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Abstract The division problem consists of allocating a given amount of an
homogeneous and perfectly divisible good among a group of agents with single-
peaked preferences on the set of their potential shares. A rule proposes a vector of
shares for each division problem. Most of the literature has implicitly assumed that
all divisions are feasible. In this paper we consider the division problem when each
agent has a maximal capacity due to an objective and verifiable feasibility constraint
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which imposes an upper bound on his share. Then each agent has a feasible interval
of shares where his preferences are single-peaked. A rule has to propose to each agent
a feasible share. We focus mainly on strategy-proof, efficient and consistent rules and
provide alternative characterizations of the extension of the uniform rule that deals
explicitly with agents’ maximal capacity constraints.

Keywords Division problem · Single-peaked preferences · Uniform rule ·
Capacity constraints

JEL Classification D71

1 Introduction

For general social choice problems strategy-proofness is too demanding: only dic-
tatorial rules are immune to strategic manipulation. This is a negative result because
strategy-proof rules are appealing (they induce truth-telling independently of the infor-
mation agents have about other agents’ preferences) and because dictatorships are not
interesting procedures to aggregate agents’ preferences. However, in specific applica-
tions, the structure of the set of alternatives suggests that not all preferences are mean-
ingful and admissible. But then, rules that were manipulable on the universal domain of
preferences may become strategy-proof when applied only to those restricted domains.
Sprumont (1991) is a prominent example of this approach.1 Sprumont (1991) consid-
ers the division problem faced by a set of agents that have to share an amount of an
homogeneous and perfectly divisible good. For instance, a group of agents participate
in an activity that requires a fixed amount of labor (measured in units of time). Agents
have a maximal number of units of time to contribute and consider working as being
undesirable. Suppose that labor is homogeneous and the wage is fixed. Then, strictly
monotonic and quasi-concave preferences on the set of bundles of money and leisure
generate single-peaked preferences on the set of potential shares where the peak is
the amount of working time associated to the optimal bundle and in both sides of the
peak the preference is strictly monotonic, decreasing at its right and increasing at its
left. Similarly, a group of agents join a partnership to invest in a project (an indivisible
bond with a face value, for example) that requires a fixed amount of money (neither
more nor less). Their risk attitudes and wealth induce single-peaked preferences on
the amount to be invested. Finally, a group of firms with different sizes (i.e., max-
imal capacities) have to jointly undertake a project of a fixed size. Since they may
be involved in other projects their preferences are single-peaked on their respective
intervals of feasible shares of this project. In general, a (classical) division problem
consists of a finite set of agents, a preference profile of declared list of single-peaked
preferences on the interval [0,+∞), one for each agent, and the amount of the good
to be allocated. Since single-peaked preferences reflect idiosyncratic characteristics
of the agents, they have to be elicited by a rule that maps each division problem into a

1 See also Barberà (1977), Moulin (1980), Barberà et al. (1991, 1998), Alcalde and Barberà (1994), Barberà
and Jackson (1994) for different examples of this domain restriction approach.
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vector of shares.2 But in general, the sum of the peaks will be either larger or smaller
than the total amount to be allocated. A positive or negative rationing problem emerges
depending on whether the sum of the peaks exceeds or fails short the fixed amount.
Rules differ from each other on how this rationing problem is resolved in terms of
incentives, efficiency, fairness, consistency, monotonicity, etc.

However, almost all the literature on the division problem has implicitly neglected
the fact that in many applications (like those described above) each agent i has
a maximal capacity due to an objective and verifiable feasibility constraint which
imposes an upper bound ui on his share.3 These upper bounds may come from capac-
ity constraints, budget constraints or physical limits on the amount each agent can
receive. We consider situations where these maximal capacity constraints are com-
mon knowledge.4 Thus, we assume here that each agent i has a feasible interval of
shares [0, ui ] where his preferences are single-peaked. A rule has to propose to each
agent a feasible share (i.e., a positive amount smaller or equal to ui ). We propose
and axiomatically study a rule that solves the rationing problem when agents have
maximal capacity constraints.

We are interested in rules that satisfy two classes of desirable properties. The first
class is related to the behavior of the rule at a given division problem with maxi-
mal capacity constraints (i.e., the set of agents, their upper bounds and the amount
to be shared are fixed). First, strategy-proofness. A rule is strategy-proof if no agent
can profitably alter the rule’s choice by misrepresenting his preferences. Namely,
strategy-proofness guarantees that truth-telling is a weakly dominant strategy in the
direct revelation game induced by the rule. Second, efficiency. A rule is efficient
if it always selects Pareto optimal allocations. Efficiency guarantees that in solving
the rationing problem (either positive or negative) no amount of the good is wasted.
Third, weak individual rationality from equal division. A rule satisfies this property
by choosing a Pareto improvement from the vector of equal shares, whenever this
vector is feasible.5 Weak individual rationality from equal division embeds to the rule
a minimal egalitarian principal only broken if either the equal division is not feasible
or to satisfy the bounds imposed by efficiency. Fourth, equal treatment of equals. A
rule satisfies equal treatment of equals if it treats equally identical agents. Fifth, weak
envy-freeness. A rule is weak envy-free if it does not generate feasible envies in the
sense that there is no agent that by exchanging his shares with another agent, the new
share is feasible and the agent is strictly better off.

2 Since agents’ preferences are single-peaked there are many non-dictatorial and strategy-proof rules.
Barberà et al. (1997) indicates that the class of all strategy-proof rules for the classical division problem is
extremely large.
3 Kibris (2003), Bergantiños et al. (2011), Kim (2010) and Manjunath (2010) consider different types of
restrictions on the set of feasible and/or acceptable shares. Moulin (1999) introduces maximal capacity con-
straints in the division problem to deal with the family of fixed path mechanisms. Ehlers (2002a,b) extends
further Moulin (1999)’s results. At the end of this Introduction we will briefly describe their contributions
and main differences with our approach.
4 See Bergantiños et al. (2011) for an analysis where agents have intervals of acceptable shares that are
private information.
5 See Sönmez (1994) for an analysis of rules satisfying this property in the context of classical division
problems without maximal capacity constraints.
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The second class is related to the restrictions that the properties impose on a rule
when comparing its proposal at different division problems with maximal capacity
constraints (i.e., when either the set of agents, their upper bounds or the amount to
be shared change). First, consistency. A rule is consistent if the proposed shares at
a given problem coincide with the shares that the rule would propose at any smaller
problem obtained after that a subset of agents, agreeing with the amounts the rule has
assigned to them, leave the society taking with them their already assigned shares.
Consistency guarantees that, in order to follow the rule’s prescription at the reduced
problem, the remaining agents do not have to reallocate their shares. Second, upper
bound monotonicity. A rule is upper bound monotonic if roughly, it is monotonic with
respect the vector of upper bounds. Third, one-sided resource-monotonicity. A rule
is one-sided resource-monotonic if changes of the total amount to be allocated that
do not change the sign of the rationing problem leave agents better off whenever the
change of the amount makes the rationing problem less severe.6

Our results identify axiomatically a unique rule satisfying four different subsets of
the set of properties that we have just presented. This rule is the constrained uniform
rule which extends the uniform rule of the classical division problem to our setting. It
tries to divide the good as equally as possible keeping the bounds imposed by efficiency
and by the maximal capacity constraints as well. We first show in Proposition 1 that
the constrained uniform rule satisfies all desirable properties we have described above
and then, we present four characterizations of the rule. In all of them we extend charac-
terizations of the uniform rule in the classical division problem by adding the property
of upper bound monotonicity to the properties used in the previous results. In some
of the characterizations we also need to adapt some classical properties to our setting.
Theorem 1 states that the constrained uniform rule is the unique rule that satisfies strat-
egy-proofness, efficiency, upper bound monotonicity and equal treatment of equals.
Theorem 2 says that the constrained uniform rule is the unique rule that satisfies strat-
egy-proofness, efficiency, upper bound monotonicity and weak envy-freeness. That is,
Theorems 1 and 2 extend two existing characterizations of the uniform rule in the clas-
sical division problem: Ching (1994)’s characterization establishing that the uniform
rule is the unique rule that satisfies strategy-proofness, efficiency and equal treatment
of equals, and Sprumont (1991)’s characterization establishing that the uniform rule
is the unique rule that satisfies strategy-proofness, efficiency and envy-freeness. Our
two characterizations in Theorems 1 and 2 use upper bound monotonicity, which is
a specific property of our setting with maximal capacity constraints, and the one in
Theorem 2 adapts envy-freeness. Theorem 3 states that the constrained uniform rule is
the unique rule that satisfies consistency, weak individual rationality from equal divi-
sion, upper bound monotonicity and efficiency. Since by Ehlers (2002b) one-sided
resource-monotonicity implies efficiency, we state as Corollary 1 that the constrained
uniform rule is the unique rule that satisfies consistency, weak individual rationality
from equal division, upper bound monotonicity and one-sided resource monotonic-
ity. That is, Theorem 3 and Corollary 1 extend two existing characterizations of the
uniform rule in the classical division problem: Dagan (1996)’s characterization estab-

6 Ehlers (2002b) shows that one-sided resource-monotonicity implies efficiency.
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lishing that the uniform rule is the unique rule that satisfies consistency, efficiency
and individual rationality from equal division, and Sönmez (1994)’s characterization
establishing that the uniform rule is the unique rule that satisfies consistency, individual
rationality from equal division and one-sided resource-monotonicity. Our character-
izations in Theorem 3 and Corollary 1 use the property of upper bound monotonicity
and adapt individual rationality from equal division to our setting with maximal capac-
ity constraints. We also show that in all characterizations the axioms are independent.

Several papers are closely related to the present one. First, Kibris (2003) studies
the same division problem with maximal capacity constraints but instead he assumes
free-disposability of the good. Then a rule assigns to each division problem with max-
imal capacity constraints a vector of shares satisfying the constraints and adding up
less or equal than the total amount. Kibris (2003) characterizes an extension of the
uniform rule to his setting with free-disposability. Second, Bergantiños et al. (2011)
considers the division problem when agents’ participation is voluntary. Each agent has
an idiosyncratic interval of acceptable shares (which, in contrast with our setting here,
is private information) where his preferences are single peaked. Then a rule proposes
to each agent either to not participate at all or an acceptable share. Bergantiños et al.
(2011) shows that strategy-proofness is too demanding in this setting. Then, they study
a subclass of efficient and consistent rules and characterize extensions of the uniform
rule that deal explicitly with agents’ voluntary participation. Third, Kim (2010) charac-
terizes, in the same setting than Bergantiños et al. (2011) with voluntary participation,
a rule (called the generalized uniform rule) by the properties of efficiency, no-envy,
separability and weak resource continuity. Fourth, Manjunath (2010) proposes a divi-
sion problem where each agent’s preferences are characterized by the top share and a
minimum share in such a way that the agent is indifferent between any two quantities
that are either below the minimum acceptable share or above the top share. Manjunath
(2010) first shows that, under different fairness properties, strategy-proofness and effi-
ciency are incompatible and second, he characterizes axiomatically different rules that
solve the rationing problem in his setting. Finally, the division problem with maximal
capacity constraints is also considered by Moulin (1999).7 He characterizes the class of
all fixed path mechanisms as the set of rules satisfying efficiency, strategy-proofness,
consistency and resource monotonicity. The constrained uniform rule presented in this
paper is the fixed path rationing method of Moulin (1999) using the main diagonal as
path. Ehlers (2002a) presents a shorter proof of the main result in Moulin (1999) and
Ehlers (2002b) extends it by showing that, for problems with strictly more than two
agents, the class of all fixed path mechanisms coincides with the set of rules satisfying
weak one-sided resource monotonicity, strategy-proofness and consistency.

The paper is organized as follows. In Sect. 2 we describe the model. In Sect. 3 we
define several desirable properties that a rule may satisfy. In Sect. 4 we define the
constrained uniform rule for the division problem with maximal capacity constraints
and state several alternative axiomatic characterizations of this rule. Two Appendices
at the end of the paper collect all omitted proofs.

7 In Moulin (1999) the maximal capacity constraints are justified on the basis of technical simplicity in
order to define the priority rationing methods by an ordinary path and to define the duality operator that
cuts the main proof in half.
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2 The model

Let t > 0 be an amount of an homogeneous and perfectly divisible good that has to
be allocated among a finite set N of agents according to their preferences. Since we
will be considering situations where the amount of the good t and the finite set of
agents may vary, let N be the set of positive integers and let N be the family of all
non-empty and finite subsets of N. The set of agents is then N ∈ N with cardinality
n. In contrast with Sprumont (1991), we consider situations where each agent i has
an objective and verifiable upper bound ui > 0 on the amount he can receive. As we
have already argued in the Introduction this bound may come from maximal capacity
constraints, budget constraints or physical limits on the amount agent i can receive.
These constraints may be different across agents. Thus, agent i’s preferences �i are a
complete preorder (a complete, reflexive, and transitive binary relation) on the inter-
val [0, ui ] of i’s feasible shares. Given a preference �i let �i be the antisymmetric
binary relation induced by �i (i.e., for all xi , yi ∈ [0, ui ], xi �i yi if and only if
yi �i xi does not hold) and let ∼i be the indifference relation induced by �i (i.e., for
all xi , yi ∈ [0, ui ], xi ∼i yi if and only if xi �i yi and yi �i xi ). We assume that �i is
single-peaked on [0, ui ] and we will denote by pi ∈ [0, ui ] agent i’s peak. Formally,
a preference �i is single-peaked on [0, ui ] if

(P.1) there exists pi ∈ [0, ui ] such that pi �i xi for all xi ∈ [0, ui ]\{pi };
(P.2) xi �i yi for any pair of shares xi , yi ∈ [0, ui ] such that either yi < xi ≤ pi or

pi ≤ xi < yi .

A profile �N = (�i )i∈N is an n−tuple of preferences satisfying properties (P.1)
and (P.2). Given a profile �N and agent i’s preferences �′

i we denote by (�′
i ,�N\{i})

the profile where �i has been replaced by �′
i and all other agents have the same

preferences. Similarly, given a subset of agents S ⊆ N , we will write often �N as
(�S,�N\S). When no confusion arises we denote the profile �N by �.

A division problem with maximal capacity constraints (a problem for short) is a
4-tuple (N , u,�, t) where N ∈ N is the set of agents, u = (ui )i∈N ∈ R

n++ is
the vector of upper bounds, �= (�i )i∈N is a profile and t > 0 is the amount of
the good to be divided with the property that t ≤ ∑

i∈N ui ; i.e., we assume that
it is possible to divide t among all agents satisfying their maximal capacity con-
straints, otherwise the problem would not admit a solution. Let P be the set of all
problems and consider the subclass of classical problems (as in Sprumont (1991))
Pu=t ≡ {(N , u,�, t) ∈ P | ui = t for all i ∈ N }; namely, the upper bounds are
irrelevant because agents can not receive more than t . Thus, we are extending the
classical model. Whenever we refer to a problem (N , u,�, t) in Pu=t we will write
it as (N ,�, t).

The set of feasible allocations of problem (N , u,�, t) ∈ P is

F A (N , u, �, t) =
{
(x1, . . . , xn) ∈ R

N+ | ∑
i∈N xi = t and for each i ∈ N , xi ∈ [

0, ui
]}

.

Note that this set is never empty since we are assuming that 0 < t ≤ ∑
i∈N ui .
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3 Rules and their properties

A rule is a systematic way of solving the division problem by assigning to each prob-
lem one of its feasible allocations; that is, a rule f is a mapping on the set of problems
with the property that for all (N , u,�, t) ∈ P, f (N , u,�, t) ∈ F A(N , u,�, t).

Rules require each agent to report a preference. A rule is strategy-proof if it is
always in the best interest of agents to reveal their preferences truthfully; namely,
it induces truth-telling as a weakly dominant strategy in the direct revelation game
generated by the rule.
(Strategy- proofness) A rule f is strategy-proof if for each problem (N , u,

�N , t) ∈ P, agent i ∈ N , and preference �′
i on [0, ui ],

fi (N , u,�N , t) �i fi
(
N , u,

(�′
i ,�N\{i}

)
, t

)
.

Given a problem (N , u,�N , t) ∈ P we say that agent i ∈ N manipulates f at profile
�N via �′

i on [0, ui ] if fi (N , u, (�′
i ,�N\{i}), t) �i fi (N , u,�N , t). Thus, a rule f

is strategy-proof if no agent can manipulate it at any profile.
A rule is efficient if it always selects a Pareto optimal allocation.

(Efficiency) A rule f is efficient if for each problem (N , u,�, t) ∈ P there is no fea-
sible allocation (y j ) j∈N ∈ F A(N , u,�, t) with the property that yi �i fi (N , u,�, t)
for all i ∈ N and y j � j f j (N , u,�, t) for some j ∈ N .

Is it immediate to see that the following remarks holds.

Remark 1 Let f be an efficient rule and let (N , u,�, t) ∈ P be a problem.

(R.1) If
∑

i∈N pi ≥ t then fi (N , u,�, t) ≤ pi for all i ∈ N .
(R.2) If

∑
i∈N pi < t then fi (N , u,�, t) ≥ pi for all i ∈ N .

A rule satisfies equal treatment of equals if two agents with identical preferences
receive the same share. Observe that this property is weak because if two agents have
different upper bounds they can not have the same preferences.
(Equal Treatment of Equals) A rule f satisfies equal treatment of equals if for
each problem (N , u,�, t) ∈ P,�i = � j implies fi (N , u,�, t) = f j (N , u,�, t).

A rule satisfies upper bound monotonicity if it is monotonic with respect to the
vector of upper bounds in the following sense.
(Upper Bound Monotonicity) A rule f satisfies upper bound monotonicity if
for any two problems (N , u,�, t), (N , u′,�′, t) ∈ P with the property that there is
an agent k ∈ N such that uk < u′

k ≤ t and �k coincides with �′
k on [0, uk], and for

each i ∈ N\{k}, ui = u′
i and �i = �′

i then,

fi (N , u,�, t) ≥ min
{

fi
(
N , u′,�′, t

)
, ui

}
for each i ∈ N .

Observe that this condition above can be rewritten as

(i) fi (N , u,�, t) ≥ fi
(
N , u′,�′, t

)
for all i ∈ N\{k} and

(ii) fk (N , u,�, t) ≥ min
{

fk
(
N , u′,�′, t

)
, uk

}
.
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Suppose that the upper bound of agent k decreases from u′
k to uk whereas the other

upper bounds remain the same. How should agents be affected? Condition (i) says
that all agents but k should receive at least the same amount as before. Notice that (i)
is related to a principle known in the literature as solidarity. Condition (ii) says that
agent k should receive at least the same amount as before, when this amount is still
feasible, or his new upper bound otherwise. From (i) and (ii) is easy to deduce that if
the allocation proposed by the rule in the largest problem (u′) belongs to the smallest
problem (u) then, the allocation in the smallest problem must coincide with the one
of the largest problem. Thus, upper bound monotonicity implies a principle known in
the literature as independence of irrelevant alternatives.

A rule is consistent if the following requirement holds. Apply the rule to a given
problem and assume that a subset of agents leave with their corresponding shares.
Consider the new problem formed by the set of agents that remain with the same pref-
erences (and upper bounds) that they had in the original problem and the total amount
of the good minus the sum of the shares received by the subset of agents that already
left. Then, the rule does not require to reallocate the shares of the remaining agents.
(Consistency) A rule f is consistent if for each problem (N , u,�N , t) ∈ P , each
subset of agents S ⊂ N and each i ∈ S,

fi (N , u,�N , t) = fi

⎛

⎝S, (u j ) j∈S,�S, t −
∑

j∈N\S

f j (N , u,�N , t)

⎞

⎠.

We next consider a weak version of envy-freeness. The basic principle under envy-
freeness is that no agent can strictly prefer the share received by another agent; that is,
in our setting, a rule would be envy-free if for each problem (N , u,�, t) ∈ P and each
pair of agents i, j ∈ N , fi (N , u,�, t) �i f j (N , u,�, t) holds. However, the follow-
ing example shows that when agents have maximal capacity constraints no rule is envy-
free. Consider any problem (N , u,�, t) ∈ P where N = {1, 2}, u = (2, 10), t = 10,

and �2 has the property that for each x1 ∈ [0, 2] and y2 ∈ [8, 10], x1 �2 y2. Thus,

F A (N , u,�, t) =
{
(x1, 10 − x1) ∈ R

2 | 0 ≤ x1 ≤ 2
}
.

Then, any rule f applied to any of these problems would generate envy (agent 2
would envy agent 1). Hence, no rule is envy-free. Thus, we consider a weaker version
of envy-freeness which admits unfeasible envies and coincides with envy-freeness in
the classical model.
(Weak Envy- freeness) A rule f is weak envy-free if for each problem (N , u,

�, t) ∈ P and each pair of agents i, j ∈ N such that f j (N , u,�, t) �i fi (N , u,

�, t), then the vector of shares x = (xk)k∈N , where xi = f j (N , u,�, t), x j =
fi (N , u,�, t), and xk = fk(N , u,�, t) for all k ∈ N\{i, j} has the property that
x /∈ F A(N , u,�, t).

For the classical division problem Sönmez (1994) proposed the principle of indi-
vidual rationality from equal division. A rule f is individually rational from equal
division if all agents receive a share that is at least as good as the equal division share;
namely, for each division problem (N , u,�, t) ∈ P , for all i ∈ N ,
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fi (N , u,�, t) �i
t

n
.

In a classical division problem equal division is always feasible but it may not be effi-
cient. Precisely, this principle tries to make compatible equal division with efficiency
by allowing for Pareto improvements from the equal division share. Observe that in
our setting the allocation ( t

n , . . . , t
n ) may not be feasible and/or there may not even

exist a vector of feasible shares at which all agents are better off than at equal division.
To see that, consider again the problem (N , u,�, t) ∈ P where N = {1, 2}, u =
(2, 10), p2 = 5, and t = 10. Thus,

F A (N , u,�, t) = {(x1, 10 − x1) ∈ R
2 | 0 ≤ x1 ≤ 2}.

If f satisfies individual rationality from equal division then f2(N , u,�, t) = 5, which
means that f (N , u,�, t) /∈ F A(N , u,�, t). Thus, when agents have maximal capac-
ity constraints, this property is too strong (no rule satisfies it) and it can not be applied
directly. However, and since we think that its content is appealing, we suggest to use
the same principle whenever it is possible.
(Weak Individual Rationality from Equal Division) A rule f satisfies weak
individual rational from equal division if for each problem (N , u,�, t) ∈ P for which( t

n , . . . , t
n

) ∈ F A(N , u,�, t) then, for all i ∈ N ,

fi (N , u,�, t) �i
t

n
.

The last property we want to consider is related to the behavior of the rule when
the amount t to be shared changes. However, it only imposes conditions on the rule
whenever the change of the amount to be shared does not change the sign of the ration-
ing problem: if the good is scarce, an increase of the amount to be shared should make
all agents better off and if the good is too abundant, a decrease of the amount to be
shared should make all agents better off.
(One- sided Resource- monotonicity) A rule f satisfies one-sided resource-
monotonicity if for all two problems (N , u,�, t), (N , u,�, t ′) ∈ P with the property
that either t ≤ t ′ ≤ ∑

i∈N pi or
∑

i∈N pi ≤ t ′ ≤ t then fi (N , u,�, t ′) �i fi (N , u,

�, t) for all i ∈ N .

Ehlers (2002b) shows that one-sided resource monotonicity implies efficiency. We
state this result as Remark 2 below.

Remark 2 Let f be an one-sided resource-monotonic rule. Then, f is efficient.

4 The constrained uniform rule and its characterizations

The uniform rule has played a central role in the classical division problem because it is
the unique rule satisfying different sets of desirable properties. For instance, Sprumont
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(1991) shows that the uniform rule is the unique rule satisfying (i) strategy-proofness,
efficiency and anonymity, and (ii) strategy-proofness, efficiency and envy-free.8

The uniform rule U is defined as follows: for each division problem (N ,�, t) ∈
Pu=t and for each i ∈ N ,

Ui (N ,�, t) =
{

min {β, pi } if
∑

j∈N p j ≥ t
max {β, pi } if

∑
j∈N p j < t,

where β solves the equation
∑

j∈N min{β, p j } = t if
∑

j∈N p j ≥ t and solves the
equation

∑
j∈N max{β, p j } = t if

∑
j∈N p j < t. Namely, U tries to allocate the

good as equally as possible, keeping the efficient constraints binding (see Remark 1):
if

∑
i∈N pi ≥ t then Ui (N ,�, t) ≤ pi for all i ∈ N , and if

∑
i∈N pi < t then

Ui (N ,�, t) ≥ pi for all i ∈ N .
Observe that when applied to division problems with maximal capacity constraints

U is not a rule since at some problems it chooses non-feasible allocations. In the rest
of this section we extend the uniform rule to our environment, state that it satisfies
many desirable properties, and give four axiomatic characterizations. We define the
constrained uniform rule F in the class of problems P as follows: for each problem
(N , u,�, t) ∈ P and each agent i ∈ N ,

Fi (N , u,�, t) =
{

min {β, pi } if
∑

j∈N p j ≥ t
min {max {β, pi } , ui } if

∑
j∈N p j < t,

where β solves the equation
∑

j∈N min{β, p j } = t if
∑

j∈N p j ≥ t and solves
the equation

∑
j∈N min{max{β, p j }, u j } = t if

∑
j∈N p j < t. Observe that for

each problem (N , u,�, t) ∈ P there exists such number β because the expression∑
j∈N Fj (N , u,�, t) (which implicitly depends on β) is continuous and increasing

on β and for β = 0 is smaller than t while for β = ∑
j∈N u j is larger or equal than t .

Hence, by the Intermediate Value Theorem such β exists. The idea behind the rule is
simple. When the amount of the good to be allocated is scarce, the peaks will already
be the relevant upper limits on agents’ shares, so the vector of upper bounds u is irrel-
evant, and the constrained uniform rule coincides with the uniform rule. However,
when the amount of the good to be allocated is abundant, to satisfy feasibility the rule
has to make sure that no agent receives more than his upper bound.

Proposition 1 below states that the constrained uniform rule satisfies all desirable
properties presented in Sect. 3.

Proposition 1 The constrained uniform rule satisfies strategy-proofness, efficiency,
consistency, weak envy-freeness, equal treatment of equals, upper bound monotonicity,
weak individual rationality from equal division and one-sided resource-monotonicity.

Proof See Appendix 1. �

8 See Ching (1992, 1994), Dagan (1996), Schummer and Thomson (1997), Sönmez (1994), and Thomson
(1994a,b, 1995, 1997) for alternative characterizations of the uniform rule in the division problem. In the
surveys on strategy-proofness of Barberà (1996, 2001, 2010) and Sprumont (1995) the division problem
and the uniform rule plays a prominent role.
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We are now ready to state the main results of the paper: four axiomatic charac-
terizations of the constrained uniform rule with four different sets of independent
properties. Theorems 1 and 2 use strategy-proofness while Theorem 3 and Corollary 1
use consistency.

Theorem 1 The constrained uniform rule is the unique rule satisfying strategy-
proofness, efficiency, upper bound monotonicity and equal treatment of equals. More-
over, the axioms are independent.

Proof See Appendix 2. �
Theorem 2 The constrained uniform rule is the unique rule satisfying strategy-
proofness, efficiency, upper bound monotonicity and weak envy-freeness. Moreover,
the axioms are independent.

Proof See Appendix 2. �
Theorem 3 The constrained uniform rule is the unique rule satisfying consistency,
weak individual rational from equal division, upper bound monotonicity and efficiency.
Moreover, the axioms are independent.

Proof See Appendix 2. �
Theorem 3 and Remark 2 (i.e., Proposition 1 in Ehlers (2002b)) imply the following

corollary.

Corollary 1 The constrained uniform rule is the unique rule satisfying consistency,
weak individual rational from equal division, upper bound monotonicity and one-sided
resource-monotonicity. Moreover, the axioms are independent.

Table 1 below illustrates the four characterizations of the constrained uniform rule
in Theorems 1 (T.1), 2 (T.2) and 3 (T.3), and Corollary 1 (C.1) while Table 2 illus-
trates the four corresponding related characterizations of the uniform rule in classical
division problems. Observe that Tables 1 and 2 have two differences. Table 1 has the
property of upper bound monotonicity in the four columns (meaningless in classical
division problems) while Table 2 has the original properties of individual rationality
from equal division and envy-freeness in classical division problems.

Appendix 1. Proof of Proposition 1

(1) The constrained uniform rule F satisfies efficiency.9 Fix a problem (N , u,�, t)
∈ P . We consider two cases.

1.
∑

j∈N p j < t. Assume that there exists a vector of feasible shares x = (xi )i∈N ∈
F A(N , u,�, t) with the property that xi �i Fi (N , u,�, t) for all i ∈ N . We prove
that x = F(N , u,�, t). Let i ∈ N be arbitrary. By the definition of F, Fi (N , u,

�, t) = min{max{β, pi }, ui }. We consider three cases.

9 To prove that F is efficient we do not use Proposition 1 in Ehlers (2002b) since our proof that F satisfies
one-sided resource-monotonicity will rely on the fact that F is efficient.
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Table 1 With maximal capacity
constraints

(T.1) (T.2) (T.3) (C.1)

Sp X X

E X X X

C X X

Wirfed X X

Ete X

Wef X

OsRm X

Ubm X X X X

Table 2 Classical division
problems

Ching Sprumont Dagan Sönmez

Sp X X

E X X X

C X X

Irfed X X

Ete X

Ef X

OsRm X

Ubm

(a) Fi (N , u,�, t)= pi . Since xi �i Fi (N , u,�, t), it follows that xi = pi .

(b) Fi (N , u,�, t)= ui �= pi . Suppose that xi < ui .As
∑

j∈N x j = ∑
j∈N Fj (N ,

u,�, t) = t, there exists k ∈ N such that xk > Fk(N , u,�, t). Again, by
the definition F , we have three different possibilities for Fk(N , u,�, t). We
obtain a contradiction in each of them.

i. Fk(N , u,�, t)= uk . Then, xk > uk, which contradicts that x ∈ F A(N ,

u,�, t).
ii. Fk(N , u,�, t)= pk . Then, xk > pk, which contradicts that xk �k Fk

(N , u,�, t).
iii. Fk(N , u,�, t)= β and pk < β < uk . Then, β < xk, which contradicts,

by single-peakedness, that xk �k Fk(N , u,�, t).
Thus, xi = ui .

(c) Fi (N , u,�, t)= β > pi . Since xi �i Fi (N , u,�, t), it follows, by single-
peakedness, that xi ≤ β. Suppose that xi < β. As

∑
j∈N x j = ∑

j∈N Fj (N ,

u,�, t) = t, there exists k ∈ N such that xk > Fk(N , u,�, t). Using argu-
ments similar to those used in case (b) we obtain a contradiction.
Thus, xi = β.

2.
∑

j ∈ N p j � t. Assume that there exists a vector of feasible shares x = (xi )i ∈ N ∈
F A(N , u,�, t) with the property that xi �i Fi (N , u,�, t) for all i ∈ N . We prove
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that x = F(N , u,�, t). Let i ∈ N be arbitrary. By the definition of F, Fi (N , u,

�, t)= min{β, pi }. We consider two cases.
(a) Fi (N , u, �, t)= pi . Since xi � i Fi (N , u, �, t), it follows that xi = pi .

(b) Fi (N , u, �, t)= β < pi . Since xi � i Fi (N , u, �, t), it follows, by single-
peakedness, that xi ≥ β. Suppose that xi > β. As

∑
j ∈ N x j = ∑

j ∈ N
Fj (N , u, �, t)= t, there exists k ∈ N such that xk < Fk(N , u, �, t). We
have two possibilities for Fk(N , u, �, t). We obtain a contradiction in each
of them.

i. Fk(N , u,�, t)= pk . Then, xk < pk, which contradicts that xk �k

Fk(N , u,�, t).
ii. Fk(N , u,�, t) = β and β < pk . Then, xk < β, which contradicts, by

single-peakedness, that xk �k Fk(N , u,�, t).
Thus, xi = β.

(2) The constrained uniform rule F satisfies strategy-proofness. Fix a problem (N , u,

�, t) ∈ P . We consider two cases.

1.
∑

j∈N p j < t. Let i ∈ N and the preferences �′
i on [0, ui ] be arbitrary. By the

definition of F, Fi (N , u,�, t) = min{max{β, pi }, ui }. We prove that Fi (N , u,

�, t) �i Fi (N , u, (�′
i ,�N\{i}), t). We consider three cases.

(a) Fi (N , u,�, t)= ui . If β < ui then Fi (N , u,�, t)= ui and pi ≤ ui

imply that pi = ui . Hence, Fi (N , u,�, t)= pi �i Fi (N , u, (�′
i ,�N\{i}), t).

Assume β ≥ ui . Observe that ui + ∑
j ∈ N\{i} Fj (N , u,�, t)= t. Since

F is efficient, by (R.2), p j ≤ Fj (N , u,�, t) for all j �= i . Hence,
ui + ∑

j ∈ N\{i} p j ≤ t . Thus, since p′
i ≤ ui , p′

i + ∑
j ∈ N\{i} p j ≤ t .

Therefore, p′
i ≤ ui ≤ β = β ′, where β ′ is such that

Fi
(
N , u,

(�′
i ,�N\{i}

)
, t

) = min
{
max

{
β ′, p′

i

}
, ui

}
.

Thus,

Fi
(
N , u,

(�′
i ,�N\{i}

)
, t

) = ui = Fi (N , u,�, t).

(b) Fi (N , u,�, t) = pi < ui . Then,

Fi (N , u,�, t) = pi �i Fi
(
N , u,

(�′
i ,�N\{i}

)
, t

)
.

(c) Fi (N , u,�, t) = β and pi < β < ui . We consider five cases.
i. p′

i ≤ pi . Then,
∑

j∈N\{i} p j + p′
i < t and β ′ = β. Thus,

Fi
(
N , u,

(�′
i ,�N\{i}

)
, t

) = Fi (N , u,�, t).

ii. pi < p′
i ≤ β. Then, β ′ = β holds again and

Fi
(
N , u,

(�′
i ,�N\{i}

)
, t

) = Fi (N , u,�, t).
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iii. pi < β < p′
i and

∑
j∈N\{i} p j + p′

i < t . Then, β ′ ≤ β and

Fi
(
N , u,

(�′
i ,�N\{i}

)
, t

) = p′
i > β = Fi (N , u,�, t) > pi .

Hence, by single-peakedness, Fi (N , u,�, t) �i Fi (N , u, (�′
i ,�N\{i}), t).

iv. pi < β < p′
i and p′

i + ∑
j∈N\{i} p j = t. Thus, by efficiency of F,

Fi
(
N , u,

(�′
i ,�N\{i}

)
, t

) = p′
i > β = Fi (N , u,�, t) > pi .

Hence, by single-peakedness, Fi (N , u,�, t) �i Fi (N , u, (�′
i ,�N\{i}), t).

v. pi < β < p′
i and p′

i + ∑
j∈N\{i} p j > t. Since

pi + ∑
j∈N\{i} p j < β + ∑

j∈N\{i} Fj (N , u,�, t) = t

and F is efficient, by (R.2), t − ∑
j∈N\{i} p j ≥ β. In the other hand,

p′
i + ∑

j∈N\{i} p j > t = ∑
j∈N Fj

(
N , u,

(�′
i ,�N\{i}

)
, t

)
.

Hence, Fi (N , u, (�′
i ,�N\{i}), t) = t − ∑

j∈N\{i} Fj (N , u, (�′
i ,

�N\{i}), t). Since F is efficient, by (R.1), Fi (N , u, (�′
i ,�N\{i}), t) ≥

t − ∑
j∈N\{i} p j . Thus,

Fi
(
N , u,

(�′
i ,�N\{i}

)
, t

)≥ t −∑
j∈N\{i} p j ≥β = Fi (N , u,�, t) > pi .

Hence, by single-peakedness, Fi (N , u,�, t) �i Fi (N , u, (�′
i ,�N\{i}), t).

2.
∑

j∈N p j ≥ t. Let i ∈ N and �′
i on [0, ui ] be arbitrary. By the definition of

F, Fi (N , u,�, t) = min{β, pi }. We prove that Fi (N , u,�, t) �i Fi (N , u, (�′
i ,�N\{i}), t). We consider four cases.

(a) Fi (N , u,�, t) = pi . Then, Fi (N , u,�, t) = pi �i Fi (N , u, (�′
i ,�N\{i}), t).

(b) Fi (N , u,�, t) = β < pi and p′
i ≥ pi . Then,

∑
j∈N\{i} p j + p′

i ≥ t, and
β = β ′, where now β ′ is such that Fi (N , u, (�′

i ,�N\{i}), t) = min{β ′, p′
i }.

Thus,

Fi (N , u,�, t) = Fi
(
N , u,

(�′
i ,�N\{i}

)
, t

)
.

(c) Fi (N , u,�, t) = β < pi , p′
i < pi , and

∑
j∈N\{i} p j + p′

i ≥ t. Then,

Fi
(
N , u,

(�′
i ,�N\{i}

)
, t

) ≤ β = Fi (N , u,�, t) < pi .

Hence, by single-peakedness, Fi (N , u,�, t) �i Fi (N , u, (�′
i ,�N\{i}), t).
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(d) Fi (N , u,�, t) = β < pi , p′
i < pi , and

∑
j∈N\{i} p j + p′

i < t. Since∑
j∈N\{i} p j + pi >

∑
j∈N\{i} Fj (N , u,�, t) + β = t and F is efficient,

by (R.1), t − ∑
j∈N\{i} p j ≤ β. In the other hand, since

∑
j∈N\{i} p j +

p′
i <

∑
j∈N Fj (N , u, (�′

i ,�N\{i}), t) = t and F is efficient, by (R.2), t −
∑

j∈N\{i} p j ≥ Fi (N , u, (�′
i ,�N\{i}), t). Thus,

Fi
(
N , u,

(�′
i ,�N\{i}

)
, t

) ≤ t − ∑
j∈N\{i} p j ≤ β = Fi (N , u,�, t) < pi .

Hence, by single-peakedness, Fi (N , u,�, t) �i Fi (N , u, (�′
i ,�N\{i}), t).

(3) The fact that the constrained uniform rule F satisfies equal treatment of equals
follows immediately from its definition.
(4) The constrained uniform rule F satisfies upper bound monotonicity. Let (N , u,

�, t) and (N , u′,�′, t) be two problems in P with the property that there is an agent
k ∈ N such that uk < u′

k ≤ t and �k coincides with �′
k on [0, uk], and for each

i ∈ N\{k}, ui = u′
i and �i = �′

i . We consider two cases.

1.
∑

j∈N p′
j < t. By the definition of F , Fi (N , u′,�′, t) = min{max{β ′, p′

i }, u′
i }

for all i ∈ N . Since pi = p′
i for all i ∈ N\{k} and pk ≤ p′

k,
∑

j∈N p j < t. Then,
Fi (N , u,�, t) = min{max{β, pi }, ui } for all i ∈ N where β ≥ β ′. Hence, for all
i ∈ N\{k}, max{β ′, pi } ≤ max{β, pi }. Thus, since Fi (N , u′,�′, t) ≤ u′

i = ui

for all i ∈ N\{k},

Fi (N , u,�, t) ≥ min
{

Fi
(
N , u′,�′, t

)
, ui

}
for all i ∈ N\ {k} .

We show that Fk(N , u,�, t) ≥ min{Fk(N , u′,�′, t), uk} by considering four
cases.
(a) Fk(N , u′,�′, t) ≤ uk . By the definition of F it is easy to see that F(N , u,

�, t) = F(N , u′,�′, t).
(b) Fk(N , u′,�′, t) = p′

k > uk . Then, since �k is single-peaked on [0, uk] and
coincides with �′

k on [0, uk], pk = uk ≤ p′
k . Hence,

Fk (N , u,�, t) = min {max {β, uk}, uk} = uk .

Thus, Fk(N , u,�, t) = min{Fk(N , u′,�′, t), uk}.
(c) Fk(N , u′,�′, t) = β ′ > uk . Then, max{β ′, p′

k} = β ′ ≤ u′
k . Since β ≥ β ′

and p′
k ≥ pk, max{β, pk} = β. Hence,

Fk (N , u,�, t) = min {β, uk} = uk ≥ min
{

Fk
(
N , u′,�′, t

)
, uk

}
.

(d) Fk(N , u′,�′, t) = u′
k > uk . Then, u′

k ≤ β ′ = max{β ′, p′
k}. Since β ≥

β ′, u′
k > uk, and p′

k ≥ pk,

Fk (N , u,�, t) = min {β, uk} = uk ≥ min
{

Fk
(
N , u′,�′, t

)
, uk

}
.
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2.
∑

i∈N p′
i ≥ t. By the definition of F , Fi (N , u′,�′, t) = min{β ′, p′

i } for all
i ∈ N . Assume first that

∑
i∈N pi < t. By efficiency of F , (R.2) implies that

pi ≤ Fi (N , u,�, t) for all i ∈ N . Consider i ∈ N\{k}. Then, by (R.1) and
pi = p′

i , Fi (N , u′,�′, t) ≤ p′
i = pi ≤ Fi (N , u,�, t) ≤ ui . Thus, Fi (N , u,

�, t) ≥ min{Fi (N , u′,�′, t), ui } for all i ∈ N\{k}. Assume now that
∑

i∈N pi ≥
t . Then, since pk ≤ p′

k, β ≥ β ′. Therefore, ui ≥ Fi (N , u,�, t) = min{β, pi } ≥
min{β ′, p′

i } = Fi (N , u′,�′, t) for all i ∈ N\{k}. Thus,

Fi (N , u,�, t) ≥ min
{

Fi
(
N , u′,�′, t

)
, ui

}
for each i ∈ N\ {k}.

To show that Fk(N , u,�, t) ≥ min{Fk(N , u′,�′, t), uk} holds we consider three
cases.
(a) Fk(N , u′,�′, t) ≤ uk . By the definition of F it is easy to see that F(N , u,

�, t) = F(N , u′,�′, t).
(b) Fk(N , u′,�′, t) > uk and

∑
i∈N pi < t. Since F is efficient, by (R.1),

Fk(N , u′,�′, t) ≤ p′
k . Then, p′

k > uk and hence, since �′
k coincides with

�k on [0, uk], pk = uk . Again, since F is efficient, by (R.2), Fk(N , u,

�, t) ≥ pk . Thus, Fk(N , u,�, t) = uk and Fk(N , u,�, t) = min{Fk(N , u′,
�′, t), uk}.

(c) Fk(N , u′,�′, t) > uk and
∑

i∈N pi ≥ t. Since pk < p′
k, β ≥ β ′. Thus,

Fk(N , u′,�′, t) ≤ β ′ ≤ β. Hence,

Fk (N , u,�, t) min{β, uk} = uk = min{Fk
(
N , u′,�′, t

)
, uk}.

(5) The fact that the constrained uniform rule F satisfies consistency follows from the
proof of Lemma 4 in Bergantiños et al. (2011).
(6) The constrained uniform rule F satisfies weak envy-freeness. Let (N , u,�, t) ∈
P, j ∈ N , and k ∈ N\{ j} be such that Fk(N , u,�, t) � j Fj (N , u,�, t). We consider
two cases.

1.
∑

i∈N pi < t. By the definition of F, Fi (N , u,�, t) = min{max{β, pi }, ui } for
all i ∈ N . Since Fk(N , u,�, t) � j Fj (N , u,�, t), Fj (N , u,�, t) �= p j . Thus,
max{β, p j } = β > p j . Hence, Fj (N , u,�, t) = min{β, u j } ≤ β. By single-
peakedness, Fk(N , u,�, t) < Fj (N , u,�, t). By (R.2), pk ≤ Fk(N , u,�, t).
Hence, max{β, pk} = β and Fk(N , u,�, t) = min{β, uk} = uk < Fj (N , u,

�, t) ≤ u j . Therefore, Fj (N , u,�, t) /∈ [0, uk]. Thus, (xi )i∈N /∈ F A(N , u,�, t)
where x j = Fk(N , u,�, t), xk = Fj (N , u,�, t), and xi = Fi (N , u,�, t) for
i ∈ N\{k, j}.

2.
∑

i∈N pi ≥ t. By the definition of F, Fi (N , u,�, t) = min{β, pi } for all i ∈ N .
Since Fk(N , u,�, t) � j Fj (N , u,�, t), Fj (N , u,�, t) �= p j . Thus, Fj (N , u,

�, t) = β < p j . By single-peakedness, Fk(N , u,�, t) > β, a contradiction with
Fk(N , u,�, t) = min{β, pk}.

(7) The constrained uniform rule F satisfies weak individual rationality from equal
division. Let (N , u,�, t) ∈ P be such that ( t

n , . . . , t
n ) ∈ F A(N , u,�, t). Thus,

t
n ≤ ui for all i ∈ N . We consider two cases.

123



SERIEs (2012) 3:29–57 45

1.
∑

i∈N pi < t. By the definition of F, Fi (N , u,�, t) = min{max{β, pi }, ui } for
all i ∈ N . Thus, β ≤ t

n . Let i ∈ N . We consider two cases.
(a) pi ≥ β. Then, Fi (N , u,�, t) = pi �i

t
n .

(b) pi < β. Then, Fi (N , u,�, t) = min{β, ui } ≤ β ≤ t
n . By (R.2), pi ≤

Fi (N , u,�, t). By single-peakedness, Fi (N , u,�, t) �i
t
n .

2.
∑

i∈N pi ≥ t. By the definition of F, Fi (N , u,�, t) = min{β, pi } for all i ∈ N .
Thus, β ≥ t

n . We consider two cases.
(a) pi ≥ β. Then, by single-peakedness, Fi (N , u,�, t) = β �i

t
n .

(b) pi < β. Then, Fi (N , u,�, t) = pi �i
t
n .

(8) The constrained uniform rule F satisfies one-sided resource-monotonicity. Let
(N , u,�, t) and (N , u,�, t ′) be two problems in P . We consider two cases.

1. Assume that t ≥ t ′ ≥ ∑
i∈N pi . Then, by the definition of F, for all i ∈ N ,

Fi (N , u,�, t) = min
{

max
{
β, pi

}
, ui

}
and

Fi
(
N , u,�, t ′

) = min
{
max

{
β ′, pi

}
, ui

}
.

Hence, β ′ ≤ β and since F is efficient, by (R.2), for all i ∈ N ,

pi ≤ Fi
(
N , u,�, t ′

) ≤ Fi (N , u,�, t) .

By single-peakedness, Fi (N , u,�, t ′) �i Fi (N , u,�, t).
2. It is similar to the previous case an we omit it.

This ends the proof of Proposition 1.

Appendix 2. Proofs of Theorems 1, 2, and 3

A2.1. Proof of the characterization in Theorem 1

By Proposition 1, the constrained uniform rule F satisfies strategy-proofness, effi-
ciency, upper bound monotonicity and equal treatment of equals.

Let f be a rule satisfying strategy-proofness, efficiency, upper bound monotonicity
and equal treatment of equals. Thus, f also satisfies strategy-proofness, efficiency,
and equal treatment of equals in Pu=t . Ching (1994) shows that the uniform rule U is
the unique rule satisfying strategy-proofness, efficiency, and equal treatment of equals
in Pu=t . Thus, for all (N , u,�, t) ∈ Pu=t , f (N , u,�, t) = U (N , u,�, t) and by
definition of F, F(N , u,�, t) = U (N , u,�, t). Hence, f = F in Pu=t .

Let (N , u,�, t) ∈ P be an arbitrary problem. We want to show that f (N , u,

�, t) = F(N , u,�, t). Consider any problem (N , ut ,�t , t) ∈ Pu=t where for each
i ∈ N , ut

i = t,�t
i coincides with �i on [0, ui ] and pt

i = pi . Since f = F in Pu=t ,

f
(
N , ut ,�t , t

) = F
(
N , ut ,�t , t

)
. (1)

We consider two cases.
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1.
∑

i∈N pi < t. Assume, without loss of generality, that u1 ≤ u2 ≤ · · · ≤ un .

Consider any problem (N , ut,1,�t,1, t) ∈ P where ut,1
1 = u1 and �t,1

1 = �1

and for each i ∈ N\{1}, ut,1
i = ut

i = t and �t,1
i =�t

i .

We first prove that f (N , ut,1,�t,1, t) = F(N , ut,1,�t,1, t). We consider two
cases.
(a) F1(N , ut ,�t , t) ≤ u1. By (1), f1(N , ut ,�t , t) = F1(N , ut ,�t , t) ≤ u1 =

ut,1
1 . Since f and F satisfy upper bound monotonicity, for all i ∈ N ,

fi
(

N , ut,1, �t,1, t
)

≥ min
{

fi
(
N , ut ,�t , t

)
, ut,1

i

}
= fi

(
N , ut , �t , t

)
and

Fi

(
N , ut,1, �t,1, t

)
≥ min

{
Fi

(
N , ut , �t , t

)
, ut,1

i

}
= Fi

(
N , ut ,�t , t

)
.

Then,

f
(

N , ut,1, �t,1, t
)

= f
(
N , ut , �t , t

) = F
(
N , ut , �t , t

) = F
(

N , ut,1,�t,1, t
)
.

(b) F1(N , ut ,�t , t) > u1. By (1), f1(N , ut ,�t , t) > u1. Since f and F satisfy
upper bound monotonicity,

f1

(
N , ut,1,�t,1, t

)
= F1

(
N , ut,1,�t,1, t

)
= u1. (2)

Notice that (2) holds independently of the preferences (�′
i )i∈N\{1} of the

other agents, as long as
∑

i∈N\{1} p′
i + p1 < t. This statement will be used

implicitly in the rest of the proof. Moreover, by the definition of F, for each
i ∈ N\{1},

Fi

(
N , ut,1,�t,1, t

)
= max{β, pi }. (3)

Suppose that f (N , ut,1,�t,1, t) �= F(N , ut,1,�t,1, t). Then, there exists
i1 ∈ N\{1} such that

fi1

(
N , ut,1,�t,1, t

)
> max{β, pi1}. (4)

Let k ∈ N\{1} be such that pk ≤ pi for all i ∈ N\{1}. We consider three
cases and find a contradiction in each of them.

i. For all i ∈ N\{1}, max{β, pi } = pi > β. By (2), (3), and feasibility of
F,

∑
i∈N Fi (N , ut,1,�t,1, t) = u1 + ∑

i∈N\{1} pi = t. Hence, by (2 )
and efficiency of f, for all i ∈ N\{1},

fi

(
N , ut,1,�t,1, t

)
= pi .

Thus, by hypothesis, fi1(N , ut,1,�t,1, t) = max{β, pi1}, a contradic-
tion with (4 ).
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ii. There exists j ′ ∈ N\{1} such that max{β, p j ′ } = β and k �= i1 (we
will consider the remaining case where k = i1 later in case iii). Hence,
max{β, pk} = β. Note that k �= 1, k �= i1 �= 1, and �t,1

k and �t,1
i1

are

preferences on [0, t]. Let �′
i1
=�t,1

k . In order to simplify the notation

we omit N , ut,1, and t in the definition of a problem. Since pk ≤ pi1

and f is efficient, by (R.2), pk ≤ pi1 ≤ fi1(�t,1). If pi1 ≤ fi1(�′
i1
,

(�t,1
j ) j∈N\{i1}) < fi1(�t,1) then, by single-peakedness, i1 manipulates

f at �t,1 via �′
i1

. Thus,

fi1(�′
i1
, (�t,1

j ) j∈N\{i1}) ≥ fi1

(
�t,1

)
> max

{
β, pi1

}
(5)

or

pk = p′
i1

≤ fi1(�′
i1
, (�t,1

j ) j∈N\{i1}) < pi1 .

Since f satisfies equal treatment of equals,

fi1(�′
i1
, (�t,1

j ) j∈N\{i1}) = fk(�′
i1
, (�t,1

j ) j∈N\{i1}). (6)

By (2), and since
∑

i∈N\{1,i1} pi + p1 + pi1 < t,

f1(�′
i1
, (�t,1

j ) j∈N\{i1}) = F1(�′
i1
, (�t,1

j ) j∈N\{i1}) = u1 (7)

Assume that N = {1, k, i1}. If fi1(�′
i1
, (�t,1

j ) j∈N\{i1}) > max
{
β, pi1

}

then,

t = ∑
i∈N fi (�′

i1
, (�t,1

j ) j∈N\{i1})
> u1 + max

{
β, pi1

} + max
{
β, pi1

}
by (5) and (6)

≥ u1 + max {β, pk} + max
{
β, pi1

}
by definition of k, pk ≤ pi1

= ∑
i∈N Fi

(
�t,1

)
, by (2) and (3)

which contradicts that F is a rule. Assume now that p′
i1

≤ fi1(�′
i1
,

(�t,1
j ) j∈N\{i1}) < pi1 . If fi1(�′

i1
, (�t,1

j ) j∈N\{i1}) �t,1
i1

fi1(�t,1) then

i1 manipulates f at �t,1 via �′
i1

. Hence, fi1(�′
i1
, (�t,1

j ) j∈N\{i1}) �t,1
i1

fi1(�t,1). Consider now any preference �̂i1 on [0, t] such that p̂i1 =
pi1 and fi1(�′

i1
, (�t,1

j ) j∈N\{i1})�̂t,1
i1

fi1(�t,1). Since f is efficient,

(R.2) implies that pi1 = p̂i1 ≤ fi1(�̂i1, (�t,1
j ) j∈N\{i1}). Assume

fi1(�̂i1 , (�t,1
j ) j∈N\{i1}) < fi1(�t,1), then, by single-peakedness, i1

manipulates f at �t,1 via �̂i1 . If fi1(�t,1) < fi1(�̂i1 , (�t,1
j ) j∈N\{i1}),

then i1 manipulates f at (�̂i1 , (�t,1
j ) j∈N\{i1}) via �t,1

i1
. Hence,
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fi1(�t,1) = fi1(�̂i1 , (�t,1
j ) j∈N\{i1}). Moreover, by (2), f1(�t,1) =

f1(�̂i1 , (�t,1
j ) j∈N\{i1}) = u1. Thus, f (�t,1) = f (�̂i1 , (�t,1

j ) j∈N\{i1}).
Hence, i1 manipulates f at (�̂i1 , (�t,1

j ) j∈N\{i1}) via �′
i1

because

fi1(�′
i1
, (�t,1

j ) j∈N\{i1})�̂t,1
i1

fi1(�̂i1 , (�t,1
j ) j∈N\{i1}) = fi1(�t,1).

Thus, N �= {1, k, i1} and fi1(�′
i1
, (�t,1

j ) j∈N\{i1}) = fi1(�t,1). By (3),
(4), (7), and since

f (�′
i1
, (�t,1

j ) j∈N\{i1}) ∈ F A(�′
i1
, (�t,1

j ) j∈N\{i1}),

there exists i2 ∈ N\{1, k, i1} such that

fi2(�′
i1
, (�t,1

j ) j∈N\{i1}) < max
{
β, pi2

}
.

Since f satisfies efficiency, (R.2) implies that

pi2 ≤ fi2(�′
i1
, (�t,1

j ) j∈N\{i1}) < β. (8)

Let �′
i2

= �t,1
k . Again, by efficiency of f and the definition of k,

fi2(�′
i1
, (�t,1

j ) j∈N\{i1}) ≥ pi2 ≥ pk and

fi2((�′
j ) j∈{i1,i2}, (�t,1

j ) j∈N\{i1,i2}) ≥ pk .

Assume that N = {1, k, i1, i2}. We want to show that fi2(�′
i1
, (�t,1

j )

j ∈ N\{i1})= fi2((�′
j ) j ∈ {i1,i2}, (�t,1

j ) j ∈ N\{i1,i2}). Assume otherwise. If

fi2(�′
i1
, (�t,1

j ) j ∈ N\{i1}) < fi2((�′
j ) j ∈ {i1,i2}, (�t,1

j ) j ∈ N\{i1,i2}), i2

manipulates f at profile ((�′
j ) j ∈ {i1,i2}, (�t,1

j ) j ∈ N\{i1,i2}) via �t,1
i2

,

a contradiction with strategy-proofness of f. Assume now that fi2

((�′
j ) j ∈ {i1,i2}, (�t,1

j ) j ∈ N\{i1,i2}) < fi2(�′
i1
, (�t,1

j ) j ∈ N\{i1}). First, if

pi2 ≤ fi2((�′
j ) j ∈ {i1,i2}, (�t,1

j ) j ∈ N\{i1,i2}) then i2 manipulates f at

profile (�′
i1
, (�t,1

j ) j ∈ N\{i1}) via �′
i2
, a contradiction with strategy-

proofness of f. Assume now that pk = p′
i2

≤ fi2((�′
j ) j ∈ {i1,i2}, (�t,1

j )

j ∈ N\{i1,i2}) < pi2 . Since f satisfies equal treatment of equals,

fi2 ((�′
j ) j∈{i1,i2}, (�t,1

j ) j∈N\{i1,i2}) = fi1((�′
j ) j∈{i1,i2}, (�t,1

j ) j∈N\{i1,i2})

= fk((�′
j ) j∈{i1,i2}, (�t,1

j ) j∈N\{i1,i2}).

By (2) (and the comment after (2)),

f1((�′
j ) j∈{i1,i2}, (�t,1

j ) j∈N\{i1,i2})

= F1((�′
j ) j∈{i1,i2}, (�t,1

j ) j∈N\{i1,i2}) = u1.
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Then,

t = ∑

i∈N
fi ((�′

j ) j∈{i1,i2}, (�t,1
j ) j∈N\{i1,i2})

= u1 + 3 fi2((�′
j ) j∈{i1,i2}, (�t,1

j ) j∈N\{i1,i2})
< u1 + 3β

≤ u1 + max {β, pk} + max
{
β, pi1

} + max
{
β, pi2

}

= ∑

i∈N
Fi

(
�t,1

)
,

which contradicts that F is a rule, where the strict inequality above
follows from the hypothesis that fi2((�′

j ) j∈{i1,i2}, (�t,1
j ) j∈N\{i1,i2}) <

fi2(�′
i1
, (�t,1

j ) j∈N\{i1}) and (8), and the last equality follows from (2)
and (3). Thus,

fi2(�′
i1
, (�t,1

j ) j∈N\{i1}) = fi2((�′
j ) j∈{i1,i2}, (�t,1

j ) j∈N\{i1,i2}). (9)

Then, by equal treatment of equals and efficiency of f,

fi1((�′
j ) j∈{i1,i2}, (�t,1

j ) j∈N\{i1,i2}) = fi2 ((�′
j ) j∈{i1,i2}, (�t,1

j ) j∈N\{i1,i2})

= fk((�′
j ) j∈{i1,i2}, (�t,1

j ) j∈N\{i1,i2}).

Since N = {1, k, i1, i2},

t = ∑
i∈N fi ((�′

j ) j∈{i1,i2}, (�t,1
j ) j∈N\{i1,i2})

= u1 + 3 fi2((�′
j ) j∈{i1,i2}, (�t,1

j ) j∈N\{i1,i2}) by (2) and

equal treatment

= u1 + 3 fi2(�′
i1
, (�t,1

j ) j∈N\{i1}) by (9)

< u1 + 3β by (8)

≤ u1 + max {β, pk} + max
{
β, pi1

} + max
{
β, pi2

}

= ∑
i∈N Fi

(
�t,1

)
, by (2) and (3)

which contradicts that F is a rule. Thus, N �= {1, k, i1, i2}. Now, there
exists i3 ∈ N\{1, k, i1, i2} such that

fi3((�′
j ) j∈{i1,i2}, (�t,1

j ) j∈N\{i1,i2}) > max{β, pi3}.

We can now proceed as in the case of i1 (see condition (4 )), and since
N is finite we obtain a contradiction in a finite number of steps.

iii. There exists j ′ ∈ N\{1} such that max{β, p j ′ } = β and k = i1. Thus, by
(4), there exists i2 ∈ N\{1, i1} such that fi2(�t,1) < max{β, pi2}. Let
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�′
i2

= �t,1
i1

. Using arguments similar to those used in case ii above
with i2 we can prove that

fi1(�′
i2
, (�t,1

j ) j∈N\{i2}) = fi2(�′
i2
, (�t,1

j ) j∈N\{i2})

= fi2

(
�t,1

)

< max
{
β, pi2

}

and N �= {1, i1, i2}. Thus, there exists i3 ∈ N\{1, i1, i2} such that

fi3(�′
i2
, (�t,1

j ) j∈N\{i2}) > max
{
β, pi3

}
.

Since N is finite, using arguments similar to those used in case ii, we
obtain a contradiction.

Thus, we have proved that f (N , ut,1,�t,1, t) = F(N , ut,1,�t,1, t) holds.
Consider the problem (N , ut,2,�t,2, t) ∈ P where ut,2

2 = u2 and �t,2
2 =�2, and

ut,2
i = ut,1

i and �t,2
i = �t,1

i for each i ∈ N\{2}.
We now prove that f (N , ut,2,�t,2, t) = F(N , ut,2,�t,2, t) by considering two
cases.
(a) F2(N , ut,1,�t,1, t) ≤ u2. Since f and F satisfy upper bound monotonicity,

using arguments similar to those used in case (a) above, we can deduce that
f (N , ut,2,�t,2, t) = F(N , ut,2,�t,2, t).

(b) F2(N , ut,1,�t,1, t) > u2. Using arguments similar to those used in case (b)
above we obtain that f (N , ut,2,�t,2, t) = F(N , ut,2,�t,2, t).

In general, for each j = 3, . . . , n we consider the problem (N , ut, j ,�t, j , t) ∈ P
where ut, j

j = u j and �t, j
j = � j , and ut, j

i = ut, j−1
i and �t, j

i = �t, j−1
i for each

i ∈ N\{ j}. Using arguments similar to those used previously we can prove that
f (N , ut, j ,�t, j , t) = F(N , ut, j ,�t, j , t).
Since (N , ut,n,�t,n, t) = (N , u,�, t), we have that

f (N , u,�, t) = F (N , u,�, t) .

2.
∑

i ∈ N pi ≥ t. Let (N , ut,1,�t,1, t)∈ P be defined as above. Using arguments
similar to those used in 1.a we can prove that f (N , ut,1,

�t,1, t)= F(N , ut,1,�t,1, t). Let j ∈ {2, . . . , n}. Applying similar arguments
to the problems (N , ut, j−1,�t, j−1, t) and (N , ut, j ,�t, j , t) we can prove that
f (N , ut, j ,�t, j , t)= F(N , ut, j ,�t, j , t). Since (N , ut,n,�t,n, t)= (N , u,�, t),
we have that f (N , u,�, t)= F(N , u,�, t).

This ends the proof of Theorem 1.

A2.2. Proof of the characterization in Theorem 2

By Proposition 1 we know that the constrained uniform rule F satisfies strategy-
proofness, efficiency, upper bound monotonicity and weak envy-freeness.
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By Theorem 1 it is sufficient to prove that if f satisfies efficiency and weak envy-
freeness then f satisfies equal treatment of equals. Suppose that f is efficient and it
does not satisfy equal treatment of equals. There exists (N , u,�, t) ∈ P and i, j ∈ N
such that ui = u j ,�i=� j , and fi (N , u,�, t) �= f j (N , u,�, t). Since f satisfies
efficiency, by (R.1) or (R.2), fi (N , u,�, t) and f j (N , u,�, t) are at the same side
of the common peak pi = p j . Hence, by single-peakedness, either fi (N , u,�, t)
� j f j (N , u,�, t) or f j (N , u,�, t) �i fi (N , u,�, t). Suppose that fi (N , u,�, t)
� j f j (N , u,�, t) (the other case is similar and we omit it). Consider the allocation
(xk)k∈N where xi = f j (N , u,�, t), x j = fi (N , u,�, t), and xk = fk(N , u,�, t)
for all k ∈ N\{i, j}. Since ui = u j and f (N , u,�, t) ∈ F A(N , u,�, t) we deduce
that x ∈ F A(N , u,�, t), which means that f does not satisfy weak envy-freeness.

�

A2.3. Proof of the characterization in Theorem 3

By Proposition 1, the constrained uniform rule F satisfies consistency, weak individual
rationality from equal division, upper bound monotonicity and efficiency.

Let f be a rule satisfying consistency, weak individual rationality from equal divi-
sion, upper bound monotonicity and efficiency. Thus, f also satisfies consistency,
weak individual rationality from equal division and efficiency in Pu=t . Moreover,
weak individual rationality from equal division and individual rationality from equal
division coincide in Pu=t . Thus, f satisfies consistency, individual rationality from
equal division and efficiency in Pu=t . Dagan (1996) shows that the uniform rule U is
the unique rule satisfying consistency, individual rationality from equal division and
efficiency in Pu=t . Thus, for all (N , u,�, t) ∈ Pu=t , f (N , u,�, t) = U (N , u,�, t)
and by definition of F, F (N , u,�, t) = U (N , u,�, t) . Hence, f = F in Pu=t .

Let (N , u,�, t) ∈ P be an arbitrary problem. We want to show that f (N , u,�, t) =
F (N , u,�, t). Consider any problem

(
N , ut ,�t , t

) ∈ Pu=t where for each i ∈ N ,
ut

i = t , �t
i coincides with �i on [0, ui ] , and pt

i = pi . Since f = F in Pu=t ,

f
(
N , ut ,�t , t

) = F
(
N , ut ,�t , t

)
. (10)

We consider two cases.

1.
∑

i∈N pi < t. Assume, without loss of generality, that u1 ≤ u2 ≤ · · · ≤ un . We
proceed by induction on the number of agents n. If n = 1, then f1 (N , u,�, t) =
F1 (N , u,�, t) = t . Assume that f (N , u,�, t) = F (N , u,�, t) holds when
n ≤ m. We prove that it also holds when n = m + 1.

We first prove that f1 (N , u,�, t) = F1 (N , u,�, t). Consider the problems(
N , ut, j ,�t, j , t

) ∈ P , j = 1, . . . , n defined as in the proof of Theorem 1. We
consider two cases.
(a) F1

(
N , ut ,�t , t

) ≤ u1. Then, because of the definition of F, it is easy to
deduce that Fi

(
N , ut ,�t , t

) ≤ ui for all i ∈ N . Since F1
(
N , ut ,�t , t

) ≤
u1 = ut,1

1 , by upper bound monotonicity we deduce f
(
N , ut,1,�t,1, t

) =
F

(
N , ut,1,�t,1, t

)
.
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Since Fi
(
N , ut ,�t , t

) ≤ ui for all i ∈ N and f
(
N , ut,1,�t,1, t

) =
F

(
N , ut,1,�t,1, t

)
, F2

(
N , ut,1,�t,1, t

) ≤ u2 = ut,2
2 . By upper bound

monotonicity we deduce f
(
N , ut,2,�t,2, t

) = F
(
N , ut,2,�t,2, t

)
.

Using arguments similar to those used previously we can prove that for
j = 3, . . . , n,

f
(

N , ut, j ,�t, j , t
)

= F
(

N , ut, j ,�t, j , t
)

.

Since
(
N , ut,n,�t,n, t

) = (N , u,�, t), we have that f (N , u,�, t) =
F (N , u,�, t).

(b) Assume now that F1
(
N , ut ,�t , t

)
> u1. By upper bound monotonicity

f1

(
N , ut,1,�t,1, t

)
= F1

(
N , ut,1,�t,1, t

)
= u1. (11)

We only prove that F1
(
N , ut,2,�t,2, t

) = u1 since to prove that f1
(
N , ut,2,

�t,2, t
) = u1 is similar and we omit it. We consider two cases.

i. F2
(
N , ut,1,�t,1, t

) ≤ u2. By upper bound monotonicity, F
(
N , ut,2,

�t,2, t
) = F

(
N , ut,1,�t,1, t

)
. Hence, by (11), F1

(
N , ut,2,�t,2, t

)

= u1.

ii. F2
(
N , ut,1,�t,1, t

)
> u2. By upper bound monotonicity and (11),

F1

(
N , ut,2,�t,2, t

)
≥ F1

(
N , ut,1,�t,1, t

)
= u1.

Since F
(
N , ut,2,�t,2, t

) ∈ F A
(
N , ut,2,�t,2, t

)
and ut,2

1 = u1,
F1

(
N , ut,2,�t,2, t

) = u1 holds.
Using arguments similar to those used previously we can prove that for
j = 3, . . . , n,

f1

(
N , ut, j ,�t, j , t

)
= F1

(
N , ut, j ,�t, j , t

)
= u1.

Since
(
N , ut,n,�t,n, t

) = (N , u,�, t) , we have that f1 (N , u,�, t) =
F1 (N , u,�, t).

Since f and F satisfy consistency, for each i ∈ N\ {1} ,

fi (N , u,�, t) = fi (N\ {1}, (u j
)

j∈N\{1},
(� j

)
j∈N\{1}, t − f1 (N , u,�, t)) and

Fi (N , u,�, t) = Fi (N\ {1} ,
(
u j

)
j∈N\{1},

(� j
)

j∈N\{1}, t − F1 (N , u,�, t)).

Since f1 (N , u,�, t) = F1 (N , u,�, t) and the induction hypothesis,

fi (N\ {1}, (u j
)

j∈N\{1} ,
(� j

)
j∈N\{1}, t − f1 (N , u,�, t))

= Fi (N\ {1}, (u j
)

j∈N\{1} ,
(� j

)
j∈N\{1}, t − F1 (N , u,�, t)).
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Thus, for all i ∈ N\{1},

fi (N , u,�, t) = Fi (N , u,�, t) .

2.
∑

i∈N pi ≥ t. Since f coincides with F in Pu=t and F is efficient, by (R.1), we
have that for all i ∈ N

fi
(
N , ut ,�t , t

) = Fi
(
N , ut ,�t , t

) ≤ pt
i = pi ≤ ui .

Since f and F satisfy upper bound monotonicity, for all i ∈ N ,

fi (N , u,�, t) ≥ min
{

fi
(
N , ut ,�t , t

)
, ui

} = fi
(
N , ut ,�t , t

)
and

Fi (N , u,�, t) ≥ min
{

Fi
(
N , ut ,�t , t

)
, ui

} = Fi
(
N , ut ,�t , t

)
.

Then,

f (N , u,�, t) = f
(
N , ut ,�t , t

) = F
(
N , ut ,�t , t

) = F (N , u,�, t).

This ends the proof of Theorem 3.

A2.4. The independence of the axioms

Theorem 1 • Efficiency is independent of the other properties.
Define the rule f 1 as follows. Let (N , u,�, t) ∈ P . For each i ∈ N ,

f 1
i (N , u,�, t) = min {α, ui } ,

where α is such that
∑

i∈N fi (N , u,�, t) = t.
The rule f 1 satisfies strategy-proofness, equal treatment of equals and upper bound
monotonicity but fails efficiency.

• Strategy-proofness is independent of the other properties.
Define the rule f 2 as follows. Let (N , u,�, t) ∈ P . For each i ∈ N ,

f 2
i (N , u,�, t) =

{
pi + min {α, ui − pi } if

∑
i∈N pi < t

min {α, pi } if
∑

i∈N pi ≥ t,

where α is such that
∑

i∈N fi (N , u,�, t) = t.
The rule f 2 satisfies efficiency, equal treatment of equals and upper bound mono-
tonicity but fails strategy-proofness.

• Equal treatment of equals is independent of the other properties.
Define f 3 as the priority rule given by the order (1, 2, . . . , n). Let (N , u,�, t) ∈ P .
In order to define f 3 formally, we consider two cases.
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1.
∑

i∈N
pi ≥ t. Take k as the unique number satisfying that

∑k
i=1 pi ≤ t <

∑k+1
i=1 pi . For each i ∈ N ,

f 3
i (N , u,�, t) =

⎧
⎨

⎩

pi if i ≤ k
t − ∑k

i=1 pi if i = k + 1
0 if i > k + 1.

2.
∑

i∈N
pi < t. Take k as the unique number satisfying that

∑k+1
i=1 pi +

∑n
i=k+2 ui ≤ t <

∑k
i=1 pi + ∑n

i=k+1 ui . For each i ∈ N ,

f 3
i (N , u,�, t) =

⎧
⎨

⎩

pi if i ≤ k
t − ∑k

i=1 pi − ∑n
i=k+2 ui if i = k + 1

ui if i > k + 1.

The rule f 3 satisfies efficiency, strategy-proofness and upper bound monotonicity
but fails equal treatment of equals.

• Upper bound monotonicity is independent of the other properties.
Define the rule f 4 inspired by the Constrained Equal Losses rule in bankruptcy
(see Thomson 2003). Let

(
N , u,�, t

) ∈ P . For each i ∈ N ,

f 4
i (N , u,�, t) =

{
max {ui − α, pi } if

∑
i∈N pi < t

min {ui − α, pi } if
∑

i∈N pi ≥ t,

where α is such that
∑

i∈N fi (N , u,�, t) = t.
The rule f 4 satisfies efficiency, strategy-proofness and equal treatment of equals
but fails upper bound monotonicity.

Theorem 2 • Efficiency is independent of the other properties.
The rule f 1 just defined satisfies strategy-proofness, weak envy-freeness and upper
bound monotonicity but fails efficiency.

• Strategy-proofness is independent of the other properties.
Given a problem (N , u,�, t) ∈ P let EW E (N , u,�, t) be the set of all feasible
allocations satisfying efficiency and weak envy-freeness at (N , u,�, t).
Consider first the case with two agents. Let R be the rule in which agent 1 chooses
the allocation he prefers most in EW E (N , u,�, t).
Consider now the general case. Let S (N , u,�, t) = {i ∈ N | ui > 0} and define
for each i ∈ N ,

f 5
i (N , u,�, t) =

⎧
⎨

⎩

0 if |S| = 2 and i /∈ S
Ri (S, uS,�S, t) if |S| = 2 and {1, i} ⊂ S
Fi (N , u,�, t) otherwise.

The rule f 5 satisfies efficiency, weak envy-freeness and upper bound monotonicity
but fails strategy-proofness.
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• Weak envy-freeness is independent of the other properties.
The rule f 3 just defined satisfies efficiency, strategy-proofness and upper bound
monotonicity but fails weak envy-freeness.

• Upper bound monotonicity is independent of the other properties.
Define the rule f 6 as follows. Let (N , u,�, t) ∈ P . Define S = {

i ∈ N | Fi
(
N , u,

�, t
) �= ui

}
and take any ε > 0 satisfying

∑
i∈N pi < t <

∑
i∈N (ui − ε)

whenever
∑

i∈N pi < t <
∑

i∈N ui . For each i ∈ N ,

f 6
i (N , u,�, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max {ui − ε, pi } if
∑

i∈N pi < t <
∑

i∈N ui and
Fi (N , u,�, t) = ui

Fi

(
S, uS,�S, t − ∑

N\S max {ui − ε, pi }
) if

∑
i∈N pi < t <

∑
i∈N ui and

Fi (N , u,�, t) �= ui

Fi (N , u,�, t) otherwise.

The rule f 6 satisfies efficiency, strategy-proofness and weak envy-freeness but fails
upper bound monotonicity.

Theorem 3 • Efficiency is independent of the other properties.
The rule f 1 defined above satisfies consistency, weak individual rationality from
equal division and upper bound monotonicity but fails efficiency.

• Consistency is independent of the other properties.
Given a problem (N , u,�, t) ∈ P let E I (N , u,�, t) be the set of feasible allo-
cations satisfying efficiency and weak individual rationality from equal division at
(N , u,�, t).
Consider first the case with two agents. Let R̂ be the rule in which agent 1 chooses
the allocation he prefers most in E I (N , u,�, t).
Consider now the general case. For each i ∈ N ,

f 7
i (N , u,�, t) =

{
R̂i (N , u,�, t) if |N | = 2
Fi (N , u,�, t) otherwise.

The rule f 7 satisfies weak individual rationality from equal division, upper bound
monotonicity and efficiency but fails consistency.

• Weak individual rationality from equal division is independent of the other prop-
erties.
The rule f 3 defined above satisfies consistency, upper bound monotonicity and
efficiency but fails weak individual rationality from equal division.

• Upper bound monotonicity is independent of the other properties.
Given a problem (N , u,�, t) ∈ P, let πu be an order of the set of agents satisfying
two properties. First, if ui < u j , then πu

i < πu
j . Second, if ui = u j , then πu

i < πu
j

if and only if i < j. Let f 8 be the sequential dictatorial rule given by the order πu

where agents must choose an allocation in E I (N , u,�, t).
The rule f 8 satisfies consistency, weak individual rationality from equal division
and efficiency but fails upper bound monotonicity.

Corollary 1 • One-sided resource-monotonicity is independent of the other
properties.
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The rule f 1 satisfies consistency, weak individual rationality from equal division
and upper bound monotonicity but fails one-sided resource-monotonicity.

• Consistency is independent of the other properties.
The rule f 7 just defined satisfies weak individual rationality from equal division,
upper bound monotonicity and one-sided resource-monotonicity but fails consis-
tency.

• Weak individual rationality from equal division is independent of the other prop-
erties.
The rule f 3 defined in Appendix A1.2 satisfies consistency, upper bound monoto-
nicity and one-sided resource-monotonicity but fails weak individual rationality
from equal division.

• Upper bound monotonicity is independent of the other properties.
The rule f 8 just defined satisfies consistency, weak individual rationality from equal
division and one-sided resource-monotonicity but fails upper bound monotonicity.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution and reproduction in any medium, provided the original author(s) and
source are credited.
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