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Abstract

The game we propose in this paper is a natural extension of the “Assignment Game” of Shapley and
Shubik [Shapley, L., Shubik, M., 1972. The assignment game I: the core. International Journal of Game
Theory 1, 111–130] to the case where one seller owns a set of different objects instead of only one
indivisible object. We prove that the core is nonempty and we study the structure of the set of core payoffs.
We endow this set with a lattice structure under the partial ordering of the buyers. We show that, unlike
other matching models, we cannot do the same for a dual partial ordering of the sellers.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Matching; Assignment; Core; Lattice structure

JEL classification: C71; C78

1. Introduction

We study the interaction among a finite number of sellers and buyers in a market, which has the
characteristic that each seller owns a set of possibly different objects, and each buyer wants to buy
at most one object. The facts that agents in these markets belong to one of two disjoint sets (sellers
and buyers), and there exists bilateral exchange allow us to study them as “two-sided matching
markets”. In particular, we study the simplest matching model of this type: there is only one seller
in the market, since the extension to more than one seller does not add substantial information to
the aim of this paper.

The worth of a potential transaction is given by a nonnegative real number associated to each
possible pair of a buyer and an object. The seller in our model is allowed to own different objects.
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Hence, the gain that a buyer and the seller can share is not fixed in the sense that it depends on
which object is sold. An outcome of this game specifies a matching between buyers and objects,
and the price that each buyer pays to the seller. Therefore, we study a many-to-one matching
model with money. This is a natural extension of the one-to-one “Assignment Game” (Shapley
and Shubik, 1972), which is also studied in Roth and Sotomayor (1990). There are several papers
such as Alcalde et al. (1998), and Sotomayor (1992, 1999a,b, in press) that extend the Assignment
Game to many-to-one and many-to-many markets. All these works assume that all the objects a
seller owns are homogeneous. Hence, the model we consider applies to markets that are not
covered in the above mentioned papers, and the set of results we obtain constitutes an interesting
contribution to the existing literature. The extension we propose also applies to labor markets with
multidivisional firms: the seller in our model can be thought as a multiproduct firm or as a
multidivisional firm with one vacancy per division, and the set of buyers as workers, where the
salaries are determined explicitly within the model.

There are two natural questions one can address to: what partnerships can be expected to
form in the market and how do the agents divide their gains? In this regard, one should use an
appropriate solution concept for this class of games. In this paper we use setwise stability as
our solution concept, which happens to coincide with the core.1 We show that the core is
nonempty by proving that we can associate to each competitive equilibrium a core outcome.
We then study the structure of the set of core payoffs. Shapley and Shubik (1972) show that the
core of every Assignment Game has a lattice structure, and they observe a polarization of
interests between the two sides of the market within the core. For the many-to-one case in
which all the objects owned by a seller are equal and preferences are additive, there exist core
outcomes and an optimal core payoff for each side of the market (see Roth and Sotomayor,
1990). This lattice structure is also shared by the many-to-many model analyzed in Sotomayor
(1999a). We prove that the set of core payoffs in our model has a similar structure to the one
identified for the stable set in the many-to-one matching without money with substitutable
preferences (see Martínez et al., 2001 and Blair, 1988 for a many-to-many model).2 We show
that the set of core payoffs does not have a dual lattice structure, and we endow this set with a
lattice structure under the partial order of the buyers. We also show the existence of an optimal
core payoff for each side of the market, which is the worst for the other side. We observe a
polarization of interests only for the optimal core payoffs of each side of the market, but not for
the whole set.

The paper is organized as follows. In Section 2, we present the model, and in the following
section we show the existence of core payoffs and study the structure of the core.

2. The model

We consider a buyer–seller market consisting of m buyers and one seller. The seller owns a
number of possibly different objects, and each buyer wants to buy at most one object. Formally,
there is one finite set of buyers, P containing m agents, and there is one seller, s where s∉P
1See Roth and Sotomayor (1990) for an excellent survey of the results in matching models. In the Assignment Game
(Shapley and Shubik, 1972), and in the many-to-one models in Sotomayor (1992), there is also the coincidence of the
core with the setwise stable set. Echenique and Oviedo (2006) and Sotomayor (1992, 1999a,b, in press) study extensions
to many-to-many models where this coincidence is no longer valid.
2In a many-to-many model where the gain of a given partnership is fixed (that is, it is independent of the “vacancy”
chosen), Sotomayor (1992) proves that there might not exist the worst core payoff for a particular side of the market.
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There is also a set Q of n objects. Let P={p1, p2,…, pm} be the set of buyers. Generic buyers are
denoted by pi, pk, etc. The payoff of buyer pi∈P will be denoted by ui. Generic objects are
denoted by qj, qh, etc. and the price of object qj∈Q is vj. All the objects in Q are owned by seller
s and we denote by |Q| the number of objects.

Associated to each possible pair (pi, qi)∈P×Q there is a nonnegative real number, αij, which
denotes the maximum price that buyer pi is willing to pay for object qj which is her reservation
value. For simplicity, we assume, without loss of generality, that the reservation price of the seller
for every object qj∈Q is zero. Therefore, αij denotes the potential gains from trade between
buyer pi and the seller if the object sold is qj We denote by α the m×n matrix (αij)i=1,…, m; j=1,…, n.
We also assume that there are no monetary transfers among buyers. This is a natural assumption
since we are studying a buyer–seller market, and hence the model allows only the conventional
transfer of the purchase price from the successful buyers to the seller. Thus, if buyer pi buys object
qj at a price vj then the resulting payoffs are ui=αij−vj for the buyer, and vj for the seller. The total
payoff of the seller is the sum of all the prices of the objects he sells, which is denoted by w.3

Agents' preferences are concerned only with their monetary payoffs. This implies that, for any
pair of objects and a buyer, there is a pair of prices that makes the buyer indifferent between
purchasing either of the objects. For technical convenience, we introduce one artificial null object,
q0 (also owned by seller s). Several buyers may buy this null object. This convention allows us to
treat a buyer pi that does not buy any object as if she has bought q0. We assume that the value αi0
is zero to all buyers, and the price of the object q0 is always zero. Hence, if buyer pi buys q0 she
obtains a utility ui=αi0−v0=0.

Therefore, a market M is a quadruple (P, s, Q, α). We call this the “Generalized Assignment
Game”.

3. The core

The model we study is a many-to-one matching model with money where the gain of a given
partnership of a buyer and the seller depends on the object bought. An outcome of this game
specifies a matching between buyers and objects and the price that each buyer pays to the seller.
Our main concern is to predict which outcomes are more likely to occur, that is, the core of the
game. In what follows, we define a feasible matching and a feasible outcome of this model and
some desired properties. And then we analyze the core.

Definition 1. A feasible matching μ for a marketM≡ (P, s, Q, α) is a function from the set P⋃Q
into the set P⋃Q⋃{q0} such that:

(i) For any pi∈P, μ(pi)∈Q⋃{q0},
(ii) For any qj∈Q, either μ(qj)∈P or μ(qj)=qj,
(iii) For any (pi, qj)∈P×Q, μ(pi)=qj if and only if μ(qj)=pi.

We say that buyer pi is unmatched if μ(pi)=q0. Similarly, we say that object qj is unsold if
μ(qj)=qi.
3If we allowed to have reservation prices of the seller different from zero, say cj for object qj∈Q, then the potential gains
from trade would be: max{0; αij−cj}. Instead, we are normalizing the seller's utility of keeping one of the objects qj to
zero rather that cj.
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Definition 2. A feasible outcome, denoted by (u, v, μ), is a vector of utilities (or payoffs) for
buyers, uaRm

þ, a price vector, vaRn
þ, and a feasible matching, μ such that:4

(i) ui=αiμ(pi)−vμ(pi), for every pi∈P, and
(ii) vaRn

þ is such that every unsold object has zero price.5

We say that the vector (u, v) is compatible with μ. If (u, v, μ) is a feasible outcome, then the
total payoff of the seller is w ¼ P

qjaQ vj and we call (u, w) a payoff vector.6

Definition 3. A feasible matching μ is optimal for a market M if it maximizes the gain of the
whole set of agents. That is, if for all feasible matchings μ′ we have:

X
piaP

qj ¼ lðpiÞ

aijz
X
piaP

qj ¼ l VðpiÞ

aij:

The concept of cooperative equilibrium for a matching model is setwise stability. This concept
of stability requires that, given a feasible outcome, no group of agents induces an instability. We
say that a group of agents (a coalition) induces an instability if, by making new trades only among
themselves, possibly dissolving some transactions and possibly keeping some, can all obtain a
strictly higher payoff. Note that we do not allow for side payments among agents within the same
side of the market, and hence any coalition that induces an instability is formed by the seller and a
group of buyers. Thus in this model, the setwise stability is equivalent to the strong core, and
given that the seller only cares about his total payoff, and payoffs and prices can be adjusted
continuously, the strong core and the core coincide.

Definition 4. Denote by T the coalition formed by seller s and a group of buyers Tp where
|Tp|≤ |Q|. A feasible outcome (u, v, μ) is a core outcome if there do not exist any coalition
T and any feasible matching μ̂ such that

X
piaTp

l̂ðpiÞ ¼ qj

aij >
X
qjaQ

vj þ
X
piaTp

ui:

If such a coalition T and a matching μ̂ exist, we say that they block the feasible outcome (u, v,
μ) and we call T a blocking coalition.

Definition 5. A payoff vector ðu;wÞaRm
þ �Rþ is a core payoff for a market M if there exist a

vector of prices vaRn
þ and a feasible matching μ such that (u, v, μ) is a core outcome and

w ¼ P
qjaQ vj. We define the core as the set of all core outcomes.
4We sometimes abuse notation by writing αiμ(pi) instead of αij, where qj=μ(pi). Same occurs for αμ(qj)j.
5This assumption simplifies notation and some of the definitions and results. Moreover, since in the Assignment Game
each seller is identified with his object, there is no sense in assuming that the seller may have an unsold object with a
positive price.
6By definition, at a feasible outcome, ui≥0 for every buyer and vj≥0 for every object. This implies that no buyer can
obtain a higher utility by becoming unmatched, and the seller cannot obtain a higher payoff by leaving some of his
objects unsold. This implies that a feasible outcome is individually rational.
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An important remark is that a matching at any core outcome is optimal: if the matching was not
optimal, then the coalition formed by all agents would block the given outcome.

In the following proposition we prove that the core is the Cartesian Product of the set of core
payoffs and the set of optimal matchings, for a compatible price vector.7 This result will be useful
in the last subsection of the paper:

Proposition 1. Take any core payoff (u, w) and any optimal matching μ′. Then there exists a
vector of prices v′ such that (u, v′, μ′) is a core outcome and w ¼ P

qjaQ vj V.

Proof. Since (u, w) is a core payoff, there exist a vector of prices and an optimal matching μ such
that (u, v, μ) is a core outcome and w ¼ P

qjaQ vj. Since both μ and μ′ are optimal,
X
piaP

qj ¼ l VðpiÞ

aij ¼
X
piaP

qj ¼ lðpiÞ

aij ¼
X
piaP

ui þ
X
qjaQ

vj: ð1Þ

Define v′ as follows:

vj V¼ aij � ui if l VðqjÞ ¼ pi
0 if l VðqiÞ ¼ qj:

�

Hence, (u, v′, μ′) is a feasible outcome. By definition of v′, condition (1), and the fact thatP
piaP li þ

P
qjaQ vj V¼

P
piaPqj¼l VðpiÞ aij;

P
qjaQ vj V¼

P
qjaQ vj ¼ w holds. Now, we prove by

contradiction that there is no blocking coalition for (u, v′, μ′). Suppose that there exist a coalition
T={s}⋃Tp and a feasible matching μ̂ such that

X
piaTp

qj ¼ ̂lðpiÞ

aij > wþ
X
piaTp

ui:

But this implies that (u, v, μ) is also blocked by coalition T, which is a contradiction. Also note
that prices are positive by the definition of a feasible outcome. □

3.1. Nonemptiness

In this subsection we prove the nonemptiness of the core. We define a competitive equilibrium
for a given market and we show that we can associate to each competitive equilibrium a core
outcome. A similar argument is used in Sotomayor (1992), but in a very different scenario. Since
the set of competitive equilibria is an instrument to prove the nonemptiness of the core, it is
interesting to study the relationship between these two sets for a given market.

In our setting, a competitive equilibrium consists of a vector of prices and a feasible matching.
The competitive equilibrium property implies that, given the prices of the objects, each buyer
maximizes utility and trade takes place under a feasible matching. Following the definition used
in the Assignment Game, we define a competitive equilibrium as follows.

Given a vector of prices vaRn
þ let Di(v) denote the demand set of buyer pi, which is

defined as the nonempty set of all objects that maximize pi's utility given v, i.e., Di(v)=
7In the Assignment Game (Shapley and Shubik, 1972) it is shown that the set of stable outcomes is the Cartesian product
of the set of stable payoffs and the set of optimal matchings.
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{qj∈Q; αij−vj≥αih−vh, for all qh∈Q}. The price vector vaRn
þ is competitive if each buyer

can be matched with an object in her demand set, that is, if there exists a feasible matching μ
such that μ(pi)∈Di(v) for all pi in P. Such a matching μ is said to be competitive for the
prices v. The pair (v, μ) is a competitive equilibrium if v is competitive, μ is competitive for
v, and vj=0 for any unsold object qj.

The following proposition states the relationship between the core of a given marketM and the
set of competitive equilibria.

Proposition 2. Let a pair (v, μ) be a competitive equilibrium for a market M. Then, the feasible
outcome (u, v, μ), where μi=αiμ(pi)−vμ(pi), for all pi∈P, is a core outcome.

Proof. Suppose that, given a competitive equilibrium (v, μ) inM, the feasible outcome (u, v, μ) is
not a core outcome in M. We prove that the pair (v, μ) is not a competitive equilibrium.

Since (u, v, μ) is not a core outcome, there exists a coalition T, formed by the seller s and a
subset of buyers Tp, and a feasible matching μ′ such that

P
qjaQl VðqjÞaP vjV>

P
qjaQlðqjÞaP vj and

αiμ′(pi)−v′μ′(pi) >αμ(pi), for every pi∈Tp, where v′ is the new vector of prices.
This implies that there exists qj∈Q with μ′(qj)∈Tp (denote μ′(qj) by pi), such that, either vj′

>0 and μ(qi)=qj, or v j′>vj, μ(qj)∈P, and μ′(qj)≠μ(qj). In both cases, we must have ui′>ui.
Therefore, for the pair (pi, qj) we have that ui+vj<αij. But this implies that μ(pi)∉Di(v), because
there exists qj∈Q such that ui=αiμ(pi)−vμ(pi) <αij−vj. And this is a contradiction to the fact that
the pair (v, μ) is a competitive equilibrium. □

We provide the following example to see that we may have a core outcome, (u, v, μ), where the
pair (v, μ) is not a competitive equilibrium8.

Example 1. Consider the market M=(P, s, Q, α) with Q={q1, q2}, P={p1}, and α11=5,
α12=4. The feasible outcome (u, v, μ), where u=1, v=(4, 0) and μ(p1)=q1, is a core outcome
since α12=4<5=α11. But the pair (v, μ) is not a competitive equilibrium since v is not
competitive: α11−v1=1<4=α12−v2, which implies that q1∉D1(v)=q2.

As an immediate consequence of Proposition 2, and using the existence result of Shapley and
Shubik for the set of competitive equilibria in the Assignment Game, the following theorem holds.

Theorem 1. A core outcome exists for every given market M≡ (P, s, Q, α).

Proof. We can obtain a one-to-one market (Assignment Game) from a given many-to-one market
M (Generalized Assignment Game) by considering the same sets of objects and buyers, the same
α, and assuming that each object is owned by a different seller. Note that the set of competitive
equilibria coincides for both markets. Shapley and Shubik (1972) prove the existence of the set of
competitive equilibria for the Assignment Game. This result, together with the result in
Proposition 2, show the existence of a core outcome for every given market M. □

3.2. Structure

In this subsection we analyze the structure of the set of core payoffs. In particular, we propose
two binary operations to endow this set with a lattice structure under the partial order of the
buyers, and we prove that it is not possible to endow the core with a dual lattice structure. This
8Sotomayor (in press) studies a many-to-many model where the set of competitive equilibria is smaller than the stable set.
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special lattice structure indicates that agents on the same side have same interests over the agents
on the other side, although each side competes for the same agents, and there is a polarization of
interests between the two sides. Also, many algorithms used to obtain stable matchings are based
on this structure. For the Generalized Assignment Game, we also observe this conflict of interests
between the two sides of the market, but only for specific outcomes. This duality is not observed
with respect to the whole set of core outcomes.

Following Simmons (1963), a lattice is a partially ordered set any two of whose elements have
a least upper bound and a greatest lower bound in the set. When each of the possible subsets of the
set has a least upper bound and a greatest lower bound in the set, we say that the lattice is
complete. This is equivalent to the set being convex and compact (see Sotomayor, 1999a).

Let us define the partial orders ≥P and ≥s.
9 For any two core payoffs (u, w) and (u′, w′),

(u, w)≥P (u′, w′) if ui≥ui′ for all pi in P, and (u, w)≥s (u′, w′) if w≥w′. Note that these two
partial orders are not dual in our model.

Lemma 1. Let (u, w) and (u′, w′) be two core payoffs. If (u, w)≥P(u′, w′) then (u′, w′)≥s (u, w).

Proof. Note that, since (u,w) and (u′, w′) are core payoffs, for any optimal matching μ, there exist
v and v′ such that (u, v, μ) and (u′, v′, μ) are core outcomes, w ¼ P

qjaQ vj; and w V¼ P
qjaQ vj V.

Assume ui≥ui′ for all pi in P, which implies vμ(pi)≤v′μ(pi). Therefore, w≤w′. □

Remark 1. Let (u, w) and (u′, w′) be two core payoffs. If (u, w)≥s (u′, w′), we do not necessarily
have (u, w)≥P (u′, w′).

Proof. Let M=(P, s, Q, α) be such that Q={q1, q2}, P={p1, p2}, and α11=5, α12=4, α21=2,
α22=3. The payoff vectors (u, w)= ((2, 0), 6) and (u′, w′)= ((1, 2), 5) are core payoffs. On the one
hand, w>w′ so (u, w)≥s (u′, w′). On the other hand, u1′<u1 but u2′<u2, so we cannot say that
(u, w)≥P (u′, w′). □

As a direct consequence of the above lemma, the set of core payoffs is not a dual lattice in the
usual sense.10 Given two core payoffs, if we let buyers choose their best (worst) and we let the
seller choose his worst (best) payoff, the resulting payoff may not even be feasible.

In what follows, we endow the set of core payoffs with a lattice structure under the partial order
of the buyers. We define the least upper bound (greatest lower bound) of two given core payoffs as
the one where only the buyers choose their best (worst) among the two.11

Definition 6. Let (u, w) and (u′, w′) be two core payoffs and let μ be an optimal matching. We
define μ̄ and w(μ) as follows:

(i) For every pi∈P, ūi=max{ui, ui′}.
(ii) For s, wP ðlÞ ¼

P
qjaQðminfvj; vj VgÞ, where v and v′ are such that (u, v) and (u′, v′) are

compatible with μ, w ¼ P
qjaQ vj; and w V¼ P

qjaQ vjV.12
9 These two binary relations are also preorders since they are reflexive. Moreover, ≥s is a complete preorder.
10A similar result can be found in Martínez et al. (2001) for matching games without money where agents have
substitutable preferences.
11If we let only the seller choose between two core payoffs, we obtain the same result. But this is no longer true if we had
more than one seller, where we are not able to endow the set of core payoffs with a lattice structure under the partial order
of the sellers.
12We will prove later (Lemma 2) that this sum of prices coincides for any optimal matching.
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Similarly, replacing max by min and min by max, we define u and w̄(μ).

Proposition 3. Let (u, w) and (u′, w′) be two core payoffs and let μ be an optimal matching.
Then, the vectors of payoffs (ū, w(μ)) and (u, w̄(μ)) are core payoffs.

Proof. Take the optimal matching μ and the vector of prices v such that v j=min{vj, vj′}, where v
and v′ are such that (u, v) and (u′, v′) are compatible with μ, w ¼ P

qjaQ vj; and w V¼ P
qjaQ vj V.

We prove that (ū, v, μ) is a core outcome. First, in (a), we prove that it is a feasible outcome using
the fact that (u, v, μ) and (u′, v′, μ) are feasible since they are core outcomes by Proposition 1. In
(b), we prove that the outcome cannot be blocked by any coalition.

(a) For every (pi, qi) such that μ(pi)=qj, either ūi=ui or ūi=ui′. In the first case, by feasibility of
(u, v, μ) and (u′, v′, μ), ui+vj=ui′+vj′=αij. Therefore, ui>ui′ implies that vj≤vj′, and we
must have v j=vj. Hence, ūi+v j=ui+vj=αij. The proof for the second case is similar. For s,
wP ðlÞ ¼

P
qjaQðminfvj; vj VgÞ ¼

P
qjaQ vPj, by definition.

(b) We check that there does not exist any coalition formed by the seller and a group of buyers
that blocks the feasible outcome (ū, v, μ). Note that the buyers are optimally allocated, and
cannot reorganize in a profitable way under μ. Otherwise, (u, v, μ) and (u′, v′, μ) would
also be blocked by this coalition, and, hence, they would not be core outcomes. Consider a
coalition T, formed by the seller s, and a group of buyers, Tp, where, at least one buyer,
pi∈Tp, was unmatched under μ, and there exists a buyer pk, that was buying qj under μ
and, in the blocking coalition, he is assigned to object qh, with μ(qh)∈P with price vh.

13

Noting this, if (ū, v, μ) was not a core outcome, it must be the case that αij+αkh>ūi+
vh>αkj. Either αij+αkh>ūi+vh+αkj=ūi+vh+αkj≥ui+vh+αkj, which is a contradiction with
(u, v, μ) being a core outcome or αij+αkh>ūi+v¯h+αkj=ūi+vh′+αkj≥ui′+αkj, which is a
contradiction with (u′, v′, μ) being a core outcome.

Similar reasoning follows for (u, v̄ , μ). □

The following lemma shows that the definition of w̄(μ) for any two core payoffs does not
depend on the matching μ.

Lemma 2. Let (u, w) and (u′, w′) be two core payoffs and let μ and μ̂ be two optimal
matchings. Assume that v, v′, v̂ and v̂′ are such that (u, v) and (u′, v′) are compatible with μ,
and (u, v̂) and (u′, v̂′) are compatible with μ̂. Then,X

qjaQ

ðminfvj; vjVgÞ ¼
X
qjaQ

ðminfv ̂j; v ̂jVgÞ

and X
qjaQ

ðmaxfvj; vjVgÞ ¼
X
qjaQ

ðmaxfv̂ j; v̂ jVgÞ:

Proof. Denote wP V¼ P
qjaQðminfvj; vjVgÞ and wPW ¼ P

qjaQðminfv̂ j; v̂ jVgÞ. Following the proof
of Proposition 3, (ū, vm, μ) and (ū, v̂m, μ̂) are core outcomes, with vj

m=min{vj, vj′} and v̂j
m=min
13Note that the rest of possible cases where the blocking coalition is formed by the seller and one buyer can be analyzed
using a similar argument.
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{v̂j, v̂ j′} for every qj∈Q. Also by Proposition 1, there exists a vector of prices v⁎ such that (ū, v⁎,
μ̂) is a core outcome. But by feasibility of μ̂ it must be the case that ūi=αiμ̂(pi)−vμ̂(pi)⁎ for every
pi∈P. This implies that vj⁎= v̂ j

m for every qi∈Q, and therefore, w′=w″
Similarly, we can prove this property for the maximum prices. □

Now, for any two core payoffs (u, w) and (u′, w′) we can properly denote by w the minimum
gain that seller s can get at any optimal matching, and by ūi the maximum payoff for buyer pi.
Moreover, we can state the main result of the paper:

Theorem 2. The set of core payoffs forms a complete lattice under the partial order ≥P.

Proof. By Proposition 3, every two core payoffs (u, w) and (u′, w′) have a supremum, denoted
by (ū, w), and an infimum, denoted by (u, w̄), under the partial order ≥P , and (u, w̄) and (ū, w)
are an upper-bound and a lower bound under ≥s. This directly shows that the set of core payoffs
is a lattice under the partial order ≥P. For this to be a complete lattice, we show that this set is
convex and compact. By Proposition 1, the set of core payoffs is the same for any optimal
matching. Let μ be an optimal matching. The set of core payoffs is the solution of a system of
linear non-strict inequalities associated with μ, and hence it is closed and convex. The
boundedness follows from the fact that for all matched pairs (pi, qj) under μ, 0≤ui≤αij and
0≤vj≤αij. Hence, the set of core payoffs is convex and compact, and therefore it forms a
complete lattice under the partial order ≥P. □

We can go further and analyze a common result in the matching literature: the existence of a
polarization of interests between the two sides of the market within the set of core payoffs. In our
case, we only have this polarization between the optimal core payoffs for each side, given that the
two partial orders are not dual in this model.

Definition 7. A core payoff (u⁎, w⁎) is called P-optimal if for any core payoff (u, w), (u⁎,
w⁎)≥P (u, w). A core payoff (u⁎, w⁎) is called s-optimal if for any core payoff (u, w), (u⁎,
w⁎)≥s (u, w).

Proposition 4. There exist a unique P-optimal core payoff (u⁎, w⁎) and a unique s-optimal
core payoff (u⁎, w⁎). Moreover, for any core payoff (u, w), (u⁎, w⁎)≥P (u, w)≥P (u⁎, w⁎) and
(u⁎, w⁎)≥s (u, w)≥s (u⁎, w⁎). There exists a unique s-optimal core payoff with symmetrical
properties.

Proof. The existence of a unique P-optimal core payoff (u⁎, w⁎) is guaranteed by Theorem 2,
since every complete lattice has a unique maximal element. This, together with Lemma 1,
guarantees that (u⁎, w⁎) is such that (u, w)≥s (u⁎, w⁎) for any core payoff (u, w). Also, there
exists a unique minimal element (u⁎, w⁎) that is the least preferred for every buyer given the
partial order ≥P. This implies that (u⁎, w⁎) is such that (u, w)≥P (u⁎, w⁎) for any core payoff (u,
w). But by Lemma 1, (u⁎, w⁎)≥s (u, w), which verifies the existence of a unique s-optimal core
payoff that is the least preferred by the buyers. □

Finally, we comment on the relationship between the optimal core payoffs and the competitive
equilibrium payoffs by means of the following example:

Example 2. Let M≡ (P, s, Q, α) with Q={q1, q2}, P={p1}, and α11=5, α12=4. The set of core
payoffs for this market is G ¼ fðu1;wÞaR2

þju1 þ w ¼ 5g and the set of competitive equilibria is
C={(v, u)∣v1∈ [0, 1] and μ(p1)=q1}. We observe that the seller can gain more in the core than in
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the set of competitive equilibria, while the buyer's optimal core payoff coincides with the buyer's
optimal payoff within the set of competitive equilibria.14
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