local” market of f . In words, under the following strategy profile, if worker

w belongs to the local market of firm f , then w ranks f uniquely acceptable if f is

preferred to being unmatched and otherwise w ranks no firm acceptable. Any firm f

ranks as acceptable (and in the true order) all workers which both belong to its local

market and are acceptable according to its true preference relation. Let the strategy

profile s be defined in the following way: (i) for any w ∈ W and any Pw ∈ Pw,

A(sw(Pw)) = {f} if f ∈ A(Pw) and w ∈ Wf , and A(sw(Pw)) = ∅ otherwise; and (ii)
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for all f ∈ F and all Pf ∈ Pf , let A(sf (Pf )) = A(Pf )∩Wf and sf (Pf )|A(Pf )∩Wf =

Pf |A(Pf ) ∩ Wf . Then for any stable mechanism and any profile P , s(P ) is a NE

under complete information. Hence, s is an OBNE in any stable mechanism under

any common belief. In the special case where Wf = W for some firm f , firm f has a

monopolistic market.

Restricting ourselves to truth-telling (where s(P ) = P for all P ∈ P), Theorem

1 shows that truth-telling is an OBNE in a stable mechanism ϕ if and only if for

any profile in the support of the common belief, truth-telling is a NE in ϕ under

complete information for any profile in the support of the common prior. In other

words, in many-to-one matching a stable mechanism ϕ is ordinally Bayesian incentive

compatible under the common prior P̃ if and only if ϕ restricted to the support of P̃ is

incentive compatible. Furthermore, it can be easily seen that P is a NE in the stable

mechanism ϕ under complete information P if and only if P is a NE in any stable

mechanism under complete information P . All what matters is the stability of the

mechanism (and not which specific stable matching is chosen).

While the proof of Theorem 1’s (If)-part is straightforward, its (Only if)-part

proceeds roughly as follows. If for some profile P in the support of P̃ , s(P ) does

not constitute a NE, then some agent v has a profitably deviation from s(P ) under

complete information P . Using this deviation we then construct another profitable

deviation for v from s(P ) under complete information P such that agent v strictly

increases the probability of the weak upper contour set (at his type Pv) of assigned

partner(s) of the deviation under P . This implies that strategy profile s cannot be

an OBNE. The construction and the proof use repeatedly the following peculiarities

of stable matchings in many-to-one matching markets (see Appendix A.1): (1) in-

variance of unmatched agents and unfilled positions: the set of unmatched agents

and any firm’s number of unfilled positions are the same for all stable matchings;

and (2) comparative statics: starting from any many-to-one matching market and

its workers-optimal matching, when new workers become available all firms weakly
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prefer any matching, which is stable for the enlarged market, to the workers-optimal

stable matching of the smaller market.

Below we turn to the applications of Theorem 1.

3.1 Application I: Structure of OBNE

By Theorem 1, a strategy profile is an OBNE if and only if the agents play a Nash

equilibrium for any profile in the support of the common prior. Therefore, (a) the set

of OBNE is identical for any two common priors with equal support and (b) the set

of OBNE shrinks if the support of the common prior becomes larger. We state these

two facts as Corollary 1 below.

Corollary 1 (Invariance) Let s be a strategy profile and ϕ be a stable mechanism.

(a) Let P̃ and P̃ ′ be two common priors with equal support. Then, s is an OBNE

in the stable mechanism ϕ under P̃ if and only if s is an OBNE in the stable

mechanism ϕ under P̃ ′.

(b) Let P̃ and P̃ ′ be two common priors such that the support of P̃ ′ is contained in

the support of P̃ . If s is an OBNE in the stable mechanism ϕ under P̃ , then s

is an OBNE in the stable mechanism ϕ under P̃ ′.

Now by (a) of Corollary 1, for stable mechanisms any OBNE is robust to per-

turbations of the common prior which leave its support unchanged. Therefore, any

OBNE remains an equilibrium if agents have different priors with equal support, i.e.

each agent v may have a private prior P̃ v but all private priors have identical (or

common) support.12 This consequence is especially important for applications since

for many of them, the common prior assumption might be too strong.

12Then in Definition 4 of OBNE the common prior P̃ is replaced for each agent v by his private

prior P̃ v. Theorem 1 and its proof show that, a strategy profile s is an OBNE in a stable mechanism

ϕ under private priors (P̃ v)v∈V if and only if for all v ∈ V and any profile P in the support of

P̃ v, sv(Pv) is a best response to s−v(P−v) in ϕ under complete information P . In other words,
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By (b) of Corollary 1, the set of OBNE with full support (i.e. all common priors

which put positive probability on all profiles) is contained in the set of OBNE of any

arbitrary common prior (or support). Therefore, any OBNE for a common prior with

full support is an OBNE for any arbitrary prior. Hence, such OBNE are invariant

with respect to the common prior and remain OBNE if the agents’ priors are not

necessarily derived from the same common prior (and the “local” markets example is

an OBNE in any stable mechanism under any priors).

3.2 Application II: Truth-Telling under Correlated Prefer-

ences

In empirical applications the preferences of one side of the market are often perfectly

correlated. For example, each firm may rank all workers according to an objective

criterion such as their degree of qualifications or each college may rank all students

according to their grades. Furthermore, it is common in labor economics or search

theory to often assume that all workers have identical preferences over firms.13 One-

sided perfect correlation is an extreme case of interdependence of preferences where

an agent’s preference may depend on the preferences of the other agents on his side.

We say that a common prior P̃ is F -correlated if for any profile P in the sup-

port of P̃ , all firms have identical preferences.14 Similarly we say that a prior P̃ is

W -correlated if for any profile P in the support of P̃ , all workers have identical pref-

erences. Theorem 1 also helps us to prove the following result under F -correlated or

each agent’s strategy sv chooses a best response to the other reported preferences for any profile

belonging to the support of his private prior. If all private priors have equal support, then it follows

that a strategy profile s is an OBNE with private priors (with common support) if and only if for any

profile P in the common support, s(P ) is a Nash equilibrium in the mechanism ϕ under complete

information P .
13For instance, Shi (2002) provides a long list of papers on directed search models in labor markets

where at least one side of the market is homogenous.

14Formally this means for all f, f ′ ∈ F , A(Pf ) = A(Pf ′) and Pf |W = Pf ′ |W .
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W -correlated common priors.

Proposition 1 Let P̃ be a common prior.

(a) If P̃ is F -correlated or W -correlated, then truth-telling is an OBNE in any

stable mechanism under incomplete information P̃ .

(b) Let s be a strategy profile such that sw(Pw) = Pw for all w ∈ W and all Pw ∈

Pw. If P̃ is W -correlated and s is an OBNE in the stable mechanism DAW

under incomplete information P̃ , then for all profiles P in the support of P̃ ,

DAW [s(P )] is stable with respect to P . The analogous statement is true for the

stable mechanism DAF .

Although Proposition 1 focuses on completely correlated priors, it is easy to extend

it in the following direction. Suppose that each worker has a certain qualification and

each firm only offers positions having the same job-specific qualification. Let all

firms, which are interested in the same qualification, have identical preferences over

all workers possessing this qualification for any realization in the common prior. Then

the qualifications segregate the matching market and the conclusions of Proposition

1 apply. For example, each firm may represent a certain department in a hospital

and they would like to fill their positions with physicians who studied the medical

specialty of their department.

4 Variations

Recall for truth-telling to be an OBNE for a common belief, it must be that for any

firm and any of its realized preference over firms, truth-telling first order stochastically

dominates submitting any other ranking for all responsive extensions of the true

ranking. It is natural to ask whether Theorem 1 breaks down when we restrict the

set of responsive extensions firms may have.
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First, it is easy to see that the proof of Theorem 1 remains true if firms responsive

extensions are additive, i.e. where a firm has a numerical value for each worker and

the value of a set of workers is the sum of the values of the hired workers.15

Second, we show that Theorem 1 depends on firms having responsive extensions

which are not monotonic: given Pf ∈ Pf and P ∗f ∈ resp(Pf ), P ∗f is monotonic if for all

S, S ′ ∈ 2W such that |S ′| < |S| ≤ qf and S ⊆ A(Pf ), we have SP ∗f S
′. Let mresp(Pf )

denote the set of all monotonic responsive extensions of Pf . We will call a strategy

profile a monotonic OBNE in a mechanism under incomplete information if (fo2)

holds for all monotonic responsive extensions of any firm’s preference relation over

individual workers. In the example below we show that truth-telling is a monotonic

OBNE in DAW , while, for some preference profile P in the support of the common

belief, truth-telling is not a Nash equilibrium under complete information P in the

direct preference revelation game induced by DAW .

Example 1 Consider a many-to-one matching market with three firms F = {f1, f2, f3}

and four workers W = {w1, w2, w3, w4}. Firm f1 has capacity qf1 = 2 and firms f2 and

f3 have capacity qf2 = qf3 = 1. Consider the common belief P̃ with Pr{P̃ = P} = p

and Pr{P̃ = P̄} = 1− p, where p < 1/2, and P and P̄ are the following profiles:

Pf1 Pf2 Pf3 Pw1 Pw2 Pw3 Pw4 P̄f1 P̄f2 P̄f3 P̄w1 P̄w2 P̄w3 P̄w4

w1 w1 w3 f3 f2 f1 f1 w1 w2 w4 f1 f2 f1 f3

w2 w2 w1 f1 f1 f3 f2 w2

w3 w3 w2 f2 f3 f2 f3 w3

w4 w4 w4 w4

.

Note that Pf1 = P̄f1 . It is straightforward to verify that both profiles have a singleton

15A responsive preference ordering P ∗f is additive if there exists an injective function g : W →

R\{0} such that for all S, S′ ∈ 2W with |S| ≤ qf and |S′| ≤ qf , we have SP ∗f S
′ ⇔

∑
w∈S g(w) >∑

w′∈S′ g(w′). In footnotes we show that any responsive extension in the proof of Theorem 1 can

be chosen to be additive.
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core and C(P ) = {µ} and C(P̄ ) = {µ̄}, where

µ =

 f1 f2 f3

{w3, w4} w2 w1

 and µ̄ =

 f1 f2 f3

{w1, w3} w2 w4

 .

Let ϕ be a stable mechanism. Thus, by stability of ϕ, ϕ[P ] = µ and ϕ[P̄ ] = µ̄.

First we will show that for the profile P truth-telling is not a Nash equilibrium under

complete information P in the direct preference revelation game induced by DAW .

Let P ′f1 ∈ Pf1 be such that P ′f1 : w1w2w4∅w3. Then C(P ′f1 , P−f1) = {µ′} where

µ′ =

 f1 f2 f3

{w1, w4} w2 w3

 .

Hence, by stability of ϕ, ϕ[P ′f1 , P−f1 ] = µ′. Obviously, for all responsive extensions P ∗f1

of Pf we have {w1, w4}P ∗f1{w3, w4}, which is equivalent to ϕ[P ′f1 , P−f1 ](f1)P
∗
f1
ϕ[P ](f1).

Therefore, truth-telling is not a Nash equilibrium in any stable mechanism ϕ under

complete information P (and profile P belongs to the support of the common belief

P̃ ).

On the other hand we will show that truth-telling is a monotonic OBNE in the

stable mechanism DAW under incomplete information P̃ . Note that for all v ∈

V \{f1}, if v observes his preference relation, then v knows whether P was realized or

P̄ was realized. Since at both of P and P̄ the core is a singleton and firms f2 and f3

have quota one, it follows from the proof of Theorem 1 in Ehlers and Massó (2007)

that v cannot gain by deviating.

Next we consider firm f1. All arguments except for the last one apply to any stable

mechanism ϕ. Observe that Pf1 = P̄f1 and the random matching ϕ[Pf1 , P̃−f1|Pf1 ]

assigns to f1 the set {w3, w4} with probability p and the set {w1, w3} with probability

1 − p. Let P ∗f1 be a monotonic responsive extension of Pf1 and P ′′f1 ∈ Pf1 . We show

that

ϕ[Pf1 , P̃−f1|Pf1 ](f1) mP ∗f1
ϕ[P ′′f1 , P̃−f1|Pf1 ](f1). (3)

We distinguish two cases. First, suppose that |ϕ[P ′′f1 , P−f1 ](f1)| = 1 or |ϕ[P ′′f1 , P̄−f1 ](f1)| =

1. Now if (3) does not hold, then by monotonicity of P ∗f1 and the fact that when sub-

13



mitting Pf1 , f1 is assigned the set {w3, w4} with probability p and the set {w1, w3} with

probability 1− p (where 1− p > 1/2), we must have that ϕ[P ′′f1 , P−f1 ](f1)P
∗
f1
{w1, w3}

or ϕ[P ′′f1 , P̄−f1 ](f1)P
∗
f1
{w1, w3}. Obviously, from the definition of P̄−f1 , the last is im-

possible. Thus, ϕ[P ′′f1 , P−f1 ](f1)P
∗
f1
{w1, w3} and, by responsiveness of P ∗f1 , we must

have ϕ[P ′′f1 , P−f1 ](f1) = {w1, w2}. But then, without loss of generality, we would

have DAF [P ′′f1 , P−f1 ](f1) = {w1, w2} (because DAF chooses the most preferred sta-

ble matching from the firms’ point of view).16 Since we have C(P ) = {µ} and

DAF [Pf1 , P−f1 ](f1) = {w3, w4}, this would imply that in the corresponding one-to-

one matching problem DAF is group manipulable by the two copies of f1 (with each

copy gaining strictly), a contradiction to the result of Dubins and Freedman (1981).17

Second, suppose that |ϕ[P ′′f1 , P−f1 ](f1)| = 2 and |ϕ[P ′′f1 , P̄−f1 ](f1)| = 2. Then

by definition of P̄−f1 and |ϕ[P ′′f1 , P̄−f1 ](f1)| = 2, we must have ϕ[P ′′f1 , P̄−f1 ](f1) =

{w1, w3}. Thus, by stability of ϕ, {w1, w3} ⊆ A(P ′′f1).

If for all µ′′ ∈ C(P ′′f1 , P−f1), µ
′′(w4) = ∅, then w4 /∈ A(P ′′f1) and by definition of P−f1

and w3 ∈ A(P ′′f1), DAW [P ′′f1 , P−f1 ](f1) = {w3}. Then f1 does not fill all its positions

at the workers-optimal matching and by Roth and Sotomayor (1990), f1 is matched

to the same set of workers at all stable matchings. Hence, ϕ[P ′′f1 , P−f1 ](f1) = {w3}

and (3) holds (because when submitting P ′′f1 , firm f1 is matched with probability p

to w3 and with probability 1− p to {w1, w3}).

If for some µ′′ ∈ C(P ′′f1 , P−f1), µ
′′(w4) 6= ∅, then by definition of P−f1 , µ

′′(w4) = f1;

otherwise the pair (w2, f2) would block µ′′ at (P ′′f1 , P−f1) if µ′′(w4) = f2 and the pair

(w1, f3) would block µ′′ at (P ′′f1 , P−f1) if µ′′(w4) = f3. Thus, by {w3, w4} ⊆ A(P ′′f1),

µ ∈ C(P ′′f1 , P−f1) and DAW [P ′′f1 , P−f1 ] = µ. Hence, (3) holds for the stable mechanism

DAW .18

16If DAF [P ′′f1 , P−f1 ](f1) 6= {w1, w2}, then choose P ′′′f1 such that A(P ′′′f1 ) = {w1, w2}. Then we

obtain DAF [P ′′′f1 , P−f1 ](f1) = {w1, w2}.
17Their result says that in a one-to-one matching market no group of firms can profitably ma-

nipulate DAF at the true profile under complete information (with strict preference holding for all

firms belonging to the group).
18Note that Example 1 does not contradict Theorem 1. When considering the non-monotonic
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The above example has another important implication: suppose that firms submit

preference orderings over sets of workers instead of submitting preference orderings

over individual workers only and the common belief is a distribution over profiles

where firms’ preference orderings are over sets of workers. Now if the common belief

puts only positive probability on profiles where all firms’ preference orderings are

responsive and monotonic, then the above example shows that truth-telling can be

an OBNE while not necessarily at all profiles in the support truth-telling is a NE

under complete information.

This is partly due to the fact our main result is a statement for any common belief.

Once we put certain conditions on the common belief, our main result continues to

hold even if firms submit preference orderings over sets of workers. Without going into

details, let P∗f denote the set of all responsive preference orderings of f over 2W and

P∗ = (×f∈FP∗f ) × (×w∈WPw). Let the common belief P̃ ∗ on P∗ be such that for all

P ∗−f ∈ P∗−f and all Pf , P
′
f ∈ P∗f such that Pf |W∪{∅} = P ′f |W∪{∅}, Pr{P̃ ∗ = (Pf , P

∗
−f )} >

0⇔ Pr{P̃ ∗ = (P ′f , P
∗
−f )} > 0. In words, if whenever the common belief puts positive

probability on some profile, then for any firm and any other preference ordering

which is responsive to the same ordering, the belief also puts positive probability on

the profile where the firm’s preference is replaced by this preference ordering (the

support of the common belief does not distinguish preference orderings which are

responsive to the same ordering over individual workers). The proof of Theorem 1

then shows that truth-telling is an OBNE in the stable mechanism ϕ if and only if

for any profile in the support of P̃ ∗, truth-telling is a NE in the stable mechanism

under complete information.

It would be interesting to identify other economic environments where a similar

link between BNE under incomplete information and NE under complete information

extension P ∗f1 such that {w1}P ∗f1{w3, w4}, then firm w1 can gain by submitting the list P̂f1

where worker w1 is the unique acceptable worker (i.e. A(P̂f1) = {w1}). Then we have both

ϕ[P̂f1 , P−f1 ](f1) = {w1} and ϕ[P̂f1 , P̄−f1 ](f1) = {w1}, which means that truth-telling is not an

OBNE in any stable mechanism ϕ under incomplete information P̃ .
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holds. In those environments the strategic analysis under complete information is

essential to undertake the corresponding analysis under incomplete information.
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Autònoma de Barcelona (2005).

[23] J. Pais. “Random Matching in the College Admissions Problem,” Economic The-

ory 35, 99-116 (2008).

[24] A.E. Roth. “The Economics of Matching: Stability and Incentives,” Mathematics

of Operations Research 7, 617-628 (1982).

[25] A.E. Roth. “The Evolution of the Labor Market for Medical Interns and Resi-

dents: A Case Study in Game Theory,” Journal of Political Economy 92, 991-

1016 (1984a).

[26] A.E. Roth. “Misrepresentation and Stability in the Marriage Problem,” Journal

of Economic Theory 34, 383-387 (1984b).

[27] A.E. Roth. “The College Admissions Problem is not Equivalent to the Marriage

Problem,” Journal of Economic Theory 36, 277-288 (1985).

[28] A.E. Roth. “Two-Sided Matching with Incomplete Information about Others’

Preferences,” Games and Economic Behavior 1, 191-209 (1989).

[29] A.E. Roth. “A Natural Experiment in the Organization of Entry Level Labor

Markets: Regional Markets for New Physicians and Surgeons in the U.K.,” Amer-

ican Economic Review 81, 415-440 (1991).

[30] A.E. Roth. “The Economist as Engineer: Game Theory, Experimentation, and

Computation as Tools for Design Economics,” Econometrica 70, 1341-1378

(2002).

18



[31] A.E. Roth and E. Peranson. “The Redesign of the Matching Market for Ameri-

can Physicians: Some Engineering Aspects of Economic Design,” American Eco-

nomic Review 89, 748-780 (1999).

[32] A.E. Roth and M. Sotomayor. “The College Admissions Problem Revisited,”

Econometrica 57, 559-570 (1989).

[33] A.E. Roth and M. Sotomayor. Two-sided Matching: A Study in Game-Theoretic

Modelling and Analysis. Cambridge University Press, Cambridge, England.

[Econometric Society Monograph] (1990).

[34] S. Shi. “Directed Search Model of Inequality with Heterogenous Skills and Skill-

Biased Technology,” Review of Economic Studies 69, 467-491 (2002).

[35] S. Shin and S.-C. Suh. “A Mechanism Implementing the Stable Rule in Marriage

Problems,” Economics Letters 51, 185-189 (1996).

[36] T. Sönmez. “Games of Manipulation in Marriage Problems,” Games and Eco-

nomic Behaviour 20, 169-176 (1997).
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APPENDIX

Before we prove Theorem 1, we recall the following properties of the core of

a many-to-one matching market. These properties will be used frequently in the

proof. It will be convenient to write (F,W,P ; q) for any many-to-one matching mar-

ket (F,W, q, P ) in which qf = 1 for all f ∈ F .

A.1 Properties of the Core

The core of a many-to-one matching market has a special structure. The following

well-known properties will be useful in the sequel:19

(P1) For each profile P ∈ P , C(P ) contains two stable matchings, the firms-optimal

stable matching µF and the workers-optimal stable matching µW , with the property

that for all µ ∈ C(P ), µW (w)Rwµ(w)RwµF (w) for all w ∈ W , and for all f ∈ F ,

µF (f)R∗fµ(f)R∗fµW (f) for all P ∗f ∈ resp(Pf ). The deferred-acceptance algorithms

(DA-algorithms) (Gale and Shapley, 1962) are denoted by DAF : P → M and

DAW : P →M: for all P ∈ P , DAF [P ] = µF and DAW [P ] = µW .

(P2) For each profile P ∈ P and any responsive extensions P ∗F = (P ∗f )f∈F of PF =

(Pf )f∈F , C(P ) coincides with the set of group stable matchings at (PW , P
∗
F ), where

group stability corresponds to the usual cooperative game theoretical notion of weak

blocking.20 This means that the set of group stable matchings (relative to P ) is

invariant with respect to any specific responsive extensions of PF .

(P3) For each P ∈ P , the set of unmatched agents is the same for all stable matchings

(see Roth and Sotomayor, 1990, Theorems 5.12 and 5.13): for all µ, µ′ ∈ C(P ), and

for all w ∈ W and f ∈ F , (i) if µ(w) = ∅, then µ′(w) = ∅; (ii) |µ(f)| = |µ′(f)|; and

(iii) if |µ(f)| < qf , then µ(f) = µ′(f).

19See Roth and Sotomayor (1990) for a detailed presentation of these properties.

20A matching µ is weakly blocked by coalition S ⊆ V under (PW , P ∗F ) if there exists a matching

µ′ such that (b1) for all v ∈ S, µ′(v) ⊆ S, (b2) for all w ∈ W ∩ S, µ′(w)Rwµ(w), and (b3) for all

f ∈ F ∩ S, µ′(f)R∗fµ(f), with strict preference holding for at least one v ∈ S.

20



(P4) Consider a one-to-one matching market (F,W,P ; q) and suppose that new work-

ers enter the market. Let (F,W ′, P ′; q) be this new one-to-one matching market where

W ⊆ W ′ and P ′ agrees with P over F and W . Let DAW [P ] = µW . Then, for all

f ∈ F , µ′(f)R′fµW (f) for all µ′ ∈ C(F,W ′, P ′; q) (Gale and Sotomayor, 1985; Craw-

ford, 1991).

(P5) Given (F,W, q, P ), split each firm f into qf identical copies of itself (all having

the same preference ordering Pf ) and let F ′ be this new set of
∑

f∈F qf splitted

firms. Set q′f ′ = 1 for all f ′ ∈ F ′ and replace f by its copies in F ′ (always in the

same order) in each worker’s preference relation Pw. Then, (F ′,W, P ; q′) is a one-

to-one matching market for which we can uniquely identify its matchings with the

matchings of the original many-to-one matching market (F,W, q, P ), and vice versa

(Roth and Sotomayor, 1990, Lemma 5.6). Then, and using this identification, we

write C(F,W, q, P ) = C(F ′,W, P ; q′).

A.2 Proof of Theorem 1

Below we extend our result to random stable mechanisms21 and mixed strategies.

Let ∆(M) denote the set of all probability distributions over M. A random

mechanism is a function ϕ̃ : P → ∆(M) choosing for each profile P ∈ P a distribution

ϕ̃[P ] over M. The random mechanism ϕ̃ is stable if for all P ∈ P , the support of

ϕ̃[P ] is contained in C(P ). Given v ∈ V , let ∆(Pv) denote the set of all probability

distributions over Pv. A mixed strategy of agent v is a function mv : Pv → ∆(Pv)

specifying for each type Pv of v a distribution mv(Pv) over Pv. A (mixed) strategy

profile is a list m = (mv)v∈V .

Given a random mechanism ϕ̃, P ∈ P , and m, m(P ) is a NE in ϕ̃ under complete

information P if for all v ∈ V and all P ′v ∈ Pv, ϕ̃[m(P )](v) mPv ϕ̃[P ′v,m−v(P−v)](v).22

21Pais (2008) provides a strategic analysis of random stable mechanisms under complete informa-

tion.
22Note that implicitly here we use the fact that under complete information a mixed strategy is a

best response (in the set of all mixed strategies) if and only if the mixed strategy is weakly better
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Definition 5 (OBNE in mixed strategies) Let P̃ be a common prior. A mixed

strategy profile m is an ordinal Bayesian Nash equilibrium (OBNE ) in the random

mechanism ϕ̃ under incomplete information P̃ if and only if for all v ∈ V and all

Pv ∈ Pv such that Pr{P̃v = Pv} > 0,

ϕ̃[mv(Pv),m−v(P̃−v|Pv)](v) mPv ϕ̃[uv,m−v(P̃−v|Pv)](v) for all uv ∈ ∆(Pv). (4)

As usual, if s is an OBNE in pure strategies in the (deterministic) mechanism ϕ under

P̃ , then s is an OBNE in mixed strategies in the mechanism ϕ (where ϕ is a random

mechanism putting probability one on a unique matching for each profile).

Theorem 2 Let P̃ be a common prior, m be a mixed strategy profile, and ϕ̃ be a

random stable mechanism. Then, m is an OBNE in the random stable mechanism

ϕ̃ under incomplete information P̃ if and only if for any profile P in the support of

P̃ , m(P ) is a Nash equilibrium in the random stable mechanism ϕ̃ under complete

information P .

Proof. Let P̃ be a common prior, m be a mixed strategy profile and ϕ̃ be a random

stable mechanism. For any probability distribution D we denote by supp(D) its

support (and e.g., supp(P̃ ) is the support of P̃ ).

(⇐) Suppose that for any profile P in the support of P̃ , m(P ) is a Nash equilibrium

in the mechanism ϕ̃ under complete information P . Let v ∈ V and Pv ∈ Pv be such

that Pr{P̃v = Pv} > 0. By the previous fact, then we have for all P ′v ∈ Pv and all

P−v ∈ P−v such that Pr{P̃−v|Pv = P−v} > 0, ϕ̃[m(P )](v) mPv ϕ̃[P ′v,m−v(P−v)](v) for

all P ′v ∈ Pv. Hence,

ϕ[mv(Pv),m−v(P̃−v|Pv)](v) mPv ϕ[P ′v,m−v(P̃−v|Pv)](v),

and for any uv ∈ ∆(Pv),

ϕ[mv(Pv),m−v(P̃−v|Pv)](v) mPv ϕ[uv,m−v(P̃−v|Pv)](v).

than any pure strategy P ′v ∈ Pv.
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Hence, m is an OBNE in mixed strategies in ϕ̃ under P̃ , the desired conclusion.

(⇒) Let m be an OBNE in mixed strategies in the random stable mechanism ϕ̃ under

P̃ .

First we show that for all P ∈ P such that Pr{P̃ = P} > 0,

µ(v) ⊆ A(Pv) for all v ∈ V and all µ ∈ supp(ϕ̃[m(P )]). (5)

If for some P in the support of P̃ , for some v ∈ V , and some µ ∈ supp(ϕ̃[m(P )]),

µ(v) 6⊆ A(Pv), then let agent v choose Pv instead of mv(Pv). By stability of ϕ̃, we

have µ′(v) ⊆ A(Pv) for all P ′−v ∈ P−v and all µ′ ∈ supp(ϕ̃[Pv,m−v(P
′
−v)]). Let v ∈ F

(the case v ∈ W is analogous and easier). We choose a responsive extension P ∗v of

Pv such that for all W ′ ∈ 2W with |W ′| ≤ qv, W
′R∗v∅ if and only if W ′ ⊆ A(Pv).

23

Hence, by µ(v) 6⊆ A(Pv), µ ∈ supp(ϕ̃[m(P )]), and Pr{P̃−v|Pv = P−v} > 0, it follows

that

Pr{ϕ̃[Pv,m−v(P̃−v|Pv)](v) ∈ B(∅, P ∗v )} = 1 > Pr{ϕ̃[mv(Pv),m−v(P̃−v|Pv)](v) ∈ B(∅, P ∗v )},

which means that m is not an OBNE in the random stable mechanism ϕ̃ under P̃ , a

contradiction. Hence, (5) holds.

Second, suppose that for some P ∈ supp(P̃ ), m(P ) is not a NE in ϕ̃ under P .

Then, without loss of generality, there exists f ∈ F and P ′f ∈ Pf such that

ϕ̃[m(P )](f) 6 mPf ϕ̃[P ′f ,m−f (P−f )](f).

Then there exists a responsive extension P ∗f of Pf and P ′−f ∈ supp(m−f (P−f )) such

that for some µ′ ∈ supp(ϕ̃[P ′f , P
′
−f ]) and µ ∈ supp(ϕ̃[mf (Pf ), P−f ′ ]) we have

µ′(f)P ∗f µ(f). (6)

23The responsive extension P ∗v of Pv can be chosen to be additive by selecting g : W → R\{0}

such that (i) for all w,w′ ∈ W , wPvw
′ ⇔ g(w) > g(w′), (ii) for all w ∈ A(Pv), g(w) ∈ (0, 1), and

(iii) for all w ∈ W\A(Pv), g(w) < −|W |. It is easy to see that for all W ′ ∈ 2W with |W ′| ≤ qv,∑
w′∈W ′ g(w′) ≥ 0⇔W ′ ⊆ A(Pv).
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The case where a worker has a profitable deviation is analogous to the case where a

firm with quota one has a profitable deviation.

Let µ′(f) = {w′1, w′2, . . . , w′|µ′(f)|} where w′1Pfw
′
2Pf · · ·Pfw′|µ′(f)| and µ(f) = {w1, w2,

. . . , w|µ(f)|} where w1Pfw2Pf · · ·Pfw|µ(f)|. We now construct from P ′f another de-

viation P ′′f and from µ′(f) both a responsive extension P ∗∗f of Pf and a subset

of workers W ∗, and prove that the random matching ϕ̃[mf (Pf ),m−f (P̃−f |Pf )] does

not first-order stochastically Pf -dominate the random matching ϕ[P ′′f ,m−f (P̃−f |Pf )]

since Pr{ϕ̃[P ′′f ,m−f (P̃−f |Pf )](f) ∈ B(W ∗, P ∗∗f )} > Pr{ϕ̃[mf (Pf ),m−f (P̃−f |Pf )](f) ∈

B(W ∗, P ∗∗f )}. We proceed by distinguishing between two mutually exclusive cases.

Case 1: There exists k ∈ {1, . . . , |µ′(f)|} such that w′kPfwk and wlRfw
′
l for all

l ∈ {1, . . . , k − 1}.

Note that w′k ∈ A(Pf ) because w′kPfwk and by (5), wk ∈ µ(f) ⊆ A(Pf ). Let

P ′′f ∈ Pf be such that A(P ′′f ) = B(w′k, Pf ) and P ′′f |A(P ′′f ) = P ′f |A(P ′′f ).

First we show that for all µ′′ ∈ supp(ϕ̃[P ′′f , P
′
−f ]), µ

′′(f) contains at least k workers.

Note that any profile implicitly specifies the set of agents of the matching problem.

For the time being, below we specify both the profile and the quota of the matching

problem.

Because ϕ̃ is stable and µ′ ∈ supp(ϕ̃[P ′f , P
′
−f ]), µ

′ ∈ C(P ′f , P
′
−f ; q). Let µ′′ be the

matching for the problem (F,W\{w′k+1, . . . , w
′
|µ′(f)|}, (k, q−f ), (P ′f , P ′−{f}∪{w′k+1,...,w

′
|µ′(f)|}

))

such that µ′′(f) = {w′1, . . . , w′k} and µ′′(f ′) = µ′(f ′) for all f ′ ∈ F\{f}. Then from

µ′ ∈ C(P ′f , s−f (P−f ); q) it follows that

µ′′ ∈ C(P ′f , P
′
−{f}∪{w′k+1,...,w

′
|µ′(f)|}

; k, q−f ). (7)

By our choice of P ′′f , we have µ′′(f) ⊆ A(P ′′f ) and P ′′f |A(P ′′f ) = P ′f |A(P ′′f ). Hence, we

also have by (7),

µ′′ ∈ C(P ′′f , P
′
−{f}∪{w′k+1,...,w

′
|µ′(f)|}

; k, q−f ). (8)

Thus, by µ′′(f) = {w′1, . . . , w′k} and the fact that any firm is matched to the same

number of workers under all stable matchings, firm f is matched to k workers for all
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matchings belonging to C(P ′′f , P
′
−{f}∪{w′k+1,...,w

′
|µ′(f)|}

; k, q−f ). Now if firm f is matched

to fewer than k workers in some matching belonging to C(P ′′f , P
′
−{f}∪{w′k+1,...,w

′
|µ′(f)|}

; q),

then this matching is also stable for the problem (P ′′f , P
′
−{f}∪{w′k+1,...,w

′
|µ′(f)|}

; k, q−f ), a

contradiction to the previous fact. Hence, f is matched to at least k workers in any

stable matching belonging to C(P ′′f , P
′
−{f}∪{w′k+1,...,w

′
|µ′(f)|}

; q). Now when considering

the worker optimal matching in this core, we may split firm f into qf copies (all having

the same preference P ′′f ) and each copy of firm f weakly prefers according to P ′′f any

matching in C(P ′′f , P
′
−f ; q) to this matching. Since at least k copies of f are matched

to a worker under the worker optimal matching in C(P ′′f , P
′
−{f}∪{w′k+1,...,w

′
|µ′(f)|}

; q),

at least k copies of f must be also matched to a worker under any stable match-

ing in C(P ′′f , P
′
−f ; q). Therefore, by supp(ϕ̃[P ′′f , P

′
−f ]) ⊆ C(P ′′f , P

′
−f ; q), for all µ′′ ∈

supp(ϕ̃[P ′′f , P
′
−f ]), µ

′′(f) contains at least k workers.

Second we choose a responsive extension P ∗∗f of Pf . Let W ∗ ⊆ B(w′k, Pf ) be

such that W ∗ consists of the k lowest ranked workers (according to Pf ) in the set

B(w′k, Pf ), i.e. |W ∗| = k and for all w ∈ B(w′k, Pf )\W ∗ and all w∗ ∈ W ∗, wPfw
∗. Let

P ∗∗f be the responsive extension of Pf be such that for all W ′′ ∈ 2W , W ′′R∗∗f W
∗ if and

only if the following three conditions hold: (i) W ′′ ⊆ A(Pf ), (ii) k ≤ |W ′′| ≤ qf , and

(iii) if W ′′ = {w′′1 , w′′2 , . . . , w′′|W ′′|} where w′′1Pf · · ·Pfw′′|W ′′| and W ∗ = {w∗1, . . . , w∗k}

where w∗1Pf · · ·Pfw∗k, then w′′l Rfw
∗
l for all l ∈ {1, . . . , k}.24 Since for all µ′′ ∈

supp(ϕ̃[P ′′f , P
′
−f ]), µ

′′(f) contains at least k workers and A(P ′′f ) = B(w′k, Pf ), our

construction implies that for all µ′′ ∈ supp(ϕ̃[P ′′f , P
′
−f ]), µ

′′(f)P ∗∗f µ(f). More pre-

cisely, for Case 1 the set µ(f) violates (iii) and our choice of P ∗∗f and W ∗ yields for

all µ′′ ∈ supp(ϕ̃[P ′′f , P
′
−f ]),

µ′′(f)R∗∗f W
∗P ∗∗f µ(f) (9)

24The responsive extension P ∗∗f of Pf can be chosen to be additive by selecting g : W → R\{0} such

that (a) for all w,w′ ∈W , wPfw
′ ⇔ g(w) > g(w′), (b) for all w ∈ B(w′k, Pf ), g(w) ∈ [|W |, |W |+ 1],

(c) for all w ∈ A(Pf )\B(w′k, Pf ), g(w) ∈ (0, 1), and (d) for all w ∈ W\A(Pf ), g(w) < −|W |2. It is

easy to see that for all W ′′ ∈ 2W with |W ′′| ≤ qf ,
∑

w′∈W ′′ g(w′) ≥
∑

w∈W∗ g(w) ⇔ (i)-(iii) hold

for W ′′.
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and µ ∈ supp(ϕ̃[mf (Pf ), P
′
−f ]).

The following claim will be the key to the proof. We show that for any profile,

if some stable matching is weakly preferred to W ∗ under P ∗∗f , then all matchings,

which are stable under the profile where f ’s preference ordering is replaced by P ′′f ,

are weakly preferred to W ∗ under P ∗∗f .

Claim: Let P̂ ∈ P . If for some µ̂ ∈ C(P̂ ), µ̂(f)R∗∗f W
∗, then for all µ̄ ∈ C(P ′′f , P̂−f ),

µ̄(f)R∗∗f W
∗.

Proof of Claim. By µ̂(f)R∗∗f W
∗ and our choice of P ∗∗f ,

µ̂(f) ∩B(w′k, Pf ) must contain at least k workers. (10)

If for some µ̄′ ∈ C(P ′′f , P̂−f ), µ̄
′(f) contains at least k workers, then all these workers

belong to B(w′k, Pf ) because A(P ′′f ) = B(w′k, Pf ). Thus, by our choice of P ∗∗f and

W ∗, µ̄′(f)R∗∗f W
∗. Because by (P3), f is matched to at least k workers in any sta-

ble matching belonging to C(P ′′f , P̂−f ) and A(P ′′f ) = B(w′k, Pf ), it follows from our

construction that µ̄(f)R∗∗f W
∗ for all µ̄ ∈ C(P ′′f , P̂−f ), the desired conclusion.

Suppose that for all µ̄ ∈ C(P ′′f , P̂−f ), µ̄(f) contains fewer than k workers. Let

µ̂(f) = {ŵ1, . . . , ŵ|µ̂(f)|} where ŵ1Pf · · ·Pf ŵ|µ̂(f)|. By (10), µ̂(f) ∩B(w′k, Pf ) contains

at least k workers. Thus, k ≤ |µ̂(f)|. For the time being, below we specify both the

profile and the quota of the matching problem. Then we have µ̂ ∈ C(P̂ ; q). Let µ̂′ be

the matching for the problem (F,W\{ŵk+1, . . . , ŵ|µ̂(f)|}, (k, q−f ), (P̂f , P̂−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}))

such that µ̂′(f) = {ŵ1, . . . , ŵk} and µ̂′(f ′) = µ̂(f ′) for all f ′ ∈ F\{f}. Then, from

µ̂ ∈ C(P̂f , P̂−f ; q) it follows that

µ̂′ ∈ C(P̂f , P̂−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}; k, q−f ). (11)

Let ŵ ∈ µ̂′(f) be such that µ̂′(f) ⊆ B(ŵ, P̂f ) (in other words, ŵ is the worker who

is least preferred in µ̂′(f) according to P̂f ). Let Ṗf ∈ Pf be such that A(Ṗf ) =

B(ŵk, Pf )∩B(ŵ, P̂f ) and Ṗf |A(Ṗf ) = P ′′f |A(Ṗf ). Note that µ̂′(f) ⊆ A(Ṗf ). Then we

must have µ̂′ ∈ C(Ṗf , P̂−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}; k, q−f ): first, note that µ̂′ is individually
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rational because both µ̂′(f) ⊆ B(ŵk, Pf ) and µ̂′(f) ⊆ B(ŵ, P̂f ) (by our choice of ŵ);

second, if there would exist a blocking pair for µ̂′, then by (11) and the fact that only

firm f ’s preference changed from P̂f to Ṗf , firm f needs to be part of this blocking pair;

third, if (w, f) blocks µ̂′ under (Ṗf , P̂−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}; k, q−f ), then w /∈ µ̂′(f); now

this implies w 6= ŵ ∈ µ̂′(f), and w ∈ A(Ṗf ) = B(ŵk, Pf )∩B(ŵ, P̂f ); but then we must

have wP̂f ŵ (because ŵ is the least preferred worker in µ̂′(f) and A(Ṗf ) ⊆ B(ŵ, P̂f ))

and (w, f) must also block µ̂′ under (P̂f , P̂−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}; k, q−f ), a contradiction

to (11).

Thus, since |µ̂′(f)| = k, firm f is matched to k workers for all matchings be-

longing to C(Ṗf , P̂−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}; k, q−f ). Now if firm f is matched to fewer than

k workers for some µ̃ ∈ C(Ṗf , P̂−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}; q), then µ̃ is also stable under

(Ṗf , P̂−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}; k, q−f ), a contradiction to the previous fact. Hence, f is

matched to at least k workers in any stable matching belonging to

C(Ṗf , P̂−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}; q). Now when considering the worker optimal matching

in this core, we may split firm f into qf copies (all having the same preference Ṗf )

and each copy of firm f weakly prefers according to Ṗf any matching in C(Ṗf , P̂−f ; q)

to this matching. Since at least k copies of f are matched to a worker under the

worker optimal matching in C(Ṗf , P̂−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}; q),

at least k copies of f are matched to a worker in any matching in C(Ṗf , P̂−f ; q).

(12)

On the other hand, for all µ̄ ∈ C(P ′′f , P̂−f ), µ̄(f) contains fewer than k workers.

Let µ̃ ∈ C(P ′′f , P̂−f ). Let µ̃′ be the matching for the problem (F,W\(µ̃(f)\A(Ṗf )), q,

(P ′′f , P̂−{f}∪(µ̃(f)\A(Ṗf )))) such that µ̃′(f) = µ̃(f) ∩ A(Ṗf ) and µ̃′(f ′) = µ̃(f ′) for all

f ′ ∈ F\{f}. Since µ̃ ∈ C(P ′′f , P̂−f ; q) and µ̃(f) contains fewer than qf work-

ers, we must have µ̃′ ∈ C(P ′′f , P̂−{f}∪(µ̃(f)\A(Ṗf )); q). Thus, by µ̃′(f) ⊆ A(Ṗf ) and

Ṗf |A(P̂f ) = P ′′f |A(Ṗf ), we also obtain µ̃′ ∈ C(Ṗf , P̂−{f}∪(µ̃(f)\A(Ṗf )); q). Hence, in

any matching belonging to this core firm f is matched to |µ̃′(f)| = |µ̃(f) ∩ A(Ṗf )|

workers. Now when considering the worker optimal matching in this core, we may
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split each firm f ′ ∈ F\{f} into qf ′ copies (all having the same preference P̂f ′) and

each copy of firm f ′ weakly prefers according to P̂f ′ any matching in C(Ṗf , P̂−f ; q) to

this matching. Thus, in total all the copies of all firms f ′ ∈ F\{f} receive at least

the same number of workers in C(Ṗf , P̂−f ; q) as they did previously. Since exactly

|µ̃(f)\A(Ṗf )| new workers are available and f was matched to |µ̃′(f)| = |µ̃(f)∩A(Ṗf )|

workers before, firm f can be matched to at most |µ̃(f)| workers under any stable

matching in C(Ṗf , P̂−f ; q). Since |µ̃(f)| < k, this contradicts (12) and the fact that

under responsive preferences, firm f is matched to the same number of workers for

any two matchings in C(Ṗf , P̂−f ; q). Hence, for µ̄ ∈ C(P ′′f , P̂−f ), µ̄(f) cannot contain

fewer than k workers. �

Because ϕ̃ is stable, the Claim implies that for all P̂ ∈ P ,

Pr{ϕ̃[P̂f , P̂−f ](f) ∈ B(W ∗, P ∗f )} ≤ Pr{ϕ̃[P ′′f , P̂−f ](f) ∈ B(W ∗, P ∗f )}.

Thus,

Pr{ϕ̃[P̂f ,m−f (P̃−f |Pf )](f) ∈ B(W ∗, P ∗f )} ≤ Pr{ϕ̃[P ′′f ,m−f (P̃−f |Pf )](f) ∈ B(W ∗, P ∗f )}.

By (9), there exists Ṗf ∈ supp(mf (Pf )) such that µ ∈ supp(ϕ̃[Ṗf , P
′
−f ]). Thus, by

µ′(f)R∗∗f W
∗P ∗∗f µ(f) and µ′ ∈ C(P ′′f , P−f ′), (9) implies

Pr{ϕ̃[Ṗf , P
′
−f ](f) ∈ B(W ∗, P ∗f )} < Pr{ϕ̃[P ′′f , P

′
−f ](f) ∈ B(W ∗, P ∗f )}.

Hence, bymf (Pf ) ∈ ∆(Pf ) and both Ṗf ∈ supp(mf (Pf )) and P ′−f ∈ supp(m−f (P̃−f |Pf )),

Pr{ϕ̃[mf (Pf ),m−f (P̃−f |Pf )](f) ∈ B(W ∗, P ∗f )} < Pr{ϕ̃[P ′′f ,m−f (P̃−f |Pf )](f) ∈ B(W ∗, P ∗f )},

which means that m is not an OBNE in ϕ̃ under P̃ .

Case 2: Otherwise.

Then we have wlRfw
′
l for all l ∈ {1, . . . ,min{|µ(f)|, |µ′(f)|}}. Let k = |µ(f)|. If

|µ′(f)| ≤ |µ(f)|, then by responsiveness of P ∗f and µ(f) ⊆ A(Pf ), we have µ(f)R∗fµ
′(f),

which contradicts (6). Hence, we must have |µ′(f)| > |µ(f)| = k, qf > k, and w′k+1 ∈
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A(Pf ). Let P ′′f ∈ Pf be such that A(P ′′f ) = B(w′k+1, Pf ) and P ′′f |A(P ′′f ) = P ′f |A(P ′′f ).

Since µ(f) ⊆ B(w′k+1, Pf ) = A(P ′′f ) and µ(f) does not fill the quota of firm f , we

must have µ ∈ C(P ′′f , P
′
−f ; q). Hence,

firm f is matched to k workers under any matching in C(P ′′f , P
′
−f ; q). (13)

On the other hand, let µ′′ be the matching for the problem (F,W\{w′k+2, . . . , w
′
|µ′(f)|}, (k+

1, q−f ), (P
′′
f , P

′
−{f}∪{w′k+2,...,w

′
|µ′(f)|}

)) such that µ′′(f) = {w′1, . . . , w′k+1} and µ′′(f ′) =

µ′(f ′) for all f ′ ∈ F\{f}. Then from µ′ ∈ C(P ′f , P
′
−f ; q) it follows that µ′′ ∈

C(P ′f , P
′
−{f}∪{w′k+2,...,w

′
|µ′(f)|}

; k + 1, q−f ). Thus, by µ′′(f) ⊆ B(w′k+1, Pf ) = A(P ′′f )

and P ′′f |A(P ′′f ) = P ′f |A(P ′′f ), µ′′ ∈ C(P ′′f , P
′
−{f}∪{w′k+2,...,w

′
|µ′(f)|}

; k + 1, q−f ). Now if

firm f is matched to fewer than k + 1 workers in some matching belonging to

C(P ′′f , P
′
−{f}∪{w′k+2,...,w

′
|µ′(f)|}

; q), then this matching is also stable for the problem

(P ′′f , P
′
−{f}∪{w′k+2,...,w

′
|µ′(f)|}

; k+1, q−f ), a contradiction to the previous fact. Hence, f is

matched to at least k + 1 workers in any stable matching belonging to

C(P ′′f , P
′
−{f}∪{w′k+2,...,w

′
|µ′(f)|}

; q). Now when considering the worker optimal matching

in this core, we may split firm f into k+ 1 copies (all having the same preference P ′′f )

and each copy of firm f weakly prefers according to P ′′f any matching in C(P ′′f , P
′
−f ; q)

to this matching. Since at least k + 1 copies of f are matched to a worker under the

worker optimal matching in C(P ′′f , P
′
−{f}∪{w′k+2,...,w

′
|µ′(f)|}

; q), at least k + 1 copies of

f must be also matched to a worker under any matching in C(P ′′f , P
′
−f ; q), which

contradicts (13) and the fact that firm f is matched to the same number of workers

under any matching in C(P ′′f , P
′
−f ; q). Hence, Case 2 cannot occur. �

Theorem 1 is a corollary of Theorem 2 by restricting Theorem 2 and its proof to

pure strategies and deterministic mechanisms.

A.3 Proof of Proposition 1

Proposition 1 Let P̃ be a common prior.

(a) If P̃ is F -correlated or W -correlated, then truth-telling is an OBNE in any

stable mechanism under incomplete information P̃ .
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(b) Let s be a strategy profile such that sw(Pw) = Pw for all w ∈ W and all Pw ∈

Pw. If P̃ is W -correlated and s is an OBNE in the stable mechanism DAW

under incomplete information P̃ , then for all profiles P in the support of P̃ ,

DAW [s(P )] is stable with respect to P . The analogous statement is true for the

stable mechanism DAF .

Proof. (a) Let ϕ be a stable mechanism and P̃ be a common prior. Without loss

of generality, let P̃ be F -correlated. The case where P̃ is W -correlated is analogous

to the case where P̃ is F -correlated and all firms have quota 1. Let P be in the

support of P̃ . Because all firms’ preferences are identical at P , we have |C(P )| = 1,

say C(P ) = {µ}. By stability of ϕ, ϕ[P ] = µ. By Theorem 1, it suffices to show that

P is a NE in the mechanism ϕ under complete information P .

Because all firms have identical preferences, say Pf : w1w2 · · ·wk∅wk+1 · · · for all

f ∈ F , µ(w1) is w1’s most preferred firm (if any) under Pw1 . Then µ(w2) is w2’s most

preferred firm (if any) from F\{µ(w1)} under Pw2 , and in general for i = 1, . . . , |W |,

µ(wi) is wi’s most preferred firm (if any) from F\{µ(w1), . . . , µ(wi−1)} under Pwi . By

stability of ϕ, obviously no worker can profitably manipulate.

Let f ∈ F , P ′f ∈ Pf , and µ′ = ϕ[P ′f , P−f ]. Suppose that for some P ∗f ∈ resp(Pf ) we

have µ′(f)P ∗f µ(f). Hence, µ′(f) 6= µ(f). By stability of ϕ, without loss of generality

we may suppose A(P ′f ) = µ′(f) and because any firm’s set of acceptable workers is

{w1, . . . , wk}, A(P ′f ) ⊆ A(Pf ). Again, by stability of ϕ, µ(f) ⊆ A(Pf ). First, suppose

that |µ′(f)| > |µ(f)|. Note that µ ∈ C(P ) and µ′ ∈ C(P ′f , P−f ). Then, without loss of

generality, we may suppose |µ′(f)| = qf .
25 Let P ′′f ∈ Pf be such that A(P ′′f ) = A(Pf )

and P ′′f |A(P ′′f ) = P ′f |A(P ′′f ). By |µ(f)| < qf , A(P ′′f ) = A(Pf ) and (P3), we obtain

µ ∈ C(P ′′f , P−f ). By |µ(f)| 6= |µ′(f)| and (P3), we must have µ′ /∈ C(P ′′f , P−f ).

Thus, µ′ is blocked by some pair (w′, f ′) under (P ′′f , P−f ). By µ′ ∈ C(P ′f , P−f ) and

25If |µ′(f)| < qf , then set q′f = |µ′(f)|. From (P3) (where we specify both the profile and the

quotas), µ ∈ C(P ; q) and |µ(f)| < q′f imply µ ∈ C(P ; q′f , q−f ), and similarly µ′ ∈ C(P ′f , P−f ; q) and

µ′(f) = A(P ′f ) imply µ′ ∈ C(P ′f , P−f ; q′f , q−f ).
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A(P ′f ) ⊆ A(P ′′f ), we must have f ′ = f and w′ /∈ µ′(f). But then by A(P ′f ) = µ′(f)

and P ′′f |A(P ′′f ) = P ′f |A(P ′′f ), we must have wPfw
′ for all w ∈ µ′(f). Now f must have

an unfilled slot under µ′ and |µ′(f)| < qf , a contradiction.

Hence, |µ′(f)| ≤ |µ(f)|. Let w be the least Pf -preferred worker in µ(f), i.e. wRfw

for all w ∈ µ(f). If for all w ∈ µ′(f)\µ(f) we have wPfw, then by |µ′(f)| ≤ |µ(f)|

and responsiveness of P ∗f , we have µ(f)R∗fµ
′(f), a contradiction. Let wl ∈ µ′(f)\µ(f)

be such that wlPfw. We show that there exists an index i(l) < l such that wi(l) ∈

µ(f)\µ′(f). Let µ(wl) = fl. Note that by fl 6= f , wlPfw and µ ∈ C(P ) we have

flPwlf . Thus, by µ′ ∈ C(P ′f , P−f ), we must have |µ′(fl)| = qfl and wPflwl for all

w ∈ µ′(fl). But then wl’s position at firm fl is filled with some new worker w′, i.e.

w′ ∈ µ′(fl)\µ(fl) and w′Pflwl. Now by µ ∈ C(P ) and µ(wl) = fl, µ(w′)Pw′fl. If

µ(w′) = f , then w′ has an index i(l) < l such that w′ = wi(l) and wi(l) ∈ µ(f)\µ′(f).

Otherwise, let µ(w′) = f ′ 6= f . Then again as above from f ′Pw′fl we have |µ′(f ′)| =

qf ′ and wPf ′w
′ for all w ∈ µ′(f ′), and w′’s position at firm f ′ is filled with some new

worker w′′, i.e. w′′ ∈ µ′(f ′)\µ(f ′) and w′′Pf ′w
′. By P ′−f = P−f and the finiteness of

W and F , in the end for wl ∈ µ′(f)\µ(f) there must exist wi(l) ∈ µ(f)\µ′(f) with

i(l) < l. Furthermore, from the above arguments, we can choose i(l) 6= i(l′) for all

l 6= l′ such that wl, wl′ ∈ µ′(f)\µ(f). Since µ(f) ⊆ A(Pf ) and |µ′(f)| ≤ |µ(f)|,

responsiveness of P ∗f implies µ(f)R∗fµ
′(f), a contradiction.

(b) Let P be in the support of P̃ . Since sw(Pw) = Pw for all w and P̃ is W -

correlated, we have by (a) that no worker can gain by manipulation. Furthermore,

by Theorem 1, s(P ) must be a NE in DAW under P . Because P̃ is W -correlated, all

workers have identical preferences, say Pw : f1f2 · · · fl∅fl+1 · · · for all w ∈ W . Suppose

that DAW [s(P )] is not stable with respect to P . Since s(P ) is a NE in DAW under P ,

no agent is matched to any partner under DAW [s(P )] which is unacceptable accord-

ing to its true preference relation. Suppose that some unmatched worker-firm pair

(w, f) blocks DAW [s(P )]. Then f ∈ A(Pw) and by sw(Pw) = Pw, fPwDAW [s(P )](w).

But then, along the DAW -algorithm which produces DAW [s(P )], worker w proposed
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to f before proposing to DAW [s(P )](w) and because all workers’ submitted lists

are identical, at that step all unmatched workers proposed to f (and the set of un-

matched workers shrinks from one step to the next one). Let w′ be the least preferred

worker according to Pf in DAW [s(P )](f). But now f profitably deviates from s(P )

in DAW by submitting a list P ′f where A(P ′f ) = (DAW [s(P )](f)∪ {w})\{w′}. When

in DAW [P ′f , s−f (P−f )] worker w proposes to f , all unmatched workers propose to

f in that step because all workers’ submitted lists are identical. Firm f accepts

(DAW [s(P )](f) ∪ {w})\{w′} which is strictly preferred to DAW [s(P )](f) under any

responsive extension P ∗f of Pf . Hence, s(P ) is not a NE in DAW under P , a contra-

diction. �
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