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MACHIAVELLI AND THE GALE-SHAPLEY ALGORITHM 

L. E. DUBINS AND D. A. FREEDMAN 
Department of Statistics, University of California, Berkeley, CA 94720 

Summary. Gale and Shapley have an algorithm for assigning students to universities which 
gives each student the best university available in a stable system of assignments. The object here 
is to prove that students cannot improve their fate by lying about their preferences. Indeed, no 
coalition of students can simultaneously improve the lot of all its members if those outside the 
coahtion state their true preferences. 

1. Introduction. The object of t h s  paper is to generahe the following result of Gale and 
Shapley [I]. For simplicity, suppose first that there are equal numbers of students, denoted 
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generally by S's, and universities, denoted by U's. Suppose that each university is to admit 
exactly one student. (More realistic assumptions are made in Section 4 below.) Each student rank 
orders all the universities, and each university rank orders all students. The object is to pair the 
students and universities off in a stable way. By definition, an instability is created by two pairs, 
S-U and S'-U', where S prefers U' to U, and reciprocally U' prefers S to S'. Nothing is assumed 
about the preferences of S' and U. If there are no instabilities, the system is said to be stable. Gale 
and Shapley prove the existence of a stable system of assignments. 

Each student S has an "available set" A(S) of universities: the ones S can get under some 
stable assignment. These available sets are nonempty. Consider assigning to S that university in 
A(S) that S likes best. Gale and Shapley prove that this assignment is one-to-one, and stable. 

Here is a sketch of a proof of the Gale-Shapley results which differs from theirs in detail only, 
but introduces some ideas needed later. Imagine the universities (much reduced in size) lined up in 
a room, with the students waiting outside in a hall. One student, S,  walks into the room and 
applies to the university S likes best: this completes move # 1. Then another student walks in and 
does likewise; in case both apply to the same university, it keeps the preferred applicant and 
rejects the other, who goes back outside to the hall: this completes move #2. And so on: student 
SJapplying to the university Sjlikes best-among those that have not previously rejected SJ. 

There are two rules to observe. 

(1) If there are still students outside in the hall, one, say S,, goes into the room and applies to 
that university which Sj likes best, among those which have not previously rejected S,. This 
initiates a move. 

(2) A university with two applicants keeps the preferred one and rejects the other, who goes 
back outside to the hall. This completes a move. 

Any sequence of moves made in obedience to rules (1) and (2) will be called a "Gale-Shapley 
algorithm." 

(3) THEOREM. Any Gale-Shapley algorithm terminates. At termination, the students and universi- 
ties are paired off, one-to-one. This pairing is stable. And, in fact, each student S will be paired with 
the university S likes best in A(S). 

Theorem (3) will be argued in a moment, but first a statement of the new results. Suppose a 
student, called Machiavelli, lies, that is, does not apply to the universities in the order of true 
preference. Can this help Machiavelli? The answer is no, not if the others continue to tell the 
truth. Similarly for coalitions of student liars. For universities, however, it is another story. These 
issues will be discussed in Sections 2, 3, and 4 below. 

Proof of Theorem (3). Suppose there are n students and n universities. By rule (1) each student 
applies at most once to each university. Consequently: 

(4) A Gale-Shapley algorithm terminates in n2 moves or less. 

Clearly, rules (1) and (2) imply: 

(5) Each student applies to successively less desirable universities. For each university, however, 
the applicants look better and better. 

At the end of every move, there are some students in the hall, and an equal number of 
universities in the room, who have not yet had applications. The remaining students and 
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universities are paired off, one-to-one. After a university gets its first application, it always has 
one. Furthermore: 

(6) The algorithm ends when each university has had at least one application. 

Next, it will be argued by induction that: 

(7) At the end of every move, the pairing in the room is stable. 

Plainly, this is so before move 1. Suppose it is so before move k ,  and consider the assignment at 
the end of that move. Now there cannot be two pairs S-U and S'-U', where S prefers U' to U, 
while U' prefers S to S'. For if S prefers U' to U ,  then S has already applied to U' and been 
rejected, by rule (1). Now U' must prefer the current applicant S' to the previous one S,  by the 
fact (5). This completes the proof of (7). 

s;--u 
S'---'U' 

The next point, though similar, is a bit trickier. 

(8) If a student S is rejected by a university, that university is not in S's available set. 

This is vacuous at move 1. Suppose it were so for moves 1 through k - 1, and S is paired with U 
at the end of move k - 1. On move k ,  suppose S' applies to U. Now U must retain one of these 
two applicants, say S , ;  call the rejected applicant S,. By way of contradiction, suppose there were 
a stable assignment in which S, got U. Now S ,  has to get some university, call it U'. At the risk of 
the obvious, S ,  and S2 are different students; U and U' are different universities. 

Case 1: S ,  applied to U' before move k .  Then S ,  must have been rejected by U', because S ,  is 
applying to U on move k .  So this system is unstable, by the inductive assumption. 

Case 2: S ,  did not apply to U' before move k .  Now S ,  prefers U to U', by rule (1). And U 
prefers S ,  to S2 ,the proof being that it rejected S,. Again an instability. 

To sum up, the algorithm terminates by (4); the resulting system is stable by (7); and it is 
optimal for the students by (8). This completes the proof of the theorem. 

2. Enter Machiavelli. One of the students-named M for Machiavelli-will now be treated 
differently from the rest. M has some true rank ordering on the universities, and if M participates 
in a Gale-Shapley algorithm following rule (I), M will get some university: the best in M's 
available set. This is fair play. But now permit Machiavelli to lie, that is, to use some false rank 
ordering. This is foul play. 

(9) THEOREM.Suppose M participates in a Gale-Shapley algorithm, but uses a false rank 
ordering. The university M gets by this foul play is no better-measured by M ' s  true rank 
ordering-than the one M would have got by fair play. 

For the proof, imagine that M waits outside in the hall until all the others have paired off. This 
will be called the prologue. At the end of the prologue, there will be one university, call it W ,  
which has not yet received an application. M now enters and starts applying in accordance with 
the rules-but using the false rank ordering. Clearly, 

(10) The algorithm terminates when W gets its first application. 

No generality is lost by assuming that M does not move until the others are paired off: as 
Theorem (3) shows, all Gale-Shapley algorithms lead to the same system of assignments. (The 
algorithm is now being applied with M's false rank ordering in place of M's true one.) 
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The main step in the proof of Theorem (9) is Lemma (11) below, which requires two 
definitions.A scenario is a sequence of applications for M- an initial segment of a rank ordering. 
One scenario, for instance, is specified by naming three universities: 

A B C. 
The interpretation: M applies first to A ;  if rejected, M tries B next; if rejected there too, M goes 
on to C. In general, a scenario is specified by a list of universities; no university appears twice on 
the list, but,the list need not be exhaustive. The action called for by a scenario stops when 

either M is rejected by the last university specified in the scenario (C, in the example); 

the whole algorithm stops, W getting its application. 

Corresponding to each scenario, there is a script that tells exactly what happens as the action 
unfolds, after the prologue. A script can be written in standard form as in Table 1. 

TABLE1. Standard script 

Question marks indicate that the objects are undefined. 

Line University rejects Student who applies to University-
0 ??? So= M Uo= A 

I uo S, Ul 
2 Ul s2 u2 

The table is interpreted as follows. To fix ideas, suppose again that the scenario is A B C. 
Line 0. M enters and applies to A, and so Sois M and U, is A. Suppose A isn't W. 
Line 1. Uo now has two applicants and must reject one, say S,. Then S, applies to another 

university; call it U,. Of course, if S, is M, then U, must be B, according to the scenario. If S, 
isn't M, then U, is determined by S,'s rank order, in accordance with the rules. 

Lines 2 , 3 . .. are interpreted in a similar way. The last line is special, and there are two cases. 

Case 1: M is rejected by the last university in the scenario. Then the last line is: 

Line University rejects Student who applies to University 

k Uk-I M ??? 

In our example, the scenario was A B C, so U,-, is C. 

Case 2: The last university W gets its application. The last line is 

Line University rejects Student who applies to University 
k W ??? ??? 

In any case the table has finite length, by (4). 
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Note: For all k a 1, the first university mentioned in line k is the same as the last university 
mentioned in line k - 1, namely Uk-,. In general, the same student will be mentioned several 
times in the sequence So,S,,  ... ; likewise, and L$can easily be the same, even if i # j. 

One more definition. Consider two scenarios, # 1 and #2. Then scenario # 1 is smaller than 
#2 if every university mentioned in # 1 is also mentioned in #2: order is immaterial. Thus, A B 
C is smaller than E B D C A F. 

(11) THESCENARIOLEMMA.Suppose scenario # 1 is smaller than scenario #2, and that 

(12) M makes every application indicated in the larger scenario. 

Then every rejection and application in the script for the smaller scenario occurs, sooner or later, in 
the script for the larger scenario. 

Proof. The argument is by induction on the line number in the script for the smaller scenario. 
In line 0, M comes in and applies to U,; by assumption (12), this application occurs in the script 
for the larger scenario. Now make the inductive assumption: 

(13) All the rejections and applications in lines 0 through k - 1 of the script for the smaller 
scenario occur, sooner or later, in the script for the larger one. 

Consider line k 2 1 of the script for the smaller scenario. To avoid trivialities, suppose this isn't 
the last line of the table. It will be shown that the rejection and application in turn occur in the 
second script as well: 

line k Uk-, rejects Skwho applies to U,. 

Line k of the script for the smaller scenario begins with university Uk-, rejecting student S,. 
So Skmust already have applied to Uk- ,:either in the prologue, or in lines 0 through k - 1 of the 
script. If not in .the prologue, this application must occur somewhere in the script for the larger 
scenario, by inductive assumption (13). Furthermore, according to rule .(2), university Uk-, must 
have been applied to by a student preferred to S,, either in the prologue or in lines 0 through 
k - 1 of the script for the smaller scenario. If not in the prologue, this application too must occur 
somewhere in the script for the larger scenario. The upshot is that under the larger scenario, poor 
S, must again be rejected by Uk- ,.This event does not occur in the prologue, by assumption: so it 
must occur in the script. 

Line k of the script for the smaller scenario ends by having Skapply to U,. There are two 
cases. 

Case 1: S, is M. This application gets made in the script for the larger scenario, by assumption 
(12). 

Case 2: S, isn't M. Now U, in the script for the smaller scenario is identifiable. By rule (I), 
this is the university ranking after Uk-, on S,'s list. As shown above, Skgets rejected by Uk- , in 
the script for the larger scenario, and must then apply to U,. 

This completes the induction, except for the last line of the table. The argument there is similar, 
and is omitted. 

Proof of Theorem (9). Suppose that M would get M's i th choice under fair play, where i 2 2. 
By way of contradiction, suppose there is some scenario 

that gets M a university U that M ranks ahead of i. Then the corresponding foul play script must 
terminate with an application to W, while M is paired with U. In particular, 

(15) M makes all the applications called for in scenario (14). 
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There are two cases to consider. 

Case 1: M truly prefers all the other universities in scenario (14) to U. To get the contradic-
tion, the foul play scenario (14) will be compared to a fair play scenario in which M applies to 
M's lst, 2nd,. . . ,( i  - 1)th choices in turn. By the assumption defining Case 1, the foul play 
scenario is smaller than the fair play one, since U ranks ahead of i. And M makes every 
application called for in this fair play scenario: indeed, 

(16) The fair play script ends with M rejected by M's ( i  - 1)th choice. 

The reason is that, under fair play, M gets M's ith choice. 
The Scenario Lemma (11) applies, and shows that every application in the script for foul play, 

including the one to W, gets made in the script for fair play. In particular, the fair play script has 
to end with an application to W. This contradicts (16), and disposes of Case 1. 

Case 2: M truly prefers U to at least one of the other universities in scenario (14). Delete all 
such universities, creating a second and smaller foul play scenario. The corresponding script, by 
Case 1, must end with M ignominiously rejected by U. n s  rejection must occur in the script for 
the original foul play scenario (14), by the Scenario Lemma (11): condition (12) is satisfied by 
(15). This contradiction disposes of Case 2. 

REMARK.TWOscenarios that are permutations of one another are equivalent, as long as M 
makes all the applications in both cases. 

3. Coalitions. So far, M has acted independently. What happens if M colludes with other 
students? 

(17) THEOREM.Suppose several students collude in a Gale-Shapley algorithm, each using a false 
rank ordering. They cannot all get better universities. "Better" is relative to each student's true rank 
ordering, and indicates strict inequality. 

The proof is an adaptation of the one for (9). Now a scenario indicates separately for each liar 
the sequence of universities applied to. Imagine the liars to wait outside in the hall until the honest 
students are all paired off with universities: this defines the prologue. At the end of the prologue, 
some universities have not yet had applications: their number is equal to the number of liars. Now 
the liars take turns in any way among themselves applying to the universities, but following the 
scenario. Each scenario therefore can be expanded into many scripts. To avoid complications, a 
student who is rejected gets to make the next application, by convention. 

The action initiated by a scenario terminates when 

any liar L has been rejected by the last university on L's list 

the whole algorithm stops. 

If the action ends accordmg to the first possibility, no honest students can be left outside. 
Note too that with several liars, and therefore several universities that have not had appli-

cations in the prologue, some applications made before the end of the script do not cause 
rejections. Suppose one such occurs at line k of the script. Since an honest student will be found in 
the hall only after a rejection, and gets the next turn, line k + 1 of the script must have an 
application from a liar. 

Line University rejects Student who applies to University 

uk-l S k  Uk 
k + 1 ??? S k +  I Uk+1 
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Thus U, is receiving its first application: S, may be honest or a liar. However S,, , is necessarily 
one of the liars. 

(18) THEGENERALIZEDSCENARIOLEMMA.Suppose scenario # 1 is smaller than scenario #2. 
Expand scenario # 1 into script # 1, and scenario #2 into script #2. Suppose 

(19) In script #2, each liar makes every application indicated in scenario #2. 

Then every rejection and application in script # 1 occurs, sooner or later, in script #2. 

Proof. Argue by induction on the line number in script # 1, as in the proof of (11). 

Proof of Theorem (17). Number the liars as L,,  L2,. . . . Suppose that, under fair play, L,'s i,th 
choice is what L, would get. By way of contradiction, suppose there is a foul play script for a 
scenario in which LJ gets U,,,, which is strictly better than the university that L, would get under 
fair play: L, ranks U,,, above i,. Write the scenario as follows: 

L1 U11,U12,~..,Ulkl 

@I L2 U21 U22 9 . .  . U2k2 

As before: 

(21) All the applications indicated by (20) get made in the foul play script. 

Furthermore, by test (6), 

(22) The foul play script for (20) ends with all the universities getting applications. 

Again, there are two cases to consider. 

Case 1: Each L, really ranks all the universities applied to in scenario (20) as U,,, or better. 
This scenario will be compared to a truncated fair play scenario, but some care is needed. To 
begin with, consider any definite script for fair play. The liars arrive at their final universities in 
some order or other. Suppose (by renumbering) that L ,  applies to the i,th choice only after L, . 

applies to the iJth choice for allj > 2. Now consider the truncated fair play scenario in which 

L,  applies to the lst, 2nd,. . . ,(i ,  - 1)th choices, in turn; 

and fo r j  > 1, 

L, applies to the lst, 2nd,. .., i,th choices, in turn. 

By the assumption defining Case 1, this truncated fair play scenario is larger than the foul play 
scenario (20). Furthermore, by definition, in the specific script for fair play under consideration, 
L ,  gets rejected by i, - 1 while L, is paired with the i,th choice for j 2. In other words, all the 
proposals in the truncated fair play scenario above get made. Thus, condition (19) is satisfied, and 
the Generalized Scenario Lemma (18) applies. The conclusion is that any application generated 
under the script for the foul play scenario must also be generated in the script for the truncated 
fair play scenario. In particular, by (22) the fair play script would have to end with all the 
universities getting at least one application, rather than L,  being rejected by the (i, - 1)th choice. 
This contradiction disposes of Case 1. 

Case 2: Some L, really ranks at least one of the universities applied to in scenario (20) below 
U,,,. Eliminate all such universities from the scenario, for every liar, and expand the reduced 
scenario into a reduced foul play script. Case 1 applies to this smaller scenario, proving that its 
script terminates with some liar L, being rejected by the last university U,,,. This rejection must 
also occur in the original foul play script, by the Generalized Scenario Lemma (18). Condition 
(19) holds by (21). 
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We originally thought a stronger result might hold, namely, that if one liar in the coalition does 
better, another liar must do worse; as stated above, (17) only implies that if one liar does better, 
ano'her liar must do no better. However, David Gale showed us that the stronger result is false. 

(23) EXAMPLE. With three students and three universities, two students can form a coahtion 
and lie: one of the liars will do better, and the other will do no worse. 

The students are A, B, C; the universities are U, V, W. The true rank orderings are presented 
in Table 2 below: W's rank orderings are irrelevant. 

TABLE2. The true rank orderings 
University preferences Student preferences 

1st 2nd 3rd 1st 2nd 3rd 

One script for fair play is presented in Table 3 below, with a hagram for the positions of the 
applicants. 

TABLE3. One script for fair play 
Applicants to 

u- v- W-
A applies to U A 
B applies to V A B 
C applies to V A B ,  C 
V rejects B, who applies to U A ,  B C 
U rejects A,  who applies to V B A,  C 
V rejects C, who applies to W B A C 
the algorithm ends 

Now suppose B and C form a lying coalition: B's lie coincides with the truth, but C orders the 
universities as W, V, U. As shown in Table 4 below, C will get the same university W; but B will 
improve from U to V. It is worth noting that the honest bystander A also does better, going from 
V to U. The improvement is at the expense of the universities. 

TABLE4. One script for foul play 
Applicants to 

u v W 

A applies to U A 
B applies to V A B 
C applies to W A B C 

4. Variations and Comments 

(24) Theorems (3), (9), and (17) apply even when the numbers of students and universities are 
unequal. 

Suppose, for instance, there are more students than universities. There is a new kind of 
instability to mention: S is paired with U and S' is not admitted to any university, but U prefers 
S' to S.  The quick fix is to introduce some additional (fictitious) universities, ranking below the 
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real universities in every student's estimation. A similar trick works if there are more universities 
than students. 

Now consider the more realistic case, where universities may admit more than one student 
apiece. Each university U has a quota q(U) 1, and may not admit more than q(U) students. In 
previous sections, q(U) 1. This condition is now dropped. The total number of places is 
2 ,  q(U). If this sum is bigger than the number of students, some universities have unfilled quotas. 
If the sum is smaller than the number of students, some students do not get assigned to 
universities. 

Rules (1) and (2) require only small modifications to handle this new situation. Students walk 
in, one at a time, and apply to the university of their choice; rule (1) remains in force. However, a 
university does not reject any applicants until their number first exceeds its quota: then it rejects 
the lowest-ranking applicant. This process too will be called a "Gale-Shapley algorithm." 

(25) Theorems (3), (9) and (17) hold when each university has a quota. 

The trick here is to clone the universities: make q(U) copies of university U, each copy having a 
quota of 1. Each student rank orders the clones arbitrarily: however, if for instance Harvard is 
preferred to Yale, then all the Harvard clones must be preferred to all the Yale clones. 

What happens if the universities make offers to the students instead of waiting for appli-
cations? To be more explicit, line up the students in the room, and make the universities wait 
outside in the hall. One at a time, the universities walk in and make offers of admission. A 
university may have more than one offer outstanding; however, the number of offers may not 
exceed its quota of places. A student who gets two offers rejects the one from the less desirable 
university, which is then free to make an offer to the next-ranking student. The cloning trick used 
for (25) proves 

(26) Theorems (3), (9), and (17) apply when universities make offers to students; this time, it is 
the universities that cannot improve their situation by lying. 

It may be worth while to state (3) carefully in this new context. 

There is a stable system of assignments of students to universities in which no university 
admits more than its quota of students. However, if the number of places exceeds the 
number of students, some universities will have unfilled quotas; if the number of students 
exceeds the number of places, some students will get assigned to no university. 

For each university U, consider the set S(U) of students admitted to U under some system 
or other of stable assignments. If card S(U) G q(U), give U all the students in S(U). If card 
S(U) > q(U), give U the q(U) students it likes best in S(U). This is a stable system of 
assignments, and optimal for the universities. 

The Gale-Shapley algorithm terminates in the system of assignments just specified. 

When the students do the applying, the algorithm optimizes for students, and no student or 
coalition of students can all beat the system by lying. When the universities make the offers, the 
algorithm optimizes for the universities and no university or coalition of universities can all beat 
the system by lying. 

(27) EXAMPLE. Return to the original rules, with equal numbers of students and universities, 
each university admitting exactly one student, and the students making the applications. The 
original algorithm defined by rules (1) and (2) optimized for the students, and no student could 
beat the system by lying. However, universities can improve their position by lying. There is a 
situation involving three students A ,  B, C and three universities U, V, W, in which under honest 
play U would get its 2nd choice student; but by lying, it gets the 1st choice. The true rank 
orderings are presented in Table 5 below; W's rank ordering are irrelevant. 
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TABLE5. The true rank orderings 
University preferences Student preferences 

1st 2nd 3rd 1st 2nd 3rd 
u )  A B C A) V U W 
v )  B A C B) U V W 
w ) ? ? ? C) U W v 

One script for fair play is given in Table 6 below, with diagrams for the position of applicants. 

TABLE6. One script for fair play 
Applicants to 

U- v- W-
A applies to V A 
B applies to U B A 
C applies to U B ,  C A 
U rejects C, who applies to W B A C 
the algorithm ends 

Now in foul play, U rank orders the students as A C B. One script for foul play is given in Table 7 
below. 

TABLE7. One script for foul play by university U 

Applicants to 

U- v- W 
-

A applies to V A 
B applies to U B A 
C applies to U B ,  C A 
U lies and rejects B, who 

applies to V C A ,  B 
V rejects A, who applies to U A ,  C B 
U rejects C, who applies to W A B C 
the algorithm ends 

(28) POSTSCRIPTTHEOREM.Suppose M would get M ' s  jth choice under fair play. Now M lies. 
There is no assignment, stable for the lie, under which M would get M ' s  true ith choice, where i is 
better than j.  

Proof. Suppose there were such an assignment. This assignment would still be stable if M 
revised the lie to make i the 1st choice. Then M could get into this university by participating in a 
Gale-Shapley algorithm with the revised lie: for the algorithm gives M the best available 
university: Theorem (3) applied to the revised lie. Now there is a contradiction to Theorem (9). 
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