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individually rational if, at each preference pro�le, each agent �nds that her allotment

is at least as good as any whole unit of the good. We study and characterize two

individually rational and e¢ cient families of rules, whenever agents�preferences are

symmetric single-peaked on the set of possible allotments. Rules in the two families

are in addition envy-free, but they di¤er on wether envy-freeness is considered on

losses or on awards. Our main result states that (i) the family of constrained equal

losses rules coincides with the class of all individually rational and e¢ cient rules

that satisfy justi�ed envy-freeness on losses and (ii) the family of constrained equal

awards rules coincides with the class of all individually rational and e¢ cient rules

that satisfy envy-freeness on awards.
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1 Introduction

Consider the allotment problem faced by a group of agents who may share a homogeneous

and perfectly divisible good, available only in whole units. Examples of this kind of good

are shares representing ownership of a company, bonds issued by a company to �nance

its business operations, treasury bills issued by the government to �nance its short term

needs, or any type of �nancial assets with (potentially large) face values or tickets of

a lottery. The good could also be workers, with a �xed working day schedule, to be

shared among departments or divisions of a big institution or company, with a �xed

salary budget. Agents�risk attitudes, wealth or labor requirements and salary budgets

induce single-peaked preferences on their potential allotments of the good, the set of non-

negative real numbers. A solution of the problem is a rule that selects, for each pro�le

(of agents�preferences), a non-negative integer number of units of the good to be allotted

and a vector of allotments (a list of non-negative real numbers, one for each agent) whose

sum is equal to this integer. Observe that although the good is only available in integer

amounts agents�allotments are allowed to take non-integer values; yet, their sum has to

be an integer. Namely, in the above examples agents are able to share a �nancial asset,

a lottery ticket, or a worker by getting portions of it or time of a worker.1 But, for

most pro�les, the sum of agents�best allotments will be either larger or smaller than any

integer number and hence, an endogenous rationing problem emerges, positive or negative

depending on whether the chosen integer is smaller or larger than the sum of agents�best

allotments. Sprumont (1991) studied the problem when the amount of the good to be

allotted is �xed. He characterized the uniform rule as the unique e¢ cient, strategy-proof

and anonymous rule on the domain of single-peaked preferences. The present paper can

be seen as an extension of Sprumont (1991)�s paper to a setting where the amount to be

allotted of a divisible good has to be an integer, which may depend on agents�preferences.

We are interested in situations where the good is freely available to agents, but only

in whole units. Hence, an agent will not accept a proposal of an allotment that is strictly

worse than any integer amount of the good. For an agent with a (continuous) single-

peaked preference, the set of allotments that are at least as good as any integer amount of

the good (the set of individually rational allotments) is a closed interval that contains the

best allotment, that we call the peak, and at least one of the two extremes of the interval

is an integer. If preferences are symmetric, the peak is at the midpoint of the interval.

1For instance, governments may issue debt with a minimal nominal amount open to particulars and

families or groups of friends may acquire several units and divide them in any way (not necessarily in

integers) according to the will of their members; for instance, in 2011 the Catalan Government did so

to attend the de�cit requirements derived from the �nancial crisis (the face value of a bond was 1000

euros). Lottery numbers are sometimes shared among family members or co-workers to allow them to

hold a share smaller than the price of one ticket; for instance, the Christmas Lotteries in Spain.
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Our main concern then is to identify rules that select, for each pro�le of agents�

symmetric single-peaked preferences, a vector of individually rational allotments. We

call such rules individually rational. But since the set of individually rational rules is

extremely large, and some of them are arbitrary and non-interesting, we would like to

focus further on rules that are also e¢ cient, strategy-proof, and satisfy some minimal

fairness requirement. A rule is e¢ cient if it selects, at each pro�le, a Pareto optimal vector

of allotments: no other choices of (i) integer unit of the good to be allotted or (ii) vector

of allotments, or (iii) both, can make all agents better o¤, and at least one of them strictly

better o¤. We characterize the class of all individually rational and e¢ cient rules on the

domain of symmetric single-peaked preferences by means of three properties. First, the

allotted amount of the good is the closest integer to the sum of agents�peaks. Second, all

agents are rationed in the same direction: all receive more than their peaks, if the integer

to be allotted is larger than the sum of the peaks, or all receive less, otherwise. Third,

the rule selects a vector of allotments that belong to the agents� individually rational

intervals. A rule is strategy-proof if it induces, at each pro�le, truth-telling as a weakly

dominant strategy in its associated direct revelation game. Our fairness requirements will

be related to two alternative and well-known notions of envy-freeness, that we will adapt

to our setting (justi�ed envy-freeness on losses and envy-freeness on awards).2

We show that there is no rule that is individually rational, e¢ cient and strategy-proof

on the domain of symmetric single-peaked preferences. We then proceed by studying

separately two subclasses of rules on the symmetric single-peaked domain; those that are

individually rational and e¢ cient and those that are individually rational and strategy-

proof. For the �rst subclass, we identify the family of the constrained equal losses rules

and the family of the constrained equal awards rules as the unique families of rules that,

in addition of being individually rational and e¢ cient, satisfy also either justi�ed envy-

freeness on losses or envy-freeness on awards, respectively. These rules divide the e¢ cient

integer amount of the good in such a way that all agents experience either equal losses or

equal gains, subject to the constraint that all allotments have to be individually rational.

Speci�cally, a constrained equal losses rule, evaluated at a pro�le, selects �rst the e¢ cient

number of integer units (if there are two, it selects one of them). Then, to allot this

integer amount it proceeds with the rationing from the vector of peaks, by either reducing

or increasing the allotment of each agent (depending on whether the sum of the peaks is

larger or smaller than the integer amount to be allotted) until the total amount is allotted.

However, it makes sure that the extremes of agents�individually rational intervals are not

overcome by excluding any agent from the rationing process as soon as one of the extremes

of the agent�s individually rational interval is reached, and it continues with the rest. A

constrained equal awards rule is de�ned similarly but instead it uses, as the starting vector

2See Section 3 for their de�nitions and justi�cations, and Thomson (2010) for a survey on envy-freeness.
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of the rationing process, either the vector of lower bounds or the vector of upper bounds

of the individually rational intervals, depending on whether the sum of the peaks is larger

or smaller than the integer amount to be allotted, but makes sure that no agent�s peak

is overcome by excluding her from the rationing process as soon as her peak is reached,

and it continues with the rest.

For the subclass of individually rational and strategy-proof rules, we show in contrast

that although there are many rules satisfying the two properties simultaneously, they are

not very interesting; for instance, none of them is unanimous. A rule is unanimous if,

whenever the sum of the peaks is an integer, the rule selects this integer and it allots it

according to the agents�peaks. We show then that individual rationality and strategy-

proofness are indeed incompatible with unanimity.

Before �nishing this Introduction we mention some of the most related papers to ours.

As we have already said, Sprumont (1991) proposed the division problem of a �xed amount

of a good among a group of agents with single-peaked preferences on their potential allot-

ments and provided two characterizations of the uniform rule, using strategy-proofness,

e¢ ciency and either anonymity or envy-freeness. Then, a very large literature followed

Sprumont (1991) by taking at least two di¤erent paths. The �rst contains papers pro-

viding alternative characterizations of the uniform rule. See for instance Ching (1994),

Sönmez (1994) and Thomson (1994a, 1994b, 1995 and 1997). The second group of papers

proposed alternative rules when the problem is modi�ed by introducing additional features

or considering alternative domains of agents�preferences, or both. For instance, Ching

(1992) extended the characterization of Sprumont (using envy-freeness) to the domain

of single-plateaued preference pro�les and Bergantiños, Massó and Neme (2012a, 2012b

and 2015), Manjunath (2012) and Kim, Bergantiños and Chun (2015) studied alterna-

tive ways of introducing individual rationality in the division problem. But in contrast

with the present paper they assume that the quantity of the good to be allotted is �xed.

Adachi (2010), Amorós (2002), Anno and Sasaki (2013), Cho and Thomson (2013), Er-

lanson and Flores-Szwagrzak (2015) and Morimoto, Serizawa and Ching (2013) contain

the multi-dimensional analysis of the division problem when several commodities have to

be allotted among the same group of agents, but again the quantities of the goods to be

allotted are �xed.

The paper is organized as follows. The next section presents the problem, preliminary

notation and basic de�nitions. Section 3 contains the de�nitions of the properties of

the rules that we will be concerned with. Section 4 describes the rules and states a

preliminary result. Section 5 contains the main results of the paper for symmetric single-

peaked preferences.
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2 The problem

We study situations where each agent of a �nite set N = f1; : : : ; ng wants an amount of a
perfectly divisible good that can only be obtained in integer units, but arbitrary portions

of each unit can be freely allotted. We assume that n � 2 and denote by xi � 0 the

total amount of the good allotted to agent i 2 N: Since all units of the good are alike,
the amount xi may come from di¤erent units. We assume that there is no limit on the

(integer) number of units that can be allotted. Hence, and once N is �xed, the set of

feasible (vector of) allotments is

FA = fx = (x1; : : : ; xn) 2 RN+ j
P

i2N xi 2 N0g;

where R+ = [0;+1) is the set of non-negative real numbers and N0 = f0; 1; 2; : : :g is the
set of non-negative integers.3

Each agent i has a preference relation �i, de�ned on the set of potential allotments,
which is a complete and transitive binary relation on R+. That is, for all xi; yi; zi 2
R+; either xi �i yi or yi �i xi; and xi �i yi and yi �i zi imply xi �i zi; note that
re�exivity (xi �i xi for all xi 2 R+) is implied by completeness. Given �i, let �i be the
antisymmetric binary relation on R+ induced by �i (i.e., for all xi; yi 2 R+, xi �i yi if
and only if yi � xi does not hold) and let �i be the indi¤erence relation on R+ induced
by �i (i.e., for all xi; yi 2 R+, xi �i yi if and only if xi �i yi and yi �i xi). We

assume that �i is continuous (i.e., for each xi 2 R+ the sets fyi 2 R+ j yi �i xig and
fyi 2 R+ j xi �i yig are closed) and that �i is single-peaked on R+; namely, there exists
a unique pi 2 R+, the peak of �i, such that pi �i xi for all xi 2 R+nfpig and xi �i yi
holds for any pair of allotments xi; yi 2 R+ such that either yi < xi � pi or pi � xi < yi.
For each i 2 N; let �pii be an agent i�s single-peaked preference such that pi 2 R+ is the
peak of �pii : We say that agent i�s single-peaked preference �i is symmetric on R+ if
for all zi 2 [0; pi], (pi � zi) �i (pi + zi) ; that is, for all xi; yi 2 R+; xi �i yi if and only
if jpi � xij � jpi � yij : Notice two things. First, the peak of a symmetric single-peaked
preference conveys all information about the whole preference. Thus, we will often identify

a symmetric single-peaked preference �i with its peak pi. Second, for each x 2 R+, there
exists a unique integer kx 2 N0 such that kx � x < kx + 1: Hence, the following notation
is well-de�ned:

bxc = kx

dxe = kx + 1

[x] =

(
kx when x � kx + 0:5
kx + 1 when x > kx + 0:5:

3Since no confusion can arise with negative integers, we will refer to the set of non-negative integers

N0 as the set of integers.
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For each p = (pi)i2N ; we denote
�P

i2N pi
�
by p� 2 N0; namely,

p� �
P

i2N pi < p
� + 1:

A (division) problem is a pair (N;�) where N is the set of agents and �= (�1; : : : ;�n)
is a pro�le of single-peaked preferences on R+, one for each agent in N . Since the set N
will remain �xed we often write � instead of (N;�) and refer to � as a problem and as

a pro�le, interchangeably. To emphasize agent i�s preference �i in the pro�le � we often
write it as (�i;��i):
We denote by P the set of all problems where agents�preferences are single-peaked

and by PS the set of all problems where agents�preferences are symmetric single-peaked.
Since preferences are idiosyncratic, they have to be elicited. A rule on P is a function

f assigning to each problem �2 P a feasible allotment f (�) = (f1 (�) ; : : : ; fn(�)) 2 FA:
We will also consider rules de�ned only on PS: Any rule on P can be restricted to operate
only on PS:
To study rules on PS selecting individually rational allotments, the following intervals

will play a critical role. Fix a problem �2 PS; with its vector of peaks (p1; : : : ; pn). For
each i 2 N; de�ne the associated closed interval

[li(pi); ui (pi)] =

(
[bpic ; pi + (pi � bpic)] if pi � bpic+ 0:5
[pi � (dpie � pi) ; dpie] if pi � bpic+ 0:5:

When no confusion arises we write li instead of li(pi) and ui instead of ui (pi) :

Allotments outside the interval [li; ui] are strictly worse than some integer allotment

(either than bpic or than dpie), and they will not be acceptable to i; if agent i has free access
to any integer amount of the good. Since each interval [li; ui] depends only on pi; we call

it the individually rational interval of pi (Proposition 2 will show the exact relationship

between individually rational rules on PS and the individually rational intervals). Given
pi 2 R+; [li; ui] can be seen as the unique interval with the properties that pi is equidistant
to the two extremes (i.e. pi = li+ui

2
), at least one of the two extremes is an integer, and

its length is at most one. For instance, the individually rational interval of pi = 1:8 is

[1:6; 2] and of pi = 2:3 is [2; 2:6]:

3 Properties of rules

We now describe possible properties that a rule f on P (or on PS) may satisfy. Again,
the properties de�ned on P can be straightforwardly extended to PS by restricting their
de�nitions to the set of problems in PS:
We start with the property of individual rationality, the one that we found more basic

for the class of problems we are interested in, which is the main focus of this paper. Since
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we are assuming that all integer units of the good are freely available, even for a single

agent, a rule is individually rational if each agent considers her allotment at least as good

as any integer number of units of the good.

Individual rationality. For all �2 P, i 2 N and k 2 N0, fi (�) �i k:

The next two properties are also appealing. E¢ ciency says that, for each problem,

the vector of allotments selected by the rule is Pareto undominated in the set of feasible

allotments, while a rule is strategy-proof if agents can never obtain a strictly better

allotment by misrepresenting their preferences.

E¢ ciency. For all �2 P, there does not exist y 2 FA such that yi �i fi(�) for all i 2 N
and yj �j fj(�) for at least one j 2 N:

Strategy-proofness. For all �2 P ; i 2 N and single-peaked preference �0i,

fi (�) �i fi (�0i;��i) :

We say that agent i manipulates f at � via �0i if fi (�0i;��i) �i fi (�).

We will also consider other desirable properties of rules. Participation says that agents

will not have interest in obtaining integer units of the good in addition to their received

allotments. To de�ne it formally, we need some additional notation. For each k 2 N0
and �i with peak pi such that k � pi; let �pi�ki be the single-peaked preference on R+
obtained from �i by shifting it downwards in k units; namely, for each pair xi; yi 2 R+;
xi �pi�ki yi if and only if k + xi �i k + yi.

Participation. For all �2 P, i 2 N and k 2 N0 such that k � pi;

fi(�) �i k + fi(�pi�ki ;��i):

If we interpret participation as a strategic property, then we could require fi(�) �i
k+fi(�pi�ki ;��i): It is easy to check that our results also hold with this new formulation.
Unanimity says that the rule selects the pro�le of peaks whenever it is a feasible vector

of allotments. Equal treatment of equals says that agents with the same preferences receive

equal allotments.

Unanimity. For all �2 P such that
P

j2N pj 2 N0; fi (�) = pi for all i 2 N:

Equal treatment of equals. For all �2 P and i; j 2 N such that �i=�j; fi (�) = fj (�) :

Envy-freeness says that the rule selects a vector of allotments with the property that

no agent would strictly prefer the allotment of another agent.

Envy-freeness. For all �2 P and i; j 2 N , fi (�) �i fj (�) :

The next three properties are alternative versions of envy-freeness, adapted to our

context when agents have symmetric single-peaked preferences and they have free access
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to any integer amount of the good. Given that, each agent is willing to accept a non-

integer allotment proposed by the rule insofar as her participation in the problem helps

her to circumvent the integer restriction. Hence, envy-freeness may take as reference,

not the absolute amounts received but instead, how other agents are treated with respect

to their peaks or to their individually rational intervals. The emphasis is then on the

losses or the awards that agents�allotments represent with respect to their peaks or to

the extremes of their individually rational intervals, respectively. First, envy-freeness on

losses says that each agent prefers her loss (with respect to her peak) to the loss of any

other agent.

Envy-freeness on losses. For all�2 PS and i; j 2 N , fi(�) �i max fpi + (fj (�)� pj); 0g :4

Second, justi�ed envy-freeness on losses quali�es the previous property by requiring

that each agent i prefers her loss (i.e., fi (�) � pi) to the loss of any other agent j (i.e.,
fj (�) � pj), only if j�s allotment is strictly preferred by j to any integer. Since agents
can obtain freely any integer number of units of the good, it may be understood that it

is not legitimate for i to express envy of another agent j who is receiving an allotment

that j considers indi¤erent to an integer because it is as if the rule would not allot to j

any amount. Hence, i�s envy towards j is only justi�ed if j strictly prefers her allotment

to any integer amount.

Justi�ed envy-freeness on losses. For all �2 PS and i; j 2 N such that fj(�) �j k for all
k 2 N0, fi (�) �i max fpi + (fj (�)� pj); 0g :

Envy-freeness on awards roughly says that each agent prefers her award, with respect

to her individually rational allotment, to any amount between her award and the award

of any other agent. To state it formally, let f be a rule on PS. De�ne, for each �2 PS

and i 2 N , the award of i (at (�; f)) with respect to i�s individually rational interval as

ai (�; f) =
(
fi (�)� li if fi (�) � pi
ui � fi (�) if fi (�) > pi:

When no confusion arises we write ai instead of ai (�; f) :

Envy-freeness on awards. For all �2 PS and i; j 2 N ,

x 2 [min fai (�; f) ; aj (�; f)g ;max fai (�; f) ; aj (�; f)g]

implies fi (�) �i li + x.5

4Note that fi (�) = pi + (fi (�) � pi) always holds; hence, the condition in the de�nition is trivially
satis�ed whenever i = j: Since pi + (fj (�)� pj) < 0 may hold, we consider the max because preferences
are only de�ned over non negative allotments.

5For all such x; fi (�) �i li + x is equivalent to fi (�) �i ui � x since �i is symmetric single-peaked
and, by the de�nition of the extremes of the individually rational interval, pi = li+ui

2 :
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To see why envy-freeness on awards is a desirable property consider for example the

case where ai = fi(�)� li; aj = fj(�)� lj and ai < x < aj: If li+x �i fi(�); i may argue
that the non-integer amount received by j was too large and that there is a compromise,

x 2 [ai; aj], that may be used to solve the integer problem in a more fair way. Example 1

might also help to better understand this property.

Example 1 Consider the problem (N;�) 2 PS where N = f1; 2; 3g, p = (0:1; 0:6; 0:6)
and assume the rule f is such that f(�) = (0; 0:5; 0:5): Agent 1 is not envying agent 2

since 0 �1 0:5: Note that l1 = 0, l2 = 0:2; a1 = 0; and a2 = 0:3. Hence,

[min fa1; a2g ;max fa1; a2g] = [0; 0:3]:

By setting x = 0:3 we have that f1(�) = 0 �1 0:3 = l1 + x: Nevertheless, by setting

x = 0:1 we have that f1(�) = 0 �1 0:1 = l1 + x, and so f would not satisfy envy-freeness
on awards. In this case agent 1 can argue that agent 2 is receiving at f(�) (compared
with the individually rational points l2 = 0:2 and l1 = 0) more than her (a2 = 0:3 versus

a1 = 0). �

Again, envy-freeness is based on absolute references: it requires comparisons of allot-

ments directly. In contrast, our two notions of envy-freeness are relative: they disregard

the integer amounts allotted to the agents and compare (using losses or awards as refer-

ences) only those fractions received away from the peaks or the relevant extremes of the

individually rational intervals.

Finally, group rationality is an extension of individual rationality to groups of agents.

It says that each subset of agents receives a total allotment that is (in aggregate terms)

�at least as good as�any other total allotment they could receive only by themselves.

Group rationality. For all �2 PS, S � N and k 2 N0,��P
i2S pi �

P
i2S fi (�)

�� � ��Pi2S pi � k
�� :

Remark 1 The following statements hold.6

(R1.1) If f is e¢ cient on P, then f is unanimous.
(R1.2) If f is envy-free on losses on PS, then f satis�es justi�ed envy-freeness on losses
on PS.
(R1.3) If f is group rational on PS, then f is individually rational on PS.

4 Rules

In this section we adapt, to our setting with endogenous integer amounts, fair and well-

known rules that have already been used to solve the division problem with a �xed amount.
6The proofs are immediate.
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Since our main results will be relative to symmetric single-peaked preferences, we restrict

the rules we consider in the next two sections to operate on PS. This is important because
the rules will allot the integer amount that is closest to the sum of the peaks, which is

always the e¢ cient amount only if single-peaked preferences are symmetric. Since at

pro�les where
P

j2N pj = p
�+0:5, p� and p�+1 are both at the same distance of 0:5 fromP

j2N pj; many rules will share the same principles but they will be di¤erent only to the

extent that they select the smaller or the larger closest integer at those pro�les. Hence, we

will be de�ning classes of rules. Although we will be interested only in their constrained

versions (to ensure that they are individually rational) we also present their unconstrained

versions for further reference and because they may help the reader to understand the

constrained ones. We start with the class of equal losses rules. At any pro�le p, an equal

losses rule selects the feasible vector of allotments by the following egalitarian procedure.

Start from the vector of peaks p and, if this is an unfeasible vector of allotments, decrease

or increase all agents�allotments in the same amount until the closest integer
jP

j2N pj

k
or
lP

j2N pj

m
respectively is allotted, stopping the decrease (if this is the case) of any

agent�s allotment, as soon as the zero allotment is reached.

Equal losses. We say that f is an equal losses rule if, for all �2 PS;

f (�) =

8><>:
(pi �min f�; pig)i2N if

P
j2N pj < p

� + 0:5

(pi + �)i2N if
P

j2N pj > p
� + 0:5

(pi �min f�; pig)i2N or (pi + �)i2N if
P

j2N pj = p
� + 0:5;

where � is the unique real number for which
P

j2N (pj �min f�; pjg) = p� or
P

j2N (pj + �) =

p� + 1 holds.7

Denote by FEL the set of all equal losses rules. Figure 1 represents a rule fEL 2 FEL

at pro�les �; �0 and ��; where [p1 + p2] = [p01 + p02] < p1+p2 = p01+p02 < p�+0:5 = p0�+0:5
and [�p1 + �p2] > �p1 + �p2 > �p� + 0:5:

A constrained equal losses rule proceeds by following the same egalitarian procedure

but now the increase or decrease of the allotment of agent i; starting from pi; stops as

soon as i�s allotment is equal to the relevant extreme of i�s individually rational interval.

7Corollary 1 below (that follows from Proposition 1) will establish the existence of such unique real

number �, as well as the existence of the real numbers b�, �, and b�, used to de�ne the other three rules
below.
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Fig. 1 An equal losses rule fEL

Constrained equal losses. We say that f is a constrained equal losses rule if, for all �2 PS;

f (�) =

8><>:
(pi �min fb�; pi � lig)i2N if

P
j2N pj < p

� + 0:5

(pi +min fb�; ui � pig)i2N if
P

j2N pj > p
� + 0:5

(pi �min fb�; pi � lig)i2N or (pi +min fb�; ui � pig)i2N if
P

j2N pj = p
� + 0:5;

where b� is the unique real number for which it holds thatPj2N (pj �min fb�; pj � ljg) =
p� or

P
j2N (pj +min fb�; uj � pjg) = p� + 1.

Denote by FCEL the set of all constrained equal losses rules.

Observe that for any pair f; f 0 2 FCEL; f (�) = f 0 (�) for all �2 PS except for those
pro�les � for which

P
j2N pj = p

�+0:5: But in this case, for all i 2 N , fi (�) �i f 0i (�) : To
see that, assume � is such that

P
j2N pj = p

� + 0:5: If f (�) = (pi �min fb�; pi � lig)i2N
then

p� =
P

j2N (pj �min fb�; pj � ljg) =Pj2N pj �
P

j2N min fb�; pj � ljg
= p� + 0:5�

P
j2N min fb�; pj � ljg ;

which implies
P

j2N min fb�; pj � ljg = 0:5: If f (�) = (pi +minfb�; ui � pig)i2N then
p� + 1 =

P
j2N(pj +minfb�; uj � pjg) =Pj2N pj +

P
j2N minfb�; uj � pjg

= p� + 0:5 +
P

j2N minfb�; uj � pjg;
which implies that

P
j2N minfb�; uj � pjg = 0:5. Since pj � lj = uj � pj for all j 2 N; we

deduce that b� = b�: Hence, for all i 2 N;
pi �min fb�; pi � lig �i pi +min fb�; ui � pig :

11



Thus, for any pair f; f 0 2 FCEL, any pro�le �2 PS and any i 2 N;

fi (�) �i f 0i (�) : (1)

Figure 2 represents a rule fCEL 2 FCEL at pro�les� and ��; where [p1 + p2] < p1+p2 <
p� + 0:5 < �p1 + �p2 < [�p1 + �p2] :
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q
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fCEL( ��)
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Fig. 2 A constrained equal losses rule fCEL

An equal awards rule follows the same egalitarian procedure used to de�ne equal losses

rules, but instead of starting from the vector of peaks, it starts from the vector of relevant

extremes of the individually rational intervals and it increases (or decreases) all agents�

allotments in the same amount until the integer number of units is allotted, making sure

that no agent receives a negative allotment.

Equal awards. We say that f is an equal awards rule if, for all �2 PS,

f (�) =

8><>:
(li + �)i2N if

P
j2N pj < p

� + 0:5

(ui �minf�; uig)i2N if
P

j2N pj > p
� + 0:5

(li + �)i2N or (ui �minf�; uig)i2N if
P

j2N pj = p
� + 0:5;

where � is the unique real number for which
P

j2N (lj + �) = p
� or

P
j2N (uj �minf�; ujg) =

p� + 1 holds.

Denote by FEA the set of all equal awards rules. Figure 3 represents a rule fEA 2 FEA

at pro�les �; �0 and ��; where p�+0:5 > p1+p2 > [p1 + p2], p0�+0:5 < p01+p02 < [p01 + p02],
�p� + 0:5 < �p1 + �p2 < [�p1 + �p2] and [p01 + p

0
2] = [�p1 + �p2].

12



-

6

-

6

q q

r
r r r

r
r����

���
�
�
���

�
�
�
���

��	�
��	
�

�
��	

�
�

�
��	

	�
�	
�

��	

�
�

��	
?
?

(p1; p2)

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@@

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@@

[p1 + p2] [�p1 + �p2]
x1

x2

x1

x2

(l1; l2)

r

r

r

(u01; u
0
2)

(p01; p
0
2) (�u1; �u2)

(�p1; �p2)

(�u1; �u2)fEA(�)

fEA( ��)

fEA(�0)

Fig. 3 An equal awards rule fEA

A constrained equal awards rule proceeds by following the same egalitarian procedure

but now the increase or decrease of the allotment of each agent i; starting from the relevant

extreme of i�s individually rational interval, stops as soon as i�s allotment is equal to pi.

Constrained equal awards. We say that f is a constrained equal awards rule if, for all

�2 PS;

f (�) =

8><>:
(li +minfb�; pi � lig)i2N if

P
j2N pj < p

� + 0:5

(ui �minfb�; ui � pig)i2N if
P

j2N pj > p
� + 0:5

(li +minfb�; pi � lig)i2N or (ui �minfb�; ui � pig)i2N if
P

j2N pj = p
� + 0:5;

where b� is the unique real number for whichPj2N(lj+minfb�; pj�ljg) = p� orPj2N(uj�
minfb�; uj � pjg) = p� + 1:
Denote by FCEA the set of all constrained equal awards rules.

Observe that for any pair f; f 0 2 FCEA; f (�) = f 0 (�) for all �2 PS except for those
pro�les � for which

P
j2N pj = p

� + 0:5: But in this case, for all i 2 N , fi (�) �i f 0i (�) :
To see that, assume � is such that

P
j2N pj = p

�+0:5: If f (�) = (li+minfb�; pi� lig)i2N
then

p� =
P

j2N(lj +minfb�; pj � ljg) =Pj2N lj +
P

j2N minfb�; pj � ljg
=

P
j2N pj �

P
j2N (pj � lj) +

P
j2N minfb�; pj � ljg

= p� + 0:5�
P

j2N (pj � lj) +
P

j2N minfb�; pj � ljg;
which implies

P
j2N minfb�; pj � ljg =Pj2N (pj � lj)� 0:5: If f (�) = (ui �minfb�; ui �

13



pig)i2N , then

p� + 1 =
P

j2N(uj �minfb�; uj � pjg) =Pj2N uj �
P

j2N minfb�; uj � pjg
=

P
j2N pj +

P
j2N (uj � pj)�

P
j2N minfb�; uj � pjg

= p� + 0:5 +
P

j2N (uj � pj)�
P

j2N minfb�; uj � pjg;
which implies that

P
j2N minfb�; uj � pjg =Pj2N (uj � pj)� 0:5: Since pj � lj = uj � pj

for all j 2 N , we deduce that b� = b�: Hence, for all i 2 N;
li +minfb�; pi � lig �i ui �minfb�; ui � pig:

Thus, for any pair f; f 0 2 FCEA, any pro�le �2 PS and any i 2 N;

fi (�) �i f 0i (�) : (2)

Figure 4 represents a rule fCEA 2 FCEA at pro�les� and ��; where [p1+p2] < p1+p2 <
p� + 0:5 and [�p1 + �p2] > �p1 + �p2 > �p� + 0:5:
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Fig. 4 A constrained equal awards rule fCEA

The existence of the unique numbers �, b�, � and b� in each of the above de�nitions is
guaranteed by Proposition 1 below.

Proposition 1 For each �2 PS, the appropriate statement below holds.
(P1.1) If

P
j2N pj � p� + 0:5 then

P
j2N lj � p�:

(P1.2) If
P

j2N pj � p� + 0:5 then
P

j2N uj � p� + 1:

14



Proof Let �2 PS be arbitrary. For each i 2 N there exists ki 2 N0 such that ki � li �
pi < ki + 1: We de�ne

t =
X

j:pj�kj+0:5

kj +
X

j:pj>kj+0:5

(kj + 1) : (3)

Notice that if pj � kj + 0:5, then lj = kj and uj = pj + (pj � kj) = 2pj � kj: Similarly, if
pj > kj + 0:5, then lj = pj � (kj + 1� pj) = 2pj � (k + 1) and uj = kj + 1: Hence,

t =
X

j:pj�kj+0:5

lj +
X

j:pj>kj+0:5

uj: (4)

Since lj � uj for all j 2 N; X
j2N

lj � t �
X
j2N

uj: (5)

Making some computations we can prove thatX
j2N

lj � 2
X
j2N

pj � t �
X
j2N

uj: (6)

To prove (P1.1) we distinguish two cases (t � p� and t > p�): In both cases it is not
di¢ cult to prove that

P
j2N lj � p�:

To prove (P1.2) we also distinguish two cases (p� + 1 � t and p� + 1 > t): In both

cases it is not di¢ cult to prove that
P

j2N uj � p� + 1: �

Proposition 1 implies that the real numbers �; b�; � and b� used to de�ne the four
families of rules do exist and they are unique, and hence the rules are well-de�ned. To

see that, observe that any fEL 2 FEL and fCEL 2 FCEL start allotting the good from
p in a continuous and egalitarian (or constrained egalitarian) way until the full amount

is allotted. On the other hand, any fEA 2 FEA and fCEA 2 FCEA start allotting

the good from the vector of relevant extremes of the individually rational intervals in

a continuous and egalitarian (or constrained egalitarian) way until the full amount is

allotted. Proposition 1 guarantees that the direction of the allotment process goes in the

right direction to reach the full amount, from either one of the two starting vectors. So,

Corollary 1 holds.

Corollary 1 The real numbers �; b�; � and b�, used to de�ne respectively the families
of rules FEL; FCEL; FEA and FCEA do exist and they are unique.

5 Results for symmetric single-peaked preferences

5.1 Individual rationality and basic impossibilities

In the next proposition we present some results related with the properties of rules, when-

ever they operate on problems where agents�preferences are symmetric single-peaked.
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The �rst result characterizes individually rational rules by stating that a rule is indi-

vidually rational if and only if, for all pro�les, the rule selects a vector of allotments

that belong to the individually rational intervals of their associated peaks. The second

result characterizes individually rational and e¢ cient rules. We also show that some ba-

sic incompatibilities among properties of rules hold, even when agents�preferences are

restricted to be symmetric single-peaked.

Proposition 2 The following statements hold.

(P2.1) A rule f on PS is individually rational if and only if, for all �2 PS and i 2 N;
fi (�) 2 [li; ui] :
(P2.2) A rule f on PS is individually rational and e¢ cient if and only if, for all �2 PS;
three conditions hold:

(E2.1)
P

j2N fj (�) =

8><>:
p� if

P
j2N pj < p

� + 0:5

p� + 1 if
P

j2N pj > p
� + 0:5

p� or p� + 1 if
P

j2N pj = p
� + 0:5:

(E2.2) fi (�) � pi for all i 2 N or fi (�) � pi for all i 2 N:
(E2.3) fi (�) 2 [li; ui] for all i 2 N:

(P2.3) There is no rule on PS satisfying group rationality and e¢ ciency.
(P2.4) There is no rule on PS satisfying individual rationality, e¢ ciency and strategy-
proofness.

(P2.5) There is no rule on PS satisfying individual rationality and envy-freeness on losses.
(P2.6) There is no rule on PS satisfying individual rationality, e¢ ciency, and envy-
freeness.

Proof

(P2.1) It is obvious.

(P2.2) Let f be an individually rational and e¢ cient rule on PS. By (P2.1) f satis�es
(E2.3).

We now prove that f satis�es (E2.2). Suppose not. Then, there exist i; j 2 N such

that fi (�) > pi and fj (�) < pj: Let " be such that 0 < " < minffi (�) � pi; pj �
fj (�)g: Then, by single-peakedness, the feasible vector of allotments (fi (�)� "; fj (�)+
"; (fk (�))k2Nnfi;jg) Pareto dominates f (�) : Hence, f is not e¢ cient. This proves (E2.2).
We now prove that f satis�es (E2.1). We �rst show that for all �2 PS,P

j2N fj (�) 2 fp�; p� + 1g : (7)

Suppose that
P

j2N fj (�) < p�: By (E2.2) for all i 2 N; fi (�) � pi and there exists

j 2 N such that fj (�) < pj: Let y 2 FA be such that for all i 2 N; fi (�) � yi � pi;

fj (�) < yj � pj and
P

j2N yj = p
�: Since by single-peakedness yi �i fi(�) for all i 2 N

16



and yj �j fj(�); y Pareto dominates f(�); a contradiction with the e¢ ciency of f: IfP
j2N fj (�) > p� + 1 the proof proceeds similarly.
We now distinguish among three cases.

Case 1:
P

j2N pj = p� + x with x < 0:5: To obtain a contradiction, suppose thatP
j2N fj (�) = p� + 1: By (E2.2), for all i 2 N; fi (�) � pi. By individual rational-

ity, for all i 2 N; fi (�) � ui: Hence, pi � (fi (�)� pi) � li for all i 2 N; which means
that (2pj � fj(�))j2N 2 FA: Notice that fi(�) �i (2pi � fi(�)) for all i 2 N: Now,P

j2N (2pj � fj(�)) = 2
P

j2N pj �
P

j2N fj(�)
< 2(p� + x)� p� � 1 = p� + 2x� 1 < p�:

Let y 2 FA be such that, for all i 2 N , 2pi�fi(�) � yi � pi and
P

j2N yj = p
�: By single-

peakedness, yi �i 2pi � fi(�) �i fi(�) and since
P

j2N yj = p� >
P

j2N (2pj � fj(�))
there exists j 2 N such that 2pj � fj(�) < yj and so yj �j 2pj � fj(�) �j fj(�), a
contradiction with the e¢ ciency of f .

Case 2:
P

j2N pj = p
�+x with x > 0:5: similarly to Case 1 we can obtain a contradiction.

Case 3:
P

i2N pi = p
� + x with x = 0:5: By (7), it follows immediately.

We now prove the reciprocal. Let f be a rule satisfying (E2.1), (E2.2) and (E2.3). By

(P2.1) and (E2.3) we conclude that f is individually rational. We now show that f is

e¢ cient. By (E2.1), it is enough to consider two cases.

Case 1:
P

j2N fj (�) = p�: By (E2.2), fi(�) � pi for all i 2 N: Suppose f is not e¢ cient.
Then, there exists y 2 FA that Pareto dominates f (�) : Since preferences are symmetric
single-peaked,

yi 2 [fi (�) ; pi + (pi � fi (�))] for all i 2 N; and
yj0 2 (fj0 (�) ; pj0 + (pj0 � fj0 (�))) for some j0 2 N:

By (E2.1) and our assumption,P
j2N fj (�) = p� �

P
j2N pj � p� + 0:5:

Hence,

p� =
P

j2N fj (�) <
P

j2N yj <
P

j2N (pj + (pj � fj (�)))
=

P
j2N pj +

P
j2N pj � p� �

P
j2N pj + 0:5 � p� + 1;

Thus, p� <
P

j2N yj < p
� + 1: Since

P
j2N yj 2 N0, we have a contradiction.

Case 2:
P

j2N fj (�) = p� + 1: We can �nd a contradiction similarly to Case 1.
(P2.3) Assume f satis�es group rationality and e¢ ciency on PS. Consider the problem

(N;�) 2 PS where N = f1; 2; 3g and p = (0:8; 0:4; 0:4) : By (R1.3), f is individually
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rational on PS. By e¢ ciency, individual rationality and (P2.2),
P

i2N fi (�) = 2 and

fi (�) � pi for all i 2 N:
To apply the property of group rationality Table 1 indicates for each subset of agents

with cardinality two the aggregate loss, assuming the best integer amount is allotted (i.e.,

for each S � N with jSj = 2; min
k2N0

���Pj2S pj � k
���).

S f1; 2g f1; 3g f2; 3g
min
k2N0

���Pj2S pj � k
��� 0.2 0.2 0.2

Table 1

Observe that 0:4 =
���Pj2N pj �

P
j2N fj (�)

��� = P
j2N (fj (�)� pj) : Suppose �rst that

fi (�)� pi = 0:4
3
for all i 2 N: Then, for any S ( N with two agents,���Pj2S pj �

P
j2S fj (�)

��� = 0:8

3
> 0:2 = min

k2N0

���Pj2S pj � k
��� :

Hence, f does not satisfy group rationality. Suppose now that there exists i 2 N such

that (fi (�)� pi) < 0:4
3
: Then, by setting S = Nnfig;���Pj2S pj �

P
j2S fj (�)

��� > 0:8

3
> 0:2 = min

k2N0

���Pj2S pj � k
��� ;

again a contradiction with group rationality of f:

(P2.4) Since e¢ ciency implies unanimity, (P2.4) is a consequence of Theorem 2 below.

(P2.5) Assume f satis�es individual rationality and envy-freeness on losses on PS.
Consider the problem (N;�) 2 PS where N = f1; 2g and p = (1; 0:7) : By individual

rationality, f1 (�) = 1: Thus, f2 (�) 2 f0; 1; 2; : : :g which means that agent 2 envies the
zero loss (f1 (�)� p1 = 0) of agent 1.
(P2.6) Assume f satis�es individual rationality, e¢ ciency, and envy-freeness on PS.

Consider the problem (N;�) 2 PS where N = f1; 2g and p = (0:2; 0:35) : By individual
rationality, 0 � f1 (�) � 0:4 and 0 � f2 (�) � 0:7: By e¢ ciency and (P2.2) in Proposition
2, f1 (�) + f2 (�) = 1: Thus, 0:3 � f1 (�) � 0:4 and 0:6 � f2 (�) � 0:7: Then, f1 (�) �2
f2 (�) ; which contradicts envy-freeness. �

Our main objective in this paper is to identify individually rational rules to be used

to solve the division problem when the integer number of units is endogenous and agents�

preferences are symmetric single-peaked. Statement (P2.1) in Proposition 2 characterizes

the class of all individually rational rules. Since this class is large, it is natural to ask

whether individual rationality is compatible with other additional properties. E¢ ciency

and strategy-proofness emerge as two of the most basic and desirable properties. How-

ever, (P2.4) in Proposition 2 says that no rule satis�es individual rationality, e¢ ciency
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and strategy-proofness simultaneously. In the next two subsections we study rules that

are individually rational and e¢ cient (Subsection 5.2) and rules that are individually ra-

tional and strategy-proof (Subsection 5.3). For the �rst case, we identify the family of

constrained equal losses rules and the family of constrained equal awards rules as the

unique ones that in addition of being individually rational and e¢ cient satisfy also either

justi�ed envy-freeness on losses or envy-freeness on awards, respectively (Theorem 1). In

contrast, in Subsection 5.3 we �rst show that although there are individually rational

and strategy-proof rules, they are not very interesting. For instance, we show in Theo-

rem 2 that individually rationality and strategy-proofness are indeed incompatible with

unanimity.

5.2 Individual rationality and e¢ ciency

Let �2 PS be a problem. Denote by IRE (�) the set of feasible vectors of allotments
satisfying individual rationality and e¢ ciency. It is easy to see that, by using similar

arguments to the ones used to check that (P2.1) and (P2.2) in Proposition 2 hold, this

set can be written as

IRE (�) = fx 2 RN+ j
P

j2N xj 2 fp�; p� + 1g and, for all i 2 N ,
li � xi � pi when

P
j2N xj = p

� and

pi � xi � ui when
P

j2N xj = p
� + 1g:

By Proposition 1, the set IRE(�) is non-empty. Hence, a rule f satis�es individual
rationality and e¢ ciency if and only if, for each �2 PS; f (�) 2 IRE (�) :
However, individual rationality and e¢ ciency are properties of rules that apply only to

each problem separately. They do not impose conditions on how the rule should behave

across problems. Thus, and given two di¤erent criteria compatible with individual ratio-

nality and e¢ ciency, a rule can choose, in an arbitrary way, at problem � an allocation in
IRE(�), following one criterion, while choosing at problem �0 an allocation in IRE(�0),
following the other criterion. For instance the rule f that selects f 2 FCEL (�) when p�

is odd and f 2 FCEA (�) when p� is even satis�es individual rationality and e¢ ciency.8

Thus, it seems appropriate to require that the rule satis�es an additional property in order

to eliminate this kind of arbitrariness. We will focus on two alternative properties related

to envy-freeness: justi�ed envy-freeness on losses and envy-freeness on awards. But then,

the consequence of requiring that rules (in addition of being individually rational and

e¢ cient) satisfy either one of these two forms of non-envyness is that only one family of

rules is left, either the family of constrained equal losses rules or the family of constrained

equal awards rules, respectively. Theorem 1, the main result of the paper, characterizes

axiomatically the two families on the domain of symmetric single-peaked preferences.

8Proposition 3 below will guarantee it.
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Theorem 1 The following two characterizations hold.

(T1.1) A rule f on PS satis�es individual rationality, e¢ ciency, and justi�ed envy-
freeness on losses if and only if f is a constrained equal losses rule.

(T1.2) A rule f on PS satis�es individual rationality, e¢ ciency, and envy-freeness on
awards if and only if f is a constrained equal awards rule.

In bankruptcy problems, introduced in O�Neill (1982), two of the most relevant rules

are the constrained equal awards rule and the constrained equal losses rule both studied

in Herrero (2003) and Thomson (2003), among many others. The two rules characterized

here are inspired in such bankruptcy rules. Nevertheless, bankruptcy problems and the

problems considered in this paper are quite di¤erent because agents�s preferences in di-

vision problems are satiated while in bankruptcy problems they are monotonic. Besides,

our characterization result involves properties quite di¤erent from the ones used in bank-

ruptcy problems for characterizing such rules (for instance, those used in Herrero (2003)

and Thomson (2003)).

Before proving Theorem 1, we provide in Proposition 3 preliminary results on the two

families of rules that will be useful along the proof of Theorem 1 and in the sequel.

Proposition 3

(P3.1) Let f be a constrained equal losses rule on PS. Then, f satis�es individual ra-
tionality, e¢ ciency, justi�ed envy-freeness on losses, participation, unanimity and equal

treatment of equals.

(P3.2) Let f be a constrained equal losses rule on PS. Then, f does not satisfy strategy-
proofness, group rationality, envy-freeness, envy-freeness on losses, and envy-freeness on

awards.

(P3.3) Let f be a constrained equal awards rule on PS. Then, f satis�es individual ratio-
nality, e¢ ciency, envy-freeness on awards, participation, unanimity and equal treatment

of equals.

(P3.4) Let f be a constrained equal awards rule on PS. Then, f does not satisfy strategy-

proofness, group rationality, envy-freeness, envy-freeness on losses, and justi�ed envy-

freeness on losses.

Proof of Proposition 3

(P3.1) That f satis�es unanimity and equal treatment of equals follows directly from

its de�nition. Now, we show that f satis�es the other properties.

Individual rationality. By its de�nition, for all �2 PS and i 2 N , fi (�) 2 [li; ui] : By
(P2.1) in Proposition 2, f is individually rational.

E¢ ciency. By its de�nition, f satis�es conditions (E2.1), (E2.2) and (E2.3) in Propo-

sition 2. Hence, by (P2.2), f is e¢ cient.
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Justi�ed envy-freeness on losses. Let j 2 N be such that

fj (�) �j k for all k 2 N0: (8)

We want to show that for all i 2 N; fi (�) �i maxfpi + (fj (�)� pj); 0g:
We distinguish among three cases.

Case 1:
P

j2N pj < p
� + 0:5: By de�nition, fj(�) = pj �minfb�; pj � ljg for all j 2 N . If

pj � lj � b�, then fj(�) = lj; which contradicts (8) because fj (�) �j lj � uj and either
lj or uj is an integer. Hence,

fj (�) = pj � b�: (9)

Let i 2 N be arbitrary. We distinguish between two cases. First, b� � pi�li. Then, by (9),
fi(�) = pi� b� = pi+(fj (�)� pj); which means that fi (�) = maxfpi+(fj (�)� pj); 0g:
Hence, fi (�) �i maxfpi + (fj (�) � pj); 0g: Second, b� > pi � li. Then, by de�nition,
fi (�) = li: Since, by (9),

pi + (fj (�)� pj) = pi � b� < li � pi;
single-peakedness implies that fi (�) �i maxfpi + (fj (�)� pj); 0g:
Case 2:

P
j2N pj > p

� + 0:5: It could be made in a similar way to Case 1.

Case 3:
P

j2N pj = p
� + 0:5: Two cases are possible,

P
j2N fj(�) = p� or

P
j2N fj(�) =

p� + 1: The former is similar to Case 1 and the latter is similar to Case 2.

Participation. Let �2 PS, i 2 N and k 2 N0 be such that k � pi. We want to show
that fi (�) �i k + fi(�pi�ki ;��i): Set �0= (�pi�ki ;��i) and p0 = (pi � k; (pj)j2Nnfig): We
distinguish between two cases.

Case 1:
P

j2N fi (�) = p�: Since (as we have already proved) f is individually rational

and e¢ cient, we can use (P2.2) and assert that
P

j2N pj � p� + 0:5: Then, fi (�) =
pi � min fb�; pi � lig where b� satis�es Pj2N fj (�) = p�: Since p0i = pi � k and k is an
integer, p0� = p� � k. We distinguish between two subcases.
Subcase 1:

P
j2N p

0
j < p0� + 0:5: Now, fi (�0) = p0i � minfb�0; p0i � l0ig where b�0 satis�esP

j2N fj (�0) = p0�: Since l0i = li�k and l0j = lj for all j 2 Nn fig ; we deduce that b�0 = b�:
Then,

fi (�0) = pi � k �min fb�; pi � k � (li � k)g
= pi �min fb�; pi � lig � k = fi (�)� k;

which implies that fi (�) �i k + fi (�0).
Subcase 2:

P
j2N p

0
j = p

0�+0:5:Again two subcases are possible. First,
P

j2N fj (�0) = p0�:
Then, using the same argument to the one used in Subcase 1, fi (�) �i k + fi (�0) holds.
Second,

P
j2N fj (�0) = p0�+1: Then, consider any bf 2 FCEL withPj2N

bf(�0) = p0�: By
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(1), bfi(�0) �i fi(�0) and, by an argument similar to the one used in the �rst subcase, we
conclude that fi (�) �i k + fi (�0) :
Case 2:

P
j2N fi (�) = p� + 1: It can be proved similarly to Case 1 distinguishing two

subcases,
P

j2N p
0
j > p

0� + 0:5 and
P

j2N p
0
j = p

0� + 0:5.

(P3.2) We show that f does not satisfy the following properties on PS.
Strategy-proofness. Consider the problems (N;�) and (N;�0) where N = f1; 2g,

p = (0:4; 0:8) and p0 = (0:4; 0:9) : Then, f (�) = (0:3; 0:7) and f (�0) = (0:2; 0:8) : Since
0:8 �2 0:7, f does not satisfy strategy-proofness:
Group rationality. It follows from (P3.1) and (P2.4).

Envy-freeness. Consider the problem (N;�) where N = f1; 2g and p = (0:40; 0:46) :
Then, f (�) = (0:47; 0:53) ; which contradicts envy-freeness because agent 2 strictly

prefers 0:47 to 0:53:

Envy-freeness on losses. If follows from (P3.1) and (P2.5).

Envy-freeness on awards. Consider the problem (N;�) where N = f1; 2g and p =
(0:4; 0:46) : Then, f (�) = (0:47; 0:53) : Therefore, a1 = 0:8 � 0:47 = 0:33 and a2 =

0:92� 0:53 = 0:39: For 0:38 2 [0:33; 0:39]; we have that f1(�) = 0:47 �1 0:38.
(P3.3) That f satis�es unanimity and equal treatment of equals follows directly from

its de�nition. Now, we show that f satis�es the other properties. Individual rationality

and e¢ ciency could be proved similarly to (P3.1).

Envy-freeness on awards. We distinguish among three cases

Case 1:
P

j2N pj < p
� + 0:5: By de�nition, fi (�) � pi for all i 2 N: Suppose that f does

not satisfy envy-freeness on awards. Then, there exist i; j 2 N and

x 2 [min fai; ajg ;max fai; ajg]

such that

li + x �i fi (�) : (10)

Hence, fi (�) is not the peak of �i and so fi (�) < pi: Since fi (�) = li +minfb�; pi � lig;b� < pi � li and hence
fi (�) = li + b�: (11)

Thus, ai = b�: We distinguish between two subcases.
Subcase 1: minfb�; pj� ljg = b�: Since aj = fj (�)� lj = b�; it must be the case that x = b�.
Hence, by (10),

li + b� = li + x �i fi (�) = li + b�;
which is a contradiction.
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Subcase 2: minfb�; pj� ljg = pj� lj < b�: By de�nition; fj (�) = pj and aj = fj (�)� lj =
pj � lj: Thus, x 2 [pj � lj; b�] and

li + x � li + b� = fi (�) � pi;
where the equality follows from (11). By single-peakedness, fi (�) �i li+x; a contradiction
with (10).

Case 2:
P

j2N pj > p
�+0:5: It could be proved in a similar way to Case 1 by distinguishing

between two subcases, minfb�; uj � pjg = b� and minfb�; uj � pjg = uj � pj < b�.
Case 3:

P
j2N pj = p

�+0:5: Two subcases are possible,
P

j2N fj(�) = p� (similar to Case
1) and

P
j2N fj (�) = p� + 1 (similar to Case 2).

Participation. Let �2 PS, i 2 N and k 2 N0 be such that k � pi. We want to show
that fi (�) �i k + fi(�pi�ki ;��i): Set �0= (�pi�ki ;��i) and p0 = (pi � k; (pj)j2Nnfig): We
distinguish between two cases.

Case 1:
P

j2N fi (�) = p�: Since (as we have already proved) f is individually rational

and e¢ cient, we can use (P2.2) and assert that
P

j2N pj � p� + 0:5: Then, fi (�) =
pi � minfb�; pi � lig where b� satis�es Pj2N fj (�) = p�: Since p0i = pi � k and k is an
integer, p0� = p� � k. We distinguish between two subcases.
Subcase 1:

P
j2N p

0
j < p0� + 0:5: Now, fi (�0) = l0i + minfb�0; p0i � l0ig where b�0 satis�esP

j2N fj (�0) = p0�: Since l0i = li�k and l0j = lj for all j 2 Nn fig ; we deduce that b�0 = b�:
Then,

fi (�0) = li � k +minfb�; pi � k � (li � k)g
= li +minfb�; pi � lig � k = fi (�)� k;

which implies that fi(�) �i k + fi(�0).
Subcase 2:

P
j2N p

0
j = p

0� + 0:5: Again two cases are possible. First,
P

j2N fj (�0) = p0�:
Then, using the same argument to the one used in Subcase 1, fi (�) �i k + fi (�0) holds.
Second,

P
j2N fj (�0) = p0� + 1: Consider any bf 2 FCEA withPj2N

bfj (�0) = p0�: By (7),bfi (�0) �i fi (�0) and, by an argument similar to the one used in the �rst subcase, we
conclude that fi(�) �i k + fi(�0).
Case 2:

P
j2N fi (�) = p� + 1: It can be proved similarly to Case 1 by distinguishing

between two subcases,
P

j2N p
0
j > p

0� + 0:5 and
P

j2N p
0
j = p

0� + 0:5.

(P3.4) We show that f does not satisfy the following properties on PS.
Strategy-proofness. Consider the problems (N;�) and (N;�0) where N = f1; 2g,

p = (0:4; 0:8) and p0 = (0:6; 0:8): Then, f (�) = (0:2; 0:8) and f (�0) = (0:3; 0:7) : Since
0:3 �1 0:2; f does not satisfy strategy-proofness:
Group rationality. It follows from (P3.3) and (P2.4).
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Envy-freeness. Consider the problem (N;�) where N = f1; 2g and p = (0:6; 0:8):

Then, f (�) = (0:3; 0:7) ; which means that f is not envy-free because agent 1 strictly

prefers 0:7 to 0:3:

Envy-freeness on losses. It follows from (P3.3) and (P2.5).

Justi�ed envy-freeness on losses. Consider the problem (N;�) where N = f1; 2g and
p = (0:6; 0:8): Then, f (�) = (0:3; 0:7) ; which means that f does not satisfy justi�ed

envy-freeness on losses because agent 1 strictly prefers 0:6 + (0:7� 0:8) = 0:5 to 0:3: �

Proof of Theorem 1
(T1.1) Let f be a constrained equal losses rule. By Proposition 3, f satis�es individual

rationality, e¢ ciency and justi�ed envy-freeness on losses.

Let f be a rule satisfying individual rationality, e¢ ciency, and justi�ed envy-freeness

on losses. Let �2 PS be a problem. By (7), it is su¢ cient to distinguish between two
cases.

Case 1:
P

j2N fj (�) = p�: By (E2.2) in (P2.2) of Proposition 2, for all i 2 N;

fi (�) � pi: (12)

By (P2.1) in Proposition 2, fi (�) � li for all i 2 N: By (12), for each i 2 N; fi (�) =
pi � xi; where xi � 0: By individual rationality, xi � pi � li. Assume �rst that xi = x

for all i 2 N: Then, setting b� = x, we have fi(�) = pi � b� and b� � pi � li for all i 2 N:
Hence, for all i 2 N; fi(�) = pi �min fb�; pi � lig : Thus, at pro�le �, f coincides with a
constrained equal losses rule: Assume now that xj < xi for some pair i; j 2 N: By single
peakedness, pi � xj �i pi � xi: Since

fi (�) = pi � xi �i pi � xj = pi + (fj (�)� pj)

holds, by justi�ed envy-freeness on losses, there must exist yj 2 N0 such that fj (�) �j yj:
By individual rationality,

fj (�) = lj: (13)

Let S be the set of agents with the largest loss from the peak: Namely, S = fi0 2 N j
xi0 � xj0 for all j0 2 Ng: Since N is �nite, S 6= ;: Moreover, our assumption that xj < xi
for some pair i; j 2 N implies S ( N: For each bj 2 S; set b� = x|̂ and observe that

fbj(�) = pbj � b� � lbj: Hence, fbj(�) = pbj � minfb�; pbj � lbjg: For each j0 =2 S; there exists
i0 2 S such that xj0 < xi0 : By (13), fj0 (�) = lj0 : Since fj0(�) = lj0 = pj0 � xj0 andb� > xj0 = pj0 � lj0, fj0(�) = pj0 �minfb�; pj0 � lj0g: Thus, at pro�le �, f coincides with a
constrained equal losses rule.

Case 2:
P

j2N fj (�) = p� + 1: It can be proved in a similar way to Case 1.

(T1.2) Let f be a constrained equal awards rule. By Proposition 3, f satis�es indi-
vidual rationality, e¢ ciency and envy-freeness on awards.

24



Let f be a rule satisfying individual rationality, e¢ ciency, and envy-freeness on awards.

Let �2 PS be a problem. By (7), it is su¢ cient to distinguish between two cases.
Case 1:

P
j2N fj (�) = p�: By (12), for each i 2 N , fi (�) = li+ai, where 0 � ai � pi� li.

We �rst prove that if ai < aj for some pair i; j 2 N; then ai = pi � li: Assume not;
then, there exist i; j 2 N such that ai < aj and ai < pi � li: Let x 2 R+ be such that
x 2 (ai;min faj; pi � lig] : Since fi (�) = li + ai < li + x � pi, single-peakedness implies
that li + x �i fi (�) where x 2 (ai; aj], contradicting envy-freeness on awards. Let S be
the set of agents with the largest award from the peak: Namely, S = fi0 2 N j ai0 � aj0
for all j0 2 Ng: Since N is �nite, S 6= ;: We consider two subcases.
Subcase 1: S = N: Then, there exists a such that a 2 [0; pi � li] and fi(�) = li + a for
all i 2 N: Set b� = a: Hence, fi(�) = li +minfb�; pi � lig: Thus, at pro�le �, f coincides
with a constrained equal awards rule.

Subcase 2: S ( N: Then, for all j; j0 2 S; aj = aj0 : Set b� = aj with j 2 S: For each
i 2 S; fi(�) = li + b� � pi and so fi(�) = li + minfb�; pi � lig: For each i =2 S there
exists j 2 S such that aj > ai: Then, ai = pi � li: Since pi � li = ai < aj = b�;
fi (�) = li + ai = li +minfb�; pi � lig: Thus, at pro�le �, f coincides with a constrained
equal awards rule:

Case 2:
P

j2N fj (�) = p�+1: It can be proved in a similar way to Case 1 by considering
two subcases, S = N and S ( N . �
Remark 2 The two sets of properties used in the two characterizations of Theorem 1

are independent.

(R2.1) The rule f de�ned by assigning to each agent i 2 N her most preferred integer,

satis�es individual rationality and justi�ed envy-freeness on losses but it is not e¢ cient.

(R2.2) Any rule f 2 FEL satis�es e¢ ciency and justi�ed envy-freeness on losses but is
not individually rational.

(R2.3) Any rule f 2 FCEA satis�es individual rationality and e¢ ciency but it does not
satisfy justi�ed envy-freeness on losses.

(R2.4) The rule f de�ned in (R2.1) satis�es individual rationality and envy-freeness on

awards but it is not e¢ cient.

(R2.5) Any rule f 2 FEA satis�es e¢ ciency and envy-freeness on awards but it is not
individually rational.

(R2.6) Any rule f 2 FCEL satis�es individual rationality and e¢ ciency but it is not

envy-freeness on awards.
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5.3 Individual rationality and strategy-proofness

We now study the set of rules satisfying individual rationality and strategy-proofness on

the set of symmetric single-peaked preferences. There are many rules satisfying both

properties. For instance, the rule that selects f (�) = ([pi])i2N for all �2 PS is individ-
ually rational and strategy-proof. But there are many more, yet some of them are very

di¢ cult to justify as reasonable solutions to the problem. Consider the following family of

rules. For each vector x 2 RN+ satisfying
P

i2N xi 2 N0; de�ne fx as the rule that when x
is at least as good as ([pi])i2N for each i 2 N; fx selects x: Otherwise fx selects ([pi])i2N :
Formally, �x x 2 RN+ satisfying

P
i2N xi 2 N0. For each problem �2 PS; set

fx (�) =
(
x if xi �i [pi] for all i 2 N
([pi])i2N otherwise.

It is easy to see that each rule in the family ffx j x 2 RN+ and
P

i2N xi 2 N0g is indi-
vidually rational and strategy-proof. However, this family contains many arbitrary and

non-interesting rules. Thus, we ask whether it is possible to identify a subset of individ-

ually rational and strategy-proof rules satisfying additionally a basic, weak and desirable

property. We interpret Theorem 2 below as giving a negative answer to this question:

individual rationality and strategy-proofness are not compatible even with unanimity, a

very weak form of e¢ ciency.

Theorem 2 There is no rule on PS satisfying individual rationality, strategy-proofness
and unanimity.

Proof To obtain a contradiction, assume that f is a rule satisfying individual rational-

ity, strategy-proofness and unanimity.

Consider the problem (N;�) 2 PS where N = f1; 2g and p = (0:2; 0:8): By unanimity,
f (0:2; 0:8) = (0:2; 0:8) : The proof consists in to analyze several cases. We only explain

the statement of each case because the proof is relatively easy.

Claim: f2 (0:2; 0:5) = 0:8.

Proof: f2 (0:2; 0:5) > 0:8 is not possible.

Suppose f2 (0:2; 0:5) < 0:8. Thus, f (0:2; 0:5) = (0:2 + x; 0:8� x). Hence, 0 < x � 0:2.
Let y > 0 be such that 0:2�x < y < 0:2: Thus, f1 (y; 0:5) � 0:2+x: To show that indeed
f1 (y; 0:5) = 0:2 + x we distinguish between two cases.

Case 1: 0:2� x < f1 (y; 0:5) < 0:2 + x:
Case 2: f1 (y; 0:5) � 0:2 � x. We consider two subcases, f1 (y; 0:5) + f2 (y; 0:5) = 1 and
f1 (y; 0:5) + f2 (y; 0:5) = 0.

We show now that f1(0:2� x; 0:5) = 0:2+ x: f1(0:2� x; 0:5) > 0:2+ x is not possible.
Suppose z := f1(0:2�x; 0:5) < 0:2+x:We prove that z = y or z > y are not possible. Let
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z < y: We prove that x = 0:2 is not possible. Assume now that x < 0:2: We distinguish

between two cases, 2y � (0:2 + x) < z < y and z � 2y � (0:2 + x). In each one we can
obtain a contradiction.

Hence, f1(0:2�x; 0:5) = 0:2+x:Now, by individual rationality of agent 1; j0:2� x� 0j �
j0:2� x� 0:2� xj ; so 0:2� x � 2x; or equivalently, x � 0:2

3
:

Consider now the pro�le (0:2� x; 0:5) instead of (0:2; 0:5) : Similarly, we can prove
that x � 0:2

7
:

Since x > 0 is �xed, repeating this process several times we will eventually �nd a

contradiction with individual rationality of agent 1. Then, f (0:2; 0:5) = (0:2; 0:8) ; which

proves the claim. �
Consider now the pro�le (0:2; 0:39) : If we consider the following cases: f1 (0:2; 0:39)+

f2 (0:2; 0:39) � 2; f1 (0:2; 0:39) + f2 (0:2; 0:39) = 1; and f1 (0:2; 0:39) + f2 (0:2; 0:39) = 0,
we can obtain a contradiction in each of them. Then, there does not exist a rule satisfying

simultaneously the properties of individual rationality, strategy-proofness and unanimity.

�
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