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CIREQ and CREA, respectively.
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Abstract

We introduce incomplete information to centralized many-to-one matching

markets such as those of entry-level labor markets or college admissions. This

is important because in real life markets (i) any agent is uncertain about the

other agents’ true preferences and (ii) most entry-level matching is many-to-

one (and not one-to-one). We show that for stable (matching) mechanisms

there is a strong link between Nash equilibria under complete information and

ordinal Bayesian Nash equilibria under incomplete information. That is, given

a common belief, a strategy profile is an ordinal Bayesian Nash equilibrium

under incomplete information in a stable mechanism if and only if, for any

true profile in the support of the common belief, the submitted profile is a

Nash equilibrium under complete information at the true profile in the direct

preference revelation game induced by the stable mechanism. This result may

help to explain the success of stable mechanisms in these markets.

JEL Classification: C78, D81, J44.
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1 Introduction

Both empirical and theoretical studies of two-sided matching markets have been use-

ful in applications. Many such markets have developed centralized market clearing

mechanisms (in response to various failures of the decentralized market) to match

the agents from the two sides: the institutions (firms, colleges, hospitals, schools,

etc.) and the individuals (workers, students, medical interns, children, etc.).1 The

National Resident Matching Program is the most well-studied example of this kind

of two-sided matching markets. Each year around 20,000 medical students look for

a four-years position in American hospital programs to undertake their medical in-

ternships.2 In many countries, each year thousands of students seek for positions in

colleges,3 six years old children have to be assigned to public schools,4 8th graders

high school students to high schools,5 as well as civil servants to similar jobs in public

positions scattered in different cities across a country.

All of these entry-level matching markets share two specific features. The first one

is the many-to-one nature of the problem: the workers enter the market by cohorts

(often once per year) and each worker has to be matched to at most one firm while

each firm might be matched to many workers. The second one is the centralized

way of reaching a solution: a centralized institution (clearinghouse) collects, for each

participant, a ranked list of potential partners and proposes, after processing the

profile of submitted ranked lists, a final matching between firms and workers.

1Roth and Sotomayor (1990) give a masterful overview of two-sided matching markets.
2See Roth (1984a), Roth and Peranson (1999), and Roth (2002) for a careful description and

analysis of this market. Roth (1991), Kesten (2004), Ünver (2005), and Ehlers (2007) describe and

analyze the equivalent UK markets.
3Romero-Medina (1998) studies the case of Spain.
4Chen and Sönmez (2006) and Ergin and Sönmez (2006) study the case of public schools in

Boston. Abdulkadiroğlu and Sönmez (2003) studies the cases of public schools in Boston, Lee

County (Florida), Minneapolis, and Seattle.
5Abdulkadiroğlu, Pathak, and Roth (2005) studies the case of public high schools in New York

City.
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Yet, and in order to survive, the proposed matching has to be stable (relative

to the true preference profile) in the sense that all agents have to be matched to

acceptable partners and no unmatched pair of a firm and a worker prefer each other

rather than the proposed partners. Stability constitutes a minimal requirement that

a matching has to fulfill if the assignment is voluntary rather than compulsory. The

literature has considered stability of a matching to be its main characteristic in order

to survive.6 Indeed, many of the successful mechanisms are stable. This is puz-

zling because there exists no stable mechanism which makes truth-telling a dominant

strategy for all agents (Roth, 1982). Therefore, an agent’s (submitted) ranked lists

of potential partners are not necessarily his true ones and the implemented matching

may not be stable for the true profile. As a consequence, the literature has studied

intensively Nash equilibria of direct preference revelation games induced by different

stable mechanisms for a given true preference profile.7 Not only that, there is also a

fair amount of agreement that these studies have provided us with a very good un-

derstanding of the strategic incentives that participants face in these markets under

complete information.

Nevertheless all this strategic analysis might be marred by the assumption that the

true profile of preferences is both certain and common knowledge among all agents;

the very definition of Nash equilibrium under complete information requires it. In-

deed, participants in these markets perceive the outcome of the mechanism as being

uncertain because the submitted preferences of the other participants are unknown.

To model this uncertainty and to overcome the limitation of the complete informa-

tion set up, we follow the Bayesian approach by assuming that participants share a

common belief; namely, nature selects a preference profile according to a commonly

known probability distribution on the set of profiles. Since matching markets require

to report ranked lists and not their specific utility representations, we stick to the

6See, for instance, Roth (1984a) and Niederle and Roth (2003).
7See Dubins and Freedman (1981), Roth (1982, 1984b, 1985a), Gale and Sotomayor (1985), Shin

and Suh (1996), Sönmez (1997), Ma (1995, 2002), and Alcalde (1996).
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ordinal setting and assume that probability distributions are evaluated according to

the first-order stochastic dominance criterion. Then, a strategy profile is an ordinal

Bayesian Nash equilibrium (OBNE) if, for every von Neumann-Morgenstern utility

function of an agent’s preference ordering (his type), the submitted ranked list max-

imizes his expected utility in the direct preference revelation game induced by the

common belief and the mechanism.8

Investigating many-to-one matching markets under incomplete information is im-

portant for applications because in real life markets (i) any agent is uncertain about

the other agents’ true preferences and (ii) most entry-level matching is many-to-one

(and not one-to-one). More precisely, we study in many-to-one matching markets

direct preference revelation games under incomplete information induced by a stable

mechanism. Our main result shows that there is a strong link between Nash equilibria

under complete information and ordinal Bayesian Nash equilibria under incomplete

information. More precisely, Theorem 1 states that, given a common belief, a strat-

egy profile is an ordinal Bayesian Nash equilibrium under incomplete information in

a stable mechanism if and only if for any profile in the support of the common belief,

the submitted profile is a Nash equilibrium under complete information at the true

profile in the direct preference revelation game induced by the stable mechanism.

Theorem 1 has many important consequences and applications. The most im-

portant consequence of this result is that it points out that, after all, the former

strategic analysis under complete information is meaningful, relevant, and essential

to undertake the corresponding analysis under incomplete information. Furthermore,

for determining whether a strategy profile is an equilibrium under incomplete infor-

mation, we only need to check whether for each realization the submitted preference

orderings are a Nash equilibrium under complete information. This also implies that

8This notion was introduced by d’Aspremont and Peleg (1988) who call it “ordinal Bayesian

incentive-compatibility”. Majumdar and Sen (2004) use it to relax strategy-proofness in the

Gibbard-Satterthwaite Theorem. Majumdar (2003), Ehlers and Massó (2007), and Pais (2005)

have already used this ordinal equilibrium notion in one-to-one matching markets.
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truth-telling is a dominant strategy for all agents in the stable mechanism under in-

complete information (given by a belief) if and only if for any profile in the support

of the common belief, truth-telling is a dominant strategy for all agents in the sta-

ble mechanism under complete information. In other words, a stable mechanism is

Bayesian incentive compatible for a given belief if and only if the stable mechanism

restricted to the support of the common belief is incentive compatible. For match-

ing markets and stable mechanisms, this is an important connection between ex-ante

incentive compatibility and ex-post incentive compatibility.

Another corollary of Theorem 1 is that for any stable mechanism, the set of ordinal

Bayesian Nash equilibria is identical for any two common beliefs with equal support.

Therefore, any equilibrium is robust to perturbations of the common belief which do

not change the support of the common belief and agents may have different beliefs

with equal support. Note that in matching markets it may not be meaningful to con-

sider arbitrary perturbations of the common belief because in empirical applications

certain firms are unambiguously perceived better than others and any worker’s true

preference relation never reverses those perceptions. At the (realistic) extreme, for

any realization of the common belief all workers rank all firms identically (according

to some objective criterion). We show in this case that truth-telling is an OBNE in

the stable mechanism under incomplete information and all realized matchings are

stable with respect to the true profile. Furthermore, Theorem 1 permits an impor-

tant extension of the result of Roth (1984b) from complete information to incomplete

information. He shows for one-to-one matching markets under complete information

that for the stable mechanism, called the workers-proposing deferred-acceptance al-

gorithm, the outcome of any Nash equilibrium, where the workers truth-fully reveal

their preferences, is stable with respect to the true profile. We show for many-to-one

matching markets under incomplete information, if the workers preferences are cor-

related, then the outcome of any realization of an OBNE in the workers-proposing

deferred-acceptance algorithm, where the workers truthfully reveal their preferences,
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is stable with respect to the true profile.

Another important consequence is that the set of ordinal Bayesian Nash equilibria

for common beliefs with full support remain equilibria for any common belief. We

show that full support equilibria provide a foundation why any agent submits only

preference orderings which rank acceptable only partners which are acceptable ac-

cording to his true preference relation and the reported ranking over the acceptable

partners is truthful. This may help to explain why in markets using stable mech-

anisms most agents truthfully reveal their preferences over their partners reported

acceptable (Roth and Peranson, 1999). It also gives some insight into the success of

stable mechanisms since exactly these equilibria are robust to arbitrary changes of

the (non-)common belief.

The paper is organized as follows. Section 2 describes the many-to-one matching

market with responsive preferences. Section 3 introduces the incomplete information

framework to the many-to-one matching market and the notion of ordinal Bayesian

Nash equilibrium. Section 4 states our main result, Theorem 1, and its applications.

Section 5 concludes with some final remarks and the Appendix contains the proof of

Theorem 1.

2 Many-To-One Matching Markets

2.1 Agents, Quotas, and Preferences

The agents of a college admissions problem (or many-to-one matching market) consist

of two disjoint sets, the set of firms F and the set of workers W . A generic firm will

be denoted by f , a generic worker by w, and a generic agent by v ∈ V ≡ F ∪ W .

While workers can only work for at most one firm, firms may hire different numbers of

workers. For each firm f , there is a maximum number qf ≥ 1 of workers that f may

hire, f ’s quota. Let q = (qf )f∈F be the vector of quotas. To emphasize the quotas

of a subset of firms S ⊆ F we sometimes write (qS, q−S) instead of q. Each worker
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w has a strict preference ordering Pw over F ∪ {∅}, where ∅ means the prospect of

not being hired by any firm. Each firm f has a strict preference ordering Pf over

W ∪{∅}, where ∅ means the prospect of not hiring any worker. A profile P = (Pv)v∈V

is a list of preference orderings. To emphasize the preference orderings of a subset

of agents S ⊆ V we often denote a profile P by (PS, P−S). Let Pv be the set of all

preference orderings of agent v. Let P = ×v∈VPv be the set of all profiles and let P−v

denote the set ×v′∈V \{v}Pv′ . Since agent v might have to compare potentially the same

partner, we denote by Rv the weak preference ordering corresponding to Pv; namely,

for v′, v′′ ∈ V ∪{∅}, v′Rvv
′′ means either v′ = v′′ or v′Pvv

′′. Momentarily fix a worker

w and his preference ordering Pw. Given v ∈ F ∪{∅}, let B(v, Pw) be the weak upper

contour set of Pw at v; i.e., B(v, Pw) = {v′ ∈ F∪{∅} | v′Rwv}. Let A(Pw) be the set of

acceptable firms for w according to Pw; i.e., A(Pw) = {f ∈ F | fPw∅}. Given a subset

S ⊆ F ∪ {∅}, let Pw|S denote the restriction of Pw to S. Similarly, given Pf ∈ Pf ,

v ∈ W ∪ {∅}, and S ⊆ W ∪ {∅}, we define B(v, Pf ), A(Pf ), and Pf |S. A college

admissions problem (or many-to-one matching market) is a quadruple (F, W, q, P ).

2.2 Stable Matchings

The assignment problem consists of matching workers with firms keeping the bilateral

nature of their relationship, complying with firms’ capacities given by their quotas,

and allowing for the possibility that both workers and firms may remain unmatched.

Formally, given a college admissions problem (F, W, q, P ), a matching µ is a mapping

from the set V to the set of all subsets of V such that:

(m1) for all w ∈ W , either |µ (w)| = 1 and µ (w) ⊆ F or else µ (w) = ∅;

(m2) for all f ∈ F , µ (f) ⊆ W and |µ(f)| ≤ qf ; and

(m3) µ (w) = {f} if and only if w ∈ µ (f).

Abusing notation, we will often write µ(w) = f instead of µ(w) = {f}. If µ(w) = ∅

we say that w is unmatched at µ and if |µ(f)| < qf we say that f has qf − |µ(f)|
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unfilled positions at µ; f is unmatched at µ when it has qf unfilled positions at µ.

Let M denote the set of all matchings. A college admissions problem (F, W, q, P )

in which qf = 1 for all f ∈ F is called a marriage market or a one-to-one matching

market.

Not all matchings are equally likely. Stability of a matching is considered to be its

main characteristic in order to survive. A matching is stable if no agent is matched to

an unacceptable partner (individual rationality) and no unmatched worker-firm pair

mutually prefers each other to (one of) their current assignments (pair-wise stability).

That is, given a college admissions problem (F, W, q, P ), a matching µ ∈M is stable

(at P ) if

(s1) for all w ∈ W , µ(w)Rw∅;

(s2) for all f ∈ F and all w ∈ µ(f), wPf∅; and

(s3) there is no pair (w, f) ∈ W×F such that w /∈ µ(f), fPwµ(w), and either wPfw
′

for some w′ ∈ µ(f) or wPf∅ if |µ(f)| < qf .

Notice that this definition declares a matching to be stable if it is not blocked (in

the sense of the core) by either individual agents or unmatched pairs. Gale and

Shapley (1962) established that all college admissions problems have a non-empty

set of stable matchings and Roth (1985b) showed that larger coalitions do not have

additional (weak) blocking power because the set of stable matchings coincides with

the core. We denote by C(F, W, q, P ) the non-empty core of the college admissions

problem (F, W, q, P ). Since sometimes everything but P remains fixed we will often

write P instead of (F, W, q, P ); then, for instance, C(P ) denotes the set of stable

matchings at P (or the core of P ).

2.3 Matching Mechanisms

Whether or not a matching is stable depends on the preference orderings of agents, and

since they are private information, agents have to be asked about them. A mechanism
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requires each agent v to report some preference ordering Pv and associates a matching

with any reported profile P . Namely, a mechanism is a function ϕ : P →M mapping

each preference profile P ∈ P to a matching ϕ [P ] ∈M. Then ϕ [P ] (v) is the match

of agent v at preference profile P under mechanism ϕ. Note that, for all w ∈ W ,

ϕ[P ](w) ∈ F ∪ {∅} and, for all f ∈ F , ϕ[P ](f) ∈ 2W . A mechanism ϕ is stable if for

all P ∈ P , ϕ [P ] ∈ C (P ).

2.4 Responsive Extensions

The notion of a mechanism in which firms (like workers) only submit rankings on in-

dividual agents fits with most of the mechanisms used in real life centralized matching

markets. But a mechanism matches each firm f to a set of workers, taking into ac-

count only f ’s preference ordering Pf over individual workers. Thus, to study firms’

incentives in direct preference revelation games induced by a mechanism, preference

orderings of firms over individual workers have to be extended to preference order-

ings over subsets of workers. But a firm f may have different rankings over subsets

of workers respecting its quota qf and the ranking Pf over individual workers. For

instance, let W = {w1, w2, w3, w4} be the set of workers and let Pf be such that

Pf : w1w2w3w4∅9 and qf = 2. While it is reasonable to assume that, under the ab-

sence of very strong complementarities among workers, the set {w1, w2} is preferred

by f to the set {w3, w4} or to the set {w1, w3}, firm f ’s preference between the sets

{w1, w4} and {w2, w3} is ambiguous since Pf does not convey this information. Fol-

lowing the literature,10 we will only require these extensions to be responsive in the

sense that replacing a worker in a set (or an unfilled position) by a better worker

(or an acceptable worker) makes a set more preferred; for example, in all extensions

{w1, w2} is preferred to {w1}, to {w3, w4} and to {w1, w3} but for some extensions

{w1, w4} is preferred to {w2, w3} while for other extensions {w2, w3} is preferred to

9We will use the convention that Pf : w1w2w3w4∅ means w1Pfw2Pfw3Pfw4Pf∅.
10See for instance, Roth and Sotomayor (1990).
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{w1, w4}.

Definition 1 (Responsive Extensions) The preference extension P ∗
f over 2W is

responsive to the preference ordering Pf over W ∪ {f} if for all S ∈ 2W , all w ∈ S,

and all w′ /∈ S:

(r1) S ∪ {w′}P ∗
f S if and only if |S| < qf and w′Pf∅.

(r2) (S\{w}) ∪ {w′}P ∗
f S if and only if w′Pfw.

Given a responsive extension P ∗
f of Pf , let R∗

f denote its corresponding weak

preference ordering on 2W . Moreover, given S ∈ 2W , let B(S, P ∗
f ) be the weak upper

contour set of P ∗
f at S; i.e., B(S, P ∗

f ) = {S ′ ∈ 2W | S ′R∗
fS}. Given Pf ∈ Pf , we

denote by resp(Pf ) the set of responsive extensions of Pf .

2.5 Properties of the Core

The core of a college admissions problem has a special structure. The following well-

known properties will be useful in the sequel:11

(P1) For each profile P ∈ P , C(P ) contains two stable matchings, the firms-optimal

stable matching µF and the workers-optimal stable matching µW , with the property

that for all µ ∈ C(P ), µW (w)Rwµ(w)RwµF (w) for all w ∈ W , and for all f ∈ F ,

µF (f)R∗
fµ(f)R∗

fµW (f) for all P ∗
f ∈ resp(Pf ). The deferred-acceptance algorithms

(DA-algorithms), introduced by Gale and Shapley (1962) and denoted by DAF :

P →M and DAW : P →M, are two stable mechanisms that select, for each profile

P , µF and µW , respectively; i.e., for all P ∈ P , DAF [P ] = µF and DAW [P ] = µW .12

(P2) For each profile P ∈ P and any responsive extensions P ∗
F = (P ∗

f )f∈F of PF =

(Pf )f∈F , C(P ) coincides with the set of group stable matchings at (PW , P ∗
F ), where

group stability corresponds to the usual cooperative game theoretical notion of weak

11See Roth and Sotomayor (1990) for a detailed presentation of these properties.
12Strictly speaking, the DA-algorithm is an algorithm that finds the matching chosen by the “DA-

mechanism”. However, most of the matching literature uses the term DA-algorithm when referring

to both the algorithm and the mechanism. We follow this convention.
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blocking13. This is important because it means that the set of group stable matchings

(relative to P ) is invariant with respect to any specific responsive extensions of PF .

(P3) For each P ∈ P , the set of unmatched agents is the same for all stable matchings

and if a firm does not fill all its positions at some stable matching, then this firm is

matched to the same set of workers at all stable matchings; namely, for all µ, µ′ ∈

C(P ), and for all w ∈ W and all f ∈ F , (i) µ(w) = ∅ if and only if µ′(w) = ∅, (ii)

|µ(f)| = |µ′(f)|, and (iii) if |µ(f)| < qf , then µ(f) = µ′(f).

(P4) Starting from the workers-optimal matching of any college admissions problem,

once new workers become available any firm weakly prefers any stable matching of

the enlarged market to the workers-optimal matching of the smaller market. More

precisely, consider a college admissions problem (F, W, q, P ) and suppose that new

workers enter the market. Let (F, W ′, q, P ′) be this new market where W ⊆ W ′ and

P ′ agrees with P over F and W . Let DAW [P ] = µW . Then, for all f ∈ F and all

responsive extensions R
′∗
f of R′

f , µ′(f)R
′∗
f µW (f) for all µ′ ∈ C(F, W ′, q, P ′) (Gale and

Sotomayor, 1985; Crawford, 1991).

3 Incomplete Information

Clearly any mechanism and any true profile define a direct (ordinal) preference reve-

lation game under complete information.

Definition 2 (Nash Equilibrium) A profile P ′ is a Nash equilibrium (NE) un-

der complete information P in the direct preference revelation game induced by the

mechanism ϕ if for all w ∈ W , ϕ[P ′](w)Rwϕ[P̂w, P ′
−w](w) for all P̂w ∈ Pw, and for all

f ∈ F and all P ∗
f ∈ resp(Pf ), ϕ[P ′](f)R∗

fϕ[P̂f , P
′
−f ](f) for all P̂f ∈ Pf .

A large literature on matching studies Nash equilibrium and its refinements un-

13A matching µ is weakly blocked by coalition S ⊆ V under (PW , P ∗
F ) if there exists a matching

µ′ such that (b1) for all v ∈ S, µ′(v) ⊆ S, (b2) for all w ∈ W ∩ S, µ′(w)Rwµ(w), and (b3) for all

f ∈ F ∩ S, µ′(f)R∗
fµ(f), with strict preference holding for at least one v ∈ S.
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der complete information in direct preference revelation games induced by stable

mechanisms; in particular, for the mechanisms DAF and DAW . However, for many

applications the assumption that the true profile is common knowledge is extremely

unrealistic. We depart from it and consider the Bayesian direct preference revelation

games induced by a mechanism and a belief about the true profile, which is shared

among all agents. A common belief is a probability distribution P̃ over P . Given

a profile P and the common belief P̃ , Pr{P̃ = P} is the probability that P̃ assigns

to the event that the true profile is P .14 Given v ∈ V , let P̃v denote the marginal

distribution of P̃ over Pv. Observe that, following the Bayesian approach, the com-

mon belief P̃ describes agents’ uncertainty about the true profile before agents learn

their types. Now, given a common belief P̃ and a preference ordering Pv (agent v’s

type), let P̃−v|Pv denote the probability distribution which P̃ induces over P−v con-

ditional on Pv. It describes agent v’s uncertainty about the preferences of the other

agents, given that his preference ordering is Pv.
15 This formulation does not require

symmetry nor independence of beliefs; conditional beliefs might be very correlated

if agents use similar sources to form them (i.e., rankings, grades, recommendation

letters, etc.).

An agent with incomplete information about the others’ preference orderings

(more importantly, about their submitted lists) will perceive the outcome of a mecha-

nism as being uncertain. A random matching µ̃ is a probability distribution over the

set of matchings M. Given a matching µ and the random matching µ̃, Pr{µ̃ = µ}

is the probability that µ̃ assigns to matching µ. But the uncertainty important for

agent v is not over matchings but over v’s set of potential partners. Let µ̃(w) denote

the probability distribution which µ̃ induces over worker w’s set of potential partners

14Strictly speaking P̃ cannot be set equal P to because P̃ is not a random variable but a probability

distribution on P. However, for convenience we use this notation as if P̃ were a random variable.
15Notice that we rule out interdependent preferences where the preferences of the other agents in-

fluence agent v’s preference. Chakraborty, Citanna, and Ostrovsky (2007) study two-sided matching

with interdependent preferences.

13



F ∪ {∅} and let µ̃(f) denote the probability distribution which µ̃ induces over firm

f ’s set of potential partners 2W . Namely, for w ∈ W and all v ∈ F ∪ {∅},

Pr{µ̃(w) = v} =
∑

µ∈M:µ(w)=v

Pr{µ̃ = µ}

and for f ∈ F and all S ∈ 2W ,

Pr{µ̃(f) = S} =
∑

µ∈M:µ(f)=S

Pr{µ̃ = µ}.

A mechanism ϕ and a common belief P̃ define a direct (ordinal) preference rev-

elation game under incomplete information as follows. Before submitting a list to

the mechanism, agents learn their types. Thus, a strategy of agent v is a function

sv : Pv → Pv specifying for each type of agent v, Pv, a list that v submits to the

mechanism, sv(Pv). A strategy profile is a list s = (sv)v∈V of strategies specifying for

each true profile P a submitted profile s(P ). Given a mechanism ϕ : P →M and a

common belief P̃ over P , a strategy profile s : P → P induces a random matching

ϕ[s(P̃ )] in the following way: for all µ ∈M,∑
P∈P:ϕ[s(P )]=µ

Pr{P̃ = P}

is the probability of matching µ. However, the relevant random matching for agent v,

given his type Pv and a strategy profile s, is ϕ[sv(Pv), s−v(P̃−v|Pv)] (where s−v(P̃−v|Pv)

is the probability distribution over P−v which s−v and P̃ induce conditional on Pv).

But again, the relevant uncertainty that agent v faces is given by ϕ[sv (Pv) , s−v(P̃−v|Pv)] (v),

the probability distribution which the random matching ϕ[sv (Pv) , s−v(P̃−v|Pv)] in-

duces over v’s set of potential partners.

Definition 3 (First-Order Stochastic Dominance) (fo1) A random matching µ̃

first-order stochastically Pw−dominates a random matching µ̃′, denoted by µ̃ (w)mPw

µ̃′ (w), if for all v ∈ F ∪ {∅} ,∑
v′∈F∪{∅}:v′Rwv

Pr{µ̃ (w) = v′} ≥
∑

v′∈F∪{∅}:v′Rwv

Pr{µ̃′ (w) = v′}.
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(fo2)16 A random matching µ̃ first-order stochastically Pf−dominates a random match-

ing µ̃′, denoted by µ̃ (f) mPf
µ̃′ (f), if for all P ∗

f ∈ resp(Pf ) and all S ∈ 2W ,∑
S′∈2W :S′R∗

f S

Pr{µ̃ (f) = S ′} ≥
∑

S′∈2W :S′R∗
f S

Pr{µ̃′ (f) = S ′}.

All mechanisms used in centralized matching markets are ordinal. In other words

the only information available for a clearinghouse are the agents’ ordinal preferences

over potential partners. In such an environment a strategy profile is an ordinal

Bayesian Nash equilibrium whenever, for any agent’s true ordinal preference, sub-

mitting the ranked list specified by his strategy maximizes his expected utility for

every von Neumann-Morgenstern (vNM)-utility representation of his true preference.

This requires that an agent’s strategy only depends on the ordinal ranking induced

by his vNM-utility function (if any). Moreover, ordinal strategies are meaningful if an

agent only observes his ordinal ranking and may have (still) little information about

his utilities of his potential partners.

Definition 4 (Ordinal Bayesian Nash Equilibrium) Let P̃ be a common belief.

Then a strategy profile s is an ordinal Bayesian Nash equilibrium (OBNE ) in the

mechanism ϕ under incomplete information P̃ if and only if for all v ∈ V and all

Pv ∈ Pv such that Pr{P̃v = Pv} > 0,

ϕ[sv(Pv), s−v(P̃−v|Pv)](v) mPv ϕ[P ′
v, s−v(P̃−v|Pv)](v) for all P ′

v ∈ Pv.
17 (1)

Observe that, given a common belief P̃ , the set of OBNE in a stable mechanism

is non-empty. For instance, imagine that the workers and the firms are divided into

16Observe that this definition requires that µ̃ first-order stochastically dominates µ̃′ according to

all responsive extensions of Pf . Note that this requirement is meaningful since the clearinghouse

observes firms’ rankings over individual workers only and not which responsive extension they use

to compare sets of workers.
17In the definition of OBNE optimal behavior of agent v is only required for the preferences of v

which arise with positive probability under P̃ . If Pv ∈ Pv is such that Pr{P̃v = Pv} = 0, then the

conditional belief P̃−v|Pv cannot be derived from P̃ . However, we could complete the belief of v in

the following way: let P̃−v|Pv
put probability one on a profile where all other agents submit lists

which do not contain v.
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“local” matching markets as follows: let (Wf )f∈F be a partition of the set of workers

(allowing Wf = ∅ for some firms f) where Wf denotes the set of workers belonging

to the “local” market of f . Loosely speaking, under the following strategy profile any

worker belonging to the local market of firm f applies to f if and only if firm f is

acceptable for the worker (and she never applies to other firms), and any firm chooses

from its applicants according to its true preference relation restricted to its local

market. Let the strategy profile s be defined in the following way: (i) for any w ∈ W

and any Pw ∈ Pw, A(sw(Pw)) = {f} if f ∈ A(Pw) and w ∈ Wf , and A(sw(Pw)) = ∅

otherwise; and (ii) for all f ∈ F and all Pf ∈ Pf , let A(sf (Pf )) = A(Pf ) ∩Wf and

sf (Pf )|A(Pf ) ∩ Wf = Pf |A(Pf ) ∩ Wf . In other words, if worker w belongs to the

local market of firm f , then w ranks f uniquely acceptable if f is preferred to being

unmatched and otherwise w ranks no firm acceptable. Any firm f ranks as acceptable

all workers which both belong to its local market and are acceptable according to its

true preference relation. Then for any stable mechanism and any profile P , s(P )

is a NE under complete information. Hence, s is an OBNE in a stable mechanism

under any common belief. In the special case where Wf = W for some firm f , firm f

has a monopolistic market. Both under complete and incomplete information there

is a multiplicity of OBNE and the existence of OBNE is guaranteed. Observe that

complete information is the particular instance of incomplete information where the

common belief puts probability one on a unique profile. Thus, the notion of OBNE

inherits all properties of NE and like in NE, there is no reason to expect that agents

play undominated strategies in OBNE.

4 The Main Result and Its Applications

The support of a common belief P̃ is the set of profiles on which P̃ puts a positive

weight; namely, profile P belongs to the support of P̃ if and only if Pr{P̃ = P} > 0.

We will show that for stable mechanisms there is a strong and surprising link

between equilibria under incomplete information and equilibria under complete in-
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formation. This link holds for any stable mechanism and not only for the deferred-

acceptance algorithms.

Theorem 1 Let P̃ be a common belief, s be a strategy profile, and ϕ be a stable mech-

anism. Then, s is an OBNE in the stable mechanism ϕ under incomplete information

P̃ if and only if for any profile P in the support of P̃ , s(P ) is a Nash equilibrium

under complete information P in the direct preference revelation game induced by ϕ.

Theorem 1 has several important consequences and applications. One immedi-

ate consequence is that for determining whether a strategy profile is an OBNE, we

only need to check whether for each realization of the common belief the submitted

preference orderings constitute a Nash equilibrium under complete information. This

means that the uniquely relevant information for an OBNE is the support of the

common belief. Therefore, no calculations of probabilities are necessary. This conse-

quence is very important for applications because we need to check equilibrium play

only for the realized (or observed) profiles. Furthermore, by Theorem 1, we can use

properties of NE (under complete information) to deduce characteristics of OBNE.18

Remark 1 Theorem 1 provides for stable mechanisms a strong link between OBNE

under incomplete information and NE under complete information. Neither for (or-

dinal) games of incomplete information nor for many-to-one matching markets using

unstable mechanisms this link is true. It is the stability of mechanisms which drives

our main result. Later we exhibit an example of an OBNE in an unstable mechanism

where for some profiles in the support of the common belief, the submitted profile is

not a Nash equilibrium under complete information at the true profile in the direct

preference revelation game induced by the unstable mechanism.

While the proof of Theorem 1’s (If)-part is straightforward, its (Only if)-part

proceeds roughly as follows. If for some profile P in the support of P̃ , s(P ) does

18Of course, constructing OBNE requires more than just choosing a NE for every profile in the

support of the common belief because we need to assure that the chosen NE yield a strategy for

each agent in the direct preference revelation game under incomplete information.
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not constitute a NE, then some agent v has a profitably deviation from s(P ) under

complete information P . Using this deviation we then construct another deviation

and show that agent v profitably manipulates given his type Pv and his belief P̃−v|Pv

which implies that strategy profile s cannot be an OBNE. This step uses repeatedly

the following peculiarities of stable matchings in college admissions problems: (1)

invariance of unmatched agents and unfilled positions: the set of unmatched agents

and any firm’s number of unfilled positions are the same for all stable matchings; and

(2) comparative statics: starting from any college admissions problem and its workers-

optimal matching, when new workers become available all firms weakly prefer any

matching, which is stable for the enlarged problem, to the workers-optimal matching

of the smaller problem.

Remark 2 Theorem 1 restricts attention to mechanisms which choose for each profile

one of its stable matchings. Alternatively one may consider random stable mecha-

nisms choosing for each profile a lottery over its stable matchings. It is easy to adapt

the proof of Theorem 1 for random stable mechanisms.19 Hence, it is without loss of

generality in Theorem 1 to consider deterministic stable mechanisms. Furthermore,

we focus on stable mechanisms because those are used in many real-life matching

markets.20

Below we turn to the applications of Theorem 1.

19Details are available from the authors upon request. Pais (2007) provides a strategic analysis of

random stable mechanisms under complete information.
20Due to this reason, we do not consider mechanisms with larger message spaces which seem to be

unrealistic for matching markets such as “shoot them all” mechanisms where under complete infor-

mation every agent has to reveal a complete preference profile and everybody remains unmatched

in case of disagreement of the reported profiles. This guarantees truth-telling to be a NE under

complete information. We do not know of any real-life centralized matching market where these

general mechanisms are used.
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4.1 Application I: Structure of OBNE

By Theorem 1, a strategy profile is an OBNE if and only if the agents play a Nash

equilibrium for any profile in the support of the common belief. Therefore, (a) the

set of OBNE is identical for any two common beliefs with equal support and (b) the

set of OBNE shrinks if the support of the common belief becomes larger.

Corollary 1 (Invariance) Let s be a strategy profile and ϕ be a stable mechanism.

(a) Let P̃ and P̃ ′ be two common beliefs with equal support. Then, s is an OBNE

in the stable mechanism ϕ under P̃ if and only if s is an OBNE in the stable

mechanism ϕ under P̃ ′.

(b) Let P̃ and P̃ ′ be two common beliefs such that the support of P̃ ′ is contained in

the support of P̃ . If s is an OBNE in the stable mechanism ϕ under P̃ , then s

is an OBNE in the stable mechanism ϕ under P̃ ′.

Now by (a) of Corollary 1, for stable mechanisms any OBNE is robust to per-

turbations of the common belief which leave its support unchanged. Therefore, any

OBNE remains an equilibrium if agents have different beliefs with equal support, i.e.

each agent v may have a private belief P̃ v but all private beliefs have identical (or

common) support.21 This consequence is especially important for applications since

for many of them, the common belief assumption might be too strong.

By (b) of Corollary 1, the set of OBNE with full support (i.e. all common beliefs

which put positive probability on all profiles) is contained in the set of OBNE of

21Then in Definition 4 of OBNE the common belief P̃ is replaced for each agent v by his private

belief P̃ v. Theorem 1 and its proof show that for any OBNE s, each agent’s strategy sv chooses a

best response to the other reported preferences for any profile belonging to the support of his private

belief. If all private beliefs have equal support, then it follows that a strategy profile s is an OBNE

with private beliefs (with common support) if and only if for any profile P in the common support,

s(P ) is a Nash equilibrium under complete information P in the direct preference revelation game

induced by ϕ.
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any arbitrary common belief (or support). It turns out that OBNE with full support

provide a foundation of why any agent submits only rankings which according to

his true preference relation (i) contain only acceptable matches and (ii) report the

true ranking over the reported acceptable matches. For the firms (ii) requires an

inessential modification: because we consider only stable mechanisms it is irrelevant

for a firm in which order it ranks its first qf acceptable matches. For OBNE with

full support any firm submits only rankings which are essentially truthful: the first

qf reported workers are the qf truthfully most preferred workers among all workers

reported acceptable and the reported ranking over the remaining workers reported

acceptable is truthful.

Formally, given v ∈ F and Pv, P
′
v ∈ Pv, we call P ′

v|A(P ′
v) essentially Pv-truthful

if |A(P ′
v)| ≤ qv or for the qv most preferred workers under P ′

v, say w1, . . . , wqv , we

have for all w′ ∈ A(P ′
v) and all w ∈ A(P ′

v)\{w1, . . . , wqv}, P ′
v|{w,w′} = Pv|{w, w′}.

For example, if qv = 2 and Pv : w1w2w3w4∅ . . ., then P ′
v : w3w2w4∅ . . . and P ′′

v :

w2w1w4∅ . . . are essentially Pv-truthful. Observe that condition (i) above will require

in addition that A(P ′
v) ⊆ A(Pv) and A(P ′′

v ) ⊆ A(Pv).

Notice that the example of the local markets after Definition 4 is an OBNE where

each agent’s reported rankings contain acceptable matches only and are essentially

truthful.

Corollary 2 (Essential Truthfulness for Full Support) Let P̃ be a common be-

lief with full support, s be a strategy profile, and ϕ be a stable mechanism. Then, s is

an OBNE in the stable mechanism ϕ under P̃ only if for all v ∈ V and all Pv ∈ Pv,

(i) A(sv(Pv)) ⊆ A(Pv) and (ii) sv(Pv)|A(sv(Pv)) = Pv|A(sv(Pv)) (if v ∈ W ) and

sv(Pv)|A(sv(Pv)) is essentially Pv-truthful (if v ∈ F ).

Proof. Let s be an OBNE in the mechanism ϕ under P̃ . Let v ∈ V and Pv ∈ Pv.

Assume v ∈ F (if v ∈ W the proof follows a similar argument).

First we show that A(sv(Pv)) ⊆ A(Pv). Suppose that A(sv(Pv))\A(Pv) 6= ∅.

Let w ∈ A(sv(Pv))\A(Pv) and P−v ∈ P−v be such that A(Pw) = {v} and for all
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v′ ∈ V \{v, w}, A(Pv′) = ∅. Let P = (Pv, P−v). Because P̃ has full support, we

have Pr{P̃ = P} > 0. Thus, by Theorem 1, s(P ) must be a NE in ϕ for P . But

then for all v′ ∈ V \{v, w}, A(Pv′) = ∅ implies ϕ[s(P )](v′) = ∅. This and w /∈ A(Pv)

implies ϕ[s(P )](v) = ∅ and ϕ[s(P )](w) = ∅. Hence, by stability of ϕ, we have

v /∈ A(sv′(Pv′)) for all v′ ∈ A(sv(Pv)). But now w profitably deviates by reporting

P ′
w ∈ Pw such that A(P ′

w) = {v} because by w ∈ A(sv(Pv)), ϕ[P ′
w, s−w(P−w)](w) = v

and vPw∅ = ϕ[s(P )](w). This means that s(P ) is not a NE in ϕ for P , a contradiction.

Second we show that sv(Pv)|A(sv(Pv)) is essentially Pv-truthful. If |A(sv(Pv))| ≤

qv, then nothing has to be shown. Let |A(sv(Pv))| > qv and w1, . . . , wqv be the qv most

preferred workers under sv(Pv). Let W ′ = {w1, . . . , wqv}. By A(sv(Pv)) ⊆ A(Pv), if

(ii) does not hold, then for some w′ ∈ A(sv(Pv)) and some w ∈ A(sv(Pv))\W ′,

w′sv(Pv)wsv(Pv)∅ and wPvw
′Pv∅.22 Without loss of generality, let w′ ∈ W ′ (if

w′ /∈ W ′, then the proof is analogous). Let P−v ∈ P−v be such that (a) A(Pw) =

{v}, (b) A(Pw′) = {v}, (c) for all w′′ ∈ W ′, A(Pw′′) = {v}, and (d) for all v′ ∈

V \({v, w, w′} ∪ W ′), A(Pv′) = ∅. Let P = (Pv, P−v). Because P̃ has full support,

we have Pr{P̃ = P} > 0. Thus, by Theorem 1, s(P ) must be a NE in ϕ for P .

But then for all v′ ∈ V \({v, w, w′} ∪ W ′), A(Pv′) = ∅ implies ϕ[s(P )](v′) = ∅.

Furthermore, because P̃ has full support and s is an OBNE in ϕ under P̃ , it is

easy to verify that v ∈ A(sw′′(Pw′′)) for w′′ ∈ W ′ ∪ {w}. Then by stability of ϕ,

w′sv(Pv)wsv(Pv)∅, W ′ ⊆ A(Pv), A(Pw′) = {v}, and the fact that s(P ) is a NE in ϕ

for P , we must have ϕ[s(P )](v) = W ′. Since v ∈ A(sw(Pw)), now v profitably deviates

by reporting P ′
v ∈ Pv such that A(P ′

v) = (W ′\{w′})∪{w} because by v ∈ A(sw(Pw)),

ϕ[P ′
v, s−v(P−v)](v) = (W ′\{w′}) ∪ {w} and both wPvw

′ and responsiveness imply

(W ′\{w′}) ∪ {w}P ∗
v W ′ = ϕ[s(P )](v) for all P ∗

v ∈ resp(Pv). This means that s(P ) is

not a NE in ϕ for P , a contradiction. �

22Observe that if v ∈ W the contradiction hypothesis would be that for some f, f ′ ∈ A(sv(Pv)),

f ′sv(Pv)fsv(Pv)∅ and fPvf ′Pv∅.
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Note that any OBNE for a common belief with full support is an OBNE for any

arbitrary belief. Hence, such OBNE are invariant with respect to the common belief

and remain OBNE if the agents’ beliefs are not necessarily derived from the same

common belief. Of course, by Corollary 2, those OBNE are robust to changes of

the common belief(s) only if each agent’s strategy ranks acceptable only matches

which are acceptable according to the true ranking and the reported ranking over the

acceptable matches is essentially truthful.

4.2 Application II: Truth-Telling and Realized Matchings

When agents’ preferences are private information, we would like to design a mecha-

nism which elicits the true preferences from the agents. Essential truthfulness only

partially achieves this because agents are not required to submit preference rela-

tions containing all acceptable matches. For real-life environments we are interested

whether agents truth-tell and which outcomes will be observed. Or in other words,

for a given OBNE which matchings are realized ex-post, i.e. after each realization of

a profile and its submitted rankings.

In order to guarantee that agents truthfully report their preferences, incentive-

compatible mechanisms make it a (weakly) dominant strategy to report truthfully.

Definition 5 (Incentive Compatibility) A mechanism ϕ is incentive compatible

if for each profile P ∈ P , we have for all w ∈ W , ϕ[Pw, P−w](w)Rwϕ[P̂w, P−w](w) for

all P̂w ∈ Pw, and for all f ∈ F and all P ∗
f ∈ resp(Pf ), ϕ[Pf , P−f ](f)R∗

fϕ[P̂f , P−f ](f)

for all P̂f ∈ Pf .

Incentive-compatibility is equivalent to the requirement that for any profile truth-

telling is a NE under complete information. Therefore, incentive-compatibility is

equivalent to truth-telling being an OBNE for all common beliefs.

Since incentive-compatibility is a strong condition, our incomplete information

environment allows a weaker (but still natural) condition. Given a common belief

and a mechanism, Bayesian incentive-compatibility requires that all agents truthfully
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reveal their preferences at any profile belonging to the support of the common belief.

Definition 6 (Bayesian Incentive Compatibility) Let P̃ be a common belief.

Then a mechanism ϕ is Bayesian incentive compatible under incomplete information

P̃ if for all v ∈ V and all Pv ∈ Pv such that Pr{P̃v = Pv} > 0,

ϕ[Pv, P̃−v|Pv ](v) mPv ϕ[P ′
v, P̃−v|Pv ](v) for all P ′

v ∈ Pv. (2)

By our powerful result Theorem 1, in many-to-one matching markets for stable

mechanisms Bayesian incentive-compatibility is equivalent to the requirement that

truth-telling is a NE under complete information for any profile belonging to the

support of the common belief.

Corollary 3 Let P̃ be a common belief. Then a stable mechanism ϕ is Bayesian

incentive compatible under incomplete information P̃ if and only if for any profile P

in the support of P̃ , P is a Nash equilibrium under complete information P in the

direct preference revelation game induced by ϕ.

In other words, a stable mechanism ϕ is Bayesian incentive compatible under the

common belief P̃ if and only if ϕ restricted to the support of P̃ is incentive compatible.

This result yields a strong connection between Bayesian incentive compatibility and

incentive compatibility for stable mechanisms in matching markets. Furthermore, it

can be easily seen that for P to be a Nash equilibrium under complete information

P in the direct preference revelation game induced by ϕ is independent of the stable

mechanism. All what matters is the stability of the mechanism.

If each firm has exactly one position, then Ehlers and Massó (2007) show that

singleton core is necessary and sufficient for truth-telling to be a NE in any stable

mechanism under complete information. Therefore, we obtain the principal result of

Ehlers and Massó (2007) as a corollary from Theorem 1.

Corollary 4 [Theorem 1 in Ehlers and Massó (2007)] Let qf = 1 for all f ∈ F and

P̃ be a common belief. Then, truth-telling is an OBNE in a stable mechanism under
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incomplete information P̃ if and only if the support of P̃ is contained in the set of all

profiles with singleton core.

By Theorem 1, singleton cores would be sufficient for truth-telling to be an OBNE

if at any profile belonging to the support of the common belief, truth-telling is a NE

under complete information. By Roth (1985a) we know that this is not the case since

he provides an example with singleton core where truth-telling is not a NE under

complete information. Specifically, in his example a firm with more than one position

profitably manipulates.

This is also the reason why Roth (1984b) does not apply to college admissions

problems. Roth (1984b) shows that when each firm has exactly one position, the

outcome of any NE under complete information of DAW where workers truth-tell (i.e.

they play their weakly dominant strategy) is stable with respect to the true profile

(see also Theorem 4.16 of Roth and Sotomayor (1990)). The analogous statement is

true for DAF when each firm has exactly one position. Once at least one firm has

several positions, truth-telling is not a weakly dominant strategy for the firms in DAF

and there is no reason to expect that firms truth-tell for a given belief. Furthermore,

it is easily seen that in the example of Roth (1985a) for DAW , if workers truth-tell,

then there are NE where the outcome is not stable with respect to the true profile.

Of course, by Theorem 1, Roth (1984b) applies when each firm has exactly one

position.

Corollary 5 Let qf = 1 for all f ∈ F and P̃ be a common belief. Let s be a strategy

profile such that sw(Pw) = Pw for all w ∈ W and all Pw ∈ Pw. If s is an OBNE in

the stable mechanism DAW under incomplete information P̃ , then for all profiles P

in the support of P̃ , DAW [s(P )] is stable with respect to P . The analogous statement

is true for the stable mechanism DAF .

Proof. Let P ∈ P be such that Pr{P̃ = P} > 0. By Theorem 1, s(P ) is a NE under

complete information P in DAW . Hence, by sw(Pw) = Pw for all w ∈ W and Roth
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(1984b), DAW [s(P )] ∈ C(P ), the desired conclusion. �

Note that in the above applications the preferences of each side of the market are

allowed to be uncorrelated. However, in empirical applications the preferences of one

side of the market may be perfectly correlated. For example, each firm may rank

all workers according to an objective criterion such as their degree of qualifications

or each college may rank all students according to their grades. Furthermore, it is

common in labor economics or search theory to often assume that all workers have

identical preferences over firms.23

We say that a common belief P̃ is F -correlated if for any profile P in the sup-

port of P̃ , all firms have identical preferences.24 Similarly we say that a belief P̃

is W -correlated if for any profile P in the support of P̃ , all workers have identical

preferences.

Corollary 6 Let P̃ be a common belief.

(a) If P̃ is F -correlated or W -correlated, then truth-telling is an OBNE in any

stable mechanism under incomplete information P̃ .

(b) Let s be a strategy profile such that sw(Pw) = Pw for all w ∈ W and all Pw ∈

Pw. If P̃ is W -correlated and s is an OBNE in the stable mechanism DAW

under incomplete information P̃ , then for all profiles P in the support of P̃ ,

DAW [s(P )] is stable with respect to P . The analogous statement is true for the

stable mechanism DAF .

Proof. (a) Let ϕ be a stable mechanism and P̃ be a common belief. Without loss

of generality, let P̃ be F -correlated. The case where P̃ is W -correlated is analogous

to the case where P̃ is F -correlated and all firms have quota 1. Let P be in the

23For instance, Shi (2002) provides a long list of papers on directed search models in labor markets

where at least one side of the market is homogenous.
24Formally this means for all f, f ′ ∈ F , A(Pf ) = A(Pf ′) and Pf |W = Pf ′ |W .
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support of P̃ . Because all firms’ preferences are identical at P , we have |C(P )| = 1,

say C(P ) = {µ}. By stability of ϕ, ϕ[P ] = µ. By Theorem 1, it suffices to show that

P is a NE under complete information P in the preference revelation game induced

by ϕ.

Because all firms have identical preferences, say Pf : w1w2 · · ·wk∅wk+1 · · · for all

f ∈ F , µ(w1) is w1’s most preferred firm (if any) under Pw1 . Then µ(w2) is w2’s most

preferred firm (if any) from F\{µ(w1)} under Pw2 , and in general for i = 1, . . . , |W |,

µ(wi) is wi’s most preferred firm (if any) from F\{µ(w1), . . . , µ(wi−1)} under Pwi
. By

stability of ϕ, obviously no worker can profitably manipulate.

Let f ∈ F , P ′
f ∈ Pf , P ′ = (P ′

f , P−f ), and µ′ = ϕ[P ′]. Suppose that for some

P ∗
f ∈ resp(Pf ) we have µ′(f)P ∗

f µ(f). Hence, µ′(f) 6= µ(f). By stability of ϕ, without

loss of generality we may suppose A(P ′
f ) = µ′(f). Again, by stability of ϕ, µ(f) ⊆

A(Pf ). Assume µ′(f) ( µ(f). Hence, |µ′(f)| < qf . By (r1) in the definition of a

responsive extension and by stability of µ, wPf∅ for all w ∈ µ(f) and µ(f)P ∗
f µ′(f),

a contradiction. Thus, by µ(f) ⊆ A(Pf ), µ′(f)\µ(f) 6= ∅. Let l be the smallest

index such that wl ∈ µ′(f)\µ(f). If for all i = 1, . . . , l − 1, µ′(wi) = µ(wi) = f ,

then by µ(wl) 6= f and P ′
−f = P−f , (wl, µ(wl)) blocks µ′ under P ′ since µ(wl) is

wl’s most preferred firm from F\{µ(w1), . . . , µ(wl−1)} under Pwl
and wl is a better

worker than any worker in µ′(µ(wl)); a contradiction to µ′ ∈ C(P ′). Hence, for some

i(l) ∈ {1, . . . , l−1}, we have wi(l) ∈ µ(f)\µ′(f). In other words, wi(l) is not acceptable

under P ′
f . Furthermore, by µ′ ∈ C(P ′), firm µ(wl) must fill all its slots under µ′ and

for some w ∈ W , w ∈ µ′(µ(wl)) and w /∈ µ(µ(wl)). Now either w ∈ µ(f)\µ′(f) or w’s

position at firm µ(w) is filled with some new worker w′ (i.e. µ(w′) 6= µ(w)). Then

again w′’s position at firm µ(w′) is filled with some new worker w′′ and so on. By

P ′
−f = P−f , in the end for any wl ∈ µ′(f)\µ(f) there must exist wi(l) ∈ µ(f)\µ′(f)

with i(l) < l. Furthermore, i(l) 6= i(l′) for all l 6= l′ such that wl, wl′ ∈ µ′(f)\µ(f).

Since µ(f) ⊆ A(Pf ), responsiveness of P ∗
f implies µ(f)R∗

fµ
′(f), a contradiction.

(b) Let P be in the support of P̃ . Since sw(Pw) = Pw for all w and P̃ is W -
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correlated, we have by (a) that no worker can gain by manipulation. Furthermore,

by Theorem 1, s(P ) must be a NE in DAW under P . Because P̃ is W -correlated, all

workers have identical preferences, say Pw : f1f2 · · · fl∅fl+1 · · · for all w ∈ W . Suppose

that DAW [s(P )] is not stable with respect to P . Since s(P ) is a NE in DAW under P ,

no agent is matched to any partner under DAW [s(P )] which is unacceptable accord-

ing to its true preference relation. Suppose that some unmatched worker-firm pair

(w, f) blocks DAW [s(P )]. Then f ∈ A(Pw) and by sw(Pw) = Pw, fPwDAW [s(P )](w).

But then, along the DAW -algorithm which produces DAW [s(P )], worker w proposed

to f before proposing to DAW [s(P )](w) and because all workers’ submitted lists

are identical, at that step all unmatched workers proposed to f (and the set of un-

matched workers shrinks from one step to the next one). Let w′ be the least preferred

worker according to Pf in DAW [s(P )](f). But now f profitably deviates from s(P )

in DAW by submitting a list P ′
f where A(P ′

f ) = (DAW [s(P )](f)∪ {w})\{w′}. When

in DAW [P ′
f , s−f (P−f )] worker w proposes to f , all unmatched workers propose to

f in that step because all workers’ submitted lists are identical. Firm f accepts

(DAW [s(P )](f) ∪ {w})\{w′} which is strictly preferred to DAW [s(P )](f) under any

responsive extension P ∗
f of Pf . Hence, s(P ) is not a NE in DAW under P , a contra-

diction. �

Although Corollary 6 focuses on completely correlated beliefs, it is easy to extend

it in the following direction. Suppose that each worker has a certain qualification

and each firm only offers positions having the same job-specific qualification. Let all

firms, which are interested in the same qualification, have identical preferences over all

workers possessing this qualification for any realization in the common belief. Then

the qualifications segregate the matching market and the conclusions of Corollary

6 apply. For example, each firm may represent a certain department in a hospital

and they would like to fill their positions with physicians who studied the medical

specialty of their department.
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For a given OBNE we are interested in which matchings are realized ex-post,

i.e. after each realization of a profile and its submitted rankings. Since we consider

stable mechanisms, any realized matching is stable for the submitted profile. It turns

out that all agents unanimously agree that the realized matching is truthfully most

preferred among all matchings which are stable for the submitted profile. We think

that this is an extremely important property because it justifies ex-post the use of

the particular stable mechanism ϕ.

Corollary 7 (Ex-Post Unanimity) Let P̃ be a common belief, s be a strategy pro-

file, and ϕ be a stable mechanism. Then, s is an OBNE in the stable mechanism

ϕ under P̃ only if for all profiles P belonging to the support of P̃ , all µ ∈ C(s(P ))

and all v ∈ V , ϕ[s(P )](v)Rvµ(v) (if v ∈ W ) and ϕ[s(P )](v)R∗
vµ(v) for all responsive

extensions P ∗
v of Pv (if v ∈ F ).

Proof. Let P ∈ P be such that Pr{P̃ = P} > 0. Without loss of generality, let v ∈ F

(the proof for v ∈ W is analogous and easier). Suppose that for some µ ∈ C(s(P )) we

have µ(v)P ∗
v ϕ[s(P )](v) for some P ∗

v ∈ resp(Pv). Since the number of filled positions is

identical for all firms for any two stable matchings (property (P3) of the core and sta-

ble matchings), we have |µ(v)| = |ϕ[s(P )](v)|. Then µ(v)\ϕ[s(P )](v) 6= ∅ and by The-

orem 4 of Roth and Sotomayor (1989), for all w ∈ µ(v) and all w′ ∈ ϕ[s(P )](v)\µ(v),

wPvw
′. Let P ′

v ∈ Pv be such that A(P ′
v) = µ(v). Then it is easy to check that

µ ∈ C(s(P )) implies µ ∈ C(P ′
v, s−v(P−v)). By stability of ϕ and A(P ′

v) = µ(v),

ϕ[P ′
v, s−v(P−v)](v) = µ(v). Since µ(v)P ∗

v ϕ[s(P )](v), s(P ) is not a NE in ϕ for P and

by Theorem 1, s is not an OBNE in ϕ under P̃ , a contradiction. �

Ehlers and Massó (2007, Theorem 2) showed Corollary 7 for one-to-one matching

markets. Note that they could not rely on our general result Theorem 1 which allows

the use of simple arguments to show that whenever the agents do not unanimously

agree that the realized matching is most preferred in the core of the reported profile,
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then the agents do not play a NE at this profile. It follows directly from Corollary 7

that truth-telling is an OBNE only if the core is singleton at any realized profile.

5 Final Remarks

In many-to-one matching markets Theorem 1 provides for stable mechanisms a strong

link between OBNE under incomplete information and NE under complete informa-

tion. Theorem 1 is in general not true for OBNE for arbitrary mechanisms. For

instance, suppose that the common belief P̃ u is uniform in the sense that it puts

equal probability on all preference profiles. Furthermore, suppose that the mecha-

nism ϕ matches a worker and a firm if and only if they rank each other as their most

preferred choice (and ϕ leaves all other positions unfilled and all other workers un-

matched). Then it is easy to verify that truth-telling is an OBNE in the mechanism

ϕ under the uniform belief P̃ u.25 However, truth-telling is not always a NE under

complete information in the mechanism ϕ since for some profiles, a firm may rank

a worker first and a worker the firm second, and if the worker is unmatched, then

she profitably manipulates by moving the firm to the first position of her submitted

ranking. Hence, the reason for the link between the ex-ante and ex-post equilibrium

in our main result relies on the stability of mechanisms.

In our framework one may be tempted to apply the revelation principle. This

means that for a given OBNE s in a stable mechanism ϕ under P̃ , we define another

mechanism ϕs such that truth-telling is an OBNE in ϕs under P̃ . However, there

is no reason to expect that ϕs is a stable mechanism. For example, for any of the

“local market” OBNE after Definition 4 the induced mechanism is unstable. And

again, both stable mechanisms are frequently used in real-life matching markets and

we are interested in those. Finally, the above example also shows that after invoking

25For any agent v and any Pv ∈ Pv, P̃u
−v|Pv is uniform over P−v. For all agents belonging to the

opposite side of the market, the probability that she ranks v first is identical. Hence, v cannot do

better than submitting the true preference relation.
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the revelation principle, the strong link of Theorem 1 is not true for truth-telling and

arbitrary mechanisms. It is not clear which properties matching mechanisms possess

where truth-telling is an OBNE.

It would be interesting to identify other economic environments where a similar

link between BNE under incomplete information and NE under complete information

holds. In those environments the strategic analysis under complete information is

essential to undertake the corresponding analysis under incomplete information.
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APPENDIX

Before we prove Theorem 1, we recall the following properties of the core of a

college admissions problem. These properties will be used frequently in the proof. It

will be convenient to write (F, W, P ; q) for any college admissions problem (F, W, q, P )

in which qf = 1 for all f ∈ F .

A.1 Properties of the Core

(I) For each P ∈ P , the set of unmatched agents is the same for all stable matchings

(see Roth and Sotomayor, 1990, Theorems 5.12 and 5.13); namely, for all µ, µ′ ∈ C(P ),

and for all w ∈ W and f ∈ F , (i) if µ(w) = ∅, then µ′(w) = ∅; (ii) |µ(f)| = |µ′(f)|;

and (iii) if |µ(f)| < qf , then µ(f) = µ′(f).

(II) Given (F, W, q, P ), split each firm f into qf identical copies of itself (all having

the same preference ordering Pf ) and let F ′ be this new set of
∑

f∈F qf splitted firms.

Set q′f ′ = 1 for all f ′ ∈ F ′ and replace f by its copies in F ′ (always in the same order)

in each worker’s preference relation Pw. Then, (F ′, W, P ; q′) is a marriage market for

which we can uniquely identify its matchings with the matchings of the original college

admissions problem (F, W, q, P ), and vice versa (Roth and Sotomayor, 1990, Lemma

5.6). Then, and using this identification, we write C(F, W, q, P ) = C(F ′, W, P ; q′).

(III) Consider a marriage market (F, W, P ; q) and suppose that new workers enter the

market. Let (F, W ′, P ′; q) be this new marriage market where W ⊆ W ′ and P ′ agrees

with P over F and W . Let DAW [P ] = µW . Then, for all f ∈ F , µ′(f)R′
fµW (f) for

all µ′ ∈ C(F, W ′, P ′; q) (Gale and Sotomayor, 1985; Crawford, 1991).

A.2 Proof of Theorem 1

Theorem 1 Let P̃ be a common belief, s be a strategy profile, and ϕ be a stable mech-

anism. Then, s is an OBNE in the stable mechanism ϕ under incomplete information

P̃ if and only if for any profile P in the support of P̃ , s(P ) is a Nash equilibrium

under complete information P in the direct preference revelation game induced by ϕ.
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Proof. Let P̃ be a common belief, s be a strategy profile and ϕ be a stable mecha-

nism.

(⇐) Suppose that for any profile P in the support of P̃ , s(P ) is a Nash equilib-

rium under complete information P in the direct preference revelation game in-

duced by ϕ. Let v ∈ V and Pv ∈ Pv be such that Pr{P̃v = Pv} > 0. By

the previous fact, then we have for all P ′
v ∈ Pv and all P−v ∈ P−v such that

Pr{P̃−v|Pv = P−v} > 0, ϕ[s(P )](v)R∗
vϕ[P ′

v, s−v(P−v)](v) for all P ∗
v ∈ resp(Pv) (if

v ∈ F ) and ϕ[s(P )](v)Rvϕ[P ′
v, s−v(P−v)](v) (if v ∈ W ). Hence,

ϕ[sv(Pv), s−v(P̃−v|Pv)](v) mPv ϕ[P ′
v, s−v(P̃−v|Pv)](v),

and s is an OBNE in ϕ under P̃ , the desired conclusion.

(⇒) Let s be an OBNE in the stable mechanism ϕ under incomplete information P̃ .

First we show that for all P ∈ P such that Pr{P̃ = P} > 0,

ϕ[s(P )](v) ⊆ A(Pv) for all v ∈ V. (3)

If for some P in the support of P̃ and for some v ∈ V , ϕ[s(P )](v) 6⊆ A(Pv), then

choose P ′
v ∈ Pv such that A(P ′

v) = A(Pv) ∩ A(sv(Pv)) and P ′
v|A(P ′

v) = sv(Pv)|A(P ′
v).

By the stability of ϕ and our choice of P ′
v, we have ϕ[P ′

v, s−v(P
′
−v)](v) ⊆ A(Pv) for

all P ′
−v ∈ P−v. Let v ∈ F (the case v ∈ W is analogous and easier). We choose

a responsive extension P ∗
v of Pv such that for all W ′ ∈ 2W , W ′R∗

v∅ if and only

if W ′ ⊆ A(Pv). Hence, by ϕ[P ′
v, s−v(P−v)](v) ⊆ A(Pv) and ϕ[s(P )](v) 6⊆ A(Pv),

ϕ[P ′
v, s−v(P−v)](v)R∗

v∅P ∗
v ϕ[s(P )](v). Since Pr{P̃−v|Pv = P−v} > 0, it follows that

Pr{ϕ[P ′
v, s−v(P̃−v|Pv)](v) ∈ B(∅, P ∗

v )} = 1 > Pr{ϕ[sv(Pv), s−v(P̃−v|Pv)](v) ∈ B(∅, P ∗
v )},

which means that s is not an OBNE in the stable mechanism ϕ under P̃ , a contra-

diction. Hence, (3) holds.

Second suppose that there is some P ∈ P such that Pr{P̃ = P} > 0 and s(P )

is not a Nash equilibrium under complete information P in the direct preference
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revelation game induced by ϕ. Then, without loss of generality, there exist f ∈ F ,

P ′
f ∈ Pf , and a responsive extension P ∗

f of Pf such that

ϕ[P ′
f , s−f (P−f )](f)P ∗

f ϕ[s(P )](f). (4)

The case where a worker has a profitable deviation is analogous to the case where a

firm with quota one has a profitable deviation.

Let ϕ[P ′
f , s−f (P−f )] = µ′ and ϕ[s(P )] = µ. Furthermore, let µ′(f) = {w′

1, w
′
2, . . . , w

′
|µ′(f)|}

where w′
1Pfw

′
2Pf · · ·Pfw

′
|µ′(f)| and µ(f) = {w1, w2, . . . , w|µ(f)|} where w1Pfw2Pf · · ·Pfw|µ(f)|.

We now construct from P ′
f another deviation P ′′

f and from µ′(f) both a responsive

extension P ∗∗
f of Pf and a subset of workers W ∗, and prove that the random match-

ing ϕ[sf (Pf ), s−f (P̃−f |Pf
)] does not first-order stochastically Pf -dominate the ran-

dom matching ϕ[P ′′
f , s−f (P̃−f |Pf

)] since Pr{ϕ[P ′′
f , s−f (P̃−f |Pf

)](f) ∈ B(W ∗, P ∗∗
f )} >

Pr{ϕ[sf (Pf ), s−f (P̃−f |Pf
)](f) ∈ B(W ∗, P ∗∗

f )}. We proceed by distinguishing between

two mutually exclusive cases.

Case 1: There exists k ∈ {1, . . . , |µ′(f)|} such that w′
kPfwk and wlRfw

′
l for all

l ∈ {1, . . . , k − 1}.

Note that w′
k ∈ A(Pf ) because w′

kPfwk and by (3), wk ∈ µ(f) ⊆ A(Pf ). Let

P ′′
f ∈ Pf be such that A(P ′′

f ) = B(w′
k, Pf ) and P ′′

f |A(P ′′
f ) = P ′

f |A(P ′′
f ).

First we show that ϕ[P ′′
f , s−f (P−f )](f) contains at least k workers. Note that any

profile implicitly specifies the set of agents of the matching problem. For the time

being, below we specify both the profile and the quota of the matching problem.

Because ϕ is stable and ϕ[P ′
f , s−f (P−f )] = µ′, we have µ′ ∈ C(P ′

f , s−f (P−f ); q). Let

µ′′ be the matching for the problem (F, W\{w′
k+1, . . . , w

′
|µ′(f)|}, (k, q−f ),

(P ′
f , s−{f}∪{w′

k+1,...,w′
|µ′(f)|}

(P−{f}∪{w′
k+1,...,w′

|µ′(f)|}
))) such that µ′′(f) = {w′

1, . . . , w
′
k} and

µ′′(f ′) = µ(f ′) for all f ′ ∈ F\{f}. Then from µ′ ∈ C(P ′
f , s−f (P−f ); q) it follows that

µ′′ ∈ C(P ′
f , s−{f}∪{w′

k+1,...,w′
|µ′(f)|}

(P−{f}∪{w′
k+1,...,w′

|µ′(f)|}
); k, q−f ). (5)

By our choice of P ′′
f , we have µ′′(f) ⊆ A(P ′′

f ) and P ′′
f |A(P ′′

f ) = P ′
f |A(P ′′

f ). Hence, we
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also have by (5),

µ′′ ∈ C(P ′′
f , s−{f}∪{w′

k+1,...,w′
|µ′(f)|}

(P−{f}∪{w′
k+1,...,w′

|µ′(f)|}
); k, q−f ). (6)

Thus, by µ′′(f) = {w′
1, . . . , w

′
k} and the fact that any firm is matched to the same

number of workers under all stable matchings, firm f is matched to k workers for

all matchings belonging to C(P ′′
f , s−{f}∪{w′

k+1,...,w′
|µ′(f)|}

(P−{f}∪{w′
k+1,...,w′

|µ′(f)|}
); k, q−f ).

Now if firm f is matched to fewer than k workers in some matching belonging to

C(P ′′
f , s−{f}∪{w′

k+1,...,w′
|µ′(f)|}

(P−{f}∪{w′
k+1,...,w′

|µ′(f)|}
); q), then this matching is also stable

for the problem (P ′′
f , s−{f}∪{w′

k+1,...,w′
|µ′(f)|}

(P−{f}∪{w′
k+1,...,w′

|µ′(f)|}
); k, q−f ), a contradic-

tion to the previous fact. Hence, f is matched to at least k workers in any sta-

ble matching belonging to C(P ′′
f , s−{f}∪{w′

k+1,...,w′
|µ′(f)|}

(P−{f}∪{w′
k+1,...,w′

|µ′(f)|}
); q). Now

when considering the worker optimal matching in this core, we may split firm f

into qf copies (all having the same preference P ′′
f ) and each copy of firm f weakly

prefers according to P ′′
f any matching in C(P ′′

f , P−f ; q) to this matching. Since at

least k copies of f are matched to a worker under the worker optimal matching in

C(P ′′
f , s−{f}∪{w′

k+1,...,w′
|µ′(f)|}

(P−{f}∪{w′
k+1,...,w′

|µ′(f)|}
); q), at least k copies of f must be

also matched to a worker under any stable matching in C(P ′′
f , s−f (P−f ); q). There-

fore, by ϕ[P ′′
f , s−f (P−f )] ∈ C(P ′′

f , s−f (P−f ); q), ϕ[P ′′
f , s−f (P−f )](f) contains at least k

workers.

Second we choose a responsive extension P ∗∗
f of Pf . Let W ∗ ⊆ B(w′

k, Pf ) be

such that W ∗ consists of the k lowest ranked workers (according to Pf ) in the set

B(w′
k, Pf ), i.e. |W ∗| = k and for all w ∈ B(w′

k, Pf )\W ∗ and all w∗ ∈ W ∗, wPfw
∗.

Let P ∗∗
f be the responsive extension of Pf be such that for all W ′′ ∈ 2W , W ′′P ∗∗

f W ∗

if and only if the following three conditions hold: (i) W ′′ ⊆ A(Pf ), (ii) |W ′′| ≥ k,

and (iii) if W ′′ = {w′′
1 , w

′′
2 , . . . , w

′′
|W ′′|} where w′′

1Pf · · ·Pfw
′′
|W ′′| and W ∗ = {w∗

1, . . . , w
∗
k}

where w∗
1Pf · · ·Pfw

∗
k, then w′′

l Rfw
∗
l for all l ∈ {1, . . . , k}. Since ϕ[P ′′

f , s−f (P−f )](f)

contains at least k workers and A(P ′′
f ) = B(w′

k, Pf ), our construction implies that

ϕ[P ′′
f , s−f (P−f )](f)P ∗∗

f ϕ[s(P )](f). More precisely, for Case 1 the set ϕ[s(P )](f) vio-
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lates (iii) and our choice of P ∗∗
f and W ∗ yields

ϕ[P ′′
f , s−f (P−f )](f)R∗∗

f W ∗P ∗∗
f ϕ[s(P )](f). (7)

Third we show that for all (Pf , P
′
−f ) in the support of P̃ , if ϕ[sf (Pf ), s−f (P

′
−f )](f) ∈

B(W ∗, P ∗∗
f ), then ϕ[P ′′

f , s−f (P
′
−f )](f) ∈ B(W ∗, P ∗∗

f ). This then completes the proof

for Case 1 because by Pr{P̃−f |Pf
= P−f} > 0, and (7), it follows that

Pr{ϕ[P ′′
f , s−f (P̃−f |Pf

)](f) ∈ B(W ∗, P ∗∗
f )} > Pr{ϕ[sf (Pf ), s−f (P̃−f |Pf

)](f) ∈ B(W ∗, P ∗∗
f )},

which means that s is not an OBNE in ϕ under P̃ .

Suppose that ϕ[sf (Pf ), s−f (P
′
−f )](f)R∗∗

f W ∗. By our choice of P ∗∗
f , then

ϕ[sf (Pf ), s−f (P
′
−f )](f) ∩B(w′

k, Pf ) must contain at least k workers. (8)

If ϕ[P ′′
f , s−f (P

′
−f )](f) contains at least k workers, then all these workers belong to

B(w′
k, Pf ). Thus, by our choice of P ∗∗

f and W ∗, ϕ[P ′′
f , s−f (P

′
−f )](f)R∗∗

f W ∗, the desired

conclusion.

Suppose that ϕ[P ′′
f , s−f (P

′
−f )](f) contains fewer than k workers. Let µ̂ =

ϕ[sf (Pf ), s−f (P
′
−f )]. Let µ̂(f) = {ŵ1, . . . , ŵ|µ̂(f)|} where ŵ1Pf · · ·Pf ŵ|µ̂(f)|. By (8),

µ̂(f) ∩ B(w′
k, Pf ) contains at least k workers. Thus, k ≤ |µ̂(f)|. For the time

being, below we specify both the profile and the quota of the matching problem.

Then we have µ̂ ∈ C(sf (Pf ), s−f (P
′
−f ); q). Let µ̂′ be the matching for the problem

(F, W\{ŵk+1, . . . , ŵ|µ̂(f)|}, (k, q−f ), (sf (Pf ), s−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}(P
′
−{f}∪{ŵk+1,...,ŵ|µ̂(f)|})) such

that µ̂′(f) = {ŵ1, . . . , ŵk} and µ̂′(f ′) = µ̂(f ′) for all f ′ ∈ F\{f}. Then, from

µ̂ ∈ C(sf (Pf ), s−f (P
′
−f ); q) it follows that

µ̂′ ∈ C(sf (Pf ), s−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}(P
′
−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}); k, q−f ). (9)

Let ŵ ∈ µ̂′(f) be such that µ̂′(f) ⊆ B(ŵ, sf (Pf )) (in other words, ŵ is the worker

who is least preferred in µ̂′(f) according to sf (Pf )). Let P̂f ∈ Pf be such that

A(P̂f ) = B(ŵk, Pf ) ∩ B(ŵ, sf (Pf )) and P̂f |A(P̂f ) = P ′′
f |A(P̂f ). Then we must have

µ̂′ ∈ C(P̂f , s−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}(P
′
−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}); k, q−f ) (otherwise there would
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exist a blocking pair for µ̂′;26 then by (9) and the fact that only firm f ’s preference

changed from sf (Pf ) to P̂f , firm f needs to be part of this blocking pair; thus, (w, f)

blocks µ̂′ which implies w /∈ µ̂′(f) and w 6= ŵ, and w ∈ A(P̂f ) = B(ŵk, Pf ) ∩

B(ŵ, sf (Pf )); therefore, w ∈ B(ŵ, sf (Pf ))\µ̂′(f) and (w, f) must also block µ̂′ under

(sf (Pf ), s−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}(P
′
−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}); k, q−f ), a contradiction to (9).)

Thus, since |µ̂′(f)| = k, firm f is matched to k workers for all matchings belonging

to C(P̂f , s−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}(P
′
−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}); k, q−f ). Now if firm f is matched

to fewer than k workers for some µ̃ ∈ C(P̂f , s−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}(P
′
−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}); q),

then µ̃ is also stable under (P̂f , s−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}(P
′
−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}); k, q−f ), a

contradiction to the previous fact. Hence, f is matched to at least k workers in

any stable matching belonging to C(P̂f , s−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}(P
′
−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}); q).

Now when considering the worker optimal matching in this core, we may split firm

f into qf copies (all having the same preference P̂f ) and each copy of firm f weakly

prefers according to P̂f any matching in C(P̂f , s−f (P
′
−f ); q) to this matching. Since

at least k copies of f are matched to a worker under the worker optimal matching in

C(P̂f , s−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}(P
′
−{f}∪{ŵk+1,...,ŵ|µ̂(f)|}); q),

at least k copies of f are matched to a worker in any matching in C(P̂f , s−f (P
′
−f ); q).

(10)

On the other hand, ϕ[P ′′
f , s−f (P

′
−f )](f) contains fewer than k workers. Let µ̃ =

ϕ[P ′′
f , s−f (P

′
−f )]. Let µ̃′ be the matching for the problem (F, W\(µ̃(f)\A(P̂f )), q,

(P ′′
f , s−{f}∪(µ̃(f)\A(P̂f ))(P

′
−{f}∪(µ̃(f)\A(P̂f ))

))) such that µ̃′(f) = µ̃(f)∩A(P̂f ) and µ̃′(f ′) =

µ̃(f ′) for all f ′ ∈ F\{f}. Since µ̃ ∈ C(P ′′
f , s−f (P

′
−f ), q) and µ̃(f) contains fewer than

qf workers, we must have µ̃′ ∈ C(P ′′
f , s−{f}∪(µ̃(f)\A(P̂f ))(P

′
−{f}∪(µ̃(f)\A(P̂f ))

); q). Thus, by

µ̃′(f) ⊆ A(P̂f ) and P̂f |A(P̂f ) = P ′′
f |A(P̂f ), we also obtain

µ̃′ ∈ C(P̂f , s−{f}∪(µ̃(f)\A(P̂f ))(P
′
−{f}∪(µ̃(f)\A(P̂f ))

); q). Hence, in any matching belonging

to this core firm f is matched to |µ̃′(f)| = |µ̃(f)∩A(P̂f )| workers. Now when consider-

26Note that µ̂′ is individually rational because both µ̂′(f) ⊆ B(ŵk, Pf ) and µ̂′(f) ⊆ B(ŵ, sf (Pf ))

(by our choice of ŵ).
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ing the worker optimal matching in this core, we may split each firm f ′ ∈ F\{f} into

qf ′ copies (all having the same preference sf ′(P ′
f ′)) and each copy of firm f ′ weakly

prefers according to sf ′(P ′
f ′) any matching in C(P̂f , s−f (P

′
−f ); q) to this matching.

Thus, in total all the copies of all firms f ′ ∈ F\{f} receive at least the same number

of workers in C(P̂f , s−f (P
′
−f ); q) as they did previously. Since exactly |µ̃(f)\A(P̂f )|

new workers are available and f was matched to |µ̃′(f)| = |µ̃(f) ∩ A(P̂f )| workers

before, firm f can be matched to at most |µ̃(f)| workers under any stable match-

ing in C(P̂f , s−f (P
′
−f ); q). Since |µ̃(f)| is smaller than k, this contradicts (10) and

the fact that under responsive preferences, firm f is matched to the same number

of workers for any two matchings in C(P̂f , s−f (P
′
−f ); q). Hence, ϕ[P ′′

f , s−f (P
′
−f )](f)

cannot contain fewer than k workers.

Case 2: Otherwise.

Then we have wlRfw
′
l for all l ∈ {1, . . . , min{|µ(f)|, |µ′(f)|}}. Let k = |µ(f)|. If

|µ′(f)| ≤ µ(f), then by responsiveness of P ∗
f and µ(f) ⊆ A(Pf ), we have µ(f)R∗

fµ
′(f),

which contradicts (4). Hence, we must have |µ′(f)| > |µ(f)| = k, qf > k, and w′
k+1 ∈

A(Pf ). Let P ′′
f ∈ Pf be such that A(P ′′

f ) = B(w′
k+1, Pf ) and P ′′

f |A(P ′′
f ) = P ′

f |A(P ′′
f ).

Since µ(f) ⊆ B(w′
k+1, Pf ) = A(P ′′

f ) and µ(f) does not fill the quota of firm f , we

must have µ ∈ C(P ′′
f , s−f (P−f ); q). Hence,

firm f is matched to k workers under any matching in C(P ′′
f , s−f (P−f ); q). (11)

On the other hand, let µ′′ be the matching for the problem (F, W\{w′
k+2, . . . , w

′
|µ′(f)|}, (k+

1, q−f ), (P
′′
f , s−{f}∪{w′

k+2,...,w′
|µ′(f)|}

(P−{f}∪{w′
k+2,...,w′

|µ′(f)|}
))) such that µ′′(f) = {w′

1, . . . , w
′
k+1}

and µ′′(f ′) = µ′(f ′) for all f ′ ∈ F\{f}. Then from µ′ ∈ C(P ′
f , s−f (P−f ); q) it fol-

lows that µ′′ ∈ C(P ′
f , s−{f}∪{w′

k+2,...,w′
|µ′(f)|}

(P−{f}∪{w′
k+2,...,w′

|µ′(f)|}
); k + 1, q−f ). Thus, by

µ′′(f) ⊆ B(w′
k+1, Pf ) = A(P ′′

f ) and P ′′
f |A(P ′′

f ) = P ′
f |A(P ′′

f ),

µ′′ ∈ C(P ′′
f , s−{f}∪{w′

k+2,...,w′
|µ′(f)|}

(P−{f}∪{w′
k+2,...,w′

|µ′(f)|}
); k + 1, q−f ). Now if firm f is

matched to fewer than k + 1 workers in some matching belonging to

C(P ′′
f , s−{f}∪{w′

k+2,...,w′
|µ′(f)|}

(P−{f}∪{w′
k+2,...,w′

|µ′(f)|}
); q), then this matching is also stable

for the problem (P ′′
f , s−{f}∪{w′

k+2,...,w′
|µ′(f)|}

(P−{f}∪{w′
k+2,...,w′

|µ′(f)|}
); k + 1, q−f ), a contra-
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diction to the previous fact. Hence, f is matched to at least k +1 workers in any sta-

ble matching belonging to C(P ′′
f , s−{f}∪{w′

k+2,...,w′
|µ′(f)|}

(P−{f}∪{w′
k+2,...,w′

|µ′(f)|}
); q). Now

when considering the worker optimal matching in this core, we may split firm f into

k + 1 copies (all having the same preference P ′′
f ) and each copy of firm f weakly

prefers according to P ′′
f any matching in C(P ′′

f , s−f (P−f ); q) to this matching. Since

at least k + 1 copies of f are matched to a worker under the worker optimal match-

ing in C(P ′′
f , s−{f}∪{w′

k+2,...,w′
|µ′(f)|}

(P−{f}∪{w′
k+2,...,w′

|µ′(f)|}
); q), at least k + 1 copies of f

must be also matched to a worker under any matching in C(P ′′
f , s−f (P−f ); q), which

contradicts (11) and the fact that firm f is matched to the same number of workers

under any matching in C(P ′′
f , s−f (P−f ); q). Hence, Case 2 cannot occur. �
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