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As it was pointed out to us by Huaxia Zeng, Theorem 1 in Bonifacio and Massó (2020),

henceforth BM20, is not correct. In this note we recall former Theorem 1, exhibit a coun-

terexample of its statement, identify the mistake in its faulty proof, and state and prove

the new version of Theorem 1. At the end we give an alternative proof of Lemma 9, whose

former proof used incorrectly Lemma 5.

Notation and definitions are as in the section of Preliminaries in BM20.

1 Former Theorem 1

1.1 Wrong statement

Let (A,�) be a semilattice and let SSP(�) be the set of semilattice single-peaked pref-

erences on (A,�). The supremum rule, denoted as sup� : SSP(�)n → A, is defined by

setting, for each profile R = (R1, . . . , Rn) ∈ SSP(�)n,

sup�(R1, . . . , Rn) = sup� t(R),

where t(R) = {t(Ri) | i ∈ N}.
Given R ∈ SSP(�)n and x ∈ A, define N(R, x) = {i ∈ N | t(Ri) = x} as the set of

agents whose top is x at R. Assume A has a supremum, denoted as α ≡ sup�A.1 Let

A?(�) = {x ∈ A | for each y ∈ A \ {α}, x � y and y � x}

be the set of alternatives that, according to �, are not related to any other alternative but

α. Observe that A?(�) may be empty and α /∈ A?(�).

∗We are enormously grateful to Huaxia Zeng for letting us know that Theorem 1 in Bonifacio and Massó

(2020) is incorrect and for suggesting us a counterexample and its correct version.
†Instituto de Matemática Aplicada San Luis, Universidad Nacional de San Luis and CONICET, San

Luis, Argentina; e-mail: abonifacio@unsl.edu.ar
‡Departament d’Economia i d’Història Econòmica, Universitat Autònoma de Barcelona, and Barcelona

GSE, Spain; e-mail: jordi.masso@uab.es
1We abuse the notation a bit and use sup� to denote the supremum rule and sup�X to denote the

supremum of a set X ⊆ A.
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Definition 1 Let � be a semilattice over A such that sup�A exists. The rule f : SSP (�)n →
A is a quota-supremum rule if there are x ∈ A?(�) and integer qx with 1 ≤ qx < n such

that, for every R ∈ SSP(�)n,

f(R) =

{
x if |N(R, x)| ≥ qx

sup� t(R) otherwise.

The wrong statement in BM20 was as follows.

Theorem 1 Let � be a semilattice over A. The rule f : SSP(�)n → A is strategy-proof

and simple if and only if f = sup� or f is a quota-supremum.

1.2 Counterexample

A slight modification of Example 2 in BM20 provides a counterexample of Theorem 1 in

BM20. Let A = {x, y, z} be the set of alternatives and let (A,�) be the semilattice where

x � y, x � z, y � z and z � y. Observe that A?(�) = {y, z}. Consider the linear order B
over A where y B x B z and let SP(B) be the domain of single-peaked preferences (relative

to B). It is easy to check that SP(B) = SSP(�).

Let N = {1, 2, 3, 4, 5} be the set of agents. For y and z and integers 1 ≤ qy < 5 and

1 ≤ qz < 5, consider the quota-supremum rules f q
y

: SSP(�)5 → A and f q
z

: SSP(�)5 → A

defined according to Definition 1.

By definition, for all R ∈ SSP(�)5 with t(R) = {y, z}, f qy(R) ∈ {y, x}, f qz(R) ∈ {z, x},
and sup�(R) = x. Hence, the three conditions below hold.

(C.1) There does not exist R ∈ SSP(�)5 with t(R) = {y, z} such that f q
y
(R) = z.

(C.2) There does not exist R ∈ SSP(�)5 with t(R) = {y, z} such that f q
z
(R) = y.

(C.3) There does not exist R ∈ SSP(�)5 with t(R) = {y, z} such that sup�(R) = y or

sup�(R) = z.

Consider now the median voter rule f : SSP(�)5 → A where, for all R ∈ SSP(�)5,

f(R) = medB(t(R1), t(R2), t(R3), t(R4), t(R5), y, y, y, z). (1)

By Moulin (1980), f is strategy-proof and simple on SP(B) = SSP(�). Three facts hold.

First, f(R1) = z if (t(R1
1), t(R

1
2), t(R

1
3), t(R

1
4), t(R

1
5)) = (y, z, z, z, z). By (C.1), f 6= f q

y
.

Second, f(R2) = y if (t(R2
1), t(R

2
2), t(R

2
3), t(R

2
4), t(R

2
5)) = (y, y, z, z, z). By (C.2), f 6= f q

z
.

Third, f(R) ∈ {y, z} for all R ∈ SSP(�)5 with t(R) = {y, z}. By (C.3), f 6= sup�.

Therefore, the rule f : SSP(�)5 → A defined in (1) is strategy-proof and simple but it

is neither the supremum rule nor a quota-supremum rule. Thus, Theorem 1 is not correct.

1.3 Error in the proof

The error in the proof of former Theorem 1 was that it used Lemma 7, which is not correct

and whose statement was the following.

2



Lemma 7 Let � be a semilattice over A, let f : SSP (�)n → A be a strategy-proof and

simple rule and let k be such that 1 ≤ k < n. Assume x, y ∈ A are such that x � y

and there is R ∈ SSP(�)n such that t(R) = {x, y}, |N(R, y)| = k and f(R) = y. Then,

f(R̃) ∈ {y, sup� t(R̃)} for all R̃ ∈ SSP(�)n such that |N(R̃, y)| < k.

To see that Lemma 7 does not hold, consider again the semilattice (A,�) and the rule

f of the counterexample. Let R ∈ SSP(�)5 be such that t(R) = {x, y} and |N(R, y)| = 2.

Then, f(R) = y ≺ x = sup� t(R). Let R̃ ∈ SSP(�)5 be such that t(R̃) = {y, z}, and

|N(R̃, y)| = 1. Then, sup� t(R̃) = x and f(R̃) = z /∈ {y, x}, so Lemma 7 does not hold.

After stating the new and correct Theorem 1 in the next section, we will comeback to this

example to check that this rule f is indeed covered by the correct characterization.

The error in the proof of Lemma 7 was that we mistakenly assumed that the profile

R̃ ∈ SSP(�)n used in the proof had the property that x ∈ t(R̃) (see the end of the first

line in the proof, where we concluded that t(R̃) = {x}), but as we just saw this does not

have to be necessarily the case.

2 (New) Theorem 1

2.1 Generalized quota-supremum rules

Let (A,�) be a semilattice such that A?(�) 6= ∅. A quota system q = {qx}x∈A?(�) assigns

to each x ∈ A?(�) a quota 1 ≤ qx ≤ n satisfying the following two properties.

(QS.1) There is x ∈ A?(�) such that 1 ≤ qx < n.

(QS.2) For any two distinct alternatives x, y ∈ A?(�), qx + qy > n.

Definition 2 Let (A,�) be a semilattice such that sup�A exists. The rule f : SSP (�)n →
A is a generalized quota-supremum rule if there exists a quota system q = {qx}x∈A?(�) such

that, for every R ∈ SSP(�)n,

f(R) =

{
x if x ∈ A?(�) and |N(R, x)| ≥ qx

sup� t(R) otherwise.

A quota-supremum rule f q
x

is defined by preselecting an alternative x ∈ A?(�) and an

integer 1 ≤ qx < n. Then, at each profile R, f q
x

chooses x if it receives the support of at

least qx agents, and sup� t(R) otherwise. In contrast, a generalized quota-supremum rule

f q has to specify, for each x ∈ A?(�), an integer 1 ≤ qx ≤ n in such a way that at least

one is strictly smaller than n and no two distinct alternatives x, y ∈ A?(�) can receive

simultaneously the support of at least qx and qy agents, respectively. Then, at each profile

R, f q chooses the alternative x ∈ A?(�) that receives the support of at least qx agents, and

3



sup� t(R) if no such alternative exists. Of course, generalized quota-supremum rules are

more flexible because the quota used at each profile is not preselected, but rather it depends

on the profile. Moreover, each quota-supremum rule f q
x

can be written as a generalized

quota-supremum rule f q, where the quota for alternative x is qx and it is equal to n for all

other alternatives in A?(�). In Subsection 2.4 we show how the median voter rule f defined

in (1) can be represented as a generalized quota-supremum rule.

2.2 Correct statement

Theorem 1 Let � be a semilattice over A. The rule f : SSP(�)n → A is strategy-proof

and simple if and only if f = sup� or f is a generalized quota-supremum.

2.3 Proof of Theorem 1

Proof (=⇒) Assume f : SSP(�)n → A is strategy-proof and simple. Suppose sup�A

does not exist. By Lemma 9, f(R) = sup� t(R) for each R ∈ SSP(�)n. Hence, f = sup� .

Suppose f 6= sup� . Then, sup�A does exist. Let α ≡ sup�A. To show that f is a

generalized quota-supremum rule, define

A = {x ∈ A \ {α} | there is R ∈ SSP(�)n with α ∈ t(R) and f(R) = x}.

By Lemma 8, A 6= ∅. For each x ∈ A, define

k(x) = min
1≤k<n

{k = |N(R, x)| | R ∈ SSP(�)n with t(R) = {x, α} and f(R) = x} .

Step 1: A ⊆ A?(�). We need to prove that, for each x ∈ A and each y ∈ A \ {α, x},
x � y and y � x.

To obtain a contradiction, first suppose y � x. Let R ∈ SSP(�)n be such that

|N(R, x)| = k(x), t(R) = {x, α} and f(R) = x. Let i ∈ N(R, x) and consider any

Ry
i ∈ SSP(�). Since α � y � x, by Lemma 4, f(Ry

i , R−i) ∈ [x, α]. There are three cases to

consider. First, f(Ry
i , R−i) = x. By Lemma 5, since x /∈ [y, α], f(Rα

i , R−i) = f(Ry
i , R−i) = x

for any Rα
i ∈ SSP(�). This contradicts the definition of k(x). Second, f(Ry

i , R−i) = y.

Let j ∈ N(R,α). Since α � x, by Remark 4 (ii) there is R̃α
j ∈ SSP(�) such that xP̃α

j y.

By tops-onlyness, f(Ry
i , R̃

α
j , R−{i,j}) = f(Ry

i , R−i) = y. Now consider Rx
j ∈ SSP(�). Since∣∣N((Ry

i , R
x
j , R−{i,j}), x)

∣∣ = k(x), by Lemma 3, f(Ry
i , R

x
j , R−{i,j}) = x. Therefore,

f(Ry
i , R

x
j , R−{i,j}) = xP̃α

j y = f(Ry
i , R̃

α
j , R−{i,j}),

contradicting strategy-proofness. Third, f(Ry
i , R−i) ∈ [x, α]\{y, x}. Since y � x, by Remark

4 (ii) and tops-onlyness we can assume that Ry
i is such that xP y

i f(Ry
i , R−i). As f(R) = x,

we get f(R)P y
i f(Ry

i , R−i), contradicting strategy-proofness. Thus, y � x.
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To show that x � y holds as well, suppose x � y. If y ∈ A, the proof follows a

similar argument than the one used when we supposed y � x, interchanging the roles of

x and y. Assume y /∈ A. Namely, for all R ∈ SSP(�)n such that α ∈ t(R), f(R) 6=
y. Consider any profile R and agent i such that N(R,α) = {i} and |N(R, y)| = n − 1.

By hypothesis and Lemma 2, f(R) = α. Let j ∈ N(R, y) and Rx
j ∈ SSP(�). Then,

t(Rx
j , R−j) is equal to {x, α} if n = 2 and equal to {y, x, α} if n > 2. Since α � x � y

and {x, α} ⊆ t(Rx
j , R−j) ⊆ {y, x, α}, by Lemma 4, f(Rx

j , R−j) ∈ [y, α]. There are two

cases to consider. First, f(Rx
j , R−j) 6= α. Then, by semilattice single-peakedness and tops-

onlyness, f(Rx
j , R−j)Pjα = f(R), contradicting strategy-proofness. Second, f(Rx

j , R−j) = α.

If n = 2, x ∈ A and tops-onlyness imply that f(Ri, Rj) = x for some Rj. By strategy-

proofness, f(Ri, R
x
j ) = x, a contradiction with f(Rx

j , R−j) = α. Hence, assume n > 2

and consider j1 ∈ N(R, y) \ {j} and Rx
j1
∈ SSP(�). By Lemma 4, f(Rx

j , R
x
j1
, R−{j,j1}) ∈

[y, α]. Again, by semilattice single-peakedness and strategy-proofness f(Rx
j , R

x
j1
, R−{j,j1}) =

α. Using iteratively the same argument, we can identify a subprofile (Rx
j , R

x
j1
, . . . Rx

jn−2
) ∈

SSP(�)n−1 such that f(Rx
j , R

x
j1
, . . . Rx

jn−2
, Ri) = α. But since |{j, j1, . . . , jn−2}| = n − 1 ≥

k(x), together with tops-onlyness, we obtain a contradiction with x ∈ A and the definition

of k(x). Thus, x � y and accordingly, x ∈ A?(�).

Now, define q = {qx}x∈A?(�) as follows: for each x ∈ A?(�),

qx =

{
k(x) if x ∈ A
n otherwise.

(2)

Step 2: q is a quota system. We need to show that conditions (QS.1) and (QS.2) in the

definition of a quota system are satisfied. Since A 6= ∅, there is at least one x ∈ A such that

qx = k(x). By definition of k(x), 1 ≤ qx < n. By Step 1 in this proof, x ∈ A?(�). Hence,

(QS.1) holds. To show that (QS.2) is satisfied, let x 6= y and x, y ∈ A?(�) be arbitrary.

Assume x, y ∈ A?(�)�A. Then, by (2), qx = qy = n and, accordingly, qx + qy > n.

Assume x ∈ A and y ∈ A?(�)�A. Then, by (2), qx = k(x) and qy = n. By definition

of k(x), 1 ≤ qx < n and, accordingly, qx + qy > n. Finally, assume x, y ∈ A and to

obtain a contradiction, suppose that qx + qy ≤ n. Consider a profile R ∈ SSP(�)n with

|N(R, x)| = qx, |N(R, y)| = qy, and (in case qx+qy < n) |N(R,α)| = n−(qx+qy). By Lemma

4, f(R) ∈ ∪i∈N [t(Ri), sup� t(R)]. As x, y ∈ A?(�), ∪i∈N [t(Ri), sup� t(R)] = {x, y, α}. Then,

f(R) ∈ {x, y, α}. (3)

We now show that (3) leads to a contradiction. First, assume f(R) = x. Let i ∈ N(R, x)

and consider Rα
i ∈ SSP(�) such that xPα

i y (such preference exists by Remark 4 (ii)). By

Lemma 4, f(Rα
i , R−i) ∈ {x, y, α}. If f(Rα

i , R−i) = y, it follows that

f(R) = xPα
i y = f(Rα

i , R−i),
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contradicting strategy-proofness. If f(Rα
i , R−i) = α, by a repeated use of strategy-proofness

it follows that f(R̃) = α for R̃ ∈ SSP(�)n such that t(R̃) = {y, α}, N(R̃, y) = N(R, y)

and
∣∣∣N(R̃, y)

∣∣∣ = qy = k(y), contradicting the definition of k(y). Therefore, f(Rα
i , R−i) = x.

If n = 2, t(Rα
i , R−i) = {y, α} and, by Lemma 2, f(Rα

i , R−i) ∈ {y, α}, a contradiction.

Therefore, assume n > 2. By the same reasoning we can replace the preferences of all

agents with top equal to x, one by one except the preference Rj of an agent j ∈ N(R, x),

with preferences with top equal to α, and the alternative selected by f would not change.

Namely, let R̂ ∈ SSP(�)n be a profile with t(R̂) = {x, y, α}, N(R̂, x) = {j} ⊆ N(R, x),

and N(R̂, y) = N(R, y) such that

f(R̂) = x. (4)

Now, let R ∈ SSP(�)n be such that t(R) = {y, α}, N(R, y) = N(R, y) and t(Rj) = α. By∣∣N(R, y)
∣∣ = qy = k(y) and the definition of k(y),

f(R) = y. (5)

Without loss of generality, assume R
α

j is such that xP
α

j y (this is possible by Remark 4 (ii)).

Hence, by (4) and (5) it follows that

f(R̂) = xP
α

j y = f(R),

contradicting strategy-proofness. This implies that f(R) 6= x. The proof of the fact that

f(R) 6= y follows a similar argument, after replacing the roles of x and y, and it is omit-

ted. Finally, assume f(R) = α. By a repeated use of strategy-proofness and tops-onlyness,

f(R′) = α for each R′ ∈ SSP(�)n with t(R′) = {y, α} and N(R′, y) = N(R, y) with

|N(R′, y)| = qy = k(y), contradicting the definition of k(y). Hence, (QS.2) holds.

Step 3: f is a generalized quota-supremum with respect to the quota system q.

Let R ∈ SSP(�)n. There are two cases to consider.

3.1. There is x ∈ A?(�) such that |N(R, x)| ≥ qx. If x ∈ A, then f(R) = x by

Lemma 3. If x ∈ A?(�) \ A, then qx = n and, by unanimity, f(R) = x.

3.2. For all x ∈ A?(�), |N(R, x)| < qx. We want show that f(R) = sup� t(R). There

are two cases to consider.

3.2.1. sup� t(R) = α. Let y ≡ f(R) and assume y 6= α. Then, y ≺ α. By Lemma

6, we can assume that α ∈ t(R). By definition of A, y ∈ A and, by Step 1 in

this proof, y ∈ A?(�). First, notice that y /∈ t(R). Suppose otherwise. Then,

y ∈ t(R) ∩ A? (�) . Assume first that t(R) = {y, α}. Then, by the hypothesis of

3.2 and the definition of qy, |N(R, y)| < qy = k(y) which together with f(R) = y

contradict the definition of k(y). Assume now that t(Ri) ∈ t(R)�{y, α} for some

i. Then, since α � t(Ri), α � f(R) and f(R) /∈ [t(Ri), α], by Lemma 5 we have
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that f(R̃α
i , R−i) = f(R) for any R̃α

i . By the repeated use of Lemma 5, applied to

the remaining agents whose top at R does not belong to {y, α}, we obtain that

there exists a profile R̃ ∈ SSP(�)n with t(R̃) = {y, α} and N(R̃, y) = N(R, y)

such that | N(R̃, y) |< qy = k(y) and f(R̃) = y, contradicting the definition of

k(y). Hence, y /∈ t(R). By Lemma 4, y ∈ ∪i∈N [t(Ri), α], so there is i ∈ N such

that t(Ri) ≺ y ≺ α, contradicting the fact that y ∈ A?(�). This proves that

f(R) = α = sup� t(R).

3.2.2. sup� t(R) 6= α. Notice that t(Ri) 6= α for all i ∈ N. Let s = sup� t(R) and

assume f(R) 6= s. By Lemma 4, f(R) ≺ s. As s ≺ α, by Lemma 6 it is without

loss of generality to assume that s ∈ t(R). Let i ∈ N(R, s). By richness, there

is Rs
i ∈ SSP(�) such that αP s

i f(R). By tops-onlyness, f(Rs
i , R−i) = f(R). Let

Rα
i ∈ SSP(�). By the previous case 3.2.1, f(Rα

i , R−i) = α. Therefore,

f(Rα
i , R−i) = αP s

i f(Rs
i , R−i),

contradicting strategy-proofness. This proves that f(R) = sup� t(R).

(⇐=) That sup� is strategy-proof and simple is shown in Section 3 in BM20. Let f q be

a generalized quota-supremum rule with respect to the quota system q = {qx}x∈A?(�). By

definition, f q is unanimous, anonymous and tops-only, and therefore simple. We now show

that f q is also strategy-proof. Let R ∈ SSP(�)n, i ∈ N and R′i ∈ SSP(�) be arbitrary,

and assume f q(R) 6= t(Ri). There are two cases to consider.

1. There is x ∈ A?(�) such that |N(R, x)| ≥ qx. Hence, f q(R) = x. As t(Ri) 6= x,

f q(R′i, R−i) = x because |N((R′i, R−i), x)| ≥ |N(R, x)|. Thus, agent i can not manip-

ulate f at R.

2. For all x ∈ A?(�), |N(R, x)| < qx. Hence,

f q(R) = sup� t(R). (6)

We want to show that

f q(R)Rif
q(R′i, R−i). (7)

Suppose f q(R′i, R−i) = sup� t(R
′
i, R−i). Then, by semilattice single-peakedness and

associativity of the supremum,

f q(R) = sup�{t(Ri), sup�t(R−i)} Ri sup�{t(R′i), sup�t(R−i)} = f q(R′i, R−i),

so (7) holds. Suppose f q(R′i, R−i) = x for some x ∈ A?(�) with |N((R′i, R), x)| ≥
qx. Then, t(Ri) 6= x. Otherwise, t(Ri) = x and |N(R, x)| ≥ |N((R′i, R−i), x)| ≥ qx

implying that f q(R) = x ∈ A?(�), contradicting our hypothesis. Therefore, t(Ri) � x.

By Remark 1 (ii),

α = sup�{t(Ri), x}Rix. (8)
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Also, since t(Ri) � sup�t(R) � α, by Remark 1 (i),

sup�t(R)Riα. (9)

Therefore, by (6), (8) and (9), we obtain

f q(R) = sup�t(R)Rix = f q(R′i, R−i),

so (7) holds.

Hence, the generalized quota-supremum rule f q is strategy-proof. �

2.4 Counterexample again

We show that the rule

f(R) = medB(t(R1), t(R2), t(R3), t(R4), t(R5), y, y, y, z),

used in the counterexample in Subsection 1.2, can be written as a generalized quota-

supremum f q with qy = 2 and qz = 4. Hence, it is one of the strategy-proof and simple rules

identified in Theorem 1. To see that, let R ∈ SSP(�)5 be arbitrary. We distinguish among

several cases depending on the supports received by the alternatives at profile R.

• |N(R, y)| ≥ 2. Then, f(R) = f q(R) = y.

• |N(R, y)| = 1.

– |N(R, x)| ≥ 1 (i.e., |N(R, z)| ≤ 3). Then, f(R) = f q(R) = x.

– |N(R, x)| = 0 (i.e., |N(R, z)| = 4). Then, f(R) = f q(R) = z.

• |N(R, y)| = 0.

– |N(R, z)| < 4 (i.e., |N(R, x)| ≥ 2). Then, f(R) = f q(R) = x.

– |N(R, z)| ≥ 4 (i.e., |N(R, x)| ≤ 1). Then, f(R) = f q(R) = z.

Hence, f can be represented as a generalized quota-supremum rule.
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3 Lemma 9

3.1 Statement of Lemma 9

Lemma 9 Let � be a semilattice over A such that sup�A does not exist and let f :

SSP (�)n → A be a strategy-proof and simple rule. Then, f(R) = sup� t(R) for each

R ∈ SSP (�)n .

The proof of Lemma 9 in BM20 uses incorrectly Lemma 5 in the second line of the proof

of Claim 2. To be applied, the hypothesis of Lemma 5 would require that, in addition to

s � t(Ri) and s � f(R), f(R) = f(R̃Ñ , R−Ñ) /∈ [t(Ri), s] holds as well. But this is not

necessarily true. Figure 1 shows an instance where this is the case, with the convention that

an arrow from alternative z pointing to alternative y means that z ≺ y.

r
r
r
r

6

6

6

t(Ri)

f(R) = f(R̃Ñ , R−Ñ)

s = sup� t(R) = t(R′i)

x

Figure 1: f(R) = f(R̃Ñ , R−Ñ) ∈ [t(Ri), s]

However, the statement of Lemma 9 is correct, and we present below an alternative

proof.

3.2 Alternative proof of Lemma 9

Proof Let the hypothesis of the Lemma hold. If |t(R)| = 1, the result follows by una-

nimity. To obtain a contradiction, let R ∈ SSP(�)n be such that |t(R)| > 1 and f(R) 6=
sup� t(R). Since f(R) ∈ ∪i∈N [t(Ri), sup�t(R)] by Lemma 4, we have sup� t(R) � f(R). By

Lemma 6, it is without loss of generality to assume that sup� t(R) ∈ t(R). Let s ≡ sup� t(R),

x ≡ f(R) and S = N(R, s) (notice that S 6= ∅). By a repeated use of strategy-proofness,

f(RS, R̂−S) = x (10)

for any R̂−S ∈ SSP(�)n−|S| such that t(R̂i) = x for each i ∈ N \ S.
First, let R̃ ∈ SSP(�)n be such that t(R̃) = {s, x}, f(R̃) = x and |N(R̃, x)| is minimal

in the sense that f(R) = s for each R ∈ SSP(�)n with t(R) = {s, x} and |N(R, x)| <
|N(R̃, x)|. Notice that such R̃ ∈ SSP(�)n exists because of (10).

Second, we claim that there is y ∈ A such that y � s. To see this, notice that since there

is no sup�A, there exists z ∈ A such that s � z. If z � s, take y = z; whereas if z � s, take

y = sup�{s, z}.

9



Next, let i ∈ N(R̃, x) and consider Ry
i ∈ SSP(�). Then,

f(Ry
i , R̃−i) ∈ {s, y}. (11)

Assume otherwise; that is, f(Ry
i , R̃−i) /∈ {s, y}. Since y � s, by Remark 4 (ii) and tops-

onlyness we can assume that Ry
i is such that sP y

i f(Ry
i , R̃−i). By the minimality of |N(R̃, x)|

and Lemma 2, f(Rs
i , R̃−i) = s for any Rs

i ∈ SSP(�). Therefore, f(Rs
i , R̃−i)P

y
i f(Ry

i , R̃−i),

contradicting strategy-proofness. This shows that (11) holds, so there are two cases to

consider.

1. f(Ry
i , R̃−i) = s. As s = sup� t(R), f(R) = x and sup� t(R) � f(R), we have that

s � x. Together with y � s and transitivity, we have y � x. By Remark 4 (ii) and

tops-onlyness, we can assume that Ry
i is such that xP y

i s. Therefore, f(R̃) = xP y
i s =

f(Ry
i , R̃−i), contradicting strategy-proofness.

2. f(Ry
i , R̃−i) = y. Let j ∈ N(R̃, s) andR

x

j ∈ SSP(�). Since |N((Ry
i , R

x

j , R̃−{i,j}), x)| =
|N(R̃, x)|, by Lemma 3, f(Ry

i , R
x

j , R̃−{i,j}) = x. As y � s � x, by Remark 4 (ii) and

tops-onlyness we can assume that R̃j is such that xP̃jy. Therefore, since (Ry
i , R̃−i) =

(Ry
i , R̃j, R̃−{i,j}), f(Ry

i , R
x

j , R̃−{i,j}) = xP̃jy = f(Ry
i , R̃j, R̃−{i,j}), contradicting strategy-

proofness.

As in each case we reach a contradiction, we conclude that f(R) = sup� t(R) for each

R ∈ SSP(�)n. �
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