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1 Introduction

A social choice function (mapping preference pro�les into alternatives) is strategy-proof if

it is always in the best interest of agents to reveal their preferences truthfully. This means

that, in the direct revelation mechanism induced by the social choice function, the strategic

problems faced by agents when submitting their preferences are not interrelated: for each

agent truth-telling is an optimal decision, irrespective of the other agents� submitted

preferences. Thus, the information that each agent has about the preferences of the other

agents is irrelevant, and no expectations and equilibria considerations are required. Hence,

strategy-proofness is a very desirable property of a social choice function.

However, the well-known Gibbard-Satterthwaite Theorem (Gibbard (1973) and Sat-

terthwaite (1975)) indicates the di¢ culties of designing non-trivial and strategy-proof

social choice functions. Assume that the cardinality of the set of alternatives is strictly

greater than two. Then, a social choice function is unanimous and strategy-proof on the

universal domain of preferences over the set of alternatives if and only if it is dictatorial

(i.e., at each preference pro�le the social choice function selects the best alternative of

a pre-speci�ed agent, the dictator). Yet, and despite this negative result, there is an

extremely large literature on mechanism design studying and characterizing classes of

strategy-proof social choice functions for speci�c settings. On the one hand, a small part

considers social choice problems where the cardinality of the set of alternatives is equal to

two, a �rst reason why the Gibbard-Satterthwaite Theorem does not apply. In this case,

all extensions (mostly, non-anonymous) of the majority voting rule constitute the class

of all strategy-proof social choice functions on the universal domain of strict preferences

over two alternatives.

On the other hand, and in di¤erent settings, the assumption that agents may have (and

submit to the mechanism) all conceivable preferences is not reasonable. In those cases, the

properties of the set of alternatives suggest that appropriate social choice functions should

operate only on natural and meaningful restricted domains of preferences, those that are

in agreement with the corresponding structure of the set of alternatives. Since the domain

of those functions will no longer be the universal domain, the Gibbard-Satterthwaite

Theorem does not apply either. We know many settings for which the class of strategy-

proof social choice functions operating on a particular restricted domain is large, and in

some of them very large indeed.1 For instance, generalized median voter schemes on the

domain of ordinal and single-peaked preferences over a linearly ordered set of alternatives.

Nevertheless, the mechanism design literature has mainly neglected two features of

direct revelation mechanisms, when used to implement strategy-proof social choice func-

1Often, we know in addition axiomatic characterizations of classes of strategy-proof social choice

functions satisfying additional desirable properties.
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tions on restricted domains of preferences. The �rst one is related to the question of

how easy it is for agents to identify that their truth-telling strategies are indeed weakly

dominant (i.e., how much contingent reasoning is required to do so).2 The second one

is related to the degree of bilateral commitment of the designer who, after collecting the

revealed pro�le of agents�preferences, will supposedly implement the alternative that the

social choice function would have chosen at the revealed pro�le, regardless of whether or

not the designer likes it.3 For example, and following Li (2017), when in a second-price

sealed-bid auction the designer is simultaneously the seller of the good, he has a strong

temptation to introduce an additional bid above the second submitted bid and slightly

below the �rst one.4 Implicitly, a vast majority of this literature has assumed that the

designer can commit to not circumvent the mechanism.

Li (2017) proposes the notion of obvious strategy-proofness to deal simultaneously

with both concerns (see Theorems 1 and 2 in Li (2017)). A social choice function f ,

on a domain D of pro�les of n�tuples of preferences, is obviously strategy-proof if there
exists an extensive game form (or simply a game) �, whose set of outcomes is the set of

alternatives, with two properties.

First, for each preference pro�le P = (P1; : : : ; Pn) 2 D one can identify a pro�le of

truth-telling (behavioral) strategies �P = (�P11 ; : : : ; �
Pn
n ) with the property that if each

agent i plays the game � according to �Pii ; the outcome of � would correspond to the

alternative selected by f at P ; that is, � induces f .

Second, at �, agents use the two most extreme behavioral assumptions when comparing

the consequences of behaving according to the truth-telling strategy with the consequences

of behaving di¤erently. In particular, for agent i with preference Pi, let �0i be any non-

truthful strategy of agent i (i.e., �0i 6= �Pii ). Consider an earliest point of departure of �Pii
with �0i; namely, an information set Ii in � at which, for the �rst time along �, �

Pi
i and

�0i are taking a di¤erent action. Then, i evaluates the consequence of choosing the action

prescribed by �Pii at Ii according to the worst possible outcome, among all outcomes

that may occur as an e¤ect of later choices made by agents along the rest of the game

(�xing i�s behavior to �Pii ). In contrast, i evaluates the consequence of choosing the action

2Attiyeh, Franciosi and Isaac (2000), Cason, Saijo, Sjöström and Yamato (2006), Friedman and

Schenker (1998), Kawagoe and Mori (2001) and Yamamura and Kawasaki (2013) are some examples

of papers asking this question.
3Bag and Sharma (2016) is an example of a paper that considers a setting where the designer does

not have commitment power at all.
4In the earlier wave of auctions to sell portions of the spectrum to be used for communications in New

Zealand, second-price sealed-bid auctions were used. And many of them were not very successful (see

MacMillan, 1994); for instance, a lot was sold for a price of NZ$6 (the second highest bid) to a bidder

who placed a bit for NZ$100,000 (auctions were conducted without reserve prices!). Since 2004, New

Zealand uses mostly outcry English ascending auctions.
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prescribed by �0i at Ii according to the best possible outcome, among all outcomes that

may occur, again as an e¤ect of later choices made by agents along the rest of the game

(�xing i�s behavior to �0i). Then, �
Pi
i is obviously dominant at � if for any other strategy

�0i 6= �Pii , and from the point of view of any earliest point of departure of �Pii with �0i,

the outcome of the pessimistic view used to evaluate �Pii is at least as preferred as the

outcome of the optimistic view used to evaluate �0i. If � induces f and, for all P 2 D and
all i; �Pii is obviously dominant at �, then f is obviously strategy-proof.5

Of course, obvious strategy-proofness is a very demanding requirement. For binary

allocation problems,6 Li (2017) characterizes the monotone price mechanisms (generaliza-

tions of ascending auctions) as those that implement all obviously strategy-proof social

choice functions on the domain of quasi-linear preferences. He also shows that, for online

advertising auctions, the social choice function induced by the mechanism that selects

the e¢ cient allocation and the VCG payment is obviously strategy-proof. Furthermore,

he shows that the social choice function associated to the top-trading cycles algorithm

in the house allocation problem of Shapley and Scarf (1974) is not obviously strategy-

proof. Finally, Li (2017) reports a laboratory experiment where subjects play signi�cantly

more often their truth-telling dominant strategies when they play an obviously strategy-

proof mechanism than when they play a strategy-proof mechanism that is not obviously

strategy-proof.

In this paper we consider two families of strategy-proof social choice functions, all

based on generalizations of the majority voting procedure, and we characterize their ob-

viously strategy-proof subclasses. The notion of a committee plays a fundamental role in

the description of all social choice functions that we consider here. Fix a set of agents. A

committee is a family of subsets of agents satisfying the following monotonicity property:

if a set of agents belongs to the committee, then all its supersets also belong to the com-

mittee. Subsets of agents that belong to the committee are called winning coalitions. A

subset of agents is a minimal winning coalition if it belongs to the committee and has no

strict subset that is a winning coalition. An agent that, as a singleton set, belongs to the

committee is called decisive while an agent that does not belong to any minimal winning

coalition is called dummy.

Consider �rst a social choice problem with only two alternatives, x and y, and assume

that agents have strict preferences over the set fx; yg: Then, a social choice function f on
this domain of preferences is an Extended Majority Voting Rule if there exists a committee

5Observe two things. First, the equilibrium concept used for obviously strategy-proof implementation

is obviously dominance. Second, the implementation is weak since it is not required that truth-telling be

the unique obviously dominant strategy.
6For instance, private value auctions with unit demands, procurement auctions, and the provision of

a binary public good with no exclusion.
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for x with the property that, for each preference pro�le P; the alternative x is selected by

f at P if and only if the set of agents for whom x is strictly preferred to y belongs to the

committee for x. It is well known that, for the case of two alternatives, a social choice

function is strategy-proof if and only if it is an extended majority voting rule.

We then ask: what is the condition that a committee for x has to satisfy, so that

its induced extended majority voting rule is in addition obviously strategy-proof? We

identify this property, call it Increasing Order Inclusion, and show that it is necessary and

su¢ cient for obvious strategy-proofness. In particular, among the class of all anonymous

extended majority voting rules, only those two where either x or y can be imposed by

each agent are obviously strategy-proof. In the extensive game forms that implement in

obviously dominant strategies these two extended majority voting rules each agent i plays

only once. The one where each agent can impose x (i.e., veto y) consists of sequentially

asking to each agent, in a given order, whether they want x to be chosen or else they are

willing to let the next agent in the order to choose between x or else to pass the decision to

the next agent in the order, and so on; namely, x is always a de�nite choice along the game

(i.e., y is vetoed) while not choosing x (i.e., choosing y) passes the choice to the next agent

in the order. This corresponds to the committee for x where all agents are decisive. If i

prefers x and chooses x, the outcome is x (the worse possible one after i chooses x) while

if i chooses y (i.e., i leaves to the next agent in the order to choose) the best outcome is y

or x (depending on the choices of the choices made by the agents that follow in the order),

in which case choosing x is obviously dominant. If i prefers y and chooses y, the worse

outcome is either x or y (again, depending on the choices made by the agents that follow

in the order), while if i chooses x (i�s worse outcome), x is selected, in which case choosing

y is obviously dominant. And this committee for x is equivalent to the committee for y

where the full set of agents is the unique minimal winning coalition, and hence each agent

can veto y (by voting for x). Proposition 1 generalizes this characterization to the full

class of (not necessarily anonymous) extended majority voting rules.

Consider now a social choice problem where the set of alternatives X is a �nite and

linearly ordered set, and assume that agents have strict single-peaked preferences (overX).

For instance, when the set of alternatives is composed of levels of a public good, political

parties�platforms, location of a public good in a one-dimensional space, etc. There is a

large literature studying this class of problems. The one-dimensional version of Barberà,

Gul and Stacchetti (1993) corresponds to the setting studied in Section 5 of this paper

where, without loss of generality, we assume that X is a �nite subset of integers between

� and � of the form f�; �+1; : : : ; x�1; x; x+1; : : : ; ��1; �g: A preference is single-peaked
over X if it is monotonic in both sides of the best alternative: increasing at its left and

decreasing at its right. To de�ne the class of all strategy-proof social choice functions on

the domain of single-peaked preferences we will use the notion of a left coalition system.
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A left coalition system on X is a family of committees, one for each alternative, with

an additional monotonicity property�if a subset of agents belongs to the committee for
an alternative, then the subset has to belong to the committees for all strictly larger

alternatives�and a boundary condition�the committee for the largest alternative � is
the family of all non-empty subsets of agents. Then, a social choice function f is a

generalized median voter scheme if there exists a left coalition system on X with the

property that, for each single-peaked preference pro�le P; alternative x is selected by f

at P if and only if x is the smallest alternative for which the set of agents whose best

alternative is smaller than or equal to x is a winning coalition for x. Namely, a generalized

median voter scheme f can be understood as a sequence of extended majority voting rules

that, starting at the lowest alternative �, each confronts, at a generic alternative x; two

possibilities: either to select, by means of the extended majority voting rule associated

to the committee for x; the current alternative as the one chosen by f , or else to move

(provisionally) to the adjacent and larger alternative x+1, and then apply to it, to decide

whether to select x + 1 or to move to x + 2 (if any), the extended majority voting rule

associated to the committee for x+1. For instance, the (true) median voter with an odd

number of agents is the generalized median voter scheme associated to the left coalition

system where the committee for each alternative, except the largest one, is formed by all

subsets of agents whose cardinality is larger or equal to n+1
2
; that is, starting from the

smallest alternative �, the sequence of extended majority voting rules is sequentially and

pairwise applied to adjacent alternatives (using only agents�restricted preferences over

these two alternatives) until, at an alternative, the alternative itself is the winner of the

extended majority voting rule dispute. It is easy to see that this procedure selects the

median of the set of all agents� top alternatives. Obviously, there is a symmetric and

equivalent representation of a generalized median voter scheme through a right coalition

system on X that we describe more precisely in Section 5. It is well known that a social

choice function is strategy-proof on the single-peaked domain of preferences if and only if

it is a Generalized Median Voter Scheme.7

We now ask: what are the conditions that a generalized median voter scheme has

to satisfy to be obviously strategy-proof? We identify the two properties that together

answer this question for the general case and, given a generalized median voter scheme sat-

isfying them, we exhibit an extensive game form that implements it in obviously dominant

strategies. To give the main idea of those extensive form games, consider the anonymous

median voter scheme that selects, at each preference pro�le, the smallest of the best al-

ternatives, which can be described by the left coalition system on X with the property

that at each x 2 X all agents are decisive. Then, this generalized median voter scheme f

7See for instance Moulin (1980) or Barberà, Gül and Stacchetti (1993). Generalized median voter

schemes are non-anonymous extensions of the median voter (see Section 5 for their description).
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can be roughly understood as a sequence of extended majority voting rules (of quota 1)

that at any generic alternative x; and starting at �, confronts two possibilities: either to

select (using quota 1) the current alternative x as the one chosen by f or else to select

(tentatively) the adjacent alternative x+ 1. If x is not chosen, then its adjacent alterna-

tive becomes the new current alternative to apply again quota 1. This generalized median

voter scheme f is obviously strategy-proof because whenever agent i has to decide at a

node along the game, i�s choices can be identi�ed with the choice between the current

alternative and its adjacent one. Proposition 2 generalizes this result to the class of all

(not necessarily anonymous) generalized median voter schemes.

In addition to the speci�c results in Li (2017) that we have already referred to earlier,

four papers have also asked whether well-known strategy-proof social choice functions on

restricted domains of preferences are obviously strategy-proof. Ashlagi and Gonczarowski

(2016) shows that the social choice function associated to the deferred acceptance algo-

rithm is not obviously strategy-proof for the agents belonging to the o¤ering side. They

show however that this social choice function becomes obviously strategy-proof on the

restricted domain of acyclic preferences introduced by Ergin (2002).

Troyan (2016) identi�es a necessary and su¢ cient condition on the priorities (called

weak acyclic, weaker than the conditions identi�ed in Ergin (2002) and Kesten (2006)) that

fully characterizes the class of obviously strategy-proof social choice functions associated

to the generalizations of the top-trading cycles algorithm with priorities, introduced by

Abdulkadiro¼glu and Sönmez (2003).

Pycia and Troyan (2017) characterizes the family of games that implement in obviously

dominant strategies social choice functions for a class of ordinal problems that includes

the cases of private components and voting over two alternatives. They call those games

millipede because they have the property that the subgames starting at the nodes that

follow nature�s moves are like a centipede game (see Rosenthal (1981)) but now agents,

at nodes where they have to choose along the game, may have more than one terminal

choices. This characterization can be seen as a revelation principal like result because it

indicates the class of games where to look for the implementation of social choice functions

in obviously dominant strategies. They also consider, as a particular case of their model,

the problem of allocating a set of objects to a set of agents when each agent only cares

about the received object. They characterize for this case the family of obviously strategy-

proof, e¢ cient and symmetric games as those that are equivalent to random priority rules.

Bade and Gonczarowski (2017) establishes also a revelation principal like result for

obviously strategy-proofness: a social choice function is implementable in obviously dom-

inant strategies if and only if some obviously incentive compatible gradual mechanism

implements it. For the problem of assigning a set of objects to a set of agents, Bade and

Gonczarowski (2017) shows that an e¢ cient social choice function is obviously strategy-
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proof if and only if it can be implemented by a game with sequential barters with lurk-

ers; this class consists of generalizations of serial dictatorships. They also show that Li

(2017)�s positive result on monotone price mechanisms for binary allocation problems does

not hold for more general problems with two or more goods. For the case of voting over

two alternatives, Bade and Gonczarowski (2017) shows that if a social choice function

is onto and obviously strategy-proof then it can be implemented by a proto-dictatorship

game. Finally, for the problem of a linearly ordered set of alternatives with single-peaked

preferences, Bade and Gonczarowski (2017) shows that if a social choice function is onto

and obviously strategy-proof then it can be implemented by a game consisting of dicta-

torships with safeguards against extremisms (and arbitration via proto-dictatorships, if

X is discrete).8

The paper is organized as follows. Section 2 contains the basic notation and de�nitions.

Section 3 presents the notion of obvious strategy-proofness. Section 4 contains the analysis

of extended majority voting rules from the point of view of obvious strategy-proofness,

while Sections 5 contains the corresponding analysis of generalized median voter schemes.

Section 6 concludes with �nal remarks. An Appendix at the end of the paper collects the

proofs omitted in the main text.

2 Preliminaries

A set of agents N = f1; : : : ; ng, with n � 2, has to choose an alternative from a �nite

and given set X: Each agent i 2 N has a strict preference Pi (a linear order) over X:

We denote by t(Pi) the best alternative according to Pi, to which we will refer to as

the top of Pi: We denote by Ri the weak preference over X associated to Pi; i.e., for

all x; y 2 X, xRiy if and only if either x = y or xPiy: Let Pi be the set of all strict
preferences over X: Observe that Pi = Pj for all i 6= j: A (preference) pro�le is a n-tuple
P = (P1; : : : ; Pn) 2 P1�� � ��Pn = P ; an ordered list of n preferences, one for each agent.
Given a pro�le P and an agent i; P�i denotes the subpro�le in

Q
j2NnfigPj obtained

by deleting Pi from P: Given i 2 N and x 2 X we write P xi 2 Pi to denote a generic
preference such that t(P xi ) = x:

Let Di � Pi be a generic subset of agent i�s preferences over X and set D = D1�� � ��
Dn; which we will refer to as a domain.9 A social choice function (SCF) on D; f : D ! X;

selects for each preference pro�le P 2 D an alternative f(P ) 2 X:
8We have obtained our results in an independent way, before knowing the existence of Pycia and

Troyan (2017) and Bade and Gonczarowski (2017). In the �nal remarks section at the end of the paper,

we relate them with our results with more detail.
9In our two applications it will hold that Di = Dj for all i 6= j.
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The SCF f : D ! X is strategy-proof (SP) if for all P 2 D; all i 2 N and all P 0i 2 Di;

f(P )Rif(P
0
i ; P�i):

Let f : D ! X be a given SCF. Construct its associated normal game form (N;D; f);
where N is the set of players, D is the set of strategy pro�les and f is the outcome func-
tion mapping strategy pro�les into alternatives. Then, f is implementable in dominant

strategies (or f is SP-implementable) if the normal game form (N;D; f) has the property
that, for all P 2 D and all i 2 N , Pi is a weakly dominant strategy for i in the game
in normal form (N;D; f; P ); where each i 2 N uses Pi to evaluate the consequences of

strategy pro�les. The literature refers to (N;D; f) as the direct revelation mechanism
that SP-implements f .

We de�ne several properties that a SCF f : D ! X may satisfy and that we will use

in the sequel. We say that f is (i) onto if for all x 2 X, there exists P 2 D such that

f(P ) = x; (ii) unanimous if for all P 2 D such that t(Pi) = x for all i 2 N; f(P ) = x;10

and (iii) anonymous if for all P 2 D (where Di = Dj for all i 6= j) and all one-to-one

� : N ! N; f(P ) = f(P �) where for all i 2 N; P �i = P�(i): We say that i is a dummy
agent in f if for all P�i; f(Pi; P�i) = f(P 0i ; P�i) for all Pi; P

0
i 2 Di:

3 Obviously strategy-proof SCFs

3.1 De�nition

Adapting Li (2017) to our ordinal setting with no uncertainty, an extensive game form

with consequences in X consists of:

1. A set of agents N = f1; : : : ; ng.

2. A set of outcomes X.

3. A rooted tree (Z;�), where:

(a) Z is the set of nodes;

(b) � is an irre�exive and transitive binary relation over Z;
(c) z0 2 Z is the root of (Z;�); i.e., z0 is the unique node that has the property

that z0 � z for all z 2 Znfz0g;
(d) Z can be partitioned into two sets, the set of terminal nodes ZT = fz 2 Z jthere

is no z0 2 Z such that z � z0g and the set of non-terminal nodes ZNT = fz 2
Z jthere is z0 2 Z such that z � z0g;

10Although ontoness is weaker than unanimity, it is easy to see that among the class of all strategy-proof

SCFs, the classes of unanimous and onto SCFs coincide.
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(e) for z 2 ZNT ; de�ne the set of immediate followers of z as IF (z) = fz0 2 Z j
z � z0 and there is no z00 2 ZNT such that z � z00 � z0g and for z 2 Znfz0g;
de�ne the set of immediate predecessors of z as IP (z) = fz0 2 Z j z 2 IF (z0)g:
Then, (Z;�) has the property that, for all z 2 Znfz0g, jIP (z)j = 1 (namely,
the tree has no curls).

4. A mapping N : ZNT ! N that assigns to each non-terminal node z an agent

N (z): Hence, we can partition the set of non-terminal nodes ZNT into n disjoint
sets Z1; : : : ; Zn, where Zi = fz 2 ZNT j N (z) = ig is the set of non-terminal nodes
assigned to i by N .11

5. For each i 2 N; a partition of Zi into information sets. Denote by Ii this partition
and by Ii one of its generic elements.12

6. A set of actions A and a function A : ZNT ! 2Anf;g where, for each z 2 ZNT , A(z)
is the non-empty set of actions available to player N (z) at z: Of course, A has to

be measurable in the sense that for any pair z; z0 2 Ii; A(z) = A(z0): Moreover, for
each z 2 ZNT , there should be a one-to-one identi�cation between A(z) and the set
IF (z): Set I = (Ii)i2N : We assume that I has the usual property to ensure that
agents have perfect recall.

7. An outcome function g : ZT ! X that assigns an alternative g(z) 2 X to each

terminal node z 2 ZT .

An extensive game form with consequences in X (or simply, a game) is a seven-tuple

� = (N;X; (Z;�) ;N ; I;A; g) with the above properties.13 Since N and X will be �xed

through out the paper, let G be the class of all games with consequences in X and set of

agents N .

Fix a game � 2 G and an agent i 2 N: A (behavioral) strategy of i in � is a function
�i : Zi ! A such that for each z 2 Zi; �i(z) 2 A(z); namely, �i selects at each node
where i has to play one of i�s available actions. Moreover, �i is Ii-measurable: for any
Ii 2 Ii and any pair z; z0 2 Ii; �i(z) = �i(z0): Let �i be the set of i�s strategies in �: A
strategy pro�le � = (�1; : : : ; �n) 2 �1 � � � � � �n = � is an ordered list of strategies, one
for each agent. A history h (of length t) is a sequence z0; z1; : : : ; zt of t+1 nodes, starting

11To deal in the sequel with dummy agents, we admit the possibility that N be not onto, and so Zi = ;
for some i 2 N:
12If z; z0 2 Ii, then agent i cannot distinguish whether the game has reached node zi or node z0i.
13Note that � is not yet a game in extensive form because agents�preferences on alternatives are still

missing. But given a game � and a preference pro�le P over X; the pair (�; P ) de�nes a game in extensive

form where each agent i uses Pi to evaluate the alternatives, associated to all terminal nodes, induced by

strategy pro�les (de�ned below).
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at z0, such that for all m = 1; : : : ; t; fzm�1g = IP (zm). Each history h = z0; : : : ; zt can
be uniquely identi�ed with the node zt and each node z can be uniquely identi�ed with

the history h = z0; : : : ; z:

For a distinct pair �i; �0i 2 �i; the family of earliest points of departure for �i and
�0i is the family of information sets where �i and �

0
i have made identical decisions at all

previous information sets, but they are making a di¤erent decision at those information

sets. Namely,

De�nition 1 Let �i; �0i 2 �i: An information set Ii 2 �(�i; �0i) is an earliest point of
departure for �i and �0i if for all z 2 Ii:
1. �i(z) 6= �0i(z):
2. �i(z0) = �0i(z

0) for all z0 � z such that z0 2 Zi:

Given a pair �i; �0i 2 �i; denote the set of earliest points of departure for �i and �0i by
�(�i; �

0
i): Given bX � X and Pi 2 Di; we denote by minPi bX the alternative x 2 bX such

that for all y 2 bX; yRix; and by maxPi bX the alternative x 2 bX such that for all y 2 bX;
xRiy: Let z�(z; �) be the terminal node that results in � when agents start playing at z

according to �. We are now ready the de�ne obviously dominant strategies.

De�nition 2 Let � 2 G be a game and Pi 2 Di be a preference for agent i 2 N:We say
that �i is obviously dominant in � for i with Pi if for all �0i 6= �i, all Ii 2 �(�i; �0i) and all
z 2 Ii;

min
Pi
fx j 9��i s.t. x = g(z�(z; (�i; ��i)))gRimax

Pi
fx j 9��i s.t. x = g(z�(z; (�0i; ��i)))g:

De�nition 3 The SCF f : D ! X is obviously strategy-proof (OSP, or OSP-implementable)

if there exists � 2 G such that (i) for each P 2 D, there exists a strategy pro�le
�P = (�P11 ; : : : ; �

Pn
n ) 2 � such that f(P ) = g(z�(z0; �

P )) and (ii) for all i 2 N and

all Pi 2 Di; �Pii is obviously dominant in � for i with Pi:

When (i) holds we say that (�; f�PgP2D) induces f: When (i) and (ii) hold we say
that (�; f�PgP2D) OSP-implements f and refer to the strategy �Pii played by i with Pi in
� as the truth-telling strategy.14 When f�PgP2D is obvious from the context we will just

say respectively that � induces f and � OSP-implements f .

Obvious strategy-proofness entails an extreme behavioral hypothesis: agents are pes-

simistic when evaluating the consequences of truth-telling while they are optimistic when

evaluating non-truthfulness.

14To better understand the meaning of �Pii it may be useful to use the Bayesian interpretation of a

strategy in an incomplete information game: each player i; before knowing his type Pi 2 Di, chooses a
strategy to play �; contingent on his realized type. Hence, �Pii is the strategy played by i, when i�s type

is Pi; in the game �. Observe that, since whether or not �
Pi
i is obviously dominant is independent of

(Pj)j2Nnfig 2
Q
j2NnfigDj , �

Pi
i can also be interpreted as i�s play with type Pi in any game in extensive

form (�; (Pi; (Pj)j2Nnfig)): Since � will induce f : D ! X; �Pii will become meaningful.
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It is easy to verify that similarly to what happens with SP-implementability, OSP-

implementability is a hereditary property of SCFs in the following sense.15

Remark 1 If f : D ! X is OSP-implementable, then the subfunction f : eD ! X is

OSP-implementable, where eDi � Di for all i 2 N .
3.2 The Pruning Principle

To show that a SCF f : D ! X is OSP, it is su¢ cient to exhibit a game � 2 G that
induces f , and that, for all P 2 D and all i 2 N , �Pii is an obviously dominant strategy.

Apparently, to show that f is not OSP, it would be necessary to check that for each �

that induces f , there are i and Pi for which �
Pi
i is not obviously dominant in �. And this

may be very di¢ cult, indeed. The Pruning Principle facilitates this task. The idea is as

follows. Let � be a game that induces a SCF f : D ! X: Now, prune � by just keeping

(from the tree used to de�ne �) the plays consistent with the truth-telling strategies

f�PgP2D: Namely, histories that are not realized for any pro�le of preferences are deleted.
Denote this pruned game by e�. Then, it holds that if � OSP-implements f , then e� also
OSP-implements f . Therefore, to show that f is not OSP it is su¢ cient to show that no

�pruned�game OSP-implements f , and this seems much easier.

We now, following Li (2017), state the Pruning Principle formally. Assume � 2 G
induces f : D ! X and consider the set of strategy pro�les f�PgP2D. The extensive
game form e� = (N;X; ( eZ;�); eN ; eI; eA; eg) 2 G with consequences in X; called the pruning
of � with respect to f�PgP2D, is de�ned as follows:
(i) eZ = fz 2 Z jthere is P 2 D such that z � z�(z0; �P )g:
(ii) For all i, if Ii 2 Ii then Ii \ eZ 2 eIi:
(iii) (�; eN ; eI; eA; eg) are restricted to eZ:
The Pruning Principle (Proposition 2 in Li (2017)) Assume � 2 G induces f :
D ! X and let e� be the pruning of � with respect to f�PgP2D. Denote by fe�PgP2D
the restriction of f�PgP2D on e�. If (�; f�PgP2D) OSP-implements f : D ! X; then

(e�; fe�PgP2D) OSP-implements f : D ! X:

4 Extended majority voting rules

Consider the simplest social choice problem where X = fx; yg. To de�ne the family of
extended majority voting rules on fx; yg, �x w 2 fx; yg. A family Lw � 2N of subsets

of N is a committee for w if it satis�es the following monotonicity property: S 2 Lw and
15The proof of Proposition 5 in Li (2017) contains this observation.
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S ( T imply T 2 Lw. A monotonic Lw that is either empty (Lw = f;g) or contains the
empty set (f;g 2 Lw) is called a trivial committee.16

De�nition 3 A SCF f : P ! fx; yg is an extended majority voting rule (EMVR) if
there exists a committee Lw for w 2 fx; yg with the property that for all P 2 P ;

f(P ) = w if and only if fi 2 N j t(Pi) = wg 2 Lw: (1)

In this case we say that Lw is the committee associated to f: Observe that if the EMVR
is onto, then its associated committee (for w) Lw is not trivial (i.e., f;g =2 Lw 6= f;g).
However, if the EMVR is not onto, and so it is constant, then f;g 2 Lw if it is the constant
w and Lw = f;g if it is the constant w0 6= w. Since constant SCFs are trivially OSP, from
now on we will assume that all committees under consideration are not trivial.

The following remark says that if an EMVR can be simultaneously represented by

a committee for x and a committee for y; then the two committees have to satisfy a

consistency property, stated as condition (2) below.

Remark 2 Let f : P ! fx; yg be an EMVR. Let Lx be its associated committee for x
(i.e., condition (1) holds for w = x) and let Ly be a committee for y with the property
that

S 2 Ly if and only if S \ S 0 6= ; for all S 0 2 Lx: (2)

Then, condition (1) holds for w = y as well; namely,

f(P ) = y if and only if fi 2 N j t(Pi) = yg 2 Ly:

That is, an EMVR f can be associated indistinctly to its committee for x; Lx; or to
its committee for y; Ly; whenever (2) holds.
Given Lx we denote by Lmx the family of minimal winning coalitions of Lx; that is,

S 2 Lmx if and only if S 2 Lx and S 0 =2 Lx for all S 0 ( S: Agent i 2 N is a dummy in Lx
if i =2 [S2Lmx S: Obviously, agent i is a dummy in the EMVR f : P ! fx; yg if and only if
i is a dummy in Lx; where Lx is the committee associated to f: Agent i is decisive in Lx
if fig 2 Lx and a vetoer in Lx if i 2 \S2LxS:

4.1 Anonymous extended majority voting rules

Before considering the general case, we focus on the anonymous subfamily of EMVRs,

those for which agents�identities do not play any role, and so their associated commit-

tees have the property that either all coalitions with the same cardinality belong to the

committee or they do not.

16A non-trivial committee can be seen as a monotonic simple TU-game (N; v) in which, in addition to

v(;) = 0 and v(N) = 1, a coalition S � N belongs to the committee if and only if v(S) = 1.
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A committee Lx is voting by quota q 2 f1; : : : ; ng if the following holds: S 2 Lx if and
only if jSj � q (or equivalently, Lmx = fS 2 Lx j jSj = qg).

The following remark states two useful characterizations of strategy-proof SCFs in this

setting with two alternatives.

Remark 3

(3.1) A SCF f : P ! fx; yg is strategy-proof if and only if f is an EMVR.
(3.2) A SCF f : P ! fx; yg is strategy-proof and anonymous if and only if the associated
committee of f is voting by quota.

Proposition 0 A SCF f : P ! fx; yg is anonymous and OSP if and only if f is an
EMVR whose associated committee Lx is either voting by quota 1 or voting by quota n:17

Proof Let f be an EMVR whose associated committee Lx is voting by quota 1; and
so f is anonymous. We want to show that f is OSP. Without loss of generality, take the

order 1; : : : ; n of the set of agents, and consider the game depicted in Figure 1, denoted

by �(x; y;Lx); played from left to right, where z0 � z1; and for all i 2 N; Zi = fzig;
N (zi) = i and A(zi) = fx; yg:

� � �r
r

r
r

r
r

r r
r

r
r

rz1 z2 z3 zn�1 zn

x x x x x

y y y y y

x x x x x

y

Figure 1

First, observe that each agent only plays once and �(x; y;Lx) 2 G. Second, �x an
arbitrary P 2 P and consider �P = (�P11 ; : : : ; �Pnn ) 2 � such that for all i 2 N; �Pii (zi) = x
if and only if t(Pi) = x; then �(x; y;Lx) induces f (voting by quota 1) since f(P ) =
g(z�(z0; �

P )) = x if and only if there exists i such that �Pii (zi) = x: We want to show

that, for each i, �Pii is obviously dominant in �(x; y;Lx) for i with Pi.
Fix i 2 N; and let �0i 6= �Pii (i.e., �0i(zi) 6= t(Pi)). Observe that fzig = �(�Pii ; �0i) is the

earliest point of departure for �Pii and �0i. Let i = n and assume t(Pn) = x. Then, n has

to play at node zn, reached after the sequence (y; : : : ; y)| {z }
(n�1)-times

is played. Hence,

min
Pn
fw 2 X j w = g(z�(zn; (�Pnn ; ��n)) for some ��ng = x (3)

17Observe that by Remark 2, if Lx is voting by quota 1 then Ly is voting by quota n, and if Lx is voting
by quota n then Ly is voting by quota 1: Moreover, in this binary setting non-onto SCFs are constant
which correspond to the two cases where Lx is trivial and, as we have already said, Proposition 0 refers
to onto SCF.
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and

max
Pn
fw 2 X j w = g(z�(zn; (�0n; ��n)) for some ��ng = y; (4)

because �Pnn (zn) = t(Pn) = x and �
0
n(zn) = y, the set in (3) is the singleton fxg and the

set in (4) is the singleton fyg: Since xPny; �Pnn is obviously dominant. Symmetrically if

t(Pn) = y: Let i < n and let �0i 6= �Pii (i.e., �0i(zi) 6= t(Pi)). Observe that fzig = �(�Pii ; �0i)
is the earliest point of departure for �Pii and �

0
i. Assume t(Pi) = y. Then, i has to play at

zi which is either z0 (if i = 1), reached after the empty history, or else zi 6= z0; (if 1 < i),
which is reached after the sequence (y; : : : ; y)| {z }

(i�1)-times

is played. Hence,

fw 2 X j w = g(z�(zi; (�Pii ; ��i)) for some ��ig = fx; yg;

since there is at least one b��i such that g(z�(zi; (�Pii ; b��i)) = x and at least another ��i
such that g(z�(zi; (�

Pi
i ; ��i)) = y: But then minPifx; yg = x because t(Pi) = y: On the

other hand,

fw 2 X j w = g(z�(zi; (�0i; ��i)) for some ��ig = fxg;

because �0i(zi) = x: Since minPifx; yg = xRix = maxPifxg; �Pii is obviously dominant.

Assume now that t(Pi) = x. Then,

min
Pi
fw 2 X j w = g(z�(zi; (�Pii ; ��i)) for some ��ig = x:

and

max
Pi
fw 2 X j w = g(z�(zi; (�0i; ��i)) for some ��ig = x;

where �0 6= �Pii and hence, �0i(zi) = y: To see that, observe that there is at least one b��i
such that g(z�(zi; (�0i; b��i)) = x and at least another one ��i such that g(z�(zi; (�0i; ��i)) =
y; and maxPifx; yg = x because t(Pi) = x: Hence, �Pii is obviously dominant in �(x; y;Lx)
for i with Pi: Since this holds for all i 2 N and any arbitrary P; f is OSP.

Assume now that the associated committee for x is voting by quota n: By Remark 2,

we can construct a symmetric game �(y; x;Ly), whose associated committee Ly is voting
by quota 1; and proceed as we did for �(x; y;Lx); replacing the roles of x and y:
To prove that the converse holds, let f : P ! fx; yg be an OSP and anonymous SCF.

Hence, f is SP-implementable and by condition (3.2) in Remark 3, f is voting by quota q.

We now show that either q = 1 or q = n: Assume otherwise, i.e., 1 < q < n: We proceed

by distinguishing between the case n = 3 and n > 3:

Assume �rst that n = 3, and so q = 2: We proceed by contradiction; i.e., assume

f is OSP and let � 2 G be a pruned game that OSP-implements f . Since � induces
f (voting by quota 2) there exists at least one information set at which one agent has

available two actions. Let i be the �rst agent in � with this property, and denote by
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Ii such information set. Let z 2 Ii and �x a pro�le (P1; P2; P3) 2 P : Without loss of
generality, assume t(Pi) = x: Since � induces f , for all z 2 Ii;

fw 2 X j w = g(z�(z; (�Pii ; ��i))) for some ��ig = fx; yg;

because q = 2 and the way i was selected. Let �0i 2 �i be such that �0i = �
P yi
i . Hence,

�Pii (z) 6= �0i(z); because � is pruned. Then, as i is the agent who �rst has a node z 2 Ii
with two available actions; z 2 Ii 2 �(�Pii ; �0i): Consider any subpro�le �

P 0�i
�i such that��fj 2 Nnfig j t(P 0j) = xg�� = 1 (and hence

��fj 2 Nnfig j t(P 0j) = yg�� = 1). Since q = 2

and � is pruned and induces f; g(z�(z; (�Pii ; �
P 0�i
�i ))) = x and g(z�(z; (�P

0
i
i ; �

P 0�i
�i ))) = y:

Furthermore, since � induces f , for all z 2 Ii;

fw 2 X j w = g(z�(z; (�0i; ��i))) for some ��ig = fx; yg;

because q = 2 and the way i was selected. Hence, sincemaxPifx; yg = xPiy = minPifx; yg,
�Pii is not obviously dominant, a contradiction.

Assume now that n > 3 and 1 < q < n: By Remark 1, to obtain a contradiction it is

su¢ cient to exhibit a subdomain eP of f where f : eP ! X is not OSP. Anonymity allows

us to consider the particular subdomain

eP = fP x1 ; P y1 g � fP x2 ; P y2 g � fP x3 ; P y3 g| {z }
3 agents

� fP x4 g � � � � � fP xq+2g| {z }
q�2 agents

� fP yq+3g � � � � � fP yng| {z }
n�q�1 agents

:

Let ef be the restriction of f on eP : Assume that ef is OSP and let � 2 G be a pruned
game that OSP-implements ef: Since ef is not constant and � induces ef; there exists an
information set at which a player has available at least two actions. Let i 2 N be the �rst

player who �rst faces this situation, and Ii be this information set. Obviously; i 2 f1; 2; 3g:
Agents 1; 2 and 3 face a situation which is equivalent to the situation where n = 3 and

q = 2; i.e., given the �xed preferences of the remaining n� 3 agents, to be selected both
x and y require only two additional agents to support them as top alternatives. Thus, we

can also reach the conclusion that ef is not OSP, a contradiction. �

4.2 The general case

Let Lx be a committee for x and k 2 f1; : : : ; ng: Denote by Lkx = fS 2 Lmx j jSj = kg the
family of minimal winning coalitions of Lx with cardinality k.18

We present the property of a committee that plays a key role in this section as well

as in Section 5. In words, a committee satis�es the increasing order inclusion property

18In the notation Lmx ; the letter m will always refer to the word �minimal�, and never to an integer.
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if there exists an order of distinct agents for which any minimal winning coalition of

cardinality k � 2 contains the �rst k � 1 agents in the order.19

De�nition 5 A committee Lx for x satis�es the increasing order inclusion (IOI) prop-
erty if there exists an order of distinct agents i1; : : : ; iK such that for all k > 1;

if S 2 Lkx then fi1; : : : ; ik�1g � S:

Example 1 illustrates the IOI property.

Example 1 The committee Lmx = ff1g; f2; 3g; f2; 4g; f2; 5; 6; 7; 8g; f2; 5; 6; 7; 9gg sat-
is�es IOI by the order 2; 5; 6; 7 or by the orders 2; 5; 7; 6; 2; 6; 5; 7; 2; 6; 7; 5; 2; 7; 5; 6 or

2; 7; 6; 5:On the other hand, the committee bLmx = ff1g; f2; 3g; f2; 4g; f5; 6; 7; 8g; f5; 6; 7; 9gg
does not satisfy IOI because agent 2 has to be �rst in any possible order since bL2x =
ff2; 3g; f2; 4gg but 2 =2 f5; 6; 7; 8g 2 bL4x. �

Before proceeding, several remarks about IOI are appropriate. First, there are com-

mittees that satisfy IOI trivially. For instance if Lx is voting by quota 1 (Lkx = ; for all
k > 1) or quota n (Lkx = ; for all k < n and Lnx = fNg), then Lx satis�es IOI for any
order of the set of agents. Second, there may be some connected pieces of an order for

which the ordering is important and some other pieces for which the order is irrelevant.

For instance, in any order for which the committee Lx in Example 1 satis�es IOI, agent
2 should be �rst, followed by agents 5, 6, and 7, in any ordering. Along the play of any

game that could be use to show that the EMVR associated to Lx is OSP, the role of agent
2 will be di¤erent from the roles of agents 5, 6, 7; in particular, agent 2 will have to play

earlier. Third, by its de�nition, if Lx satis�es IOI, then decisive and dummy agents do
not belong to the order, although they play a very di¤erent role in Lx: And fourth, if
we partition the set of minimal winning coalitions of a committee Lx (that satis�es IOI)
according to their cardinalities, where each element in the partition contains all minimal

winning coalitions with the same cardinality (some of these elements may be empty), then

any order for which Lx satis�es IOI can be obtained roughly by identifying and adding
in a sequential and monotonic way, starting at k = 2, two types of agents: if Lx has more
than two minimal winning coalitions of cardinality k, the set of agents that belong to

their intersection, added in any ordering, and if Lx has only one minimal winning coali-
tion of cardinality k; the set of all agents that belong to this coalition except one of them,

added in any ordering (Lemma 1 in the proof of Proposition 1 identi�es properties of the

intersections of all minimal winning coalitions with the same cardinality, in each of these

two situations).

We are now ready to state the result characterizing all SCFs that are OSP in this

setting with two alternatives.

19As it will become clear later, this order may not be unique.
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Proposition 1 A SCF f : P ! fx; yg is OSP if and only if f is an EMVR whose

committee Lx satis�es IOI.

Proof See the Appendix in subsection 7.1.20 �
Example 1 (continued) Assume n = 9 and consider again the committee Lx for
x where Lmx = ff1g; f2; 3g; f2; 4g; f2; 5; 6; 7; 8g; f2; 5; 6; 7; 9gg; which satis�es IOI by the
order 2; 5; 6; 7; that is, i1 = 2; i2 = 5; i3 = 6 and i4 = 7: De�ne the game �(x; y;Lx) that
OSP-implements the EMVR associated to Lx, depicted in Figure 2, as follows. Players
play sequentially from left to right, z0 � z1; and for all i 2 N; Zi = fzig; N (zi) = i and
A(zi) = fx; yg:

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

rz1 z2 z3 z4 z5 z6 z7 z8 z9

x y x x y y y x x

y x y y x x x y y

x y x x y y y x x

y

Figure 2

It is worthwhile to point out by means of this example two general properties of any

such game �(x; y;Lx). First, although the roles of agents 1 and 2 are very di¤erent in
Lx; along the game �(x; y;Lx) they are somehow similar. After agent 1 (�decisive�for x)
chooses y, agent 2 becomes �decisive�for y: Also, for instance, at node z7; agent 7 becomes

�decisive�for y while, at node z8, agent 8 becomes �decisive�for x: This is the reason why,

whenever an agent has to play, truth-telling is an obvious optimal choice, regardless of

any consideration about the other agents�future behavior.

Second, the game depicted in Figure 2 could also be the game obtained if instead

we would have used the committee Ly for y, the one obtained by means of Remark 2,
associated to the same EMVR. By Remark 2,

Lmy = ff1; 2g; f1; 3; 4; 5g; f1; 3; 4; 6g; f1; 3; 4; 7g; f1; 3; 4; 8; 9gg:

It is easy to see two things. First, Ly satis�es IOI by the order 1; 3; 4; 8 (for instance);
that is, i1 = 1; i2 = 3; i3 = 4 and i4 = 8: Second, the corresponding game �(y; x;Ly)
coincides with �(x; y;Lx): Finally, the fact that f1; 2g 2 Lmy explains why the two agents
have similar power, although this was not apparent in Lx:21 �
20The proof is constructive: it exhibits an extensive game form that OSP-implements a given EMVR

whose committee Lx satis�es IOI.
21The game in Figure 2 is a proto-dictatorship game according to the terminology used by Bade and

Gonczarowski (2017). Their Theorem 4.1 states that a mechanism (an extensive game form) is OSP

if and only if it is a proto-dictatorship. In contrast, our characterization in Proposition 1 identi�es by

means of the IOI property those EMVRs that are OSP. See the Final Remarks section for a comment

relating our characterization result in Proposition 1 and their Theorem 4.1.
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5 Generalized median voter schemes

Consider a social choice problem where the set of alternatives X = f�; : : : ; �g is a �nite
and linearly ordered set. Without loss of generality we may assume that X is a �nite

subset of integers between � and �; where �; � 2 Z. Moreover, we may also assume that
jXj > 2; otherwise, we are back to the setting of the previous section.
There is a rich literature studying this class of problems for the case where, given this

structure of the set of alternatives, agents�preferences are assumed to be single-peaked

relative to the order over X: Agent i�s preference Pi is single-peaked over X if for all

x; y 2 X; x < y � t(Pi) or t(Pi) � y < x implies yPix: Let SP i be the set of all agent i�s
single-peaked preferences over X: De�ne SP = SP1 � � � � � SPn:
We de�ne now a class of SCFs known as generalized median voter schemes. One

description is based on the notion of left coalition system on X, which is a family of

non-trivial committees fLxgx2X with the additional monotonicity property that, for all
x < �, S 2 Lx implies S 2 Lx+1; and the boundary condition that L� = 2Nnf;g. If
S 2 Lx we say that S is a left-winning coalition at x:

De�nition 6 A SCF f : SP ! X is a generalized median voter scheme (GMVS) if

there exists a left coalition system fLwgw2X such that, for all P 2 SP ;

f(P ) = x if and only if (i) fi 2 N j t(Pi) � xg 2 Lx and
(ii) for all x0 < x; fi 2 N j t(Pi) � x0g =2 Lx0 :

Namely, the alternative x selected by the GMVS f at P is the smallest one for which

the top alternatives of all agents of a left-winning coalition at x are smaller than or equal

to x.

A similar description can be provided through the symmetric concept of right coalition

system on X, which is a family of non-trivial committees fRxgx2X with the additional
monotonicity property that, for all � < x, S 2 Rx implies S 2 Rx�1; and the boundary

condition that R� = 2
Nnf;g. If S 2 Rx we say that S is a right-winning coalition at x:

De�nition 6� A SCF f : SP ! X is a generalized median voter scheme (GMVS) if

there exists a right coalition system fRwgw2X such that, for all P 2 SP,

f(P ) = x if and only if (i) fi 2 N j t(Pi) � xg 2 Rx and

(ii) for all x0 > x; fi 2 N j t(Pi) � x0g =2 Rx0 :

Symmetrically, the alternative x selected by the GMVS f at P is the largest one for which

the top alternatives of all agents of a right-winning coalition at x are larger than or equal

to x.

The left or the right coalition system can be taken indistinctly as the primitive concept

for the de�nition of a GMVS. But yet, a precise relationship between a left coalition system
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and a right coalition system has to hold if they have to generate the same GMVS. We

state this relationship in Remark 4, which generalizes Remark 2 for the case with more

than two alternatives.22

Remark 4 A left coalition system fLxgx2X and a right coalition system fRxgx2X de�ne
the same GMVS f : SP ! X if and only if, for all x > �,

T 2 Rx if and only if T \ S 6= ? for all S 2 Lx�1:

In this case we will say that fLxgx2X is the left coalition system associated to the GMVS
f and fRxgx2X is the right coalition system associated to the GMVS f .

Alternatively, and more metaphorically, a GMVS might be understood as a force that,

starting at the lowest alternative, pushes up towards the highest possible alternative.

However, the left coalition system distributes the power, among subsets of agents, to stop

this force, in such a way that a left-winning coalition at x can make sure that the pushing

force of f will not overcome x by declaring all its members that their top alternative is

smaller than or equal to x:

It is well known that a SCF f : SP ! X is strategy-proof if and only if f is a GMVS.23

The smallest alternative for which its left-committee contains a singleton set will play

a relevant role in this section. Given the left coalition system fLwgw2X and x 2 X; let
DeLx = fi 2 N j fig 2 Lxg be the set of left-decisive agents at x: De�ne x1 = minfx 2
X j DeLx 6= ;g: Observe that x1 is well de�ned since DeL� = N: Similarly, given the right
coalition system fRwgw2X and x 2 X; let DeRx = fi 2 N j fig 2 Rxg be the set of
right-decisive agents at x: Let i1 2 DeLx1 be one of the agents for which fi1g 2 Lx1.
We now present a strengthening of IOI that will play a crucial role in the characteri-

zation of the class of SCFs that are OSP on the domain of single-peaked preferences.

De�nition 7 A left (right) committee Lx (Rx) for x satis�es the increasing order in-

clusion (IOI) property with respect to ix 2 N if there exists an order of distinct agents

i1; : : : ; iK such that for all k > 1;

if S 2 Lk(x) then fi1; : : : ; ik�1g � S and i1 = ix

22See Barberà, Massó and Neme (1997) for a proof of Remark 4.
23See Barberà, Gul and Stacchetti (1993). Sprumont (1995) shows that the tops-only property in

Moulin (1980)�s characterization is not required. If the social choice function is not onto, de�ne a new and

smaller set of alternatives by deleting the subset of alternatives that have not been chosen, and restrict

then the set of single-peaked preferences and the social choice function to this new set. Then, strict

single-peaked preferences remain single-peaked over the restricted set of alternatives, and the restricted

social choice function is onto. Unic-top single-peaked preferences admitting indi¤erences may no longer

be unic-top single-peaked over the restricted set of alternatives. See Barberà and Jackson (1994) to deal

with this later (and much more involved) case. The characterization just stated refers to this restricted

(onto) function.
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(if S 2 Rk(x) then fi1; : : : ; ik�1g � S and i1 = ix):

That is, a committee satis�es IOI with respect to an agent if the committee satis�es

IOI relative to an order where this agent goes �rst.

Proposition 2 below characterizes the class of all SCFs that are OSP on the domain

of single-peaked preferences.

Proposition 2 A SCF f : SP ! X is OSP if and only if f is a GMVS whose

associated left and right coalition systems, fLxgx2X and fRxgx2X ; satisfy the following
two properties:

(L-IOI) For every � > x � x1 � 1; there exists ix 2 N such that Lx satis�es IOI with
respect to ix and fixg 2 Lx+1:
(R-IOI) For every � < x � x1 + 1; there exists ix 2 N such that Rx satis�es IOI with

respect to ix and fixg 2 Rx�1:
24

Proof See the Appendix in subsection 7.2. �

As a consequence of Proposition 2 we obtain Corollary 1 characterizing the class of all

OSP and anonymous SCFs on the domain of single-peaked preferences.

Corollary 1 A SCF f : SP ! X is anonymous and OSP if and only if f is a

GMVS whose associated left coalition system fLxgx2X has the property that there exists
x1 2 f�; : : : ; �g such that (i) Lx = fNg for all x < x1 and (ii) Lmx = ff1g; : : : ; fngg for
all x � x1.

Observe that the two SCFs associated to x1 = � and x1 = � correspond respectively

to the one that, at each pro�le, selects the smallest and largest peak. Corollary 1 holds

for the following reasons. Let fLxgx2X be a left coalition system satisfying the necessary

and su¢ cient condition in Corollary 1. We check that (L-IOI) and (R-IOI) in Proposition

2 hold. First, fLxgx2X satis�es (L-IOI): for all x � x1 � 1; Lx satis�es IOI with respect
to any i 2 N and fig 2 Lx+1: Second, by Remark 4, the right coalition system fRxgx2X
associated to f satis�es (i) Rm

x = ff1g; : : : ; fngg for all x � x1 and (ii) Rx = fNg for
all x > x1. And indeed, the right coalition system fRxgx2X satis�es (R-IOI): for all

x � x1 + 1; Rx satis�es IOI with respect to any i 2 N and fig 2 Rx�1:

Figure 3 illustrates Corollary 1, for the case X = f�; � + 1; x1 � 1; x1; x1 + 1; �g, by
simultaneously describing the anonymous GMVS by means of its left and right coalition

system.

24In these two statements, x1 � 1 or x1 + 1 could be read as � or �, if x1 = � or x1 = �:
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Assume fLxgx2X and fRxgx2X are the left and the right coalition systems associated to
the same GMVS f: If x1 2 f�; �g, Remark 4 gives the relationship between them and one
can directly check whether or not fLxgx2X and fRxgx2X respectively satisfy (L-IOI) and
(R-IOI). But if � < x1 < �; (L-IOI) and (R-IOI) in Proposition 2 only impose conditions

on fLx1�1;Lx1 ; : : : ;L��1g and fR�+1; : : : ;Rx1 ;Rx1+1g, respectively. In the Appendix,
subsection 7.3, we answer the following natural question: can we fully describe f as a

GMVS only through either fLxgx2X or fRxgx2X? In particular, Proposition 3 identi�es
the property on the left coalition system, that together with (L-IOI), characterizes all

SCFs that are OSP on the domain of single-peaked preferences.

We �nish this section with two examples illustrating the statements of Propositions 2

and 3, the statement and proof of the later is in the Appendix, subsection 7.3.25

Example 2 Assume X = f�; x; �g; n = 5 and consider the left coalition system

fLwgw2X where:

Lm� = ff1g; f2; 3; 4g; f2; 3; 5gg
Lmx = ff1g; f2g; f3g; f4; 5gg
Lm� = ff1g; f2g; f3g; f4g; f5gg:

The committees L� and Lx satisfy (L-IOI) by the orders 2; 3 and 4, and with respect to
the agents i� = 2 and ix = 4, respectively. Observe that x1 = � and i1 = 1. De�ne the

game �, depicted in Figure 4, that OSP-implements the GMVS associated to fLwgw2X
as follows. Players play sequentially from left to right, z0 = z�+1 ; the subscript in any of

the other nodes indicates the agent that has to play at that node by choosing between �

and x, if the superscript is �+; or between x and �; if the superscript is x+; for instance,

(i) z�+4 2 Z4 and agent 4 has to choose at z�+4 one action from the set f�; xg and (ii)
zx+3 2 Z3 and agent 3 has to choose at zx+3 one action from the set fx; �g:26

25Example 2 illustrates Case 1 in the proof of Proposition 2 and Example 3 illustrates Case 3 in the

proof of Proposition 2 as well as Proposition 3.
26The game in Figure 4 will be used in the �nal section to compare our characterization result in

Proposition 2 with the characterization results in Theorems 2 and 5.1 in Pycia and Troyan (2017) and

Bade and Gonczarowski (2017), respectively.
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Example 3 AssumeX = f�; x; x1�1; x1; x1+1; �g; n = 9 and consider the left coalition
system fLwgw2X where:

Lm� = ff1; 2; 3gg
Lmx = ff1; 2; 3gg

Lmx1�1 = ff1; 2; 3g; f1; 2; 4gg
Lmx1 = ff1g; f2; 3g; f2; 4g; f2; 5; 6; 7; 8g; f2; 5; 6; 7; 9gg

Lmx1+1 = ff1g; f2g; f3; 4gg
Lm� = ff1g; f2g; f3g; f4g; f5g; f6g; f7g; f8g; f9gg:

Then, by Remark 4, the right coalition system fRwgw2X that will de�ne the same GMVS
is:

Rm
� = ff1; 2; 3g; f1; 2; 4gg

Rm
x1+1

= ff1; 2g; f1; 3; 4; 5g; f1; 3; 4; 6g; f1; 3; 4; 7g; f1; 3; 4; 8; 9gg
Rm
x1

= ff1g; f2g; f3; 4gg
Rm
x1�1 = ff1g; f2g; f3gg
Rm
x = ff1g; f2g; f3gg

Rm
� = ff1g; f2g; f3g; f4g; f5g; f6g; f7g; f8g; f9gg:

Figure 5 depicts a game � that OSP-implements the GMVS associated to fLwgw2X and
fRwgw2X , where z0 2 Z1; the subscript in any of the other nodes indicates the agent that
has to play at that node by choosing between y and y + 1, if the superscript is y+; or

between y and y � 1; if the superscript is y�; where y is a generic alternative in the set
Xnf�; �g; for instance, (i) z(x1+1)+4 2 Z4 and agent 4 has to choose at z(x1+1)+4 one action
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from the set fx1 + 1; �g and (ii) z(x1�1)�3 2 Z3 and agent 3 has to choose at z(x1�1)�3 one

action from the set fx1�1; xg: Indeed, x1 is the smallest alternative for which there exists
i 2 N such that fig 2 Lx1 , and � < x1 < �, so Case 3 is the relevant one in the proof
of Proposition 2. Note that i1 = 1: We �rst check that fLwgw2X satis�es (L-IOI). First,
Lx1�1 satis�es IOI by the order 1; 2 with respect to ix1�1 = 1; Lx1 satis�es IOI by the
order 2; 5; 6; 7 with respect to ix1 = 2 and Lx1+1 satis�es IOI by the order 3 with respect
to ix1+1 = 3; hence fLwgw2X satis�es (L-IOI).27

Figure 5
27Observe that L� and Lx satisfy IOI both by the order 1; 2 and fLwgw2X satis�es (L2-IOI) by setting

ix1�1 = 3 and ix = 1; de�ned in the Appendix.
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We now check that fRwgw2X satis�es (R-IOI). First, Rx1+1 satis�es IOI by the order

1; 3; 4; 8 with respect to ix1+1 = 1; Rx1 satis�es IOI by the order 3 with respect to i
x1 = 3;

and Rx1�1; and Rx1 satisfy IOI by any order with respect to any agent; hence, fRwgw2X
satis�es (R-IOI). �

6 Final remarks

We �rst relate our results to those in Pycia and Troyan (2017) and Bade and Gonczarowski

(2017). These two papers contain revelation principle like results identifying classes of

games inside which one can restrict attention when searching for a game that OSP-

implements some families of SCFs. However, there are two important di¤erences between

these two results and the revelation principal for SP-implementation. First, given a SCF

f : D ! X, the revelation principle for strategy-proofness identi�es a unique normal

game form (N;D; f) for which truth-telling has to be a weakly dominant strategy for
each agent in N: In contrast, the classes of games identi�ed in Pycia and Troyan (2017)

and Bade and Gonczarowski (2017) are large and many games in those classes would not

OSP-implement the given f but another SCF. Hence, the question of which game has

to be used to OSP-implement a particular SCF f remains open, although their results

may help because they delimit the class of games within which to look for. Second, if

f is not OSP (but this is still unknown to the designer) one ought to check that each

game in their respective class does not OSP-implement f; and this may not be easy.

In addition, Pycia and Troyan (2017) and Bade and Gonczarowski (2017) results say

respectively that if a game OSP-implements a SCF, then there exists a multipede game

or a gradual mechanism (or a proto-dictatorship game for the case of two alternatives)

that does as well. Our characterizations in Propositions 1, 2 and 3 however give necessary

and su¢ cient conditions on the SCFs that are OSP-implementable, and those conditions

can be checked directly on the SCF under consideration and not on the game. Moreover,

our proofs of Propositions 1 and 2 are constructive; that is, they give a procedure to

construct an extensive game form that OSP-implements the SCF. Examples 1 and 2, and

their respective Figures 2 and 4, illustrate these points.
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The game in Figure 2 is indeed a multipede and proto-dictatorship game. How-

ever, consider the game in Figure 6, which is obtained from Figure 2 by exchanging

at node z3 the y and the x choices of agent 3, because now the y choice �nishes the

game with outcome y while the x choice moves the game to node z4, and everything

else remains the same. The new game is also multipede and proto-dictatorship but

now it OSP-implements another SCF, the one whose associated committee is bLx =
ff1g; f2; 3; 4g; f2; 3; 5; 6; 7; 8g; f2; 3; 5; 6; 7; 9gg; which satis�es also the IOI property (by
the order 2; 3; 5; 6; 7). Our proof tells us, given a committee associated to an EMVR, how

to construct the (multipede and proto-dictatorship) game that OSP-implements it.

The game in Figure 4 is neither multipede nor gradual. Theorem 2 in Pycia and

Troyan (2017) characterizing multipede games does not apply to the problem of a linearly

ordered set with single-peaked preferences because the general conditions on preferences

in their general model imply the universal domain of preferences, when the cardinality of

the set of alternatives is larger than or equal to three.28 It is not gradual because at node

z�+2 agent 2, by playing the strategy �2(z�+2 ) = �2(z
x+
2 ) = x, can force the outcome to be

x, regardless of the other agents�strategies. But agent 2 does not have a choice at z�+2
inducing immediately outcome x. Our design of the game in Figure 4 comes from the

description of the GMVS as a sequence of EMVRs satisfying (in this case) the (L-IOI)

property. However, the game can be modi�ed into a gradual one, as the one depicted in

Figure 7.
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This game is a dictatorship with safeguards against extremism with proto-dictatorship

games added to the non-terminal nodes z14 and z
2
4 (this is what Bade and Gonczarowski

28Hence, the game depicted in Figure 4 illustrates why the general conditions (a) and (b) on preferences

in Pycia and Troyan (2017) can not be dispensed for their Theorem 2 to hold.
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(2017) call �arbitration�). Together, and only together, agents 4 and 5 are also playing

a safeguard role against the extremes � (by sharing the power to induce jointly x at the

subgame starting at z14) and � (by sharing the power to induce jointly x at the subgame

starting at z24). The general message that Bade and Gonczarowski (2017) tries to convey is

that in the limit, with a continuum of possible alternatives, dictatorships with safeguards

against extremism (without arbitration via proto-dictatorships) are the unique OSP and

onto SCFs. Our Proposition 2 characterizes, for a discrete and �nite set of linearly ordered

alternatives, the subclass of SCFs on the single-peaked domain that are OSP; and the

characterization is based on the description of the SCFs as GMVSs whose associated left

and right coalition systems satisfy respectively the (L-IOI) and (R-IOI) properties. Of

course, the proofs of Theorem 5.1 in Bade and Gonczarowski (2017) and our Proposition

2 are very di¤erent because they are based on two alternative descriptions of the SCFs

under consideration.

We want to emphasize that our statements in Propositions 1 and 2 do not refer explic-

itly to either ontoness or unanimity, although the SCF under consideration has to be onto,

perhaps relative to a subset of alternatives and corresponding subdomains of preferences

obtained from the range of the original and non-onto SCF that we are interested in (see

footnotes 18 and 23).

We want to �nish by referring to two other settings where the class of all strategy-

proof and onto social choice functions are based on the majority principle. The �rst one

is the multidimensional extension of the single-peaked model studied by Barberà, Gul

and Stacchetti (1993). In this case, the family of multidimensional generalized median

voter schemes coincides with the class of strategy-proof and onto social choice functions

on the domain of multidimensional single-peaked preferences. The second setting is the

one where voting by committees (studied in Barberà, Sonnenschein and Zhou (1991))

are used to collectively select a subset, from a given set of objects K. The family of

voting by committees constitute the class of all strategy-proof and onto social choice

functions, mapping pro�les of separable preferences (over 2K) into the family 2K . They

are also based on the extension of the majority principle, applied to each object in order

to decide whether or not the object belongs to the chosen subset, at a given preference

pro�le. However, neither multidimensional generalized median voter schemes nor voting

by committees are e¢ ciency and hence, they are not weak group strategy-proof. Then, by

Proposition 1 in Li (2017), which states that obviously strategy-proofness implies weak

group strategy-proofness, they are not obviously strategy-proof.
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7 Appendix

7.1 Proof of Proposition 1

Proposition 1 A SCF f : P ! fx; yg is OSP if and only if f is an EMVR whose

committee Lx satis�es IOI.

Proof of Proposition 1 To prove necessity, assume that f is OSP, and hence f is SP.

By (3.1) in Remark 3, f is an EMVR. Let Lx be its associated committee for x and �x
k 2 f1; : : : ; ng. Denote by Sk the intersection of minimal winning coalitions of cardinality
k; namely,

Sk =
T
S2Lkx

S:

We start with a recursive de�nition and two key results, stated in Lemma 1 below. De�ne

�rst r1 = minfjSj j S 2 Lmx and jSj > 1g and for t 2 f2; : : : ; Tg; given rt�1, de�ne
recursively rt = minfjSj j S 2 Lmx and jSj > rt�1g:29

Lemma 1 Let f be OSP and let Lx be its associated committee for x. Then, for all
t 2 f1; : : : ; Tg; the following two statements hold.
(1.1) If jLrtx j � 2; then jSrtj = rt � 1 and Srt � Srt0 for all t0 > t:
(1.2) If jLrtx j = 1; then there exists jt 2 Srt such that Srtnfjtg � Srt0 for all t0 > t:
Proof (1.1) Let t 2 f1; : : : ; Tg be such that jLrtx j � 2 and assume jSrtj < rt� 1: Then,
there exist S; S 0; S 00 2 Lrtx (where S 0 and S 00 may be the same set, for instance whenever
jLrtx j = 2) and j0; j00 2 S such that j0 2 SnS 0 and j00 2 SnS 00: De�ne S� = S \ S 0 \ S 00

and S = S [ S 0 [ S 00: Note that S� could be empty and that, since S� � Snfj0; j00g;
jS�j < rt � 1 and SnS� 6= ;: Let P xi and P

y
i be the two preferences such that xP

x
i y and

yP yi x; respectively. When agent i�s preference is P
w
i ; we will say that i votes for w: De�ne

the subdomain eP = eP1 � � � � � ePn where for all i 2 S�; ePi = fP xi g; for all i 2 NnS;ePi = fP yi g and for all i 2 SnS�; ePi = fP xi ; P yi g: Assume that f : P ! fx; yg is OSP. Letef be the restriction of f on eP : Then, by Remark 1, ef is OSP. Let � 2 G be a pruned
game that OSP-implements ef . Since � induces ef and ef is not constant, there exists an
information set at which a player has available two actions. Let i 2 N be the agent who

�rst faces this situation, and let Ii be this information set. Since � induces ef , i 2 SnS�:
Fix a pro�le P 2 eP and assume t(Pi) = x: Since � induces ef , for all z 2 Ii;

fw 2 X j w = g(z�(z; (�Pii ; ��i))) for some ��ig = fx; yg:

To see that x belongs to this set, observe that there is a pro�le in the subdomain where

all agents in S vote for x; and this is a winning coalition for x: To see that y belongs

to this set, observe that there is a pro�le in the subdomain where only the agents in

29For the committee Lx in Example 1, r1 = 2 and r2 = 5:
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S� [ fig vote for x; but this is not a winning coalition for x; because S� [ fig ( S or

S� [ fig ( S 0 or S� [ fig ( S 00; where the strict inclusions follow from jS�j < rt � 1 and
jSj = jS 0j = jS 00j = rt:
Now, let �0i 2 �i be such that �0i = �

P yi
i . Hence, �

Pi
i (z) 6= �0i(z); because � is pruned.

Then, as i is the agent who �rst has a node z 2 Ii with two available actions; z 2 Ii 2
�(�Pii ; �

0
i): Now, as t(P

0
i ) = fyg and since � induces ef , for all z 2 Ii;

fw 2 X j w = g(z�(z; (�0i; ��i))) for some ��ig = fx; yg:

Then, for all z 2 Ii

max
Pi
fw 2 X j w = g(z�(z; (�0i; ��i))) for some ��ig = max

Pi
fx; yg;

min
Pi
fw 2 X j w = g(z�(z; (�Pii ; ��i))) for some ��ig = min

Pi
fx; yg

and maxPifx; ygPiminPifx; yg: Thus, �Pii is not obviously dominant in �, and so � does

not OSP-implement ef , a contradiction.
Assume now that t 2 f1; : : : ; Tg is such that jLrtx j � 2, jSrtj = rt�1 and Srt * Srt0 for

some t0 > t: Hence, there exists i 2 SrtnSrt0 ; implying that there exists S 0 2 L
rt0
x such that

i =2 S 0: Let S; S 00 2 Lrtx be two distinct coalitions, which they do exist because jLrtx j � 2.
Since S 0 and S 00 are minimal winning, there exists j 2 SnS 00 such that j 6= i because

i 2 Srt : De�ne S� = S \ S 0 \ S 00 and S = S [ S 0 [ S 00; and note that, since S� � Snfi; jg;
jS�j < rt � 1 and SnS� 6= ;: By following an argument similar to the one already used,
we obtain a contradiction.

(1.2) Let t 2 f1; : : : ; Tg be such that jLrtx j = 1: We �rst show that the following two
claims hold.

Claim 1 There exists jt 2 Srt such that Srtnfjtg � Srt+1 :
Proof of Claim 1 Assume there exist i; j 2 Srt such that i; j =2 Srt+1 . Since Lrtx =
fSrtg; Srt is a minimal winning coalition. Hence, there exist S 0; S 00 2 Lrt+1x such that

i =2 S 0 and j =2 S 00: De�ne S� = Srt \ S 0 \ S 00 and S = Srt [ S 0 [ S 00; and note that, since
S� � Srtnfi; jg; jS�j < rt� 1 and SnS� 6= ;: By following an argument similar to the one
already used, we obtain a contradiction. �

Claim 2 There exists S 00 2 Lrt+1x such that jt =2 S 00, where jt is the agent identi�ed in
Claim 1.

Proof of Claim 2 Assume jt 2 S for all S 2 Lrt+1x : Then, by Claim 1, Srt � Srt+1 :
Hence, Srt ( S for all S 2 Lrt+1x ; which is a contradiction with Srt 2 Lmx , which follows
from jLrtx j = 1: �

To proceed with the proof of (1.2), assume that there exists t0 > t + 1 such that

Srtnfjtg * Srt0 : Then, there exist j 2 Srtnfjtg and S 0 2 L
rt0
x such that j =2 S 0: By Claim 2,
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there exists S 00 2 Lrt+1x such that jt =2 S 00: De�ne S� = Srt \S 0 \S 00 and S = Srt [S 0 [S 00;
and note that, since S� � Srtnfj; jtg; jS�j < rt� 1 and SnS� 6= ;: Following an argument
similar to the one already used, we obtain a contradiction. And this �nishes the proof of

Lemma 1. �
Before proceeding with the proof of necessity, de�ne, for each t 2 f1; : : : ; Tg; the set

Qt =

(
Srt if jLrtx j � 2
Srtnfjtg if jLrtx j = 1;

where jt is the agent identi�ed in Claim 1. It is easy to check that, by Lemma 1,

Q1 � Q2 � � � � � QT ; (5)

Qt � S for all S 2 Lrtx and all t 2 f1; : : : ; Tg (6)

and

jQtj = rt � 1 for all t 2 f1; : : : ; Tg: (7)

We want to show that Lx satis�es IOI. By (5) and (7), we can write, for all t 2
f1; : : : ; Tg, the set Qt as

Qt = fi1; : : : ; ir1�1; ir1 ; : : : ir2�1; ir2 ; : : : ; ir3�1; : : : ; irt�1 ; : : : ; irt�1g: (8)

Consider the order

i1; : : : ; ir1�1; ir1 ; : : : ir2�1; ir2 ; : : : ; ir3�1; : : : ; irt�1 ; : : : ; irt�1; : : : ; irT�1 ; : : : ; irT�1; (9)

and note that it is not necessarily unique since any reordering of the agents inside each

Qt in (9) is arbitrary and it would also allow us to follow the argument below.

Consider S 2 Lrtx for some t � 1: Then, by (6), Qt � S; implying that

fi1; : : : ; ir1�1; ir1 ; : : : ir2�1; ir2 ; : : : ; ir3�1; : : : ; irt�1 ; : : : ; irt�1g � S;

which means that Lx satis�es IOI with respect to the order in (9). This �nishes the proof
of necessity.

To prove su¢ ciency, assume Lx satis�es IOI; namely, there exists an order of distinct
agents i1; : : : ; iK such that for all k > 1;

if S 2 Lkx then fi1; : : : ; ik�1g � S:

Using the notation established in the proof of necessity and, by (9) letting K = rT �1,
de�ne the following subsets of agents:30

Xx
0 = fi 2 N j fig 2 Lxg;
Y x1 = fi1; : : : ; ir1�1g;
Xx
1 = fi 2 Nn (Xx

0 [ Y x1 ) j there exists S 2 Lr1x such that i 2 Sg;
30We use the superscript x in the notation of these sets because later on we will need to de�ne the

corresponding sets for the committee Ly; for which we will use then the superscript y:
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for 1 < t < T ,

Y xt = firt�1 ; : : : ; irt�1g:
Xx
t = fi 2 Nn[(

S
t0<t

Xx
t0) [ (

S
t0�t
Y xt0 )] j there exists S 2 Lrtx such that i 2 Sg;

and

Y xT = firT�1 ; : : : ; irT�1g;
Xx
T = fi 2 Nn[(

S
t0<T

Xx
t0) [ (

S
t0�T

Y xt0 )] j there exists S 2 LrTx such that i 2 Sg:

We now construct an extensive game form with perfect information �(x; y;Lx).31 Each
agent only plays once, following the ordering given by the (obvious) order of agents in-

duced by the sequence of sets Xx
0 ; Y

x
1 ; X

x
1 ; : : : ; Y

x
t ; X

x
t ; : : : ; Y

x
T ; X

x
T : Denote this order by

j1; : : : ; jn:
32 De�ne the set of non-terminal nodes ZNT by assigning each agent i in the or-

der to a non-terminal node zi; in such a way that if i goes earlier in the order than j; then

zi � zj: At each zi 2 ZNT ; agent i 2 N has available the set of actionsA(zi) = fx; yg: Look
at any agent jh in the order with 1 � h < n: If jh 2 Xx

t ; for t = 0; : : : ; T; and �jh(zjh) = x;

then the history (zjh ; �jh(zjh)) = z is a terminal node and set g(z) = x: If �jh(zjh) = y

then the history (zjh ; �jh(zjh)) = zjh+1 is a non-terminal node at which agent jh+1 plays.

If jh 2 Y xt ; for t = 1; : : : ; T; and �jh(zjh) = y; then the history (zjh ; �jh(zjh)) = z is a

terminal node and set g(z) = y: If �jh(zjh) = x then the history (zjh ; �jh(zjh)) = zjh+1
is a non-terminal node at which agent jh+1 plays. Look now at agent jn, the last in the

order. Then, the history (zjn ; �jn(zjn)) = z is a terminal node, independently of whether

�jn(zjn) = x (in which case set g(z) = x) or �jn(zjn) = y (in which case set g(z) = y).

And this �nishes the de�nition of �(x; y;Lx) (Figure 2, at the end of the statement of
Proposition 1, depicts �(x; y;Lx) for the case of the committee Lx of Example 1).
For each P 2 P, let �P = (�P11 ; : : : ; �Pnn ) 2 � be the truth-telling pro�le of strategies

in �(x; y;Lx); i.e., for all i 2 N; �Pii (zi) = x if and only if t(Pi) = x; where zi denotes the
unique node at which agent i has to play at �(x; y;Lx). It is easy to see that �(x; y;Lx)
induces f since f(P ) = g(z�(z0; �P )) for arbitrary P 2 P :We want to show that, for each
agent i, �Pii is obviously dominant in �(x; y;Lx): Fix jh 2 N; and suppose jh is called to
play. We distinguish between two cases.

Case 1: jh 2 Xx
t for some t = 0; : : : ; T: Assume �rst that t(Pjh) = x; and so �

Pjh
jh
(zjh) = x:

Then, (zjh ; �
Pjh
jh
(zjh)) = z 2 ZT and g(z) = x = t(Pjh): Hence, �

Pjh
jh

is trivially obviously

31Remember that there may be many such games because agents belonging to the sets Xx
0 and Y

x
t s

can be freely ordered. The orderings inside the sets Xx
t s are determined by the sequence i1; : : : ; iK which

also may not be unique.
32Without loss of generality we are assuming that no agent is dummy in Lx; otherwise, the obtained

sequence would be j1; : : : ; jn0 ; with n0 < n; and we would proceed by setting Zi = ; for any dummy i; so
that i would not play at �(x; y;Lx):
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dominant for jh. Suppose now that t(Pjh) = y; and let �
0
jh
be the strategy �0jh(zjh) = x:

Then, (zjh ; �
0
jh
(zjh)) = z 2 ZT and g(z) = x; which is the worst alternative according to

Pjh : Hence, �
Pjh
jh

is obviously dominant for jh.

Case 2: jh 2 Y xt for some t = 1; : : : ; T: Assume �rst that t(Pjh) = y; and so �
Pjh
jh
(zjh) = y:

Then,(zjh ; �
Pjh
jh
(zjh)) = z 2 ZT and g(z) = y = t(Pjh): Hence, �

Pjh
jh

is trivially obviously

dominant for jh. Suppose now that t(Pjh) = x; and let �
0
jh
be the strategy �0jh(zjh) = y:

Then, (zjh ; �
0
jh
(zjh)) = z 2 ZT and g(z) = y; which is the worst alternative according to

Pjh : Hence, �
Pjh
jh

is obviously dominant for jh. �

7.2 Proof of Proposition 2

Proposition 2 A SCF f : SP ! X is OSP if and only if f is a GMVS whose

associated left and right coalition systems, fLxgx2X and fRxgx2X ; satisfy the following
two properties:

(L-IOI) For every � > x � x1 � 1; there exists ix 2 N such that Lx satis�es IOI with
respect to ix and fixg 2 Lx+1:
(R-IOI) For every � < x � x1 + 1; there exists ix 2 N such that Rx satis�es IOI with

respect to ix and fixg 2 Rx�1:

The proof of Proposition 2 will require, at each x 2 X and each k 2 f2; : : : ; ng,
to look at the family of minimal winning coalitions of cardinality k; as well as at their

intersections. Given x 2 X and k 2 f1; : : : ; ng; denote by

Lk(x) = fS 2 Lmx j jSj = kg and Rk(x) = fS 2 Rm
x j jSj = kg

the respective families of minimal winning coalitions with cardinality k 2 f1; : : : ; ng; and
let

SLk (x) =
\

S2Lk(x)

S and SRk (x) =
\

S2Rk(x)

S

be their intersections.33 We say that k is a non-empty left-cardinality at x; written

k 2 NEL(x); if Lk(x) 6= ; and k � 2; and similarly, we say that k is a non-empty

right-cardinality at x; written k 2 NER(x); if Rk(x) 6= ; and k � 2:

Proof of Proposition 2 To prove necessity, assume f : SP ! X is OSP. To obtain

a contradiction, suppose �rst that (L-IOI) does not hold. We distinguish between two

cases.

Case 1: There exists x 2 X such that x � x1 � 1 and Lx does not satisfy IOI. Since
L� satis�es IOI trivially, x < �: De�ne bN =

S
S2Lmx S and

bLmx = Lmx . For i 2 bN; let
33At the beginning of Subsection 4.2, we have already de�ned Lk(x) as Lkx; but we now change slightly

the notation to write it in the context also of many committees and right coalition systems.
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gSP i be i�s subset of single-peaked preferences whose tops are either x or x + 1; and for
i 2 Nn bN let gSP i be i�s subset of single-peaked preferences whose top is x + 1: De�negSP =gSP1�� � ��gSPn and consider the SCF ef :gSP ! fx; x+1g which is the restriction
of f in the subdomaingSP. Since, by assumption, bLmx does not satisfy IOI, Proposition
1 implies that ef :gSP ! fx; x + 1g is not OSP and, by Remark 1, f : SP ! X is not

OSP-implementable, a contradiction.

Case 2: Assume Lx satis�es IOI for all x � x1 � 1, but there exists bx � x1 � 1 such that
for all ibx such that Lmbx satis�es IOI with respect to ibx; fibxg =2 Lbx+1: Since for all i 2 N;
fig 2 L1(�); we have that bx < �: Furthermore, if jSj = 1 for all S 2 Lmbx , then there
exists i such that fig 2 Lmbx which, by the monotonicity property in the de�nition of a left
coalition system, requires that fig 2 Lmbx+1: Furthermore Lmbx satis�es IOI with respect to
i trivially; in contradiction with our contradiction hypothesis: Hence,

fT 2 Lmbx j jT j � 2g 6= ;: (10)

Denote by F (Lbx) the set of agents for whom Lbx satis�es IOI with respect to each
of them; namely, F (Lbx) = fi 2 N j Lbx satis�es IOI with respect to ig: By assumption
F (Lbx) 6= ;: Let x0 = minfx 2 X jthere exists ibx 2 F (Lbx) and fibxg 2 Lxg and let i�bx be
one of the agents in F (Lbx) such that fi�bxg 2 Lx0. By de�nition of x0; and the contradiction
hypothesis, bx+1 < x0 (note that x0 may be equal to �) and for all ibx 2 F (Lbx), fibxg =2 Lmex
for all ex < x0: Since bx � x1 � 1; and the de�nition of x1; there exists i� such that
fi�g 2 Lbx+1 (note that bx + 1 � x1): Since fig =2 Lbx+1 for all i 2 F (Lbx); we have that
i� =2 F (Lbx): Moreover, because Lbx satis�es IOI and i� =2 F (Lbx); by (10), there exists
S 2 fT 2 Lmbx j jT j � 2g such that i� =2 S: As i�bx 2 T

k2NEL(x) S
L
k (bx); i�bx 2 S and

there exists j 6= i�bx such that j 2 S. Given i�; j; i�bx 2 N and S we de�ne a Cartesian

product subset of the set of all single-peaked preference pro�les as follows. LetgSP i� be
i��s subset of single-peaked preferences whose tops are either bx + 1 or x0: For i 2 fj; i�bxg
let gSP i be i�s subset of single-peaked preferences whose tops are either bx or x0: For
i 2 Snfj; i�bxg letgSP i be i�s subset of single-peaked preferences whose top is bx. Finally,
for i 2 Nn(S [ fi�g) let gSP i be i�s subset of single-peaked preferences whose top is x0:
De�negSP =gSP1 � � � � �gSPn and consider the SCF ef :gSP ! fbx; bx+ 1; x0g which is f
restricted to this subdomaingSP. As f is OSP, by Remark 1, ef is OSP. Let � be a pruned
game that OSP-implements ef: Since � induces ef and ef is not constant, there exists an
information set at which a player has available two actions. It is clear that such agent

belongs to the set fi�; j; i�bxg:
Assume i� is the agent who �rst has a node z 2 Ii� with at least two available actions

in � and suppose that t(Pi�) = bx+1 and x0Pi�bx: Then, since fi�g 2 Lmbx+1 and i� =2 S 2 Lmbx ;
for all z 2 Ii�,

min
Pi�
fx 2 X j x = g(z�(z; (�Pi�i� ; ��i�))) for some ��i�g = min

Pi�
fbx; bx+ 1g = bx: (11)
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Now, let �0i� 2 �i� be such that �0i� = �
P 0
i�
i� ; where t(P

0
i�) = x

0. Remember that since �

is pruned, agent i� only has at � strategies associated to single-peaked preferences whose

tops are either bx+ 1 or x0. Hence, �Pi�i� (z) 6= �0i�(z) because � induces the tops-only SCFef . Then, as i� is the agent who �rst has a node z 2 Ii� with at least two available actions;
z 2 Ii� 2 �(�Pi�i� ; �0i�) and by the de�nitions of x0; Pi� andgSP; for all z 2 Ii� ;

max
Pi�
fx 2 X j x = g(z�(z; (�0i� ; ��i�))) for some ��i�g = max

Pi�
fbx; x0g = x0: (12)

But again, x0Pi�bx and conditions (11) and (12) imply that �Pi�i� is not obviously dominant

in �, contradicting that � OSP-implements ef:
Assume now that agent j0 2 fi�bx; jg is the agent who �rst has a node z 2 Ij0 with at

least two available actions in � and suppose that t(Pj0) = bx: Then, since S 2 Lmbx implies
S 2 Lmbx+1; by single-peakedness of Pj0 and the de�nition ofgSP; for all z 2 Ij0 ;
min
Pj0
fx 2 X j x = g(z�(z; (�Pj0j0 ; ��j0))) for some ��j0g = min

Pj0
fbx; bx+ 1; x0g = x0: (13)

Now, let �0j0 2 �j0 be such that �0j0 = �
P 0
j0
j0 ; where t(P

0
j0) = x0. Remember that since �

is pruned, agent j0 only has at � strategies associated to single-peaked preferences whose

tops are either bx or x0. Hence, �Pj0j0 (z) 6= �0j0(z) because � induces the tops-only SCF ef:
Then, as j0 is the agent who �rst has a node z 2 Ij0 with at least two available actions;
z 2 Ij0 2 �(�

Pj0
j0 ; �

0
j0) and by de�nitions of x

0; P 0j0 andgSP, for all z 2 Ij0 ;
max
Pj0
fx 2 X j x = g(z�(z; (�0j0 ; ��j0))) for some ��j0g = max

Pj0
fbx+ 1; x0g = bx+ 1: (14)

By single-peakedness of Pj0, bx+1Pj0x0; which together with conditions (13) and (14) imply
that �

Pj0
j0 is not obviously dominant in �, contradicting that � OSP-implements ef . Hence,

(L-IOI) holds.

Now we prove that (R-IOI) holds. Since (L-IOI) holds, by Lemma 2 (in Case 3 below),

there exists i 2 N such that fig 2 Rm
x1
: Then, the largest alternative for which the right

coalition system has a decisive agent is equal to or larger than x1: Now the proof that

(R-IOI) holds follows a symmetric argument to the one used to show that (L-IOI) holds.

To prove su¢ ciency, assume f : SP ! X is a GMVS whose associated left and right

coalition systems, fLxgx2X and fRxgx2X , satisfy (L-IOI) and (R-IOI), respectively. We
distinguish among three cases, depending on whether x1 = � (case 1), x1 = � (case 2) or

x1 =2 f�; �g (case 3). In the three cases the game constructed in the su¢ ciency proof of
Proposition 1 will play a fundamental role, since a GMVS f may be seen as a sequence of

EMVRs, each between x and x+1 , when f is described as a left coalition system (with the

associated game �(x; x+1;Lx)), or a sequence of EMVRs, each between x and x�1; when
f is described as a right coalition system (with the associated game �(x; x � 1;Rx)). If

x1 2 f�; �g only one of the two sequences will be needed in the construction of the overall
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�; while if x1 =2 f�; �g we will have to consider �(x1; x1 + 1;Lx1); : : : ;�(� � 1; �;L��1)
and �(x1; x1� 1;Rx1); : : : ;�(�+1; �;R�+1): The choice of whether the game � proceeds

by following the �rst or the second sequence will depend on a particular agent that will

simultaneously be left-decisive and right-decisive at x1; and that we will identify in Lemma

2 (in Case 3 below).

Case 1: x1 = �: Suppose that for all � � x < �; Lx satis�es IOI with respect to ix

and fixg 2 Lx+1: We de�ne a game � by considering the sequence of games �(�; � +
1;L�);�(� + 1; � + 2;L�+1); : : : ;�(� � 1; �;L��1) de�ned in the proof of Proposition 1,
where for each � � x < �; the �rst agents to play at the game �(x; x+ 1;Lx) are the set
of decisive agents at x (i.e., the set Xx

0 in the notation used in the proof of Proposition

1), with any ordering, but making sure that for each � < x < �; agent ix is the agent

that plays immediately after the decisive agents in x (i.e., ix 2 Y x1 in the notation used
in the proof of Proposition 1 and among the set of agents in Y x1 ; i

x is the �rst agent to

play). We will write g(zx+(:; :)) instead of g(z�(x;x+1;Lx)(:; :)):We now proceed to describe

the details of the steps used to de�ne �:

The set of agents in N� = [S2Lm� S play the game �(�; � + 1;L�). In this game, each
i 2 N� plays only once. Let z�+i 2 Z�(�;�+1;L�) be the node at which i plays, where i
has available the set of actions A(z�+i ) = f�; � + 1g: For each i 2 N�; we denote by
a�+i 2 f�; �+1g the action chosen by i at z�+i in �(�; �+1;L�) and by a�+ = (a�+i )i2N�
the pro�le of actions.34 Abusing notation, let z�+0 be the node assigned to the �rst agent

playing in �(�; � + 1;L�). Then, we make sure that the following three properties of �
hold, regarding the outcome of �(�; �+ 1;L�).
First, if g(z�+(z�+0 ; a�+)) = �; then the overall game � ends and the outcome is �:

Second, if g(z�+(z�+0 ; a�+)) = �+ 1 and a�+i� = �; then the overall game ends and the

outcome is �+ 1:

Third, if g(z�+(z�+0 ; a�+)) = �+1 and a�+i� 6= �; then agents in N�+1 = [S2Lm�+1S play
the game �(�+1; �+2;L�+1); whose initial node is this terminal node of �(�; �+1;L�):
In this game �(�+1; �+2;L�+1), each agent i 2 N�+1 plays only once. Let z(�+1)+i 2

Z�(�+1;�+2;L�+1) be the node at which i plays. Then, agents in DeL�+1 play in any order

and they are immediately followed by agent i�+1 (such agent exists since L�+1 satis�es
(L-IOI) with respect to i�+1 and i�+1 2 DeL�+2): Each agent i 2 N�+1 has available at
z
(�+1)+
i the set of actions A(z(�+1)+i ) = f� + 1; � + 2g: For each i 2 N�+1; we denote
by a(�+1)+i 2 f� + 1; � + 2g the action chosen by i in �(� + 1; � + 2;L�+1) and by
a(�+1)+ = (a

(�+1)+
i )i2N�+1 the pro�le of actions. Abusing notation, let z

(�+1)+
0 be the node

assigned to the �rst agent playing in �(�+ 1; �+ 2;L�+1): Then, we make sure that the
following three properties of � hold, regarding the outcome of �(�+ 1; �+ 2;L�+1):
34We are de�ning the (behavioral) strategies in the full game � by specifying the actions taken by

agents at each of the games induced by their corresponding EMVRs.
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First, if g(z(�+1)+(z�+10 ; a(�+1)+)) = � + 1; then the overall game � ends and the

outcome is �+ 1:

Second, if g(z(�+1)+(z�+10 ; a(�+1)+)) = �+2 and a(�+1)+i�+1 = �+1; then the overall game

� ends and the outcome is �+ 2:

Third, if g(z(�+1)+(z�+10 ; a(�+1)+)) = �+2 and a(�+1)+i�+1 6= �+1; then agents in N�+2 =
[S2Lm�+2S play the game �(�+2; �+3;L�+2); whose initial node is this terminal node of
�(�+ 1; �+ 2;L�+1):
We continue with the construction of � in the same way for each x 2 f�; : : : ; � � 2g;

if any. Let zx+0 the node assigned to the �rst agent playing in the game �(x; x + 1;Lx):
Identify the ordering of play and the set of available actions as in the previous cases

and, in particular, make sure that the following three properties of � hold, regarding the

outcome of �(x; x+ 1;Lx):
First, if g(zx+(zx+0 ; a

x+)) = x; then the overall game � ends and the outcome is x:

Second, if g(zx+(zx+0 ; a
x+)) = x + 1 and ax+ix = x; then the overall game � ends and

the outcome is x+ 1:

Third, if g(zx+(zx+0 ; a
x+)) = x+ 1 and ax+ix 6= x; then agents in Nx+1 = [S2Lmx+1S play

the game �(x+1; x+2;Lx+1); whose initial node is this terminal node of �(x; x+1;Lx):
Finally, when ��1 is reached, agents inN��1 = [S2Lm��1S play the game �(��1; �;L�)

starting at z��10 with the feature that the following two properties hold.

First, if g(z(��1)+(z��10 ; a(��1)+)) = � � 1; then the overall game � ends and the
outcome is � � 1:
Second, if g(z(��1)+(z��10 ; a(��1)+)) = �; then the overall game � ends and the outcome

is �:

Let � be the extensive game form just constructed. Since all information sets are

singletons, � has perfect information. Fix x < � and let i 2 N be arbitrary. If i 2 Nx;
then there exists one and only one node in �(x; x+1;Lx) at which agent i plays. We have
denoted this node by zx+i : Again, for an arbitrary i 2 N; let Ai = fx 2 X j i 2 Nxg be
the set of such x�s at which i is called to play at zx+i in �(x; x + 1;Lx): If Ai = ; then i
is a dummy agent in all committees (i.e., for all x < �; i =2 S for all S 2 Lmx ) and Zi = ;
in �: But then, i�s truth-telling strategy is trivially obviously dominant. For each agent

i 2 N; a strategy �i : Zi ! A in � is a function that, for each zx+i with x 2 Ai; selects an
action in A(zx+i ) = fx; x+ 1g (i.e., �i(zx+i ) 2 fx; x+ 1g).
For P 2 SP, let �P = (�P11 ; : : : ; �

Pn
n ) 2 � be the pro�le of truth-telling strategies;

namely, for all x 2 X, all i 2 Nx; and all zx+i 2 Zi, �Pii (zx+i ) = x if and only if t(Pi) � x
(and hence, �Pii (z

x+
i ) = x+ 1 if and only if t(Pi) � x+ 1).

Let f : SP ! X be a GMVS whose left coalition system has the property that

x1 = �: Then, it is easy to see that � induces f : SP ! X since for all P 2 SP,
f(P ) = g(z�(z0; �

P )).
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We want to show that, for each i, �Pii is obviously dominant in �: Fix i 2 N and

let �0i be any strategy of i with the property that �
0
i 6= �Pii . Denote by z�x+i the earliest

point of departure for �Pii and �0i; i.e., �
Pi
i (z

x+
i ) = �0i(z

x+
i ) for all x < �x with x 2 Ai

and �Pii (z
�x+
i ) [ �0i(z�x+i ) = f�x; �x + 1g: We proceed by distinguishing among several cases,

depending on the role of i with respect to the committee L�x:
Case 1.a: i 2 X �x+

t for some t = 0; : : : ; T , where X �x+
t corresponds to the set of agents

that by choosing �x in the game �(�x; �x + 1;L�x) it ends at �x (see the su¢ ciency proof of
Proposition 1).

Case 1.a.1: Assume �rst that t(Pi) � �x; and so �Pii (z
�x+
i ) = �x: Then, the node z that

follows zx+i after i plays �x has the property that z 2 ZT and

fx 2 X j x = g(z�(z�x+i ; (�Pii ; ��i))) for some ��ig = f�xg:

As z�x+i is the earliest point of departure for �Pii and �0i, �
0
i(z

�x+
i ) = �x+ 1: Hence,

fx 2 X j x = g(z�(z�x+i ; (�0i; ��i))) for some ��ig � f�x; : : : ; �g:

Therefore, since t(Pi) � �x and Pi is single-peaked, �Pii is obviously dominant.

Case 1.a.2: Assume now that �x < t(Pi); and so �
Pi
i (z

�x+
i ) = �x+1 and �

0
i(z

�x+
i ) = �x: By the

de�nition of �, the node z that follows z�x+i after i plays �x has the property that z 2 ZT
and

fx 2 X j x = g(z�(z�x+i ; (�0i; ��i))) for some ��ig = f�xg:

The last equality follows because if i 2 X �x+
t for some t = 0; : : : ; T , then i can induce �x by

choosing �x in the game �(�x; �x + 1;L�x), which means that �x is the outcome of � as well.
However,

fx 2 X j x = g(z�(z�x+i ; (�Pii ; ��i))) for some ��ig � f�x; : : : ; t(Pi)g;

where the last inclusion follows because, according to the hypothesis of Case 1.a, either

(i) i 2 X �x+
0 or else (ii) i 2 X �x+

t for some t � 1: If (i) holds, fig 2 Lx0 for all x0 � �x; and

thus g(z�(z�x+i ; (�
Pi
i ; ��i)) will not be larger than t(Pi): If (ii) holds, observe that when i

is called to play at z�x+i , agent i
�x (who plays before i in �(�x; �x+1;L�x) because is the �rst

agent in Y �x
1 ) has already chosen the action �x in z

�x+
i . Then, the outcome of the game is �x

or �x+ 1 and �x+ 1 � t(Pi) in this case.
Case 1.b: i 2 Y �x+

t for some t = 1; : : : ; T , where Y �x+
t corresponds to the set of agents that

by choosing �x+1 in the game �(�x; �x+1;L�x) it ends at �x+1 (see the su¢ ciency proof of
Proposition 1).

Case 1.b.1: Assume �rst that �x < t(Pi): Thus, �
Pi
i (z

�x+
i ) = �x + 1 and �0i(z

�x+
i ) = �x: We

distinguish between two cases, depending on i�s identity.
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Case 1.b.1.1: i = i�x: Then, by (L-IOI) and the monotonicity property in the de�nition of

a left coalition system, fi�xg 2 Lmx0 for all x0 � �x+ 1: Therefore,

fx 2 X j x = g(z�(z�x+i ; (�Pii ; ��i))) for some ��ig = f�x+ 1; : : : ; t(Pi)g:

Furthermore, since �0i(z
�x+
i ) = �x;

fx 2 X j x = g(z�(z�x+i ; (�0i; ��i))) for some ��ig = f�x; �x+ 1g:

Then, since �x < �x+ 1 � t(Pi) and Pi is single-peaked, �Pii is obviously dominant.

Case 1.b.1.2: i 6= i�x: Then,

fx 2 X j x = g(z�(z�x+i ; (�Pii ; ��i))) for some ��ig = f�x+ 1g

and

fx 2 X j x = g(z�(z�x+i ; (�0i; ��i))) for some ��ig � f�x; �x+ 1g:

To see that the last statements hold, observe that when i is called to play at z�x+i , agent i
�x

(who plays before i in �(�x; �x+ 1;L�x)) has already chosen the action �x in z�x+i . Therefore,
and since �x < �x+ 1 � t(Pi) and Pi is single-peaked, �Pii is obviously dominant.

Case 1.b.2: Assume now that t(Pi) � �x: Thus, �Pii (z�x+i ) = �x and �0i(z�x+i ) = �x+ 1: Hence,

fx 2 X j x = g(z�(z�x+i ; (�0i; ��i))) for some ��ig � f�x+ 1; : : : ; �g:

Furthermore,

fx 2 X j x = g(z�(z�x+i ; (�Pii ; ��i))) for some ��ig � f�x; �x+ 1g:

Therefore, since t(Pi) � �x < �x+ 1 and Pi is single-peaked, �Pii is obviously dominant.

Case 2: x1 = �: Suppose that for all � < x � �; Rx satis�es IOI with respect to ix

and fixg 2 Rx�1: Now, the proof follows a symmetric argument to the one already used

in Case 1, using instead the right coalition system fRxgx2X and the sequence of games
�(�; � � 1;R�);�(� � 1; � � 2;R��1); :::;�(�+ 1; �;R�+1):

Case 3: x1 =2 f�; �g: We start by identifying an agent who is simultaneously left-decisive
and right-decisive at x1: Lemma 2 does that, but to state it we need some additional

notation. De�ne

SL(x1 � 1) =
T

k2NEL(x1�1)
SLk (x1 � 1)

and

SR(x1 + 1) =
T

k2NER(x1+1)
SRk (x1 + 1);

39



where recall that NEL(x) = fk 2 f2; : : : ; ng j Lk(x) 6= ;g; and the other sets needed
to de�ne SL(x1 � 1) and SR(x1 + 1) are NER(x) = fk 2 f2; : : : ; ng j Rk(x) 6= ;g;
SLk (x1 � 1) =

T
S2Lk(x1�1) S and S

R
k (x1 + 1) =

T
S2Rk(x1+1)

S:35

Lemma 2 Assume i 2 SL(x1 � 1) and fig 2 Lmx1 : Then,
(L2.1) fig 2 Rm

x1
;

(L2.2) either (a) i 2 SR(x1 + 1) if SR(x1 + 1) 6= ; or (b) fig 2 Rm
x1+1

; and

(L2.3) if S 2 Rm
x and i =2 S; then x � x1:

Proof of Lemma 2 Condition (L2.1) follows from i 2 SL(x1 � 1), the relationship
between the families of left and right coalition systems stated in Remark 4 and the de�ni-

tion of x1. To see that (L2.2) holds, observe that since fig 2 Lmx1 holds, Remark 4 implies
that i 2 T for every T 2 Rm

x1+1
; then, either (a) i 2 SR(x1 + 1) if SR(x1 + 1) 6= ; or (b)

fig 2 Rm
x1+1

follow. To see that (L2.3) holds, observe that since fig 2 Lmx1 holds, again
by Remark 4, i 2 T for every T 2 Rm

x for each x � x1 + 1: �

Since Lx1�1 satis�es (L-IOI) and by x1�s de�nition, there exists i1 2 N such that

i1 2 SL(x1 � 1) (i.e., Lx1�1 satis�es IOI with respect to the i1 and SL(x1 � 1) 6= ;) and
fi1g 2 Lx1 : By Lemma 2, fi1g 2 Rx1 as well. To de�ne a game � that OSP-implements

f; agent i1 is the �rst to play, at z0 (the initial node of �), and has available the following

three actions: A(z0) = fx1 � 1; x1; x1 + 1g: To continue with the construction of � we
describe the subgame (if any) that follows each of the three choices of i1 at z0.

(a) Agent i1 selects x1. Then, the overall game � ends and the outcome is x1:

(b) Agent i1 selects x1 + 1. Then, the game � proceeds with the sequence of games

�(x1; x1+1;Lx1); : : : ;�(�� 1; �;L��1) as described in Case 1 starting at x1 instead of �:
(c) Agent i1 selects x1 � 1. Then, the game � proceeds with the sequence of games

�(x1; x1 � 1;Rx1); : : : ;�(� + 1; �;R�+1) as described in Case 2 starting at x1 instead of

�:

Let � be the game described above and let P 2 SP be arbitrary. For any agent i 6= i1;
the reasons why �Pii (see its de�nition in Case 1) is obviously dominant in � are the same

to the ones already used to prove it in Cases 1 and 2, since when the game � proceeds into

either case (b) or (c) above it follows only one of the two corresponding sequences until

� ends. Now, consider agent i1: We want to show that agent i1�s truth-telling strategy

�
Pi1
i1
is also obviously dominant in �: Any strategy of agent i1 selects an action at z0 and

at a node in each of the games �(x; x + 1;Lx) for x1 � x < �; and �(x; x � 1;Rx) for

� < x � x1: In particular, agent i1�s truth-telling strategy �
Pi1
i1
is de�ned as follows: at

35To illustrate these sets, consider the left and right committees, Lx and Rx (where Rx was Ly in the
notation of Section 4), in Example 1 at the end of Section 4. Then, NEL(x) = f2; 5g; NER(x) = f2; 4; 5g;
SL(x) = f2g and SR(x) = f1g:
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z0;

�
Pi1
i1
(z0) =

8><>:
x1 � 1 if t(Pi1) < x1
x1 if t(Pi1) = x1
x1 + 1 if t(Pi1) > x1;

at any zx+i where x1 � x < �;

�
Pi1
i1
(zx+i1 ) =

(
x if t(Pi1) � x
x+ 1 if t(Pi1) > x;

and at any zx�i where � < x � x1;

�
Pi1
i1
(zx�i1 ) =

(
x if t(Pi1) � x
x� 1 if t(Pi1) < x:

To show that �Pii1 is obviously dominant in �; let �
0
i1
be any strategy of agent i1 with

the property that �0i1 6= �
Pi
i1
. Denote by z the earliest point of departure for �

Pi1
i1
and �0i1 :

If z 6= z0; then z 2 fzx+i1 ; z
x�
i1
g for some x. As we did in Case 1 (if z = zx+i1 ) and in Case 2

(if z = zx�i1 ), we can show that

min
Pi1

X
Pi1
+;�Ri1 max

Pi1

X 0
+;�; (15)

where X
Pi1
+;� = fx 2 X j x = g(z�(z; (�Pi1i1 ; ��i1))) for some ��i1g and X

0
+;� = fx 2 X j

x = g(z�(z; (�0i1 ; ��i1))) for some ��i1g: Assume z = z0 and suppose �rst that t(Pi1) = x1;
and so �

Pi1
i1
(z) = x1: Then,

fx 2 X j x = g(z�(z; (�Pi1i1 ; ��i1))) for some ��i1g = fx1g:

Since t(Pi1) = x1;

x1Ri1 max
Pi1

fx 2 X j x = g(z�(z; (�0i1 ; ��i1))) for some ��i1g: (16)

Suppose now that t(Pi1) < x1; and so �
Pi1
i1
(z) = x1 � 1: Then,

X
Pi1
0 = fx 2 X j x = g(z�(z; (�Pi1i1 ; ��i1))) for some ��i1g � ft(Pi1); : : : ; x1g: (17)

The inclusion follows from the de�nition of � and because, by Lemma 2 and the monotonic-

ity property in the de�nition of a right coalition system, fi1g 2 Rx for all x � x1. Since
�0i1(z) 6= x1 � 1, �0i1(z) 2 fx1; x1 + 1g: Then,

X 0
0 = fx 2 X j x = g(z�(z; (�0i1 ; ��i1))) for some ��i1g � fx1; : : : ; �g: (18)

The inclusion follows because x1 2 X 0
0 if �

0
i1
(z) = x1 and because X 0

0 � fx1; : : : ; �g
if �0i1(z) = x1 + 1; where this last inclusion follows again from the de�nition of � and
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because fi1g 2 Lx1 implies that, by the monotonicity property in the de�nition of a left
coalition system, fi1g 2 Lx for all x1 � x: By (17) and (18), single-peakedness of Pi1 and
t(Pi1) < x1;

min
Pi1

X
Pi1
0 Ri1 max

Pi1

X 0
0: (19)

Suppose that t(Pi1) > x1; and so �
Pi1
i1
(z) = x1+1: Then, the proof proceeds as in the above

case where t(Pi1) < x1: Hence, from (15), (16), and (19) (and the symmetric condition to

(19) when t(Pi1) > x1), �
Pi1
i1
is obviously dominant in �: �

7.3 Proposition 3 and its proof

The (L2-IOI) property stated below plays a crucial role to identify the property on the

left coalition system, that together with (L-IOI), characterize all GMVSs that are OSP

in terms only of its associated left coalition system.36

(L2-IOI) For every � < x � x1 � 1; Lx satis�es IOI and (i) there exists ix 2 N such that

fixg [ (
T
S2Lmx S) 2 L

m
x and (ii) ix 2 S for all S 2 Lmx�1:

By the monotonicity property in the de�nition of a left coalition system, Remark 5

holds.

Remark 5 Assume x � x1 � 1: If Lmx = fSg; then for all x0 � x and all S 0 2 Lmx0 ;
S � S 0.

Lemma 3 will be useful in the proof of Proposition 3, which is the result that contains

the answer to our question. It roughly says that IOI for the left translates into IOI for

the right, +1; namely, for all � < x � �; either Lx�1 and Rx satisfy both IOI or neither

of them do.

Lemma 3 Let fLwgw2X and fRwgw2X be, respectively, the left and the right coalition
systems associated to the same GMVS f and let � < x � �: Then, Rx satis�es IOI if

and only if Lx�1 satis�es IOI.

Proof of Lemma 3 Assume Lx�1 satis�es IOI. Let bN =
S
S2Lmx�1

S and, for each

i 2 bN , let bPi be the set of i�s strict preferences on fx�1; xg: Let bf :Qi2 bN bPi ! fx�1; xg
be the EMVR associated to the committee bLx�1; the restriction of Lx�1 into bN . Observe
that if j =2 bN; then j is dummy at Lx�1 and j is dummy at Rx: Since Lx�1 satis�es
IOI, bLx�1 does as well. By Proposition 1, bf is OSP. Then, again by Proposition 1,
and a symmetric argument, bRx satis�es IOI. But then, Rx satis�es IOI as well. Using

a symmetric argument we can show that if Rx satis�es IOI, then Lx�1 satis�es IOI as
well. �
36Of course, we could also state a corresponding property (R2-ISI) for the right coalition system.

However, we omit this symmetric analysis.
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Proposition 3 Let fLxgx2X and fRxgx2X be, respectively, the left and the right coali-
tion systems associated to the same GMVS and let � < x1 < �. Then, (L-IOI) and

(R-IOI) hold if and only if (L-IOI) and (L2-IOI) hold.

Proof of Proposition 3 Assume (L-IOI) and (R-IOI) hold. It is su¢ cient to show

that (L2-IOI) holds. Let � < x � x1 � 1 and assume �rst that jLmx j = 1: Let S 6= ;
be such that Lmx = fSg and so, for any i 2 S, fig [ S 2 Lmx holds trivially and, by

Remark 5, if S 0 2 Lmx�1; then S � S 0 and i 2 S 0: Hence, (L2-IOI) holds. Assume now
that jLmx j � 2: Then, x+1 < x1+1 and by (R-IOI), Rx+1 satis�es IOI. By Lemma 3, Lx
satis�es IOI. Furthermore, by (R-IOI) and x+1 < x1+1; there exists ix+1 2 N such that

Rx+1 satis�es IOI with respect to ix+1 and fix+1g 2 Rx: Since ix+1 is the �rst element

in the order for which Rx+1 satis�es IOI with respect to, ix+1 2 S for all S 2 Rk(x + 1)

and all k � 2. Since (fix+1g [ (
S
fig2Rx+1

fig)) \ S 6= ; for all S 2 Rm
x+1, by Remark 4,

fix+1g [ (
S
fig2Rx+1

fig) 2 Lx holds. Now, we prove that fix+1g [ (
S
fig2Rx+1

fig) 2 Lmx :
Assume there exists S 0 ( fix+1g [ (

S
fig2Rx+1

fig) such that S 0 2 Lx. By Remark 4,
S 0 \ fig 6= ; for all i such that fig 2 Rx+1: Hence, S 0 =

S
fig2Rx+1

fig: By Remark 4,S
fig2Rx+1

fig =
T

S2Lmx
S (20)

holds, implying that
T
S2Lmx S 2 Lmx and jLmx j = 1; which contradicts that jLmx j � 2:

Therefore, fix+1g [ (
S
fig2Rx+1

fig) 2 Lmx . By (20), fix+1g [ (
T
S2Lmx S) 2 L

m
x ; which is (i)

in (L2-IOI). Moreover, since fix+1g 2 Rx; by Remark 4, ix+1 2 S for all S 2 Lmx�1.
Assume (L-IOI) and (L2-IOI) hold. It is su¢ cient to show that (R-IOI) holds. Let

� < x � x1 + 1: We proceed by considering two cases separately.
Case 1: � < x < x1 + 1: Then, x� 1 � x1 � 1 and by (L2-IOI), Lx�1 satis�es IOI. Then,
by Lemma 3, Rx satis�es IOI. We further distinguish between two subcases.

Case 1.a: � = x � 1: Then, for any i 2 N; Rx satis�es trivially IOI with respect to i,

since the boundary condition in the de�nition of a right coalition system implies that

fig 2 Rx�1 = R�: Hence, (R-IOI) holds in Case 1.a.

Case 1.b: � < x� 1: By (L2-IOI), there exists ix�1 2 N such that

fix�1g [ (
T

S2Lmx�1
S) 2 Lmx�1 (21)

and

ix�1 2 S for all S 2 Lmx�2: (22)

By Remark 4 and (22), fix�1g 2 Rx�1: It is su¢ cient to show that Rx satis�es IOI with

respect to ix�1 or, equivalently, that ix�1 2 S for all S 2 Rm
x with jSj � 2: By Remark

4,
S
fig2Rx

fig =
T
S2Lmx�1

S; and, by (21), fix�1g [ (
S
fig2Rx

fig) 2 Lx�1. Consider any
S 2 Rm

x with jSj � 2 and assume that ix�1 =2 S: By the fact that S 2 Rm
x ; i =2 S for
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all i such that fig 2 Rx. Therefore, (fix�1g [ (
S
fig2Rx

fig) \ S) = ; which contradicts,
together with Remark 4, that fix�1g [ (

S
fig2Rx

fig) 2 Lmx�1.
Case 2: x = x1+1: By (L-IOI), Lx1�1 satis�es IOI with respect to ix1�1 and fix1�1g 2 Lx1 :
By de�nition of x1; ix1�1 2 SL(x1�1) 6= ;: By (L2.1) and (L2.2) in Lemma 2, Rx1 satis�es

IOI with respect to ix1�1 and fix1�1g 2 Rx1�1: Thus, (R-IOI) follows. �
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