
Contributions to Theoretical
Economics

Volume6, Issue1 2006 Article 8

The Uniqueness of Stable Matchings

Simon Clark∗

∗University of Edinburgh, simon.clark@ed.ac.uk

Copyright c©2006 The Berkeley Electronic Press. All rights reserved.



The Uniqueness of Stable Matchings∗

Simon Clark

Abstract

This paper analyses conditions on agents’ preferences for a unique stable matching in models
of two-sided matching with non-transferable utility. The No Crossing Condition (NCC) is suf-
ficient for uniqueness; it is based on the notion that a person’s characteristics, for example their
personal qualities or their productive capabilities, not only form the basis of their own attraction
to the opposite sex but also determine their own preferences. The paper also shows that a weaker
condition, alpha-reducibility, is both necessary and sufficient for a population and any of its sub-
populations to have a unique stable matching. If preferences are based on utility functions with
agents’ characteristics as arguments, then the NCC may be easy to verify. The paper explores
conditions on utility functions which imply that the NCC is satisfied whatever the distribution of
characteristics. The usefulness of this approach is illustrated by two simple models of household
formation.
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1 Introduction

In 1962 Gale and Shapley posed and solved “the stable marriage problem”,
which asks whether it is possible to pair the members of one set (men) with
members of another, disjoint, set (women), in such a way that no man and
woman who are not paired with each other would both prefer to leave their
partners and marry each other. They proved that at least one such equilib-
rium, called a stable matching, exists and they showed how to find it. Since
Gale and Shapley’s paper, there has arisen a considerable literature which has
focused on the size and structure of the set of stable matchings. For example,
Irving and Leather have shown that if there are n men and n women (so that
there are n! possible matchings) and if n is a power of 2 then there exist rank-
ings of men by women and vice versa such that there are at least 2n−1 stable
matchings (Irving and Leather, 1986).1

By contrast, little attention has been paid to exploring conditions un-
der which there is a unique stable matching. This is remarkable given the
importance generally attached to uniqueness, particularly its usefulness for
prediction and comparative statics. In a matching context, uniqueness has
a further advantage: if the actual pairings of men and women are a stable
matching based upon reported preferences, then truth-telling by all agents is
a Nash equilibrium if and only if there is a unique stable matching based upon
actual preferences.2 But even assuming agents cannot or do not conceal their
true preferences, if there is more than one stable matching then although the
lattice structure referred to in Footnote 1 may simplify the choice problem
of a social planner or mechanism designer, it does not help identify the opti-
mal stable matching unless the planner or designer is concerned only with the
interests of one side of the market (e.g. men).

One route to uniqueness, identified by Gusfield and Irving (1989), is to
assume one side, men for example, all have the same preferences, with the

1Furthermore, the set of stable matchings is a distributive lattice under the common
interests of men dual to the common interests of women; see Roth and Sotomayor (1990),
Section 3.

2From Theorem 4.6 in Roth and Sotormayor, (1990), non-uniqueness implies that truth-
telling is not a Nash equilibrium of the revelation game induced by any stable mechanism
(i.e. one whose outcome is a stable matching). Conversely, a special case of a theorem due
to Demange, Gale and Sotormayor (1987) (Theorem 4.11 in Roth and Sotormayor, 1990),
can be stated as follows: if only agent a lies about his/her preferences, then there is no
reported stable matching (i.e. based upon reported preferences) which is preferred by a to
all actual stable matchings (based upon actual preferences). Therefore if there is only one
actual stable matching, so that it is the matching selected by any stable mechanism when
all agents report their true preferences, then truth-telling is a Nash equilibrium.
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actual matching determined by the women’s preferences: the universally most
preferred woman gets her most preferred man, the second most preferred
woman gets her preferred man from those who remain, and so on. More
recently, Eeckhout (2000) has shown that there is a unique stable matching if
the sets of men and women can each be ordered so that any man and woman
with the same rank prefer each other above any other partner with a lower
rank; i.e. man i prefers woman i to women i + 1, i + 2, ..., n, and woman i
prefers man i to men i + 1, i + 2, ..., n. I call this the Sequential Preference
Condition (SPC). Then man 1 and woman 1 must be matched in any stable
matching, as must man 2 and woman 2 since they most prefer each other once
man 1 and woman 1 have been paired off; working through the rankings, man
i must be matched with woman i, implying a unique stable matching.

The SPC is a great improvement on Gusfield and Irving’s condition, and
much less restrictive. However, it has two drawbacks: firstly, by itself it
provides no clue as to why such orderings should exist, or how they might
be constructed. For example, if men’s rankings of a particular set of women
result from applying one or more criteria that could be applied to any set
of women (in effect by treating a woman’s characteristics as arguments in a
utility function) then how is the SPC related to the criteria used by men, and
by women to rank men? If the same set of men were to be matched with
a different set of women, then there is no reason to expect that even if the
SPC were still satisfied the ordering of the set of men required by the SPC
would remain the same. In this sense, the SPC orderings are endogenous, and
may bear little relation to the underlying structure of agents’ tastes or their
characteristics.

Secondly, although a population may satisfy the SPC, a subset of it may
not. This has, of course, the immediate consequence that when analysing
such subpopulations the benefits of having a unique stable matching cannot be
guaranteed.3 More generally it implies that if we look for conditions on the set
of all possible men and women, a “super-population” from which a particular
population to be analysed is drawn, then knowing that the SPC is satisfied
for the super-population does not imply that the particular population has a
unique stable matching.

The starting point for this paper is to describe and analyse a condition
that meets these objections. It is based on the notion that a person’s char-
acteristics, for example their physical appearance, their personal qualities, or

3This might be problematic, for example, if we sought to analyse a stratified population,
in which agents could only match with others from the same stratum. That the SPC is
satisfied by the larger population does not imply that it is satisfied by each of its constituent
strata. For an analysis of matching in stratified populations, see Clark (2003).
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their productive capabilities, both form the basis of their attraction to the
opposite sex and determine to whom they themselves are attracted. The
condition I propose is called the No Crossing Condition (NCC). It has two
components: firstly, we order completely the set of men, M, and the set of
women, W , the implication being that such orderings are based on one or
more personal characteristics which make up their type; secondly, men fur-
ther along the ordering of M tend to prefer women further along the ordering
of W, and vice versa. The exact sense of “tend to prefer” is made clear in the
next section, but the NCC encompasses two special cases: when all members
of one sex agree on their preferences for the other sex, and when each person
would prefer a partner who is similar to themselves.

It must be recognised at the outset that the NCC is a stronger condition
than the SPC, and one aim of this paper is to provide a sufficient condition
for the SPC that is intuitive and in many applications relatively easy to verify,
in particular when preference orderings are based on given utility functions.
However, the paper goes beyond the analysis of uniqueness in a given pop-
ulation P to identify a condition which is both necessary and sufficient for
every subpopulation of P to have a unique stable matching. This condition,
α−reducibility, was developed originally by Alcalde (1995) in the context of
roommate problems and is weaker than the NCC but stronger than the SPC.
Taking P to be the “super-population” referred to above, then there is a
unique stable matching whatever the subpopulation of P being analysed if
and only P is α−reducible.

If preferences are based on given utility functions whose arguments are
agents’ characteristics, then in many instances it may be straightforward to
verify if the NCC is satisfied by direct examination of the utility functions.
Ordering the setsM andW may be simple if preferences are based on a single
characteristic for each sex: e.g. height, taste in music, wealth, or competence
at a particular task. The NCC then says, for instance, that taller men tend to
prefer taller woman and vice versa; or, to take an example based on the mar-
ket for hospital interns (see Roth, 1984), that those medical graduates who are
more interested in the academic rather than the pastoral aspects of medicine
tend to prefer hospitals that are more oriented towards medical research, and
vice versa. But if agents’ types are a bundle of characteristics, e.g. height and
wealth, or research orientation and locality, it may not be straightforward to
order M and W to see if the NCC is satisfied. This issue is addressed in Sec-
tion 4 of the paper, which seeks restrictions on agents’ utility functions that
ensure that regardless of the distribution of characteristics in the population
the NCC is satisfied, and hence that there is a unique stable matching. This
is achieved by combining a limited degree of separability of the utility func-
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tions with an assumption of modularity, a property which has hitherto been
used to establish results on comparative statics rather than uniqueness (e.g.
Milgrom and Shannon 1994). As Milgrom and Shannon establish, there is a
close link between modularity and the Spence-Mirrlees Single Crossing Con-
dition, and one special case of the general result established in Section 4 can
be summarised as “Spence-Mirrlees plus quasi-linearity implies uniqueness”.
This connects the NCC to two commonly used assumptions about tastes; in
particular it opens the way for a range of applications in which utility depends
not only on the interaction of individual characteristics such as height, taste
for jointly consumed goods, or interest in research (where it might be ap-
propriate to assume modularity/single crossing) but also on money or wealth
(where quasi-linearity might apply).

The next section of the paper sets up the formal matching framework,
defines the NCC, and proves the central theorem of the paper. Section 3
compares the NCC with the SPC, and goes on to show how they are related
to α− reducibility and Gusfield and Irving’s condition. Section 4 considers
issues that are raised when we treat agents’ characteristics as arguments in
utility functions, which then form the basis of preferences. The usefulness
of looking at the properties of utility functions to check for uniqueness is
illustrated with an application to household formation. Section 5 concludes.
Unless otherwise stated, all proofs are in the Appendix.

2 Uniqueness of Stable Matchings

2.1 The Matching Framework

The standard matching framework considers two finite and disjoint sets, both
with n elements: a set of men M and a set of women W . We refer to P =
M ∪W as the population. Each man has complete, reflexive, and transitive
preferences over the set W . We assume that these preferences are strict (so
that no man is indifferent between two women), and are such that each man
would rather be married to any woman than remain single. The preferences
of a man x ∈ M can thus be described by a complete ordering Ωx of the set
W.4 The statement y Âx y

0 denotes that x prefers y to y0. Similar assumptions
are made for women’s preferences, mutatis mutandis, with the preferences of

4Let ºx be the binary relation on W such that y ºx y0 denotes that x does not prefer
y0 to y. Since (i) y ºx y;(ii) y ºx y

0 and y0 ºx y
00 implies y ºx y

00;(iii) y ºx y
0 and y0 ºx y

implies y = y0 (because preferences are strict); and (iv) either y ºx y0 or y0 ºx y or both,
then ºxis a complete ordering, hereinafter labelled Ωx.
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a woman y ∈ W described by a complete ordering Ωy of the set M ; x Ây x
0

denotes that y prefers x to x0. Let Ω = {Ωi, i ∈ P} be the preference profile (or
set of preference orderings) of the population P. The pair (P,Ω) constitutes a
marriage market.

A matching µ of P is a one-to-one function from P onto itself such that
(i) x = µ(y) if and only if y = µ(x); (ii) if x ∈ M then µ(x) ∈ W and if
y ∈W then µ(y) ∈M. A matching µ can be blocked by a pair (x, y) ∈M×W
for whom x 6= µ(y) if y Âx µ(x) and x Ây µ(y). A matching µ is stable if it
cannot be blocked by any pair. Then as shown by Gale and Shapley in 1962,
we have:

Theorem 1 A stable matching exists for every marriage market.

2.2 The No Crossing Condition

To define the No Crossing Condition, it is convenient to consider M and
W when ordered as vectors, with different orderings represented by different
vectors. For any positive integer q let Iq = {1, 2, ..., q}. Then the vector
m = (mi) ∈ Mn is an ordering of M if for all x ∈ M,x = mi for some
i ∈ In; similarly the vector w = (wk) ∈ Wn is an ordering of W if for all
y ∈ W,y = wk for some k ∈ In. The No Crossing Condition (NCC) may now
be stated quite simply:

Definition 1 A population P with preference profile Ω satisfies the No Cross-
ing Condition if there exists an ordering m ofM and an ordering w ofW such
that if i < j and k < l then
(i) ml Âwi mk =⇒ ml Âwj mk;
and
(ii) wj Âmk

wi =⇒ wj Âml
wi.

The NCC is thus a condition on the set of ordinal preference relations Ω,
and it is sometimes convenient to refer to the orderings m and w themselves
as satisfying the NCC. Part (i) of the definition may be interpreted as saying
that it cannot be the case that the woman further back in the female ordering,
wi, prefers the man further forward in the male ordering, ml, and at the same
time the woman further forward in the female ordering, wj, prefers the man
further back in the male ordering, mk. Diagrammatically this rules out the
preferences depicted in Figure 1, where the sexes are ordered along the two
horizontal lines, and the arrow from each woman points to the man she prefers
out of the two shown. Likewise for part (ii) of the definition which applies to
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wi wj 

mk ml 

n n

n n

Figure 1: Preferences ruled out by the No Crossing Condition

men’s preferences. If the NCC is satisfied there exist orderings m and w such
that for any pair of women and any pair of men the two arrows representing
the women’s preferences do not cross, nor do the two arrows representing the
men’s preferences.

The condition does not rule out the possibility that both women prefer
the same man; indeed, it allows for all members of one sex to have the same
preferences. A simple instance of the NCC when all agents have different
tastes arises if everyone would most prefer a partner of the same height as
themselves, with an agent’s utility a decreasing function of the absolute dif-
ference between his (or her) height and his (or her) partner’s.5 In this case,
height provides a natural way to order M and W, and a graph of any agent’s
utility against his or her partner’s height would display a single symmetric
peak at the agent’s own height. But note that the NCC does not imply, nor
it implied by, ’single-peakedness’ of preferences.6 However, the No Crossing
Condition does naturally bring to mind the Single Crossing Condition, much
used in information economics; here there is a connection, the analysis of
which requires us first to consider in more detail the dimensions over which
tastes are defined, an issue which is explored in Section 4.

5A similar instance arises if paired agents care about the difference in their ages, as in
Bergstrom and Lam (1989a, 1989b).

6For example if m1 Âw1 m2 Âw1 m3, m1 Âw2 m3 Âw2 m2, m3 Âw3 m2 Âw3 m1, and
w1 Âmi w2 Âmi w3 for i = 1, 2, 3, then m and w satisfy the NCC but there is no ordering
of M such that each woman’s preferences display a single peak. Conversely, we have single-
peakedness if m2 Âwi m1 Âwi m3 (i = 1, 3), m1 Âw3 m2 Âw3 m3, w1 Âmi w2 Âmi w3
(i = 1, 3), w2 Âm2 w1 Âm2 w3; but the NCC is not met, as m1 prefers w1 who prefers
m2 who prefers w2 who prefers m1; any orderings of M and W must therefore produce a
crossing of the type shown in Figure 1. This second example has two stable matchings, so
single peakedness does not by itself imply uniqueness.
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A very important property of the No Crossing Condition is that if it holds
for the population P then it also holds for any sub-population of P . Formally,
P 0 = M 0 ∪W 0 is a subpopulation of P = M ∪W if M 0 ⊆ M , W 0 ⊆ W, and
#(M 0) = #(W 0). Then we have:

Lemma 1 If the population P satisfies the No Crossing Condition, then every
subpopulation of P satisfies the No Crossing Condition.

2.2.1 No Crossing and the Existence of Fixed Pairs

We now develop two lemmas that lie at the heart of the main theorem on
uniqueness. If we can find any couple who prefer each other then each such a
couple, called a fixed pair, must be matched in a stable matching. The main
theorem then uses the No Crossing Condition to identify a sequence of n fixed
pairs, thus generating a unique stable matching.

Formally, a couple (x, y) ∈ M ×W is a fixed pair of the population P
if y Âx y0 for all y0 ∈ W\ {y} and x Ây x0 for all x0 ∈ M\ {x} . Suppose P
has p fixed pairs, and denote by F the set constituted by these p men and p
women;7 then:

Lemma 2 Let µ be a stable matching of the population P . Then (i) for any
fixed pair (x, y) , µ(x) = y; (ii) the function µ0 defined by µ0(z) = µ(z) for all
z ∈ P\F is a stable matching of P\F.

Thus the problem of finding a unique stable matching of the population
P can thus be broken down into finding the fixed pairs of P, and then finding
a unique stable matching of P\F. But this requires that P does indeed have
at least one fixed pair. The No Crossing Condition now assumes a central
role:

Lemma 3 If a population satisfies the No Crossing Condition, then it has a
fixed pair.

The proof considers the function that for each man x gives x’s rival , the
preferred man of x’s preferred woman. Given orderings m and w satisfying
the NCC, this function is non-decreasing in the sense that if x is further along
the ordering m than x0, then x’s rival can be no further back in the ordering
than x0’s rival. The existence of a fixed point, and hence of a fixed pair, is

7I.e. if (x, y) is a fixed pair of P, then x ∈ F and y ∈ F ; and if x ∈ F then there exists
y ∈ F such that either (x, y) or (y, x) is a fixed pair of P.
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Figure 2: Preferences to illustrate Theorem 2

almost immediate. But there is no reason to suppose that if mi and wk are a
fixed pair then i = k. For example, the shortest man and the tallest woman
form a fixed pair if everyone prefers a partner of the same height as themselves
and all men are taller than all women. Of course, in general the fixed point is
not necessarily unique: a population may have more than one fixed pair.

2.3 The Main Theorem

Bringing together Lemmas 1, 2, and 3, we now have the main uniqueness
result:

Theorem 2 If a population satisfies the No Crossing Condition, then there
exists a unique stable matching.

The proof shows how to construct the unique stable matching: first match
the fixed pairs of P ; take the remaining population P2, match the fixed pairs
of P2; and so on, until the whole population is matched. To illustrate how
the successive identification of fixed pairs leads to a unique stable matching,
consider the following example of a population of women with heights 1.50,
1.64, 1.69, 1.78, and men with heights 1.60, 1.67, 1.72, 1.80. Each individual
would prefer to be matched with someone as near to their own height as
possible i.e. someone of height h1 matched with someone of height h2 has
utility that is a negative function of |h1 − h2| . Such preferences satisfy the
No Crossing Condition, and are illustrated in Figure 2 (the arrows from each
person point to her/his most preferred partner).
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Figure 3: The emergence of fixed pairs (shown in bold arrows)

The fixed pairs of this population are (w3,m2) and (w4,m4), so they
are matched in any stable matching.; the remaining population, P2, equals
{w1, w2,m1,m3} with heights 1.50, 1.64, 1.60, and 1.72 respectively; P2 also
satisfies the No Crossing Condition and the couple (w2,m1) are a fixed pair;
note that w2 would have preferred m2 but he is already matched with w3;
finally, w1 and m3 are left and must be matched. This process by which new
fixed pairs emerge as others are taken out of the population is illustrated in
Figure 3, where the bold double arrows denote a fixed pair of the population
or sub-population under consideration.

The example in Figures 2 and 3 also illustrates how the NCC can be
used to establish interesting and counter-intuitive results in matching markets
where preferences are based on “nearness”. Although like may be attracted
to like, like is not necessarily matched to like: in the example the shortest
woman is most attracted to the shortest man but ends up with the second
tallest man.
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3 No Crossing, Sequential Preferences, and
Uniqueness in all Subpopulations.

Let m and w be orderings of M and W respectively and suppose that, for
i < n, mi prefers wi to all the women from wi+1 to wn, and wi prefers mi

to all the men from mi+1 to mn. This is Eeckhout’s Sequential Preference
Condition (SPC), and I refer to m and w as satisfying the SPC. Then there
is a unique stable matching in which mi is matched with wi, for all i (Theo-
rem 1 in Eeckhout, 2000). This can be constructed by a sequential process:
m1 and w1 prefer each other above all others and so must be paired in any
stable matching; m2 and w2 prefer each other to anyone else in W\ {w1} and
M\ {m1} respectively and hence must also be paired (since they could block
any matching in which they were not paired but m1 and w1 were paired); and
so on, until we are left with mn and wn, who would rather marry each other
than remain single.

What is the relationship between the NCC and the SPC? Suppose the
population P satisfies the NCC. Then orderings m and w satisfying the
SPC can be derived from the order in which the fixed pairs of P and its
subpopulations are generated in constructing the unique stable matching of
P . Briefly, let the kth elements of m and w be the kth fixed pair in a se-
quence {σs}, s = 1, ..., n such that σs is a fixed pair of the population Ps and
Ps+1 = Ps\ {σs}, with P1 = P.8 Then the vectors m and w satisfy the SPC.
The NCC therefore implies the SPC for a given population P. The reverse is
not true, as shown by the example of Table 1, which gives the preferences of
a population of three men and three women:

agent 1st preference 2nd preference 3rd preference
m1 w1 w2 w3
m2 w2 w3 w1
m3 w1 w2 w3
w1 m1 m2 m3

w2 m1 m2 m3

w3 m3 m2 m1

Table 1

The SPC is satisfied and mi is matched with wi, i = 1, 2, 3. However, w1
prefers m2 to m3 and w3 prefers m3 to m2, whereas m2 prefers w3 to w1 and

8Because a population may have more than one fixed pair, the sequence {σs} is not
unique, and nor, therefore, are the orderings satisfying the SPC.
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m3 prefers w1 to w3. Consequently, it is not possible to order {m2,m3} and
{w1, w3} (and therefore M and W ) and avoid a crossing such as in Figure 1.
Thus the NCC implies the SPC but not vice versa. .

However, the NCC has several strengths not shared by the SPC. The
SPC may be seen as a statement that there exists a sequence of n fixed pairs,
each from a successively smaller subpopulation of P. But the order in which
these fixed pairs emerge, which immediately gives the orderings that satisfy
the SPC, need bear no obvious relation to the preferences or characteristics of
the population. For example, in Figure 3, the NCC orderings based on height
are w = (w1, w2,w3, w4) andm = (m1,m2,m3,m4); the SPC is satisfied not by
w and m but by (w3, w4,w2, w1) and (m2,m4,m1,m3) or (w4, w3,w2, w1) and
(m4,m2,m1,m3). If we remove w4 andm2 from this population, then the NCC
orderings of the remaining sub-population based on height remain the same,
(w1, w2, w3) and (m1,m3,m4) but the SPC is now satisfied by (w2, w3, w1)
and (m1,m3,m4) or (w3, w2, w1) and (m3,m1,m4). The SPC orderings seem
almost arbitrary.9 The NCC orderings, on the other hand, aim to capture a
property of the preference profile of the population: men further on in the
male ordering tend to prefer women further on in the female ordering and vice
versa. As a result, it may well be straightforward to test whether the NCC
is satisfied, particularly, as we see in Section 4, if preferences are based on
known utility functions. The SPC, on the other hand, gives little clue about
the underlying structure of tastes that might result in the condition being
satisfied.

3.1 Uniqueness in all Subpopulations

The merits of the NCC may be viewed from a different perspective. We know
from Lemma 1 that if the NCC holds for a population P it also holds for
any subpopulation of P. This is not true of the SPC, as the example in Table
1 shows: the subpopulation {m2,m3, w1, w3} has no fixed pairs and both
possible matchings are stable. Consequently, whether the SPC holds or not
may depend critically on the exact membership of the subpopulation being
considered.10 Suppose we regardM andW as the sets of all possible men and

9They may contain some interesting information, however. For example, from the SPC
orderings for the example in Figure 3 we can derive what the stable matching implies for
the rank correlation between agents’ heights and their partners’.
10Put differently, the NCC may be seen as a global condition, involving a comparison

of the preferences of all pairs of men over all pairs of women, whereas the SPC is more
local in chararacter: for each man mi it is his comparisons of wi and wj for j > i that
are relevant; (and similarly for women’s preferences). A local condition may suffice for a

11

Clark: Uniqueness of Stable Matchings

Published by The Berkeley Electronic Press, 2006



women. In any particular instance, we are therefore dealing with subsets M 0

and W 0. From Lemma 1, it is sufficient, when analysing the subpopulation
P 0 = M 0 ∪ W 0, to show or assume that P = M ∪ W satisfies the NCC.
Moreover, when considering the orderingsm0 and w0 ofM 0 andW 0 that satisfy
the NCC, the order in which any two men or two women appear in m0 or w0 is
independent of the other elements in those vectors. In effect, the orderings m
andw ofM andW that satisfy the NCCmay be treated as “master orderings”.
But if we show or assume that P satisfies the SPC, we cannot be sure that
P 0 also satisfies the SPC. Even if P 0 does so, consider the emergence of fixed
pairs as the stable matching is constructed (as in Figure 3, for example). The
individuals who constitute the first fixed pair, the second fixed pair, and so
on, will typically vary with the precise membership of M 0 and W 0. But it is
the order in which they emerge as fixed pairs that gives the orderings that
satisfy the SPC. Both theoretically and from an applied perspective, it seems
an advantage that if P satisfies the NCC then when analysing P 0 neither the
question of whether the NCC is satisfied nor the orderings satisfying the NCC
depends on the particular groups M 0 and W 0 being considered.

Lemma 1 and Theorem 2 imply that if a population P satisfies the NCC,
then any subpopulation of P has a unique stable matching. It is useful to
break down this result into two propositions using the notion of α−reducibility,
developed originally by Alcalde (1995) in the context of roommate problems:
a marriage market (P,Ω) is α−reducible if every subpopulation of P has a
fixed pair.11 Then Lemmas 1 and 3 imply

Theorem 3 (i) If a population P with preference profile Ω satisfies the NCC,
then (P,Ω) is α−reducible.

And Lemma 2 forms the main basis of the proof of

Theorem 4 If (P,Ω) is α−reducible then every subpopulation of P has a
unique stable matching.

But we can also show the following:12

given population, but the extra information contained in the NCC ensures uniqueness in
all subpopulations.
11Banerjee, Konishi, and Somnez (2001) extend α−reducibility to more general coalition

games in the form of the top-coalition property.
12Alcalde (1995) shows that certain types of preferences imply a roommate market’s

α−reducibility and hence that it has a unique equilibrium; however he does not state or
prove the roommate equivalent of Theorem 5.
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Theorem 5 If every subpopulation of P has a unique stable matching then
(P,Ω) is α−reducible.

If (P,Ω) is not α−reducible, then it is possible to find a subpopulation
P 0 of P with at least two men and two women and no fixed pairs such that
each man in P 0 is most preferred by some woman in P 0,and each woman in
P 0 is most preferred by some man in P 0.13 Then the matching in which each
man is paired with his preferred woman is stable, as is the matching in which
each woman is matched with her preferred man. As there are no fixed pairs
of P 0, these two stable matchings of P 0 are different. Thus α−reducibility is
a sufficient and necessary condition for every subpopulation of P, including of
course P itself, to have a unique stable matching.14

The relationships between the various conditions for uniqueness, sum-
marised as a Venn diagram in Figure 4 , are as follows: if P satisfies the NCC
then (P,Ω) is α−reducible; α−reducibility is a necessary and sufficient con-
dition for P and each of its subpopulations to have a unique stable matching;
α−reducibility also implies the SPC, which in turn implies that P has at least
one fixed pair; the SPC is a sufficient but not necessary condition for P to
have a unique stable matching; and having at least one fixed pair is neither
necessary nor sufficient for P to have a unique stable matching. We can also
fit into this framework Gusfield and Irving’s (1989) condition for uniqueness;
if all men have the same preferences, then (P,Ω) is α− reducible (in any
subpopulation, the most preferred woman and her preferred man are a fixed
pair), but the NCC is not necessarily satisfied; similarly if all women have the
same preferences. But if all men and all women have the same preferences,
then any orderings of M and W satisfy the NCC: a crossing as in Figure 1
can only occur if two men or two women disagree. 15

13Or equivalently, that no man (resp. woman) prefers the same woman (resp. man) as
any other man (woman).
14As with the SPC, α−reducibility gives little clue as to when or why it should be satisfied;

indeed, almost by definition (P,Ω) is α−reducible if and only the SPC holds for P and each
of its subpopulations.
15Conditions such as the NCC, α− reducibilty, and the SPC concern the preferences of a

population. An alternative route to uniqueness is to restrict what pairs may form (beyond
the bar on same sex partnerships). In recent work on general coalition formation games
Papai (2004) has shown that if, and only if, the set of permitted coalitions satisfies a single
lapping property, then there is a unique stable coalition structure for any preference profile
of the population. But in the context of two-sided matching, single lapping is extremely
demanding; for example, at least one agent has only one permitted partner.
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SPC 

1 fixed pair 

 

all women have the same 
preference orderings 

all men have the same 
preference orderings 

 

Figure 4: Conditions on the preference profile Ω for a unique stable matching.
Note that the set of profiles for which all subpopulations have a unique stable
matching coincides with the set for which (P,Ω) is α− reducible.

4 No Crossing and Utility Functions

The idea underlying the No Crossing Condition is that an individual’s char-
acteristics both form the basis of their attraction to the opposite sex and
determine to whom they are attracted. In this section, we treat agents’ char-
acteristics as arguments in utility functions, which then form the basis of the
preference profile Ω. We shall see that in many instances it is relatively easy
to verify if the NCC is satisfied by looking at the utility functions directly.
This approach may be seen as an application of the property of the NCC,
established in the previous section, that if it satisfied by a population P , then
it is also satisfied by any subpopulation of P. In effect we take P to be a
“super-population” of all possible agents, defined as those with given utility
functions. If the NCC is satisfied by P, then in any particular instance know-
ing that all agents have these utility functions implies that they collectively
constitute a subpopulation of P, which then satisfies the NCC.

14
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The NCC requires the setsM andW to be ordered. This may be straight-
forward if preferences are based on a single characteristic for each sex: men
are arranged along one dimension (height, wealth, political views or taste in
music), as are women. The NCC then says, for example, that more left-wing
men tend to prefer women with a stronger taste for jazz and that women
with a stronger taste for jazz tend to prefer more left-wing men. The is-
sues raised by going beyond one dimension for men and one for women are
illustrated in the following. We describe each individual by the same two char-
acteristics, political views and taste for music. An individual i has political
views vi and taste for music ti, where vi ranges from 1 (left-wing/liberal) to
4 (right-wing/conservative) and ti ranges from 1 (preference for pop music)
to 4 (preference for classical music). Let n = 2, where individuals 1 and 2
are men, and 3 and 4 are women. Suppose that if a male i is matched with
a female k then he gets utility −2 (vi − vk)

2 − (ti − tk)
2 and she gets util-

ity − (vi − vk)
2 − 2 (ti − tk)

2, so men care mostly about politics and women
mostly about music. Assume: (v1, t1) = (1, 1), (v2, t2) = (4, 4) , (v3, t3) =
(2, 3) ,(v4, t4) = (3, 2) . Then, of the members of the opposite sex, individual 1
prefers 3; 3 prefers 2; 2 prefers 4; 4 prefers 1. Even though preferences satisfy
the NCC if we take one dimension at a time (e.g. a more conservative individ-
ual prefers a more conservative partner, ceteris paribus), the NCC fails overall:
we cannot order M and W and avoid a crossing as in Figure 1. Uniqueness
cannot be guaranteed and in this example both of the two possible matchings
are stable.

4.1 Modularity and Separability

We now seek restrictions on agents’ utility functions that are sufficient to
ensure uniqueness, whatever the values of agents’ characteristics. For each
sex, we isolate a single characteristic, which we refer to as a for men and b
for women. If x is male, the value of a is denoted by ax (a scalar) and his
remaining characteristics by αx (possibly a vector); if y is female, the value
of b is denoted by by and her remaining characteristics by βy. The analysis
proceeds by imposing sufficient separability on utility functions to confine any
interactions to a and b and then by looking for orderings of M and W based
on the characteristics a and b that satisfy the No Crossing Condition.

Assumption 1: For any matched pair (x, y) ∈M ×W , the utility of x
can be written as

f(ax, by) + τ(αx) + φ(βy)
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and the utility of y can be written as

g(ax, by) + χ(αx) + ψ(βy)

The effect of this is that when a man is comparing two women the function
τ is not important, and when we compare two men’s comparisons of the same
two women (in order to see if the NCC is satisfied) the function φ is not
important; similarly for χ and ψ. By differencing twice we take out the fixed
effects embodied in the functions τ , φ, χ, and ψ. However, as we show below,
these functions still have a potentially important role in determining the stable
matching.

The separability assumption focuses attention on the form of f and g.
The main result of this section relies on the notions of supermodularity and
submodularity:16

Theorem 6 If Assumption 1 is satisfied, and if the functions f and g are
either both supermodular or both submodular, then there is a unique stable
matching.

This result prompts a number of remarks. Firstly, it is not sufficient that
f and g each be either supermodular or submodular.17 The theorem requires
that f and g must either both be supermodular or both be submodular, a
condition we label the comodularity of f and g. Is comodularity necessary for
uniqueness? No, not if we take as given the values of agents’ characteristics
and the functions τ , φ, χ, and ψ.18 But if there exist a1 < a2 and b3 < b4
such that f(a2, b4)− f(a2, b3) > f(a1, b4)− f(a1, b3) and g(a2, b4)− g(a2, b3) <
g(a1, b4)−g(a1, b3) (or such that both inequalities are reversed) then for these
values of a and b we can always find values of agents’ other characteristics, α
and β, and functions φ and χ to construct a marriage market where there is

16A function f : R2 → R is supermodular if for a1 < a2 and b1 < b2, f(a2, b2)−f(a2, b1) >
f(a1, b2) − f(a1, b1); it is submodular if for a1 < a2 and b1 < b2, f(a2, b2) − f(a2, b1) <
f(a1, b2)− f(a1, b1). For a comprehensive analysis of modularity, see Topkis (1998).
17To take an example where f is supermodular and g is submodular, suppose f(a, b) =

(a+ b)2,τ(α) = 0 for all α, φ(β) = β, g(a, b) = (a+ b)0.5, χ(α) = α, and ψ(β) = 0 for all
β, where α and β are scalars. Let n = 2, where individuals 1 and 2 are men, and 3 and
4 are women. If (a1,α1) = (1, 0.3), (a2,α2) = (2, 0), (b3,β3) = (1, 6), and (b4,β4) = (2, 0),
then individual 1 prefers 3 to 4, 3 prefers 2 to 1, 2 prefers 4 to 3, and 4 prefers 1 to 2. Thus
both of the two possible matchings are stable.
18To see this amend the example of the previous footnote so that χ(α) = φ(β) = 0 for

all α and β; then both individuals 1 and 2 prefer 4 to 3, and both 3 and 4 prefer 2 to 1.
Thus 2 are 4 are a fixed pair and must be matched, as then must 1 and 3.
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more than one stable matching.19

Secondly, modularity is typically invoked in matching theory when util-
ity is transferable: supermodularity (resp. submodularity) then implies that
maximisation of total utility requires positive (resp. negative) sorting; for
example, Becker (1981) or Legros and Newman (2002). The theorem above
has nothing to do with efficiency or sorting. In this paper utility is non-
transferable and any stable matching is Pareto efficient, whether or not the
conditions of the theorem are satisfied.20 Furthermore, even with the sepa-
rability and modularity assumed by the theorem, the unique stable matching
may display positive or negative sorting. For example, suppose the character-
istics a and b are both height and f(a, b) = g(a, b) = − (a− b)2 ; thus f and
g are both supermodular. Let τ , φ, χ, ψ be constant functions, so only height
matters. If the distribution of height is the same amongst men and women,
then everyone can find a perfect partner and sorting is positive. But if all men
are taller than all women (or vice versa), then in the stable matching the ith

shortest man matches with the ith tallest woman, even though preferences are
such that like attracts like.21

Thirdly, it is essential to Theorem 6 that there are interactions only be-
tween the characteristics a and b; otherwise there may be more than one
stable matching, even if each utility function consists of the sum of two su-
permodular functions (as in the example above of political views and taste for
music). However, confining interaction effects to the functions f and g does
not imply that τ , φ, χ, and ψ have no effect on the stable matching. Suppose
f(a, b) = g(a, b) = −(a− b)2; for simplicity let α and β be scalars such that
τ(α) = χ(α) = λα, and φ(β) = ψ(β) = λβ. To fix ideas, interpret both a
and b as political views (1 = liberal, 4 = conservative) and α and β as money.
Then individuals are attracted to partners who are politically like-minded
and/or rich, with λ determining the relative importance of these two charac-
teristics. The functions f and g are supermodular, so for any distribution of

19For n = 2 we can choose χ(α1), χ(α2) φ(β3) and φ(β4) so that f(a2, b4)− f(a2, b3) +
φ(β4)−φ(β3) > 0 > f(a1, b4)−f(a1, b3)+φ(β4)−φ(β3) and g(a2, b4)−g(a1, b4)+χ(α2)−
χ(α1) < 0 < g(a2, b3)−g(a1, b3)+χ(α2)−χ(α1). Then individual 1 prefers 3 to 4, 3 prefers
2, 2 prefers 4, and 4 prefers 1, so both possible matchings are stable. This example can
easily be embedded in a larger marriage market to generate non-uniqueness when n > 2.
20Suppose man x and woman y are not matched by µ but are matched by some alternative

matching µ0 (if µ 6= µ0, there must exist some such couple). Since µ cannot be blocked,
either x prefers µ(x) to y or y prefers µ (y) to x or both. As preferences are strict, either x
or y (or both) is worse off when matched by µ0.
21Furthermore, if social welfare is the sum of individual utilities, then in this case, out

of all possible matchings the equilibrium matching, because it has perfect negative sorting,
minimises welfare.
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characteristics the NCC is satisfied and there is a unique stable matching. Let
n = 2, where individuals 1 and 2 are men, and 3 and 4 are women and suppose
(a1,α1) = (1, 1), (a2,α2) = (2, 2), (b3,β3) = (2, 2), (b4,β4) = (3, 3) i.e. richer
people are more conservative. If 0 ≤ λ < 1, a fixed pair is formed by indi-
viduals 2 and 3; but if λ > 1 individual 2 prefers the moderately conservative
but richer 4, who in turn prefers 2 to the liberal and poor 1.22

Finally, the NCC is concerned with preference orderings, whereas modu-
larity is a cardinal concept. Theorem 6 looks only for a particular representa-
tion of agents’ preferences. In the simple case where the functions τ , φ, χ, and
ψ are all constant, even if f and g are not comodular there may nevertheless
exist increasing transformations η and ξ of f and g respectively such that the
compositions η◦f and ξ◦g are comodular. Since these compositions represent
the original preferences, the NCC is then satisfied.23

4.2 The Spence-Mirrlees Single Crossing Condition

We can relate the modularity condition of Theorem 6 to the Spence-Mirrlees
Single Crossing Condition, which states that if an agent with a characteristic c
has preferences for goods a and b represented by the utility function u(a, b, c)
then the marginal rate of substitution ∂u

∂a
/∂u
∂b
is either always increasing or

always decreasing in c.24 Given the utility function f(a, b)+τ(α)+φ(β) (where
for simplicity we treat α and β as scalars), the Spence-Mirrlees condition for
men means that the marginal rate of substitution between b and β, ∂f

∂b
/ ∂φ
∂β
,

is always increasing or always decreasing in a (the characteristic α having no
effect on the marginal utilities of b and β). Now, since ∂φ

∂β
is not a function of

a, then, assuming ∂φ
∂β

> 0, the Spence-Mirrlees condition for men requires that
∂2f
∂a∂b

does not change sign, i.e. that f is either supermodular or submodular.
A similar line of argument holds for g and the Spence-Mirrlees condition for
women. But it is important to recall that Theorem 6 requires that f and g
must be both supermodular or both submodular; assuming ∂φ

∂β
> 0 and ∂χ

∂α
> 0

this is equivalent to requiring that ∂2f
∂a∂b

and ∂2g
∂a∂b

have the same sign, not just

22Our matching framework requires strict preferences, so we rule out the possibility that
λ = 1 as then individual 2 would be indifferent between 3 and 4.
23For example, if f(ax, by) = g(ax, by) = −|ax − by|0.5, f and g are neither submodular

nor supermodular. But if η(z) = ξ(z) = −z4 (which is increasing since its domain is the
non-positive real numbers), then (ζ ◦ f) (ax, by) = (ξ ◦ g) (ax, by) = − (ax − by)

2 . We are
now back in familiar territory.
24The connections between supermodularity and single-crossing have been extensively

analysed by Milgrom and Shannon (1994), but in the context of comparative statics, not
uniqueness of equilibrium.
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that each has a constant sign.
Assumption 1 is satisfied if both the male and female utility functions are

quasi-linear in α and β; hence the motto “Spence-Mirrlees plus quasi-linearity
implies uniqueness”. One example of this was given at the end of Section 3.1,
in which the utility of all agents is quasi-linear in money. As the value of
λ increases money become more important, and for the given distribution of
political views and money the stable matching switches at λ = 1. But as long
as preferences are strict, the stable matching is always unique whatever the
distribution of characteristics. Thus there is no indeterminacy arising from
multiple stable matchings and attention can be fully focused on the role of λ
and the distribution of characteristics.

4.3 An Application to Family Formation.

Since the pioneering work of Becker (1965, 1981), matching theory has made
major contributions to the economic analysis of marriage and the family.25

We now briefly consider two simple models of household formation in which
knowledge of agents’ utility and cost functions make it straightforward to
verify that the NCC is satisfied. We can then ask without fear of multiple
equilibria whether the outcome of partnership formation leads to assortative
mating, an issue that has been the subject of extensive empirical work.26

4.3.1 Partnerships based on comparative advantage

Becker (1965) studied the family as an economic institution that provides effi-
ciency gains in production and consumption. Matched partners typically have
different skills and productiveness, and so specialisation allows both to be bet-
ter off than had they remained single. Thus we may think of a matched couple
as a bilateral trading relationship: one partner “exports” a good or service
to the other by specialising in it, producing more than he or she consumes,
and in exchange “importing” another good. We model this using the tools
of partial equilibrium trade theory, focusing on one good, X, with a second
good, Y, in the background. Agent i has a demand or marginal benefit curve
for X given by a − bqdi , and a supply or marginal cost curve ci + dqsi , where
qdi and qsi are the quantities consumed and produced by i. The values of the
parameters a, b, and d are common across all agents, but ci is specific to i,
and is a (negative) measure of his or her productivity. If i remains single,

25For further references see Bergstom, (1997), Weiss, (1997), and Ermisch (2003).
26See for example, Dalmia and Lawrence (2001), Rose (2001), Jepsen and Jepsen (2002),

and Ermisch, Francesoni, and Siedler, (2006).

19

Clark: Uniqueness of Stable Matchings

Published by The Berkeley Electronic Press, 2006



qdi = qsi , with a shadow price pi =
ad+bci
b+d

. If i and j form a partnership, they
trade, with qdi + qdj = qsi + qsj . I assume that trade is efficient and that the
gains from trade are split equally; then the benefits to both i and j from their
partnership are27

(ci − cj)
2 b

8d(b+ d)
.

Thus an agent would most prefer a partner who is as different from him or
her as possible, where “different” means having a different value of c.

Consider now a population of men and women, each of whom is charac-
terised by a particular value of c. Each man can only “trade” with one woman,
and vice versa. To find orderings that satisfy the NCC, we need only order
M by increasing value of c and W by decreasing value of c, or M by decreas-
ing value of c and W by increasing value of c; we thus have a unique stable
matching. Alternatively, since (ci − cj)

2 is a submodular function of ci and
cj, we can invoke Theorem 6.

Furthermore, it is straightforward to verify that the stable matching will
display negative assortment; to see this, note that in any subpopulation, a
fixed pair is formed either by the man with lowest c and the woman with the
highest c, or by the woman with lowest c and the man with the highest c.
This result is independent of the distribution of c in M and W, and forms a
theoretical basis for those empirical studies that look for negative assortment
with respect to wages and hours worked in the labour market.28

4.3.2 Partnerships based on joint consumption

Cohabitation offers substantial economies of scale and many goods are in effect
jointly consumed. We now present a simple model, based on the analysis in
Clark and Kanbur (2004), in which there are two household public goods and
no private goods. Agents differ in their preferences, and a matched pair must
decide on the allocation of their combined income between the two goods.

If a matched pair (x, y) ∈ M ×W jointly consume quantities A and B
of the two public goods, then they get utility ux = ax lnA+ (1− ax) lnB and
uy = ay lnA + (1 − ay) lnB respectively, where 0 < ax < 1 and 0 < ay < 1.
We assume that A and B are determined by maximising ux + uy, subject to

27The gains from trade can easily be calculated from a supply and demand diagram in
which trade occurs at a price p = (pi + pi)/2.
28Such negative assortment arises if we interpret good X as a bundle of market commodi-

ties bought with wage income and good Y as household or domestically produced goods.
Then an agent has a comparative advantage in X if they have a higher wage than their
partner.
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the constraint A+B = 2R, where R is each agent’s income, the price of each
good being taken by choice of units to be 1. Then the resultant utilities are

vx = ax ln(ax + ay) + (1− ax) ln(2− ax − ay) + lnR

and

vy = g(ax, ay) = ay ln(ax + ay) + (1− ay) ln(2− ax − ay) + lnR.

Thus each agent would prefer to be matched with someone with the same
preferences.29

In such a population, where agents differ only in the value of a, the NCC is
satisfied by ordering both M and W by increasing values of a (or by ordering
both by decreasing values of a). Thus there is a unique stable matching.
Alternatively, note that vx and vy are both supermodular functions of ax and
ay, so Theorem 6 applies. In contrast to the comparative advantage model of
the previous section, the pattern of assortment depends on the distribution of
taste parameters in the population, so the model’s empirical predictions are
not so clear cut. Of course, tastes cannot be directly observed, but in applied
work they are sometimes proxied by traits such as age, education, race, or
class. There is a broad empirical consensus of positive sorting based on these
characteristics (see for example, Rose, 2001, and Jepsen and Jepsen, 2002); as
shown in Clark and Kanbur (2004), this suggests a significant overlap in the
male and female distributions of traits.

5 Conclusion

Uniqueness of equilibrium is a generally regarded as a desirable characteristic
of an economic model. It helps to make prediction and comparative statics
unambiguous. The main theoretical result of this paper is that the standard
model of two-sided matching has a unique stable matching if agents’ prefer-
ences satisfy the No Crossing Condition (NCC). Although the NCC is stronger
than Eeckhout’s Sequential Preference Condition (SPC), it is both intuitive
and easy to interpret, being based on the notion that a person’s characteris-
tics not only form the basis of their attraction to the opposite sex but also
determine their own preferences. It requires that men and women be ordered

29For example, for a given value of ax, vx attains its maximimum of v∗x = ax ln(ax) +
(1 − ax) ln(1 − ax) + ln 2R if ay = ax. Note also that to a second order approximation,

vx ≈ v∗x −
(ax−ay)2

2 .
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on the basis of their characteristics, and that men further along the male or-
dering tend to prefer women further along the female ordering and vice versa.
The paper also establishes a necessary and sufficient condition, α−reducibility,
weaker than the NCC but stronger than the SPC, for all subpopulations of P
to have a unique stable matching.

An advantage of the NCC is that if it is satisfied by a population P
then it is satisfied by any subpopulation of P, which will therefore also have
a unique stable matching. One use of this property is to base preferences on
utility functions with agents’ characteristics as arguments. In applications, it
may well then be straightforward to establish that any population with the
given utility functions satisfies the NCC. The fruitfulness of this approach is
illustrated in the context of household formation and marital sorting.

Finally, the NCC is closely related to well-known concepts of modularity
and single crossing. These have been used by other authors to analyse sorting
in matching with transferable utility, and comparative statics. When utility is
not transferable, modularity delivers uniqueness but takes us no further, leav-
ing open the comparative statics of matching problems with non-transferable
utility, an interesting area for further research.

APPENDIX
Proof of Lemma 1. Take the orderings m and w that satisfy the NCC

for the population P , delete those elements corresponding to M\M 0 and W\W 0

to form the n0 dimensional vectors m0 and w0. Since m0 and w0 must continue to
satisfy conditions (i) and (ii) in Definition 1 they are orderings that satisfy the NCC
for the population P 0.

Proof of Lemma 2. If (i) is not satisfied then µ can be blocked by one of
the fixed pairs of P and hence cannot be stable, a contradiction. It follows that µ
maps F onto F and P 0 onto P 0. This implies that the function µ0 is a matching of
P 0. If (i) is satisfied but µ0 is not stable, then there exists a pair (x0, y0) ∈M 0×W 0

(where M 0 = M ∩ P 0 and W 0 = W ∩ P 0), with x0 6= µ0(y), who can block the
matching µ0 i.e. y0 Âx0 µ

0(x0) and x0 Ây0 µ0(y0). The definition of µ0 implies that
µ0(x0) = µ(x0) for all x0 ∈ M 0 and µ0(y0) = µ(y0) for all y0 ∈ W 0 , so that y0 Âx0

µ(x0) and x0 Ây0 µ(y0). This means that the pair (x0, y0) can block the matching
µ, and hence µ cannot be stable, a contradiction.

Proof of Lemma 3. For any man x ∈ M, let q(x) ∈ W denote his
preferred woman in W ; i.e. q(x) Âx y for all y ∈ W\ {q(x)}. Since preferences
are complete and strict and the setW is finite, q(x) exists and is unique. Similarly,
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for any woman y ∈W, let r(y) ∈M denote her preferred man inM ; i.e. r(y) Ây x
for all x ∈ W\ {r(y)}. r(y) also exists and is unique. Let m and w be orderings
ofM andW satisfying the NCC. For each element of m the function q specifies an
element of w; this in turn defines a function θ : In → In as follows: if q(mk) = wi

then θ(k) = i, which may be read as “the kth man prefers the ith woman”. Compare
the preferences of mk and ml, where k < l . If q(mk) = q(ml) then θ(k) = θ(l).
If q(mk) 6= q(ml), then θ(k) 6= θ(l) and wθ(k) Âmk

wθ(l) and wθ(l) Âml
wθ(k);

but if θ(l) < θ(k) then since k < l this would contradict part (ii) of Definition
1 of the NCC, with i = θ(l) and j = θ(k). Hence if k < l then θ(k) ≤ θ(l)
i.e. the function θ is non-decreasing. A similar argument applies to the function
γ : In → In, defined as follows: if r(wi) = mk then γ(i) = k; if i < j then
γ(i) ≤ γ(j) i.e. the function γ is non-decreasing. Now, consider the composition
of θ and γ, the function ρ(k) = γ(θ(k)); this gives the position, in the ordering
m, of the preferred man of the kth man’s preferred woman (the kth man’s rival);
i.e. mρ(k) = r(q(mk)). Since θ and γ both map In into In and are non-decreasing
the function ρ also maps In into In and is non-decreasing. It therefore has a fixed
point k∗ = ρ(k∗). Let i∗ = θ(k∗); then k∗ = γ(i∗); thus wi∗ = q(mk∗) and
mk∗ = r(wi∗); i.e. mk∗ and wi∗ are a fixed pair.

Proof of Theorem 2. We consider a sequence of populations {Ps}, s =
1, ..., S such that Ps+1 = Ps\Fs, with P1 = P, where Fs is the set of individuals
who constitute the fixed pairs of Ps; i.e. if (x, y) is a fixed pair of Ps then {x, y} ⊆
Fs. S is defined by the condition PS = FS. Since Fs is unique given Ps, the sequence
{Ps} is uniquely defined. By the repeated application of Lemmas 1 and 3, each
element in the sequence {Ps} satisfies the No Crossing Condition and has at least
one fixed pair. Thus Ps+1 is a proper subset of Ps, and since P is finite S exists
and is finite.

Let µ be any stable matching of P, and for all s ∈ IS, let µs be a matching of
Ps defined by µs(z) = µ(z) for all z ∈ Ps; i.e. µs is the matching µ as it applies
to the population Ps. Lemma 2 , part (ii), says that if µs is a stable matching of
Ps then µs+1 is a stable matching of Ps+1. But since µ = µ1 is a stable matching
of P = P1, this implies that for all s ∈ IS, µs is stable,. Then by Lemma 2, part
(i), for all s ∈ IS, x = µs(y) for any fixed pair (x, y) of Ps; and hence, given the
definition of µs, we have x = µ(y) for any fixed pair (x, y) of Ps and for all s ∈ IS.
But since P = ∪Ss=1Fs every individual in P is a member of some fixed pair of some
population Ps and is therefore matched by µ with the other member of the fixed
pair. Since the sequence {Ps} and the associated sequence {Fs} are independent of
the choice of which stable matching µ of P we consider, the matching µ is uniquely
determined.

Proof of Theorem 4. Clearly if (P,Ω) is α−reducible then so is
(P 0,Ω0),where P 0 is a subpopulation of P and Ω0 = {Ωi, i ∈ P 0}. Then to prove
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the theorem, it is sufficient to prove that if (P,Ω) is α−reducible it has a unique
stable matching. As in the proof of Theorem 2, we consider a sequence of popula-
tions {Ps}, s = 1, ..., S such that Ps+1 = Ps\Fs, with P1 = P. Since each element
in the sequence {Ps} is α−reducible it has at least one fixed pair. Thus Ps+1 is a
proper subset of Ps, and since P is finite S exists and is finite.

The proof now proceeds exactly as the second paragraph of the proof of The-
orem 2. Since P = ∪Ss=1Fs every individual in P is a member of some fixed pair
of some population Ps and, by Lemma 2, is matched by any stable matching µ of
P with the other member of the fixed pair. Since the sequences {Ps} and {Fs}
are independent of the choice of which stable matching µ of P we consider, the
matching µ is uniquely determined.

Proof of Theorem 5. Suppose that (P,Ω) is not α−reducible. Then there
exists a subpopulation eP of P that has no fixed pair. For any man x in eP let φ(x)
denote his most preferred woman in eP,and for any woman y in eP let ψ(y) denote
her favourite man in eP ;let ζ(x) = ψ(ϕ(x)) and for i ≥ 0 let ζ i+1(x) = ζ(ζi(x)),

where ζ0(x) = x.Now, for any man x in eP consider the following infinite sequence
of men: Q(x) = (ζ0(x), ζ1(x), ζ2(x), ζ3(x), .....).Since#( eP ) is finite, the sequence
must at some point become periodic; i.e. there must exist finite numbers n0 ≥ 0
and n00 ≥ 1 such that ζn0(x) = ζn

0+n00(x). Let bn(x) = min{n0|ζn0(x) = ζn
0+n00(x)

for some n00 ≥ 1},(so elements of Q(x) before ζn(x)(x) appear only once; the others
are repeated), and let en(x) = min{n00|ζn(x)(x) = ζn(x)+n

00
(x), n00 ≥ 1},(so en(x) is

the eventual period of Q(x)). If en(x) = 1 then ζn(x)(x) = ζn(x)+1(x),which defines
ζn(x)(x)and φ(ζn(x)(x)) as a fixed pair of eP,a contradiction. Therefore en(x) ≥ 2.

Let ex be some man in eP such that ex = ζn(x)(x),so the set fM = {ex, ζ(ex), ζ2(ex), ....
ζn(x)−1(ex)} consists of en different men, and the set of womenfW = {φ (ex) , φ (ζ(ex)) ,
φ
¡
ζ2(ex)¢ , ....φ ¡ζn−1(ex)¢} consists of en different women. By construction the sub-

population P 0 = fM ∪fW has no fixed pairs, and at least two men and two women.
Furthermore each man in P 0is most preferred (out of all the men in P 0) by some
woman in P 0,and each woman in P 0is most preferred (out of all the women in P 0) by
some man in P . Consider the following matching µM of P 0: each man is matched
with his preferred woman (ex is matched with φ (ex) , ζ(ex)with φ (ζ(ex)) , so on). This
is feasible, as no man prefers the same woman as any other man. It is also a stable
matching, as in any pairing (x0, y0) ∈ fM×fW, where x0 6= µM(y

0), x0 must be worse

off as he is no longer matched with his preferred woman infW. Thus (x0, y0) cannot
block µM . Now consider the following matching µW of P 0: each woman is matched
with her preferred man: φ (ex)is matched with ζ(ex), φ (ζ(ex))with ζ2(ex)and so on,
and φ

¡
ζn−1(ex)¢ is matched with ψ

¡
φ
¡
ζn−1(ex)¢¢ = ζn(ex) = ex. This is feasible,

as no woman prefers the same man as any other man. It is also a stable matching,
as in any pairing (x0, y0) ∈ fM× fW, where x0 6= µW (y

0), y0 must be worse off as
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she is no longer matched with her preferred man in fM. Thus (x0, y0) cannot block
µW .As en(x) ≥ 2, µM and µM are different, so P 0 does not have a unique stable
matching.

Proof of Theorem 6. To prove the theorem we prove that if Assumption
1 is satisfied and f and g are either both supermodular or both submodular then
we can find orderings of M and W that satisfy the NCC. We begin by ordering
M and W by a and b respectively. Let m and w be orderings of M and W such
that if i < j and k < l then ami ≤ amj and bwk ≤ bwl ; note that if some men (or
women) have the same values of a (or b), then these orderings are not unique.

Let i < j and k < l and suppose that f is supermodular. Note that if a1 = a2
or b1 = b2 then f(a2, b2)− f(a2, b1) = f(a1, b2)− f(a1, b1). Since ami

≤ amj
and

bwk ≤ bwl, then

f(amj , bwl)− f(ami , bwl) ≥ f(amj , bwk)− f(ami , bwk).

If wl Âmi wk then

f(ami , bwl) + φ(βwl
) > f(ami , bwk) + φ(βwk

).

Hence
f(amj , bwl) + φ(βwl

) > f(amj , bwk) + φ(βwk
).

so wl Âmj wk. Thus supermodularity of f implies that it cannot be the case that
both wl Âmi

wk and wk Âmj
wl. By a similar argument, supermodularity of g

implies that it cannot be the case that both mj Âwk mi and mi Âwl mj. Thus if
f and g are both supermodular, the orderings m and w satisfy the NCC.

Again let i < j and k < l but suppose now that f is submodular. Then

f(amj , bwl)− f(ami , bwl) ≤ f(amj , bwk)− f(ami , bwk).

If wk Âmi wl then

f(ami , bwl) + φ(βwl
) < f(ami , bwk) + φ(βwk

).

Hence
f(amj , bwl) + φ(βwl

) < f(amj , bwk) + φ(βwk
).

Thus submodularity of f implies that it cannot be the case that both wk Âmi wl

and wl Âmj wk. Similarly, submodularity of g implies that it cannot be the case
that both mi Âwk mj and mj Âwl mi. Consider now the orderings m and w0,
where m is as defined above and w0 orders W by decreasing value of b, so that if
i < j and k < l then ami ≤ amj and bw0k

≥ bw0l
. By construction, wk = w0n+1−k
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and wl = w0n+1−l, so the submodularity of f implies that it cannot be the case that
both w0n+1−k Âmi w

0
n+1−l and w0n+1−l Âmj w0n+1−k and the submodularity of g

implies that it cannot be the case that both mi Âw0n+1−k
mj and mj Âw0n+1−l

mi.
Therefore if f and g are both submodular the orderings m and w0 satisfy the NCC.
This completes the proof.

Remark: It is simple to show that if f and g are both submodular the orderings
m0 and w (where mi = m0

n+1−i) also satisfy the NCC, as do m
0 and w0 in the case

where f and g are both supermodular.
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