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We introduce and study a new compromise value for all weakly essential transferable utility games: the
y-value. 1t is closely relaied to the z-value defined by Tijs in 1981. The main difference being the way wo
define the maximal aspiration a player may have in the game: instead of considering the marginal
contributien to the grand coalition, we consider his maximal (among all cealftions) marginal centribu-
tion. We show that the class ol games where the new value can be applied is larger.
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[, INTRODUCTION

The purpose of this paper is to introduce a new compromise value for transferable
utility games, that we call the y-value. A compromise value chooses as the solution
of the game the efficient vector lying in the segment between the vectors of maximal
and minimal payolffs that each player may expect to obtain; that is, it is a compro-
mise between their maximum and minimum aspirations. In bargaining problems,
the Kalai-Smorodinsky solution (Kalai and Smorodinsky [97} is already based on a
compromise of this type. The prominent example of a compromise value for trans-
ferable utility games is the 7-value introduced by Tijs [12].

For every player, Tijs defines his maximum payoff as his marginal contribution to
the grand coalition, and his minimum payoff as the maximum remainder he can
obtain by going with a coalition of players and offering them their maximum payoff.
The problem with the definition of the t-value is that for some games (called by Tijs
the class of non gquasi-balanced gamesg) it can not be applied.
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PDR94-0648-c02-01, and Generalitat de Catalunya through CIRIT grant GRQ93-2044 is gratelully ac-
knowledged. We are grateful to Y. Sprumont, G. ). Otten, Y. Funaki and three anonimous referees for
helplul comments.
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We propose, in Section 3, a new compromise value, the x-value, by only modify-
ing slightly the way the maximum aspiration is obtained in the definition of the
t-value. We propose the use of the maximal marginal contributien as the maximum
aspiration for a player, while keeping the definition of the minimum one as the
7-value does, but using the new maximum payoff. In Proposition [ we show that this
minimum aspiration coincides with the vector of utilities associated to each player
by the characteristic function. We find this property interesting, not only because it
implies that the y-value is defined in all (weakly essential) transferable utility games,
but also because we obtain “endogenously” (using the new definition of maximal
aspiration) that the minimum aspiration for each player is the value associated to
each one of them by the characteristic function. It seems to us that this may be a
good indication that the notion of maximum aspiration that we are proposing is
sensible, At the end of the paper, in Section 5, we discuss an alternative (dual) way of
defining the bounds to obtain an alternative compromise value.

Section 4 studies the relationships between the y-value, the t-value, the Shapley
value and the Core of a game. An Appendix at the end of the paper contains a long
proof (Proposition 2y omitted in the tex(. Section 2 below contains the notation and
basic definitions.

2. PRELIMINARIES

A (cooperative) game with trangferable utiliiy is an ordered pair {N,v) where

N=1{1,....n} is the set of players and v2"-R is a function, the characteristic

function, having the property that {¢)= 0. To each coalition §€2", v assigns a real

number v(S), the worth of coalition S. We will denote by #5 the cardinality of

coalition 8. Given a game (N, v) we say that a vector xe [R" is efficient if ¥, _,x; = o(N).
A game with transferable utility (N, v) is:

(a) essential it ¥, _,v({i}} < (N} and weakly essential if ¥, _yu{{i})v < (V).
(b) superadditive if o(S) + o(T) < S T) for every §, Te2¥ such that S T= ¢.
(¢) convex if v(S)+ o(T) < o(SUT)+v(S N T) for every S, Te2".

Let G be the class of weakly essential games, and let B be a subset of G. A solution
concept on B < G is a correspondence @ assigning to every (N, v} B a set of efficient
vectors, that is, ®(N,v) = R" and xe O(N, ) implies ¥,_4x; = v(N). An example of a
solution is the Core, defined by

C(N,v)= {xe R Y x;=v(N) and ¥ x, = u(S) for every Se2”}.
ielN ie8

A value on B = G is a function ¢ that assigns to each (N,v)e B < G a unique efficient
vector, that is, ¢(N,v)eR" and ¥,_,¢(N,v)=0v(N). The Shapley value, Sh(N,v)
(Shapley [11]) is the most well-known example of a value.

Tijs [12] introduced a value, called the t-value, for a subset of essential games (the
class of quasi-balanced games defined below}. The idea behind it is to find a com-
promise between the maximum and the minimum amount that each player may
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expect to obtain in the game. Let (N,v)e G and ie N be given, Tijs defined M(v), the
upper value of v for i, as the marginal contribution of player i to the grand coalition,
that is,

Mi(v) = 0N} — olN\{i}).

Using the vector of upper values M*(v} = (M7 (v),..., M(v), he also defined mi(v), the
lower value of v for i, as

mi{v) = max {U(S)— > M;(v)}
ScN oy
ied JeS\li}
Player i may guarantee by himself this amount m{(v) by offering to the members of a
coalition S {the one producing the maximum gain for him) M(»), keeping for himself
the remainder of v(S).
Tijs defined the set of Quasi-Balanced games, OB < G, as the games {N,v)e(
having the properties that

Mm@ <Miv) and Y mipy<o(N)< Y M)
ieN il
For a game (N, v}e OB, the t-value of (N, ) is the unique efficient vector in the lineal
segment having as extremes points m(v) and M*(v). That is,

(N, v} = m'(v) + 2L M) — m* ()],

where o 1s such that Yo nTd IV, 1) = B(N).

The 7-value has been extensively studied in the literature. There are several alter-
native characterizations of it (for example Tijs [13], Driessen [7], and Calvo, Tijs,
Valenciano and Zarzuelo [6]). Bergantifios and Mendez-Naya [1] show how to
implement it by subgame perfect equilibria in extensive form games. Moreover, the
z-vaiue has generated a family of compromise values (sec Tijs and Lipperts [14], van
Heumen [8], Bondareva [2], van den Brink [4] and [5], Bondareva and Driessen
[3]). Our work is clearly related to this literature which is surveyed by Tijs and
Otten [15].

3. THE y-VALUE

We think that one of the main objections to the t-value is that the class of games
where it is defined does not have a natural justification. It 1s selfjustified by imposing
that the vector of maximum aspirations be larger than the vector of minimum ones
and by requiring that the gain of cooperation, »(N), be bounded by the sum of the
maximum and minimum aspirations. That is, the value justifies the class. Example |
below presents a non quasi-balanced superadditive game that does not have v-value.

Example 1: Let (N,v) be a transferable utility game where N = {1,2,3},v({1})=
o2 =u({3) = 0,u({L,2}) =o({2,3) = 10,o({1,3}) =12 and o({1,2,3})=15. The
maximal and minimal aspirations according to the t-value are M7j(v)= Mi{v) =
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5, My(v) =3, mi(v)=mi(v) =7 and mi(v) = 5. The game is not quasi-balanced since
mi(v) > Mi(v) for every i=1,2,3 and also Y,_,,,mi{s)=19>15=1v({1,2,3})>
Zs:;l,z,s}M?(‘)) =13.

We propose a new compromise value, the y-value, by using a different concept of
a player maximum aspiration in a game. Instead of considering his marginal contri-
bution to the grand coalition, as the t-values does, it secems to us more appropriate
to consider his maximal marginal contribution, which in general may be larger than
the marginal contribution to the grand coalitien. The vector of maximal marginal
coniributions was first proposed by Milnor [10], and vsed by van Heumen [8].
Besides, this modification has two important consequences. First, the corresponding
minimum aspiration for player i, defined as the maximal remainder using the new
definition, coincides with o({i}) for the class of weakly essential games, and therefore
the maximum aspirations are not smaller than the minimum enes for all weakly
essential games, Secondly, and as a consequence of the first one, we can define a
compromise value for all weakly essential games.

Formally, let (N,v) be a transferable utility game. For each ie N, define player 1’s
maximum aspiration in the game (N,v), M4}, as his maximal marginal contribution,
that is, '

Mi(o) = max{v($) — oS\ {1},

ted

Notice that both definitions coincide in the class of convex games, Following Tijs
idea of lower value, define player i's minimum aspivation in the game (N,v), mHv), as
the maximal remainder he can obtain after conceding to the other players their
(new) maximum aspirations; that is,

mi(v) = rSnCa}éi{v(S) - Y M j-‘(v)}.

ies Jesli}

Player i can guarantee this amount for himself by offering to the members of a
particular coalition § (the one generating their maximum remainder for him) their
maximum aspirations, keeping for himself the remainder of o(S). The difference
between the definitions of m¥*(») and mi{) are the considersd maximum aspirations.

First of all, it is easy to see that for every S N, o{S) <}, (M¥wv). In particular,
o(NY<Y, . wMHv). Therefores, for every ie N,

mi(v) = max s v(S) — 2 MHv); < max {U(S] —u(S\{i}H) > = M¥uv).
SeN jes\[#) SsN
ieS ic8

Propesition 1 below shows that using this new definition, the minimum aspiration
for player i coincides, as it should, with the value associated to i by the characteristic
function. van Heumen [8] proposed a compromise value (which coincides with the
y-value) by using the Milnor upper bound and imposing (exogenously} as lower
bound the vector (({i}));.y. It seems to us, that the endogenous derivation of o({i})
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as the minimum aspiration is an indication that our modified definition of maxi-
mum aspiration may be sensible.

Proposition 1: Let (N,v) be a transferable utility game. Then, m¥(v) = v({i}} for every
ieN.

Proof: From the definition of m¥(v) it follows that m¥c) = v({i}} just by taking
§={i}. To see that m¥v)<v({i}) it will be sufficient to show that u{(S)—
M¥v) < v({i}) for every § € N such that ie§,

The proof is by induction on the number of players in the coalition S, If § = {i,j},
then

Gesii)

uS)— ) Mw)=u({i,j}) — MHe) < o({i, j}) — [o({5, /1) — o({i})] = u({i}),

jesv
since M .(v) = o({i, i — o({i}).

Assuming that the result is true if § contains p = 2 players (induction hypothesis),
we will show that it is true for p 4+ 1 players.
Let §=1{i;,...,1,1} be any scl with cardinality p + 1. Then,

uS)— Y Mw)=uS}— ), M)

JEB\E) F={l..p}

<US) — [AS) — lS\{L, D] — %=1, p- 1} MER)

=S\ - Y M)

J={1...p—1F
= 4(S \{ip}) - Z Mi(v).
Je(S\I N}

Since S\{i,} has 'p players, we can conclude that the above expression is smaller or
equal than u({i}), and therefore,

uS)— . MXv)<u({i}) for every S <= N such that ieS.
Jesui)
Hence, m#(v) = v({i}) for every ieN. MW

An important consequence of Proposition 1 is that, using the new vectors of
aspirations, we can define a compromise value for all weakly essential games. That
is,

Corollary : If (N,v) is a weakly essential game, then Y, ym¥() < v(N).

We can now define the y-value for every weakly essential game. Consider
(N, v) e G, define the y-value of (N, ), denoted by x(N, v), as the unique efficient vector
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in the lineal segment having as extreme points m*(v) and M*(). That is,
x(N,v) = m*(v) + o M*() — m*(v) ],

where o is such that ¥, yxdN, v) = o(N).
To illustrate the definition, consider again Example 1,

Example 1 (continued): The maximal and minimal aspirations according to the
yvalue are M¥(p) = M4{(v) = 12, M%(v) = 10 and m¥(2)} = v({i}) = 0 for every i=1,2,3.
After the corresponding caluculations we find that ¥{(N,v) =(90/17,75/17,90/17) and
Sh(N,v) = (16/3,13/3,16/3). None of this two imputations belong to the Core of
{N,v) since its core is empty.

4, THE 3-VALUE, THE ¢-VALUE, THE SHAPLEY
VALUE AND THE CORE

In this section, we study the relationship of the y-value with the z-value, the Shapley
value and the Core.

In the class of convex games the 7-value and the y-value coincide since the grand
coalition is the coalition where every player has the bigger marginal contribution.
Therefore, the vectors of upper values and maximum aspirations coincide. It is well
known that, in this class of games, the Shapley value belongs to the Core but the
1-valiue may not.

Example 2 below illustrates that the y-value may belong to the Core in games
where the t-value does not.

Example 2: Let (N,u) be a transferable utility game with N ={1,2,3,4,5},
o({i}) =0 for every ieN, u(S)=40 if #S=2,0(S}=100 il #$=3 and S+ {1,2,3},
v({1,2,3}) = 190, v(S) = 200 if #5 = 4 and v(N) = 300. The vectors of upper and lower
values are M*(v) =(100,100,100,100,100) and mx)=(0,0,0,0,0). Therefore,
(N, ) = (60, 60, 60, 60, 60) which does not belong to C(N,v) since v,(N,v), + 7,(N,v)
+1,(N, v) = 180 < 190 = »({1,2,3}). However, M*(v)=(150,150,150,100,100) and
m*v) =(0,0,0,0,0), implying that x(N,v)=(69.23,69.23,69.23,46.15,46.15) which
does belong to C(N,v).

Example 3 shows a game with the property that the x—valﬁe belongs to the Core
but the Shapley value does not.

Example 3: Let (N, v) be a transferable utility game with N = {1,2,3,4}, o({i}}=0
for every ieN, v({1,4})=u({2,4}) =u({3,4) =2, v({1,2}) = o({1,3}) =v({2,3}) =10,
u({1,2,4}) = v({1,3,4}) = v({2,3,4}) = 12, v({1,2,3}) = 110 and v(N) = 112. The vectors
of maximum and minimum aspirations are MZ*v)={(100,100,100,2) and
m*v) =(0,0,0,0). Therefore, x(N,v)=(36.77,36.77,36.77,0.66) which belongs to
C{N,v). However, Sh(N,v)={36.58,36.58,36.58,1.25) does not belong to CiN,?)
sinice Sh.(N, 5) + Shy(N, v) + Sha N, v) = 109.75 < 110 = o({1,2,3}).
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It is known that the z-value belongs to the Core for every balanced game with
three players, However, for superadditive games with three players we have the
following general resuit.

Proposition 2: Let (N,v) be a superadditive game with #N =3. Then [x(N,v)e
C(N, )] =18h{(N,v)e C(N,v)].

Proof: See the Appendix.

It is also easy to find examples showing that for non-superadditive games, even
with three players, anything is possible. Also notice that a consequence of Proposi-
tion 2 is that there are games where the ¢-value does belong to the Core while the
y-value does not, since for three-person games the z-value always belongs to the
Core but the Shapley value does not.

5. FINAL REMARKS

Before finishing the paper we would like to make three remarks. First, about well-
known properties that the y-value satisfies, It is easy to show that it satisfies Individ-
ual Rationality, Symmetry, Dummy, Strategic Equivalence, Standard for 2 and
M*u)-Proportionality. Moreover, it is possible to uniquely characterize the y-value,
in the same line that Tijs [13] did for the z-value, by the propertics of Strategic
Equivalence and M*(p)-Proportionality. However, we do not see it as a very illumi-
nating characterization since the proportionality axiom is already incorporated in
the definition of the solution.

Second, about the possibility of using alternative bounds in the definition of a
compromise value. Consider its dual approach; that is, obtain the y*-value as the
compromise between the lower bound defined by m¥*(v) = v({i}) for every ic N, and
the upper bound defined by ‘

MHv) = max {U(S} -y mj-“(v)}.

S=) jes\G}
Then, for zero-normalized (v({i}) =0 for every i€ N) games,

N
X?(N’U):UE(&W) for allieN.
Third, about the possibility of defining the compromise value on the dual game.
Consider the dual game (N, v*) defined as follows:

v*($) = o(N)—o(WN\S) forallS=N.

It is easy to show that the upper bounds used in the definition of the y-value
coincide in the two games; that is, M*(t*) = M*(v). Morever, since v*{N) = o(N) and
v*({i}) = v(N) — o(N\{i}} = Mi(v) for all ie N, we have that if ¥, yM{(t) < v(N) then
(N, v*) is weakly essential and by Proposition 1, m*(v*} = M"{(v});, hence the y-value on
{N,v*) is well defined in this case.
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APPENDIX

Proposition 2: Let (N,v) be a superadditive game with #N=3. Then [x{N,v)eC
(N, v)]=[Sh(N, )& C{N,v)].

Proof: Without loss of generality we will assume that (N,v) is a zero-normalized
game. Suppose that C(N,v) # 0; therefore, we have that

20({1,2,3)) 2 o {1, 2)) + w({1,3]) + ({2, 3}) )

By definition, the Shapley value can be written as:
Shy(V, o) = 131, 2,3) — o2 31)+ (/Ou{L 2D+ (1/6)o(1,3) ()
Shy(V,0) = 130({1,2,3}) — oL, 3)) + (O({L2) + (/O (2.3 ()
Sha(N, o) = 1/300{1,2,3) — (1,20} + (1/6)({1,3D) + (/6 o((2.3). (@)

Since (N,v) is superadditive we have that Sh(V,0)e C(N,v) if and only if Sh(N,v)
+ Sh,(N,v) 2 v ({1,2}), Sh (N, v) + Sh,(N, v) = v({1, 3}), and Shy(N, v) + Shy(N,v) = v
{{2,3}). Therefore, using (2) and (3) in the expression Sh (N, v) + Shy(N,v) = v({1,2})
we obtain that

o{1,2,3)) = o({1, 2}) + (LA {L, 3 + (L/A)o({2, 3)) (5)
By a similar argument, it is easy to sce that

o{1,2,3}) = o({1,3}) + (1/4)o({1,2}) + (1/4)e({2,3}) (6)

o({L,2,3}) 2 o({2,3}) + (1/4)0({1,2}) + (1/4v({1, 3}). (7)

Assume that Sh(N,v)¢ C(N,v), we will show that y(N,v)é C(N,v). If Sh{N,v)¢
C(N, v} it means that at least one of the inequalities in (5), (6) or (7) is not verified.
Assume it is (5) (the other cases are done similarly), that is, »({1,2,3}) <v ({1,2})
+ (/4 0({1,3)) + (1/4)6({2, 3}). Without loss of generality suppose v({1,3}) = v({2,3})
and o({1,3}) > 0 (if v({1,3}) = 0 then the Core is empty because v({1,2,3}) < v({1,2})).
Then, by definition, M%(v) = v({1,3}) since ¥{{1,2,3}) —v ({1,2}) < (1/2)v({1,3}). We
will distinguish, and successively eliminate, four possible cases:

Case 1: M) #v({1,2}). Suppose that M%(v)=uv({2,3})>v({1,2}). By (1) and
Sh (N, v) + Sh,(N, vy < ({1, 2}), we have that

4(”({19 2a 3}) - U({l, 2})) g 20({19 2» 3}) o U({Is 2})7
and therefore,
o({1,2}) = (2/3)p({1,2,3}). (8)
But this is a contradiction with C(N,v)+ ¢, since

o{1,3) = (2,3} > o{1,2}) > 2/3)0({1,2,3})
implies that (1) is viclated.
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Suppose that M%) = v({1,2,3}) — v({1,3}) > v({1,2}). Since #{{2,3}) <({1,3}) we
have that
K{L,23D) — o({2,3]) > ({1,2,3) — ({1, 3}) > ({1, 2),

but then, 20({1,2,3}) — o({1,3}) — #({2,3}) > 20({1,2}), which implies that v({1,2,3})
—o({1,2)) > (1/20({1,3}) + v({2,3})) contradicting Sh, (N, v} -+ Sh,(N, v) <u({1,2}}.

Case 2. M%(v) = M%(v) = v({1,2}). Then, by definition of the y-value,

v({1,2,3})

KOO = S, 20 + oG L, 2) - o({1,3)

({1,21), 0({1, 2}), ({1, 3}).
Therefore,

w123
a9 = i) + iz 3y

It is a straightforward cxercise to show that y4(N,v) = (N) — v({1,2}). Therefore, by
efficiency y,(N,v) + x.(N, v} < o({1,2}), implying that y(N,v) & C(N,v).

Case 3; M{v)=v{{1,2,3}) —v({2,3}) and M%(v) = o({1,2}). Then, by the definition
of the y-value,

_ o({1,2,31-(({1,2,3}) — o({2,3}), {1, 2}), ({1, 3}})
o({1,2}) + o({1,2,3) +o({L, 31} —({2,3})

x(N,v)

Therefore,

B v({1,2,3}) 0({1,3})
2V, v) = o({ 1,2} + o({1,2,3}) + o({1,3}) — ({2, 3}}

_ 401,23} — 4u({1,2,3D o({1,2}) = ({1,2,3) ({2, 3)
- 3u{{1,2, 3}) — 21)({2, K3y ’

since, by Sh(N,v)+ Sh,(N,v) < u({1,2}), we have that o({1,3})>4e{{1,2,3})—4v
({1,2}) — 0({2,3}), and by (1), we have that o({1,2}) +v({1,2,3}) + 2({1,3}) — ({2, 3})
is smaller or equal to 3u({1,2,3}) — 20({2,3}). To see that y(N,v)#C(N,v) it is suffi-
cient to see that y,(N,v) > o({1,2,3})— v({1,2}). After some algebra it is easy to see
that this condition is equivalent to

o({1,2.3}) (({1,2,3})) — o({1.2})) = o({2, 3}) (2u({L,2}) — v({1,2,3})),

which is true, since ({1,2,3})= 20({1,2}})—¢({1,2,3}) and the fact that M%(»)=
2({1,2,3)— v ({2,3}) implies that o({1,2,3}) — o({2,3}) = o({1,2}).

Cased. Mi(v)=u({1,2}) and M*(») =v({1,3}). By hypothesis, we have that

Cow{L,23)
A0 = e 3y gy O 31,2013
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If y(N,v)e C{N,v) then y,(N,s) + x,(N,v) = v({1,3}), which implies that
{{1,2,31)20({1,3})
20001, 3) + ({1,2})

Therefore, since v({1,3}) > v{({1,2}) and (8), we have that
20({1,2,3}) = 20({1,3}) + v({1,2}) > 20({1,2, 3},

which is a contradiction. M “l

=u({1,3})
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