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1 Introduction

Consider the division problem faced by a set of agents who have to share a unit of an homogeneous

and perfectly divisible good. For instance, a group of agents participate in an activity that requires

a �xed amount of labor measured in units of time. Given a wage, classical monotonic and quasi-

concave preferences on the set of bundles of money and leisure generate single-peaked preferences

on the set of potential shares, where the best share is the amount of working time associated to the

optimal bundle and in both sides of the best share the preference is strictly monotonic, decreasing

at its right and increasing at its left. Similarly, a group of agents join a partnership to invest

in a project (an indivisible bond with a face value, for example) that requires a �xed amount of

money, neither more nor less. Their risk attitudes and wealth induce single-peaked preferences on

the amount to be invested. As in the previous examples, there are other social choice settings for

which the division problem appears as its reduced problem (see for example, Barberà and Jackson

(1995)).

A solution is a family of mappings that select for each instance of division problem (a set of

agents and their single-peaked preferences) a vector of shares, one for each agent. But for most

single-peaked preference pro�les, the sum of the best shares will be either larger or smaller than

the total amount to be allocated. A positive or negative rationing problem emerges depending on

whether the sum of the best shares exceeds or falls short of the �xed amount. Sprumont (1991)

started a large literature characterizing solutions in terms of alternative sets of properties. These

solutions di¤er on the underlying principles guiding how the rationing problem has to be solved.1

In this paper we study the division problem when the good to be allocated also comes with

�xed amounts but now agents may share several units, whose number is endogenous because it

may depend on agents� preferences. Consider for example a group of entrepreneurs examining

several business opportunities. Each entrepreneur is willing to devote himself to at most one of

those business opportunities and as before, their risk attitudes and wealth induce single-peaked

preferences on the amount to be invested. We let agents partition themselves into coalitions in

such a way that agents in each coalition will have to share one and only one unit of the good.

An allocation is a pair consisting of a partition of the set of agents and a vector of allotments

specifying for each coalition in the partition a vector of shares, one for each agent in the coalition,

whose components add up to one unit. A rule is a mapping that selects for each pro�le of single-

peaked preferences an allocation; i.e., a partition and a vector of allotments. Thus, a rule can be

decomposed into two procedures. For each pro�le of single-peaked preferences, the �rst procedure

is a function that selects a partition of the set of agents while the second procedure is a solution

to be applied to the subpro�le of single-peaked preferences of the agents in each coalition of the

partition. We restrict ourselves to second procedures that select the allotment by means of a

unique solution applied to each rationing problem faced by each coalition in the partition. This

restriction implies that the same principles are used across coalitions and it can be interpreted

as a consistency requirement. Thus, a rule can be identi�ed with a partition function (mapping

single-peaked preference pro�les into partitions of the set of agents) and a solution (to be applied

to each coalition of the selected partition).
1For axiomatic characterizations of solutions see for example Barberà, Jackson, and Neme (1997), Ching (1992,

1994), Dagan (1996), Ehlers (2002a, 2002b), Herrero and Villar (2000), Schummer and Thomson (1997), Sönmez
(1994), and Thomson (1994, 1995, 1997, 2003).
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Our main concern in this paper is the stability of rules.2 Speci�cally, �x a solution. We want

to know whether there exists a partition function that, together with the �xed solution, constitute

an stable rule. Our notion of stability is based on the principle that the allocations proposed by

the rule have to be voluntarily accepted by the agents in the following sense. Consider a rule and

a pro�le of single-peaked preferences. Apply the rule to the pro�le, thereby obtaining a partition

and a vector of allotments. Take an agent in a coalition and another coalition (which may be

empty), and suppose that (1) the agent wants to leave his original coalition to join the other

one because the share assigned to him by the solution applied to the subpro�le of preferences of

the agents in the new coalition is strictly preferred to his former share, and (2) all agents of the

receiving coalition want to admit the agent because the shares assigned to them by the solution

applied to the subpro�le of preferences of the agents in the new coalition are weakly preferred to

their respective former shares. In this case, the original chosen allocation would be instable at the

pro�le to which the rule has been applied. A rule is stable if it chooses stable allocations at each

pro�le of single-peaked preferences. Three remarks are in order. First, to generate an instability

we are requiring that the moving agent has to obtain an strictly preferred share while the agents

of the receiving coalition have to obtain a weakly preferred share. This captures the idea that to

move from one coalition to another (the origin of the instability) requires a bit more than just to

admit a new member in the coalition. Second, instabilities are generated only by one agent moving

to a new coalition. In this case, the needed coordination among agents to ful�ll the instability is

minimal compared with the coordination needed if non-singleton subcoalitions would be allowed

to change coalitions. Third, the receiving coalition may be empty, in which case the instability

would be produced only by the agent that by leaving his current coalition could be strictly better

o¤; i.e., the agent would strictly prefer the full share of one unit of the good to the share he had

been assigned in his original coalition.

In a similar setting Gensemer et al (1996, 1998) study another concept of stability that they

call �migration equilibrium�. Agents with single-peaked preferences are partitioned into several

local economies, each of which has an endowment that is allocated among its participants following

a given solution. A migration equilibrium requires that no agent will be better o¤ by leaving his

economy to join another. They show that when the solution applied to each local economy is well

behaved3 there might not exist a migration equilibria. Note that the receiving economy cannot

ban the arrival of a new agent and hence the migration equilibrium is a stronger stability condition

than the one studied in this paper. Which stability condition to apply depends on the applications.

In an environment with a small number of agents with decision power such as in joint ventures, our

concept is more appealing whereas for movements across countries or big societies the migration

equilibrium is the one to be considered.

2Kar and Kibris (2008) consider the e¢ ciency of such rules in a setting where the number of units to share is
�xed rather than endogenous. They show that for the domain of single-peaked preferences and for well behaved
solutions (e¢ cient, non dictatorial, strategy proof, resource monotonic and consistent), it is not possible to �nd a
partition such that the �nal allocation is e¢ cient.

3 In particular, in Gensemer et al (1996) they show that a migration equilibrium might fail to exists if the solution
applied to the local economies satis�es two of the following three properties: Pareto e¢ ciency, strategy proofness and
no-envy. In Gensemer et al (1998) they show that a migration equilibrium might fail to exists whenever the solution
applied to the local economies is either the Proportional, the Sequential Dictator, the Uniform or the Egalitarian
rules.
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We found that in general, �nding partition functions for well-known and simple solutions, to

constitute together stable rules, is not an easy task. Indeed, it may become extremely complex

in the general setting of the division problem. Thus, we have simpli�ed the problem by assuming

that agents�single-peaked preferences are in addition symmetric.4 A single-peaked preference is

symmetric if the following additional condition holds: a share is strictly preferred to another one

if and only if the former is strictly closer to the best share. Observe that in many applications the

linear order structure on the set of potential shares, relative to which single-peakedness is de�ned,

conveys to agents�preferences more than just an ordinal content. Often, an agent�s preference

on the set of shares is responsive also to the notion of distance, embedding to the preference

its corresponding property of symmetry (see Massó and Moreno de Barreda (2011) for the use of

symmetric single-peaked preferences in the context of selecting a public good, as in Moulin (1980)).

The use of symmetric single-peaked preferences has the additional advantage that, without loss of

generality, the domain of the rule is the set of vectors of best shares, instead of the set of pro�les

of full preferences.

Our main results establish that, provided that agents�preferences are symmetric single-peaked,

the proportional solution (Proposition 1) and all sequential dictator solutions (Proposition 2)

have the property that for each one of them there exists a partition function that, together with

the corresponding solution, constitute an stable rule.5 The proportional solution of the division

problem assigns to each agent, given a vector of agents�best shares, a share that is equal to his

best share divided by the sum of all the best shares. Remember that the solution is applied

to each coalition in the partition selected by the partition function at the vector of agents�best

shares. Given an ordering on the set of agents, the sequential dictator solution associated with

this ordering, and applied to a vector of agents�best shares, let each agent, except the last one,

choose sequentially (following the ordering) his share of what is left of the good (if anything) by his

predecessors. The last agent in the ordering gets the remainder. Observe that (i) each ordering on

the set of agents de�ne a di¤erent solution of the division problem, and (ii) the order is �xed and

used in each of the coalitions selected by the partition function at the same vector of agents�best

shares. The proofs of the two results are constructive and proceed by induction on the number

of agents. In addition, we exhibit examples showing that for both rules stability is an strong

requirement incompatible with many other desirable properties like e¢ ciency, strategy-proofness,

anonymity, and non-envyness.

We also show that there are simple solutions for which there do not exist partition functions that

together constitute stable rules. For this purpose we exhibit as example a weighted proportional

solution; namely, we show that there is a vector of weights, one for each agent, with the property

that the corresponding weighted proportional solution has no partition function that together

constitute an stable rule.

Amorós (2002), Adachi (2010), and Morimoto, Serizawa, and Ching (2013) study also multi-

dimensional extensions of Sprumont (1991)�s division problem. They extend the uniform solution

of a division problem to many division problems (Amorós (2002) does it for problems with only
4Kar and Kibris (2008) show that in the domain of symmetric singled-peaked preferences, and when the number

of units of the good to be shared is �xed, whenever a (local) solution is e¢ cient, there exists a partition such that
the �nal allocation is e¢ cient.

5Note that for both the proportional solution and the sequential dictator solution a migration equilibrium [Gense-
mer et al (1996,1998)] might fail to exists even when we restrict the preferences to symmetric single-peaked domain.
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two agents). Their approach is di¤erent to ours because they consider problems where the goods

to be allocated may be di¤erent and each agent has preferences on vectors of his potential shares

(one for each di¤erent good). Their main contribution is to extend and axiomatically characterize

the uniform solution to the multiple goods setting.

The paper is organized as follows. In Section 2 we introduce the model. In Section 3 we state

and prove our main results. In Section 4 we present some �nal comments.

2 Preliminaries

Agents are indexed by the elements of a �nite set N = f1; :::; ng, where n � 1. They have to

partition themselves in such a way that the agents of each coalition of the partition have to share

one unit of a perfectly divisible good (as in Sprumont (1991)). Let � denote the set of partitions

of N . Given � = fS1; :::; SKg 2 � and i 2 N , let S�(i) denote the set Sk 2 � such that i 2 Sk. An
allocation is a pair (�; x) where � = fS1; :::; SKg 2 � is a partition and x = (x1; :::; xn) 2 [0; 1]n is
a vector of allotments such that, for each k = 1; :::;K,X

i2Sk

xi = 1:

Let A be the set of allocations. We assume that each agent i 2 N has a complete, re�exive and

transitive preference relation Ri on the set of his potential shares [0; 1]. Let Pi and Ii be its

associated strict and indi¤erence relations, respectively. Namely, for each pair xi; yi 2 [0; 1]; xiPiyi
if and only if yiRixi does not hold, and xiIiyi if and only if xiRiyi and yiRixi hold. In addition,

we assume that Ri is symmetric single-peaked ; that is, there exists the best share bi 2 [0; 1] (i.e.,
biPixi for all xi 2 [0; 1]nfbig) and xiPiyi if and only if jxi � bij < jyi � bij. Therefore, we can
identify a pro�le of preference relations R = (R1; :::; Rn) by the vector of their corresponding best

shares b = (b1; :::; bn), which we call a pro�le. The set of all pro�les is [0; 1]n. Given a non-empty

subset S � N , we denote its cardinality by its lower case representation, i:e:, s = #S. Given a

pro�le b 2 [0; 1]n and a non-empty subset S � N we denote by bS = (bi)i2S 2 [0; 1]s the subpro�le
of best shares of agents in S:

A rule is a function � : [0; 1]n ! A selecting, for each pro�le b 2 [0; 1]n, an allocation �(b) =
(�; x) 2 A: Given a non-empty subset of agents S � N , a solution for S is a function fS :

[0; 1]s ! [0; 1]s that selects for each subpro�le an allotment for S; namely, for each bS 2 [0; 1]s,
fS(bS) 2 [0; 1]s has the property that X

i2S
fSi (bS) = 1:

A solution f is a family ffSgS�N , where each fS is a solution for S. Given a solution f , a partition
�, and a pro�le b, denote by f(�; b) = (fi(�; b))i2N the following vector of allotments: for each

i 2 N ,
fi(�; b) = f

S�(i)
i (bS�(i)).

A partition function is a mapping � : [0; 1]n ! � that selects, for each pro�le b 2 [0; 1]n, a
partition �(b) 2 �.
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A rule � : [0; 1]n ! A can be decomposed as � = (�; f), where � : [0; 1]n ! � is a partition

function and f is a solution. Then, for all b 2 [0; 1]n, �(b) = (�(b); f(�(b); b)). We can also apply
a rule to a subpro�le in the obvious way.

In the next section we will focus on the stability of some rules. We now de�ne this property.

Consider a rule. Given a pro�le, apply the rule to the pro�le, thereby obtaining a partition and a

vector of allotments. Now, imagine that an agent moves to another coalition in the partition and,

after applying the solution to this new subset, he obtains an strictly better share and all former

members of this receiving coalition (which may be empty) are at least as well as they were before.

Then, the rule would not be stable at the pro�le. To de�ne formally a stable rule we have to

describe, given a partition, an agent and a coalition receiving this agent, the new partition after

the agent moves from the former coalition to the new one. Given � = fS1; :::; SKg, i 2 N , and
k 2 f1; :::;Kg de�ne

��i;k =

(
[�n(fS�(i)g [ fSkg)] [ ffS�(i)gnfigg [ fSk [ figg if Sk 6= S�(i)
[�nfS�(i)g] [ ffS�(i)gnfigg [ fig if Sk = S�(i):

Observe that if i =2 Sk then ��i;k is the new partition where all coalitions remain the same except
that S�(i) looses i and Sk gains i: But if i 2 Sk then ��i;k is the new partition where all coalitions
remain the same except that S�(i) looses i and fig is itself one of the elements of the partition.

De�nition 1 Let � = (�; f) be a rule and let b be a pro�le. Take �(b) = fS1; :::; SKg � �. We
say that � is stable at b 2 [0; 1]n if there do not exist i 2 N and k 2 f1; :::;Kg such that:
(1) fi(��i;k; b)Pifi(�; b), and

(2) if Sk 6= S�(i) then, for all j 2 Sk, fj(��i;k; b)Rjfj(�; b).6

A rule � = (�; f) is stable if it is stable at all b 2 [0; 1]n.

Up to now all the de�nitions allowed for each subset S � N to have its own distinct solution

fS . As we have already said in the Introduction, we restrict our analysis to the case in which a

unique solution is applied to every coalition in the partition. This requirement implies that the

same principles are used across coalitions and can be interpreted as a consistency requirement.

3 Stable Rules

In the following subsections we study the stability of rules associated to two well-known solutions:

the proportional and the sequential dictator solutions.

3.1 Proportional Solution

The proportional solution p = fpSgS�N is de�ned as follows: for each non-empty subset of agents

S � N; each bS 2 [0; 1]s and i 2 S,

pSi (bS) =

(
biP
j2S bj

if
P

j2S bj 6= 0
1
#S otherwise.

6 If there exist i and k such that (1) and (2) hold we say i wants to leave S�(i) to join Sk and all agents in Sk
want to admit i.
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Proposition 1 There exists a partition function �p such that the rule P = (�p; p) is stable.

Proof By induction on n.

I Assume n = 1. The stability of P = (�p; p) is obvious.
Induction Hypothesis: For all S with 1 � #S < n there exists a partition function �S such

that (�S ; p = fpT gT�S) is stable.
I Consider N and an arbitrary b 2 [0; 1]n: De�ne �p(b) as follows.
First, assume bi = 0 for all i 2 N: Then, set �p(b) = ffNgg: Obviously, (�p; p) is stable at b:
Assume now that bi > 0 for some i 2 N . Take an arbitrary S1 � N with the property that

S1 2 AM � arg min
S�N

9j2S s.t. bj>0

���Pj2S bj � 1
���P

j2S bj

and #S1 � #T for all T 2 AM . Observe that if bi = 0, i 2 S1: If S1 = N , set �p(b) = ffNgg: By
the de�nition of S1, P (b) is stable at b: Assume now that NnS1 6= ? and consider the subpro�le

bNnS1 . De�ne �
p(b) =

�
�NnS1(bNnS1); S1

	
:We next show that (�p(b); p(b)) is an stable allocation

at b:

First, by de�nition of S1, for all i 2 S1 and for any T 2 �NnS1(bNnS1),���Pj2S1 bj � 1
���P

j2S1 bj
�

���Pj2T bj + bi � 1
���P

j2T bj + bi
:

Then, ����� biP
j2S1 bj

� bi

����� = bi
�����
P

j2S1 bj � 1P
j2S1 bj

����� � bi
�����
P

j2T bj + bi � 1P
j2T bj + bi

����� =
����� biP

j2T bj + bi
� bi

����� :
Thus, pS1i (bS1)Rip

T[fig
i (bT[fig). Hence, i does not want to leave S1 to join T .

Second, take k 2 NnS1. By de�nition of S1,���Pj2S1 bj + bk � 1
���P

j2S1 bj + bk
>

���Pj2S1 bj � 1
���P

j2S1 bj
:

Notice that the inequality is strict since S1 has the largest size among all sets in AM . Then,

consider any i 2 S1 such that bi > 0: By the de�nition of S1; there exists at least one agent with
this property. Then, ����� biP

j2S1 bj + bk
� bi

����� >
����� biP

j2S1 bj
� bi

����� :
Thus, pS1i (bS1)Pip

S1[fkg
i (bS1[fkg). Hence, i 2 S1 does not want to admit k 2 NnS1 in S1.

Third, by the induction hypothesis, (�NnS1(bNnS1); p
NnS1(bNnS1)) is an stable allocation at

bNnS1 ; namely, for all S 2 �NnS1(bNnS1) and k 2 NnS1 such that k =2 S; either k does not want to
join S or there is some agent in S that does not want to admit k.

Finally, we check that no agent in S1 wants to leave and form a singleton coalition; namely, for

all i 2 S1; pS1i (bS1)Rip
fig
i (bi): If bi = 0; the weak preference follows immediately. Assume bi > 0:
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Then, the weak preference also holds because, by the de�nition of S1;����� biP
j2S1 bj

� bi

����� = bi
���1�Pj2S1 bj

���P
j2S1 bj

� bi
j1� bij
bi

= j1� bij :

Hence, P = (�p; p) is an stable rule. �

We �nish this subsection by showing that not all weighted proportional rules are stable. To see

that, let w = (w1; :::; wn) 2 (0; 1)n be a vector of weights such that
P

i2N wi = 1: The weighted

proportional solution wp = fwpSgS�N is de�ned as follows: for each non-empty subset of agents

S � N; each bS 2 [0; 1]s and i 2 S,

wpSi (bS) =

8<:
wibiP
j2S wjbj

if
P

j2S bj 6= 0
wiP
j2S wj

otherwise.

Given a partition function �, de�ne the weighted proportional rule as W� = (�;wp).

The following example shows that there are vectors of weights w such that there is no partition

function � for which the weighted proportional rule W� = (�;wp) is stable.

Example 1 Let N = f1; 2; 3g and consider the vector of weights w = (0:4; 0:2; 0:4): Take the

pro�le b = (0:8; 0:5; 0:4). Then, the allocations corresponding to the �ve possible partitions func-

tions are: W�1(b) = (f1; 2; 3g; (0:552; 0:172; 0:276)), W�2(b) = (ff1g; f2; 3gg; (1; 0:385; 0:615)),
W�3(b) = (ff1; 3g; f2gg; (0:667; 1; 0:333)),W�4(b) = (ff1; 2g; f3gg; (0:762; 0:238; 1)) andW�5(b) =

(ff1g; f2g; f3gg; (1; 1; 1)). But the strict preference wp1(�2(b); b)P1wp1(�1(b); b) implies that if all
agents were in the same coalition, agent 1 would prefer to leave and set a new coalition by him-

self. Thus, W�1 is not an stable rule. The two strict preferences wp3(�3(b); b)P3wp3(�2(b); b)

and wp1(�3(b); b)P1wp(�2(b); b) imply that if the partition was ff1g; f2; 3gg then agent 3 would
rather join agent 1 and agent 1 would be happy to admit him. Thus, W�2 is not an stable

rule. Similarly, the three pairs (i) wp1(�4(b); b)P1wp1(�3(b); b) and wp2(�4(b); b)P2wp2(�3(b); b),

(ii) wp2(�2(b); b)P2wp2(�4(b); b) and wp3(�2(b); b)P3
wp3(�4(b); b), and (iii) wp1(�3(b); b)P1wp1(�5(b); b) and wp3(�3(b); b)P3wp3(�5(b); b) imply that

W�3 , W�4 , and W�5 are not stable rules, respectively. �

3.2 Sequential Dictator Solutions

Let � : N ! N be a one-to-one mapping de�ning an ordering on the set of agents N ; namely, for

i; j 2 N , �(i) < �(j) means that i goes before j in the ordering �: Fix � and S 6= ?: De�ne the
sequential dictator solution associated to � for S; denoted by �dS : [0; 1]s ! [0; 1]s, as follows: for

each bS 2 [0; 1]s and i 2 S,

�dSi (bS) =

(
minfbi;maxf1�

P
fj2Sj�(j)<�(i)g bj ; 0gg if i is s.t. 9j 2 S; �(i) < �(j)

maxf1�
P

fj2Sj�(j)<�(i)g bj ; 0g otherwise.

The sequential dictator solution associated to � is the family �d = f�dSgS�N ; where for each
non-empty subset S � N; �dS is a sequential dictator solution associated to � for S:

Proposition 2 Let � be an ordering on N: Then, there exists a partition function ��d such that

the rule �D = (��d; �d) is stable.
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Proof Without loss of generality we assume that � is such that �(i) = i for all i 2 N . In the
proof we will omit the reference to the ordering �. The proof is by induction on n.

I Assume n = 1. The stability of �D = (��d; �d) is obvious.

Induction Hypothesis: For all S � N with 1 � #S < n; there exists a partition function �d;S

such that (�d;S ; d = fdT gT�S) is stable.
I Given N and b 2 [0; 1]n; select

�S 2 AM = arg min
S�N
n2S

�����1�X
i2S

bi

�����
with the property that #�S � #S for all S 2 AM: Hence, if bj = 0 then,

j 2 �S: (1)

Let v =
��1�Pi2 �S bi

�� = min
S�Nnfng

��1�Pi2S bi � bn
�� : In particular

v � j1� bnj : (2)

We will consider the following cases:

Case 1: v � bn.
Notice that

��1�Pi2T bi � bn
�� � v for all T � Nnfng. By the induction hypothesis the allocation

(�d;Nnfng(bNnfng); d
Nnfng(bNnfng)) is stable. Let Ŝ be such that Ŝ 2 �d;Nnfng(bNnfng) and, for all

S 2 �d;Nnfng(bNnfng),
P

i2S bi �
P

i2Ŝ bi. De�ne �
d;N (b) =

nn
�d;Nnfng(bNnfng)nŜ

o
; Ŝ [ fng

o
.

We want to show that (�d;N (b); dN (b)) is stable at b.

Assume �rst that Ŝ [ fng = N . Observe that

dNn (b) =

(
0 if

P
i2Nnfng bi � 1

1�
P

i2Nnfng bi otherwise.

Since v � bn; for all j < n; dNnfngj (bNnfng) = d
N
j (b): By the induction hypothesis,

���dNnfngj (bNnfng)� bj
��� �

j1� bj j. Thus,
��dNj (b)� bj�� � j1� bj j ; namely, j does not want to leave the set Ŝ [ fng = N:

We will show that n does not want to leave N either. Assume the contrary,

j1� bnj <
��dNn (b)� bn�� : (3)

If dNn (b) = 0 then, j1� bnj < j0� bnj; i.e., bn > 1
2 : By the hypothesis of Case 1 and (2),

1
2 <

bn � v � 1 � bn; a contradiction. If dNn (b) = 1 �
P

i2Nnfng bi > 0 then, by (3), bn � v �
j1� bnj <

���1�Pi2Nnfng bi � bn
��� : If 1�Pi2Nnfng bi� bn > 0 then, 1� bn < 1�

P
i2Nnfng bi� bn,

a contradiction. If 1 �
P

i2Nnfng bi � bn < 0 then, by the alternative de�nition of v as the

min
S�Nnfng

��1�Pi2S bi � bn
�� and the fact that v � bn, bn �

P
i2Nnfng bi + bn � 1: Hence, 1 �P

i2Nnfng bi � 0; a contradiction. Thus, (ffNgg; dN (b)) is an stable allocation at b:
Assume now that Nn(Ŝ [ fng) 6= ?: We distinguish between the following two subcases.

Subcase 1.1:
P

i2Ŝ bi � 1.

9



Then, dŜ[fngn (bŜ[fng) = 0 and for all i 2 Ŝ;

d
Ŝ[fng
i (bŜ[fng) = d

Ŝ
i (bŜ): (4)

First, by (4) and the induction hypothesis, no agent in Ŝ wants to leave Ŝ. Moreover, by the

hypothesis of Case 1 and (2), bn � 1
2 and hence, n does not want to leave Ŝ [ fng and to form a

singleton coalition.

Second, take any j 2 Nn(Ŝ [ fng). Observe that j < n. Then, since
P

i2Ŝ bi � 1;

d
Ŝ[fjg[fng
j (bŜ[fjg[fng) = d

Ŝ[fjg
j (bŜ[fjg): (5)

By the induction hypothesis, the allocation (�d;Nnfng(bNnfng); dNnfng(bNnfng)) is stable. De�ne

�Nnfng = �d;Nnfng(bNnfng): Hence, and since Ŝ 2 �Nnfng and j =2 Ŝ; either there exists i 2 Ŝ such
that

dŜi (bŜ)Pid
Ŝ[fjg
i (bŜ[fjg)

or else

d
S
�Nnfng (j)

j (bS
�Nnfng (j))Rjd

Ŝ[fjg
j (bŜ[fjg):

Thus, by (4) and (5), either

d
Ŝ[fng
i (bŜ[fng)Pid

Ŝ[fjg[fng
i (bŜ[fjg[fng)

or else

d
S
�Nnfng (j)

j (bS
�Nnfng (j))Rjd

Ŝ[fjg[fng
j (bŜ[fjg[fng):

Namely, either j is not admitted in Ŝ [ fng or else j does not want to leave S�Nnfng(j) to join

Ŝ [ fng.
Third, take any T 2 �d;N (b)n(Ŝ [fng) and consider the coalition T [fng. If

P
i2T bi � 1 then

d
T[fng
n (bT[fng) = d

Ŝ[fng
n (bŜ[fng) = 0 and n does not want to leave Ŝ[fng to join T . If

P
i2T bi < 1

then, dT[fngn (bT[fng) = 1�
P

i2T bi. Since
���dT[fngn (bT[fng)� bn

��� = ��1�Pi2T bi � bn
�� � v � bn =���dŜ[fngn (bŜ[fng)� bn

���, dŜ[fngn (bŜ[fng)Rnd
T[fng
n (bT[fng). Thus, n does not want to leave Ŝ [ fng

to join T .

Subcase 1.2:
P

i2Ŝ bi < 1.

Notice that, by the de�nition of Ŝ, for all S 2 �Nnfng,X
i2S

bi < 1: (6)

First, take j 2 S0 2 �d;N (b)n(Ŝ [ fng): Using the fact that, by the induction hypothesis, j and
Ŝ did not generate an instability in the allocation (�Nnfng; dNnfng(bNnfng)) we will show that j

and Ŝ [ fng do not generate an instability in the allocation (�d;N (b); dN (b)). Assume

dS
0

j (bS0) 6= bj ; (7)

otherwise, j does not want to leave S0. By (6),
P

i2S0 bi < 1: Hence, j = maxi2S0 i and d
S0

j (bS0) =

1�
P

i2S0nfjg bi > bj .

10



Assume
P

i2Ŝ bi + bj � 1: Then, since
P

i2Ŝ bi < 1 and i < n for all i 2 Ŝ,

d
Ŝ[fjg
i (bŜ[fjg) = d

Ŝ[fjg[fng
i (bŜ[fjg[fng): (8)

By the stability of the allocation (�Nnfng; dNnfng(bNnfng)) either���dS0j (bS0)� bj��� � ���dŜ[fjgj (bŜ[fjg)� bj
��� (9)

or else there must exist i0 2 Ŝ such that���dŜi0(bŜ)� bi0 ��� < ���dŜ[fjgi0 (bŜ[fjg)� bi0
��� : (10)

If (9) holds then, by (8), ���dS0j (bS0)� bj��� � ���dŜ[fjg[fngj (bŜ[fjg[fng)� bj
��� ; (11)

namely, j does not want to leave S0 to join Ŝ [fng: Assume (9) does not hold; i:e: j wants lo leave
S0 to join Ŝ. Then, (10) holds. Assume that j wants to leave S0 to join Ŝ [ fng; that is,���dS0j (bS0)� bj��� > ���dŜ[fjg[fngj (bŜ[fjg[fng)� bj

��� :
Then, by (10), (8) and dŜ[fngi0 (bŜ[fng) = bi0 ,���dŜ[fngi0 (bŜ[fng)� bi0

��� = 0 �
���dŜi0(bŜ)� bi0 ���

<
���dŜ[fjgi0 (bŜ[fjg)� bi0

���
=

���dŜ[fjg[fngi0 (bŜ[fjg[fng)� bi0
��� :

Thus, i0 does not want to admit j in the coalition Ŝ [ fng:
Assume

P
i2Ŝ bi + bj < 1. Then,

d
Ŝ[fjg
j (bŜ[fjg) =

(
bj if j is not the last in Ŝ [ fjg
1�

P
i2Ŝ bi if j is the last in Ŝ [ fjg:

Assume �rst that j is not the last in Ŝ [ fjg: Then, dŜ[fjgj (bŜ[fjg) = bj : By (7),

d
Ŝ[fjg
j (bŜ[fjg)Pjd

S0

j (bS0): (12)

Let j� = maxi2Ŝ i > j: For all i 2 Ŝnfj�g;

d
Ŝ[fjg
i (bŜ[fjg) = d

Ŝ
i (bŜ): (13)

Moreover, since dŜj�(bŜ) = 1�
P

i2Ŝ bi + bj� and d
Ŝ[fjg
j� (bŜ[fjg) = 1�

P
i2Ŝ bi + bj� � bj ;

���dŜj�(bŜ)� bj� ��� =
������1�

X
i2Ŝ

bi

������ �
������1�

X
i2Ŝ

bi � bj

������ =
���dŜ[fjgj� (bŜ[fjg)� bj�

��� :

11



Hence,

d
Ŝ[fjg
j� (bŜ[fjg)Rj�d

Ŝ
j�(bŜ): (14)

Conditions (12), (13), and (14) imply that j wants to leave S0 to join Ŝ and all agents in Ŝ want

to admit j; contradicting that (�Nnfng; dNnfng(bNnfng)) is an stable allocation.

Assume now that j is the last in Ŝ[fjg: Hence, for all i 2 Ŝ; dŜ[fjgi (bŜ[fjg)Rid
Ŝ
i (bŜ). Moreover,

since
P

i2S0 bi �
P

i2Ŝ bi and
P

i2Ŝ bi + bj < 1; if either bj 6= 0 or
P

i2S0 bi <
P

i2Ŝ bi then,

1�
X
i2S0

bi + bj > 1�
X
i2Ŝ

bi > bj :

Since dS
0

j (bS0) = 1 �
P

i2S0 bi + bj and d
Ŝ[fjg
j (bŜ[fjg) = 1 �

P
i2Ŝ bi; j wants to leave S

0 to join

Ŝ and all agents in Ŝ want to admit j; contradicting that (�Nnfng; dNnfng(bNnfng)) is an stable

allocation. Assume now that bj = 0 and
P

i2S0 bi =
P

i2Ŝ bi: We can prove that j
� wants to leave

Ŝ to join S0 and no agent of S0 rejects j�: If bj� = 0 then, we get a contradiction of the stability

of (�Nnfng; dNnfng(bNnfng)) proceeding as above. If bj� > 0 then, changing the roles of Ŝ and S0

and j� and j we will get a contradiction of the stability of (�Nnfng; dNnfng(bNnfng)): Observe that

this can be done since bj = 0 and
P

i2S0 bi =
P

i2Ŝ bi:

Second, take any T 2 �d;N (b)n(Ŝ [ fng): We want to check that n does not want to leave
Ŝ [ fng to join T . Since, by de�nition of Ŝ;

P
i2T bi �

P
i2Ŝ bi;

dT[fngn (bT[fng) = 1�
X
i2T

bi � 1�
X
i2Ŝ

bi = d
Ŝ[fng
n (bŜ[fng) > bn;

where the strict inequality follows because otherwise, if dŜ[fngn (bŜ[fng) � bn then, 1 �
P

i2Ŝ bi �
bn � 0; implying that

bn � v =

������1�
X
i2 �S

bi

������ �
������1�

X
i2Ŝ

bi � bn

������ =
X
i2Ŝ

bi + bn � 1;

a contradiction with the hypothesis of Subcase 1.2 stating that
P

i2Ŝ bi < 1: Thus, by single-

peakedness, dŜ[fngn (bŜ[fng)Rnd
T[fng
n (bT[fng). Hence, n does not want to leave Ŝ [ fng to join

coalition T .

Third, we show that n does not want to leave Ŝ [ fng to form a singleton coalition. Assume

otherwise; i.e.,

j1� bnj <

������1�
X
i2Ŝ

bi � bn

������ (15)

holds. If 1�
P

i2Ŝ bi�bn > 0 then, (15) implies that
P

i2Ŝ bi < 0; a contradiction. If 1�
P

i2Ŝ bi�
bn � 0 then, and since bn � v � j1� bnj, (15) implies that bn �

P
i2Ŝ bi + bn � 1, a contradiction

with
P

i2Ŝ bi < 1:

Case 2: v < bn.

Recall that v =
��1�Pi2 �S bi

�� where �S 2 AM = arg min
S�N
n2S

��1�Pi2S bi
�� with the property that

#�S � #S for all S 2 AM: Observe that X
i2 �Snfng

bi < 1; (16)
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otherwise, if
P

i2 �Snfng bi � 1 then, v =
P

i2 �Snfng bi+ bn� 1: Hence, v� bn =
P

i2 �Snfng bi� 1 � 0,
which contradicts the assumption that v < bn.

First, assume that �S = N . De�ne �d(b) = ffNgg: To obtain a contradiction, suppose that
(ffNgg; dN (b)) is not an stable allocation. By (16), for all i 6= n; dNi (b) = bi: Hence, it has

to be agent n who wants to leave N to form a singleton coalition; that is, dfngn (bn)Pnd
N
n (b); or

equivalently, j1� bnj <
���1�Pi2 �Snfng bi � bn

��� = v; a contradiction with (2).
Thus assume that �S ( N: By the induction hypothesis, (�d;Nn �S(bNn �S); dNn

�S(bNn �S)) is an stable

allocation. De�ne �d;N (b) = �d;Nn
�S(bNn �S) [ �S � �N : To prove that the allocation (�N ; dN (b))

is stable, we �rst check that n does not want to leave �S to form a singleton coalition. Assume

otherwise; then, by (16), j1� bnj <
���1�Pi2 �Snfng bi � bn

��� = v; a contradiction with (2).
We now distinguish between the following two subcases.

Subcase 2.1:
P

i2 �S bi > 1.

By (16), d �Sn(b �S) = bn � v > 0:
First, take j 2 Nn �S and consider the coalition �S [ fjg. Then, d �S[fjgn (b �S[fjg) = maxf1 �P
i2 �Snfng bi � bj ; 0g < bn � v = d

�S
n(b �S) < bn, where the �rst strict inequality holds because by

(1), j =2 �S implies bj > 0 and v =
P

i2 �S bi � 1 implies that 1 �
P

i2 �Snfng bi = bn � v. Thus, by
symmetric single-peakedness, d �Sn(b �S)Pnd

�S[fjg
n (b �S[fjg). Hence, n does not want to admit j in �S:

Second, by (16), d �Si (b �S) = bi, for all i 2 �Snfng. Hence, no agent in �Snfng wants to leave �S to
join any other coalition.

Third, let T 2 �d;Nn
�S(bNn �S) and consider the coalition T [ fng. Then, d

T[fng
n (bT[fng) =

maxf1 �
P

i2T bi; 0g. If 1 �
P

i2T bi � 0 then, by the de�nition of �S,
���dT[fngn (bT[fng)� bn

��� ����1�Pi2 �Snfng bi � bn
��� = v =

���d �Sn(b �S)� bn���, and if 1 �Pi2T bi < 0; then j0� bnj = bn > v =���d �Sn(b �S)� bn��� : In the two cases we have that d �Sn(b �S)RndT[fngn (bT[fng). Hence, n does not want to

leave �S to join T .

Subcase 2.2:
P

i2 �S bi < 1.

By de�nition of �S, d �Sn(b �S) = bn + v = 1�
P

i2 �Snfng bi > bn.

First, take j 2 Nn �S and consider the coalition �S [ fjg. Then, d �S[fjgn (b �S[fjg) = maxf1 �P
i2 �Snfng bi � bj ; 0g: If d

�S[fjg
n (b �S[fjg) = 0 then,

���d �S[fjgn (b �S[fjg)� bn
��� = bn > v = ���d �Sn(b �S)� bn���.

If d
�S[fjg
n (b �S[fjg) = 1 �

P
i2 �Snfng bi � bj > 0 then,

���d �S[fjgn (b �S[fjg)� bn
��� = ���1�Pi2 �S[fjg bi

��� >
v =

���d �Sn(b �S)� bn���, where the strict inequality holds because, by (1), j =2 �S implies bj > 0. Thus,

in both cases d �Sn(b �S)Pnd
�S[fjg
n (b �Sfjg). Hence, n does not want to admit j in �S.

Second, and since d �Si (b �S) = bi for all i 2 �Snfng, no agent in �Snfng wants to leave �S to join
any other coalition.

Third, let T 2 �d;Nn
�S(bNn �S) and consider the coalition T [ fng. Then, d

T[fng
n (bT[fng) =

maxf1 �
P

i2T bi; 0g. If 1 �
P

i2T bi > 0; and since
��1�Pi2T bi � bn

�� � v by de�nition of �S; we
have that

��1�Pi2T bi � bn
�� � v = ���d �Sn (b �S)� bn��� : If 1 �Pi2T bi � 0 then, j0� bnj = bn > v =���d �Sn (b �S)� bn��� : Thus, in both situations ���dT[fngn (bT[fng)� bn

��� � ���d �Sn(b �S)� bn���, which implies that
d
�S
n(b �S)Rnd

T[fng
n (bT[fng). Hence, n does not want to leave �S to join T . �
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4 Final Comments

We �nish the paper with three comments.

First, we show in Remarks 1 and 2 below that stability is incompatible with other desirable

properties such as strategy-proofness, e¢ ciency, anonymity and envy-freeness, bit for the propor-

tional and the sequential dictator solutions. But before, we state these properties formally.

Strategy-proofness says that no agent obtains a better share by misreporting his best share.

De�nition 2 A rule � = (�; f) is manipulable at b 2 [0; 1]n if there exist i 2 N and b0i 2 [0; 1]
such that

fi(�(b
0
i; b�i); (b

0
i; b�i))Pifi(�(bi; b�i); (bi; b�i)):

A rule � = (�; f) is strategy-proof if it is not manipulable at any b 2 [0; 1]n.

E¢ ciency says that the rule always selects e¢ cient allocations.

De�nition 3 An allocation (�; x) 2 A is e¢ cient at pro�le b 2 [0; 1]n if it does not have a Pareto
improvement; that is, there does not exist another allocation (; y) 2 A such that yiRixi for all

i 2 N and yjPjxj for at least one j 2 N:

A rule � = (�; f) is e¢ cient if for all b 2 [0; 1]n, �(b) is an e¢ cient allocation at b.

Anonymity says that the name of the agents should not matter. Let � : N ! N be a one-to-one

mapping and let b 2 [0; 1]n be a pro�le. De�ne the pro�le b� = (b�(1); :::; b�(n)) 2 [0; 1]n:

De�nition 4 A rule � = (�; f) is anonymous if for all one-to-one mapping � : N ! N and all

b 2 [0; 1]n; fi(�(b); b) = f�(i)(�(b�); b�) for all i 2 N:

Envy-freeness says that no agent strictly prefers the share of another agent.

De�nition 5 A rule � = (�; f) is envy-free if for all b 2 [0; 1]n and all i; j 2 N; fi(�(b); b)Rifj(�(b); b):

Remark 1 There is no partition function � for which the rule (�; p) is stable and satis�es one

of the following properties: strategy-proofness, e¢ ciency, anonymity and envy-freeness.

To see that stability and strategy-proofness are incompatible, let N = f1; 2g and consider the
pro�le b = (0:5; 0:4). The only stable allocation is (�p(b); p(�p(b); b)) = (ff1; 2gg; (0:56; 0:44)).
Let b02 = 0; 33. Then, �p(b1; b02) = ff1; 2gg and p(�p(b1; b02); (b1; b02)) = (0:6; 0:4). Thus, 0:4 =

p(�p(b1; b
0
2); (b1; b

0
2))P2p(�

p(b); b) = 0:44 and hence (�p; p) is not strategy-proof.

To see that stability and e¢ ciency are incompatible, let N = f1; 2g and consider the pro�le
b = (0:4; 0:9): Now, the only stable allocation is (�p(b); p(�p(b); b)) = (ff1g; f2gg; (1; 1)). However,
the allocation (ff1; 2gg; (0:1; 0:9)) is a Pareto improvement.
To see that stability and anonymity or envy-freeness are incompatible, let N = f1; 2; 3g

and consider the pro�le b = (0:3; 0:3; 0:8): It is easy to see that the only stable allocations are

(ff1g; f2; 3gg; (1; 0:31:1 ;
0:8
1:1 ) and (ff2g; f1; 3gg; (

0:3
1:1 ; 1;

0:8
1:1 ): Agent 1 and agent 2 have the same best-

shares but in both allocations they receive a di¤erent share and either agent 1 envies agent 2 (�rst

allocation) or the opposite (second allocation). �

Remark 2 Fix an ordering � on N . There is no partition function � for which the rule (�; �d)

is stable and satis�es one of the following properties: strategy-proofness, e¢ ciency, anonymity and

envy-freeness.
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To see that stability and strategy-proofness are incompatible, we take N = f1; 2; 3g, without
loss of generality �(i) = i for each i = 1; 2; 3, and b = (0:6; 0:5; 0:6). The only stable allocation at b

is (��d(b); �d(b)) = (ff1g; f2; 3gg; (1; 0:5; 0:5)). Take b01 = 0:4. Since the only stable allocation at
b0 = (b01; b2; b3) is (�

�d(b0); �d(b0)) = (ff1; 3g; f2gg; (0:4; 1; 0:6)) and 0:4P11, we conclude that for
every � for which (�; �d) is stable, (�; �d) is not strategy-proof.

Moreover, stability and e¢ ciency are incompatible. To see this, we take N = f1; 2g, let
�(1) = 1, �(2) = 2; and b = (0:5; 0:8): The only stable allocation at b is (��d(b); �d(b)) =

(ff1g; f2gg; (1; 1)), but the allocation (ff1; 2gg; (0:3; 0:7)) is a Pareto improvement.
To see that stability and anonymity or envy-freeness are incompatible, let N = f1; 2g; �(1) = 1,

�(2) = 2 and consider the pro�le b = (0:6; 0:6). Then, the stable allocation (f1; 2g; (0:6; 0:4)) is
stable but the two agents have the same best-shares, receive a di¤erent share and agent 2 envies

agent 1. Finally, the allocation (ff1g; f2gg; (1; 1)) is not stable since 1 wants to join f2g and 2
wants to admit 1. �

Second, and based on simulations, we conjecture that there exist stable rules associated to the

uniform and the equal gain-losses solutions.

Third, it is possible to show that the following result holds. Let f be an e¢ cient solution; then,

there exists a partition function �ef such that (�ef ; f) is e¢ cient.7 However, (�ef ; f) may not be

stable.
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