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1 Introduction

A social choice function (mapping preference pro�les into alternatives) is strategy-proof if

it is always in the agents�interest to reveal their preferences truthfully. This means that,

in the direct revelation mechanism induced by the social choice function, the strategic

problems faced by agents when submitting their preferences are not interrelated: truth-

telling is an optimal decision for each agent, irrespective of the other agents�decisions.

Hence, strategy-proofness is a very desirable property of a social choice function: the

information that each agent has about the other agents�preferences is irrelevant.

However, the Gibbard-Satterthwaite Theorem (Gibbard (1973) and Satterthwaite (1975))

indicates the di¢ culties in designing non-trivial and strategy-proof social choice functions:

if the set of alternatives is strictly greater than two, all unanimous and strategy-proof so-

cial choice functions on the universal domain of preferences over the set of alternatives are

dictatorial. Yet, and despite this negative result, there is abundant literature studying and

characterizing classes of strategy-proof social choice functions for speci�c settings where

the Gibbard-Satterthwaite Theorem does not apply. Some consider the case where the

cardinality of the set of alternatives is equal to two, when all extensions of the majority

voting rule constitute the class of all strategy-proof social choice functions on the univer-

sal domain of strict preferences over two alternatives. Others question the assumption

that agents may have (and submit to the mechanism) all conceivable preferences since

the properties of the set of alternatives suggest that appropriate social choice functions

should operate only on natural and meaningful restricted domains of preferences, those

that are in agreement with the corresponding structure of the set of alternatives. There

are many settings for which the class of strategy-proof social choice functions operating on

a particular restricted domain is large;1 for instance, the class of generalized median voter

schemes on the domain of ordinal and single-peaked preferences over a linearly ordered

set of alternatives is large.

Nevertheless, the mechanism design literature has mainly neglected two features of

direct revelation mechanisms when used to implement strategy-proof social choice func-

tions on restricted domains of preferences. The �rst one is related to the ease with which

agents can realize that their truth-telling strategies are indeed weakly dominant (i.e.,

how much contingent reasoning is required to do so).2 The second one is related to the

1Often, we know in addition axiomatic characterizations of classes of strategy-proof social choice

functions satisfying additional desirable properties.
2Attiyeh, Franciosi and Isaac (2000), Cason, Saijo, Sjöström and Yamato (2006), Friedman and

Schenker (1998), Kawagoe and Mori (2001) and Yamamura and Kawasaki (2013) are some examples

of papers dealing with this issue. Glazer and Rubinstein (1996) already argues that complexity con-

siderations should be used to evaluate alternative mechanisms implementing a social choice function; in

particular, they suggest the convenience of using extensive game forms and show that for solvable games
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degree of bilateral commitment of the designer who, after collecting the revealed pro�le

of agents�preferences, will supposedly implement the alternative that the social choice

function would have chosen at the revealed pro�le, regardless of whether he likes it or

not.3 For example, and following Li (2017), when in a second-price sealed-bid auction the

designer is simultaneously the seller of the good, he has a strong temptation to introduce

an additional bid above the second submitted bid and slightly below the �rst one.4 Im-

plicitly, a vast majority of this literature has assumed that the designer can commit to

not circumvent the mechanism.

Li (2017) proposes the notion of obvious strategy-proofness to deal simultaneously

with both concerns (see Theorems 1 and 2 in Li (2017)). A social choice function f , on

a domain D of pro�les of n-tuples of preferences (where n is the number of agents), is

obviously strategy-proof if there exists an extensive game form (or simply a game) �,

whose set of outcomes is the set of alternatives, with two properties.

First, for each preference pro�le P = (P1; : : : ; Pn) 2 D one can identify a pro�le of

truth-telling (behavioral) strategies �P = (�P11 ; : : : ; �
Pn
n ) with the property that if each

agent i plays the game � according to �Pii ; the outcome of � would correspond to the

alternative selected by f at P ; that is, � induces f .

Second, at �, agents use the two most extreme behavioral assumptions when comparing

the consequences of behaving according to the truth-telling strategy with the consequences

of behaving di¤erently. In particular, for agent i with preference Pi, let �0i be any non-

truthful strategy of agent i (i.e., �0i 6= �Pii ). Consider an earliest point of departure of �Pii
with �0i; namely, an information set Ii in � at which, for the �rst time along �, �

Pi
i and

�0i are taking a di¤erent action. Then, i evaluates the consequence of choosing the action

prescribed by �Pii at Ii according to the worst possible outcome, among all outcomes

that may occur as an e¤ect of later choices made by agents along the rest of the game

(�xing i�s behavior to �Pii ). In contrast, i evaluates the consequence of choosing the action

prescribed by �0i at Ii according to the best possible outcome, among all outcomes that

may occur, again as an e¤ect of later choices made by agents along the rest of the game

(�xing i�s behavior to �0i). Then, �
Pi
i is obviously dominant at � if for any other strategy

the calculation required to obtain the set of strategies that survive iterative elimination of dominated

strategies is equivalent to the calculation required to identify the backward induction outcome of a game

in extensive form.
3Bag and Sharma (2016) is an example of a paper that considers a setting where the designer does

not have commitment power at all.
4In the earlier wave of auctions to sell portions of the spectrum to be used for communications in New

Zealand, second-price sealed-bid auctions were used. And many of them were not very successful (see

MacMillan, 1994); for instance, a lot was sold for a price of NZ$6 (the second highest bid) to a bidder

who placed a bit for NZ$100,000 (auctions were conducted without reserve prices!). Since 2004, New

Zealand uses mostly outcry English ascending auctions.
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�0i 6= �Pii , and from the point of view of any earliest point of departure of �Pii with �0i,

the outcome of the pessimistic view used to evaluate �Pii is at least as preferred as the

outcome of the optimistic view used to evaluate �0i. If � induces f and, for all P 2 D and
all i; �Pii is obviously dominant at �, then f is obviously strategy-proof.5

In this paper we consider two families of strategy-proof social choice functions, all

based on generalizations of the majority voting procedure, and characterize their obviously

strategy-proof subclasses. The notion of a committee plays a fundamental role in their

description. Fix a set of agents. A committee is a monotonic family of subsets of agents

(called winning coalitions). A winning coalition is minimal if it has no strict subset that

is also winning.

Consider �rst a social choice problem with only two alternatives, x and y, and assume

that agents have strict preferences over the set fx; yg: Then, a social choice function f on
this domain of preferences is an Extended Majority Voting Rule if there exists a committee

for x with the property that, for each preference pro�le P; x is selected by f at P if and

only if the set of agents for whom x is strictly preferred to y belongs to the committee

for x. It is well known that, for the case of two alternatives, a social choice function is

strategy-proof if and only if it is an extended majority voting rule.

We then ask: what is the condition that a committee for x has to satisfy, so that

its induced extended majority voting rule is in addition obviously strategy-proof? We

identify this property, call it Increasing Order Inclusion, and show in Proposition 1 that

it is necessary and su¢ cient for obvious strategy-proofness.6 In particular, among the

class of all anonymous extended majority voting rules, only those two where either x

or y can be imposed by each agent unilaterally (referred to as quota 1) are obviously

strategy-proof; or equivalently, only those where, to be elected, either y or x needs a

unanimous support (referred to as quota n). Thus, in anonymous voting environments

with two alternatives, obviously strategy-proofness has a strong bite: it requires that an

alternative has to be singled out as a status quo (for instance, x) and then this alternative

is always selected except when the other alternative receives unanimous support (quota

1 for x or, equivalently, quota n for y). In fact, there are voting settings where agents

have veto power (or the status quo can only be changed by unanimity). For instance, the

Council of the European Union (EU) has to vote unanimously on a number of matters

which the state members consider to be sensitive, like common foreign and security policy,

5Observe three things. First, the equilibrium concept used for obviously strategy-proof implementation

is obviously dominance. Second, the implementation is weak since it is not required that truth-telling

be the unique obviously dominant strategy. Third, obvious strategy-proofness is a very demanding

requirement.
6The su¢ ciency part of our proof shows how to construct, using the increasing order inclusion property

of the extended majority voting rule f , the extensive game form that implements f in obviously dominant

strategies.
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citizenship (the granting of new rights to EU citizens), EU membership, harmonizations

of national legislation on indirect taxation, etc.; or the jury in most of the United States�

trials has to vote unanimously to convict a person.7 We give here an additional reason

for the use of unanimity, based on its strong incentive properties.

Consider now a social choice problem where the set of alternatives X is a �nite and

linearly ordered set.8 For instance, when X is the set of possible levels of a public good,

political parties� platforms, location of a public good in a one-dimensional space, etc.

Assume that agents have strict single-peaked preferences (over X). A preference is single-

peaked over X if it is monotonic in both sides of the best alternative: increasing at its left

and decreasing at its right. There is a large literature studying this class of problems. It

is well known that a social choice function is strategy-proof on the single-peaked domain

of preferences over X if and only if it is a Generalized Median Voter Scheme.9

We now ask: what are the conditions that a generalized median voter scheme has

to satisfy to be obviously strategy-proof? We identify the two properties that together

answer this question for the general case and, given a generalized median voter scheme sat-

isfying them, we exhibit an extensive game form that implements it in obviously dominant

strategies. To give the main idea of those extensive form games, consider the anonymous

median voter scheme f that selects, at each preference pro�le, the smallest of the best

alternatives. Then f can be roughly understood as a sequence of extended majority vot-

ing rules (of quota 1) that at any generic alternative x; and starting at �, confronts two

possibilities: select (using quota 1) the current alternative x as the one chosen by f or

select (tentatively) the adjacent alternative x + 1. If x is not chosen, then its adjacent

alternative x+ 1 becomes the new current alternative that is confronted to x+ 2, apply-

ing again quota 1. This generalized median voter scheme f is obviously strategy-proof

because whenever agent i has to decide at a node along the game, i�s choices can be

identi�ed with the choice between the current alternative and its adjacent one. And i can

make sure that the current alternative is the one �nally selected because quota 1 is used

to choose between the two alternatives. Proposition 2 generalizes this result to the class

of all (not necessarily anonymous) generalized median voter schemes.

For binary allocation problems,10 Li (2017) characterizes the monotone price mech-

anisms (generalizations of ascending auctions) as those that implement all obviously

strategy-proof social choice functions on the domain of quasi-linear preferences. He also

7See for instance Buchanan and Tullock (1962), Tsebelis (2002), König and Slapin (2006), Maggi and

Morelli (2006), and Bouton, Llorente-Saguer and Malherbe (2016).
8Without loss of generality we may assume that X = f�; �+ 1; : : : ; x� 1; x; x+ 1; : : : ; � � 1; �g:
9See for instance Moulin (1980) or Barberà, Gül and Stacchetti (1993). Generalized median voter

schemes are non-anonymous extensions of the median voter (see Section 5 for their description).
10For instance, private value auctions with unit demands, procurement auctions, and the provision of

a binary public good with no exclusion.
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shows that, for online advertising auctions, the social choice function induced by the

mechanism that selects the e¢ cient allocation and the Vickrey-Clarke-Groves payment is

obviously strategy-proof. Furthermore, he shows that the social choice function associated

to the top-trading cycles algorithm in the house allocation problem of Shapley and Scarf

(1974) is not obviously strategy-proof. Finally, Li (2017) reports a laboratory experiment

where subjects play signi�cantly more often their truth-telling dominant strategies when

the strategy-proof mechanism they play is also obviously strategy-proof.

In addition to these speci�c results in Li (2017), �ve other papers have also asked

whether well-known strategy-proof social choice functions on restricted domains of pref-

erences are obviously strategy-proof. Ashlagi and Gonczarowski (2016) shows that the

social choice function associated to the deferred acceptance algorithm is not obviously

strategy-proof for the agents belonging to the o¤ering side. They show however that

this social choice function becomes obviously strategy-proof on the restricted domain of

acyclic preferences introduced by Ergin (2002).

Troyan (2016) identi�es a necessary and su¢ cient condition on the priorities (called

weak acyclic, weaker than the conditions identi�ed in Ergin (2002) and Kesten (2006)) that

fully characterizes the class of obviously strategy-proof social choice functions associated

to the generalizations of the top-trading cycles algorithm with priorities, introduced by

Abdulkadiro¼glu and Sönmez (2003).

Pycia and Troyan (2017) characterizes the family of extensive game forms that im-

plement, in obviously dominant strategies, social choice functions for a class of ordinal

problems that includes the cases of private components and voting over two alternatives.

They call those games millipede because they have the property that the subgames start-

ing at the nodes that follow nature�s moves are like a centipede game (see Rosenthal

(1981)), but now agents, at nodes where they have to choose along the game, may have

more than one terminal choice. This characterization can be seen as a revelation principle

like result, because it indicates the class of extensive game forms where to look for the

implementation of social choice functions in obviously dominant strategies. They also

consider, as a particular case of their model, the problem of allocating a set of objects to

a set of agents when each agent only cares about the received object. They characterize,

for this case, the family of obviously strategy-proof, e¢ cient and symmetric extensive

game forms as those that are equivalent to random priority rules.

Bade and Gonczarowski (2017) establishes also a revelation principle like result for

obviously strategy-proofness: a social choice function is implementable in obviously dom-

inant strategies if and only if some obviously incentive compatible gradual mechanism

implements it. For the problem of assigning a set of objects to a set of agents, Bade and

Gonczarowski (2017) shows that an e¢ cient social choice function is obviously strategy-

proof if and only if it can be implemented by a game with sequential barters with lurk-
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ers; this class consists of generalizations of serial dictatorships. They also show that Li

(2017)�s positive result on monotone price mechanisms for binary allocation problems

does not hold for more general problems with two or more goods. For the case of vot-

ing over two alternatives, Bade and Gonczarowski (2017) shows that if a social choice

function is onto and obviously strategy-proof then it can be implemented by a proto-

dictatorship game. Finally, for the problem of a linearly ordered set of alternatives with

single-peaked preferences, Bade and Gonczarowski (2017) shows that if a social choice

function is onto and obviously strategy-proof then it can be implemented by an extensive

game form consisting of dictatorships with safeguards against extremisms (and arbitration

via proto-dictatorships, if X is discrete).

Finally, Mackenzie (2017) contains a general revelation principle like result identifying

the class of round table mechanisms: a social choice function f is obviously strategy-

proof implementable if and only if f is strategy-proof implementable through a round

table mechanism.11

We want to emphasize that, in contrast with the existing positive results described

above, our characterizations are not revelation principle like results identifying a class

(often very large) of extensive game forms where, without loss of generality (but not

necessarily), the designer has to look for in order to implement in obviously dominant

strategies a particular social choice function. But they do not identify the speci�c mech-

anism, among all in the class, that has to be used in order to implement this given social

choice function; and this is important because di¤erent mechanism in the class may im-

plement di¤erent social choice functions. Our proofs are constructive: for each obviously

strategy-proof social choice function, we exhibit (and show how to construct) an extensive

game form that implements the social choice function in obviously dominant strategies.

Our characterizations deliver necessary and su¢ cient conditions for two important classes

of social choice functions; given one in any of the two classes, one can easily check if it

is obviously strategy-proof by using our conditions, since they are short and reasonably

transparent. In the �nal remarks section, at the end of the paper, we relate some of the

results in Pycia and Troyan (2017) and Bade and Gonczarowski (2017) with our results

with more detail.

The paper is organized as follows. Section 2 contains the basic notation and de�nitions.

Section 3 presents the notion of obvious strategy-proofness. Section 4 contains the analysis

of extended majority voting rules from the point of view of obvious strategy-proofness,

while Sections 5 contains the corresponding analysis of generalized median voter schemes.

Section 6 concludes with �nal remarks. An Appendix at the end of the paper collects the

proofs omitted in the main text.

11We have obtained our results in an independent way, before knowing the existence of Pycia and

Troyan (2017), Bade and Gonczarowski (2017), and Mackenzie (2017).
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2 Preliminaries

A set of agents N = f1; : : : ; ng, with n � 2, has to choose an alternative from a �nite

and given set X: Each agent i 2 N has a strict preference Pi (a linear order) over X:

We denote by t(Pi) the best alternative according to Pi, to which we will refer to as

the top of Pi: We denote by Ri the weak preference over X associated to Pi; i.e., for

all x; y 2 X, xRiy if and only if either x = y or xPiy: Let Pi be the set of all strict
preferences over X: Observe that Pi = Pj for all i 6= j: A (preference) pro�le is a n-tuple
P = (P1; : : : ; Pn) 2 P1�� � ��Pn = P ; an ordered list of n preferences, one for each agent.
Given a pro�le P and an agent i; P�i denotes the subpro�le in

Q
j2NnfigPj obtained

by deleting Pi from P: Given i 2 N and x 2 X we write P xi 2 Pi to denote a generic
preference such that t(P xi ) = x:

Let Di � Pi be a generic subset of agent i�s preferences over X and set D = D1 �
� � � � Dn; which we will refer to as a domain.12 A social choice function (SCF) on D;
f : D ! X; selects for each preference pro�le P 2 D an alternative f(P ) 2 X:
The SCF f : D ! X is strategy-proof (SP) if for all P 2 D; all i 2 N and all P 0i 2 Di;

f(P )Rif(P
0
i ; P�i):

Let f : D ! X be a given SCF. Construct its associated normal game form (N;D; f);
where N is the set of players, D is the set of strategy pro�les and f is the outcome func-
tion mapping strategy pro�les into alternatives. Then, f is implementable in dominant

strategies (or f is SP-implementable) if the normal game form (N;D; f) has the property
that, for all P 2 D and all i 2 N , Pi is a weakly dominant strategy for i in the game
in normal form (N;D; f; P ); where each i 2 N uses Pi to evaluate the consequences of

strategy pro�les. The literature refers to (N;D; f) as the direct revelation mechanism
that SP-implements f .

We de�ne several properties that a SCF f : D ! X may satisfy and that we will use

in the sequel. We say that f is (i) onto if for all x 2 X, there exists P 2 D such that

f(P ) = x; (ii) unanimous if for all P 2 D such that t(Pi) = x for all i 2 N; f(P ) = x;13

and (iii) anonymous if for all P 2 D (where Di = Dj for all i 6= j) and all one-to-one

� : N ! N; f(P ) = f(P �) where for all i 2 N; P �i = P�(i): We say that i is a dummy
agent in f if for all P�i; f(Pi; P�i) = f(P 0i ; P�i) for all Pi; P

0
i 2 Di:

12In our two applications it will hold that Di = Dj for all i 6= j.
13Although ontoness is weaker than unanimity, it is easy to see that among the class of all strategy-proof

SCFs, the classes of unanimous and onto SCFs coincide.
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3 Obviously strategy-proof SCFs

3.1 De�nition

Adapting Li (2017) to our ordinal voting setting with no uncertainty, an extensive game

form with consequences in X consists of:

1. A set of agents N = f1; : : : ; ng.

2. A set of alternatives X.

3. A rooted tree (Z;�), where:

(a) Z is the set of nodes;

(b) � is an irre�exive and transitive binary relation over Z;

(c) z0 2 Z is the root of (Z;�);14

(d) Z can be partitioned into two sets, the set of terminal nodes ZT = fz 2 Z jthere
is no z0 2 Z such that z � z0g and the set of non-terminal nodes ZNT = fz 2
Z jthere is z0 2 Z such that z � z0g.

4. A mappingN : ZNT ! N that assigns to each non-terminal node z an agentN (z):15

5. For each i 2 N; a partition of Zi into information sets. Denote by Ii this partition
and by Ii one of its generic elements.16

6. A set of actions A and a function A : ZNT ! 2Anf;g where, for each z 2 ZNT , A(z)
is the non-empty set of actions available to player N (z) at z:17

7. An outcome function g : ZT ! X that assigns an alternative g(z) 2 X to each

terminal node z 2 ZT .
14Namely, z0 is the unique node that has the property that z0 � z for all z 2 Znfz0g:
15Hence, we can partition the set of non-terminal nodes ZNT into n disjoint sets Z1; : : : ; Zn, where

Zi = fz 2 ZNT j N (z) = ig is the set of non-terminal nodes assigned to i by N . To deal in the sequel
with dummy agents, we admit the possibility that N be not onto, and so Zi = ; for some i 2 N:
16If z; z0 2 Ii, then agent i cannot distinguish whether the game has reached node zi or node z0i.
17Of course, A has to be measurable in the sense that for any pair z; z0 2 Ii; A(z) = A(z0): Moreover,

for each z 2 ZNT , there should be a one-to-one identi�cation between A(z) and the set of immediate
followers of z de�ned as IF (z) = fz0 2 Z j z � z0 and there is no z00 2 ZNT such that z � z00 � z0g: Set
I = (Ii)i2N : We assume that I has the usual property to ensure that agents have perfect recall.
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An extensive game form with consequences in X (or simply, a game) is a seven-tuple

� = (N;X; (Z;�) ;N ; I;A; g) with the above properties.18 Since N and X will be �xed

throughout the paper, let G be the class of all games with consequences in X and set of

agents N .

Fix a game � 2 G and an agent i 2 N: A (behavioral and pure) strategy of i in � is a
function �i : Zi ! A such that for each z 2 Zi; �i(z) 2 A(z); namely, �i selects at each
node where i has to play one of i�s available actions. Moreover, �i is Ii-measurable: for
any Ii 2 Ii and any pair z; z0 2 Ii; �i(z) = �i(z0): Let �i be the set of i�s strategies in �:
A strategy pro�le � = (�1; : : : ; �n) 2 �1 � � � � � �n = � is an ordered list of strategies,
one for each agent. For z 2 Znfz0g; de�ne the set of immediate predecessors of z as
IP (z) = fz0 2 Z j z 2 IF (z0)g:19 A history h (of length t) is a sequence z0; z1; : : : ; zt of
t+1 nodes, starting at z0, such that for all m = 1; : : : ; t; fzm�1g = IP (zm). Each history
h = z0; : : : ; zt can be uniquely identi�ed with the node zt and each node z can be uniquely

identi�ed with the history h = z0; : : : ; z:

For a distinct pair �i; �0i 2 �i; the family of earliest points of departure for �i and
�0i is the family of information sets where �i and �

0
i have made identical decisions at all

previous information sets, but they are making a di¤erent decision at those information

sets. Namely,

De�nition 1 Let �i; �0i 2 �i: An information set Ii 2 �(�i; �0i) is an earliest point of
departure for �i and �0i if for all z 2 Ii:
1. �i(z) 6= �0i(z):
2. �i(z0) = �0i(z

0) for all z0 � z such that z0 2 Zi:

Given a pair �i; �0i 2 �i; denote the set of earliest points of departure for �i and �0i by
�(�i; �

0
i): Given bX � X and Pi 2 Di; we denote by minPi bX the alternative x 2 bX such

that for all y 2 bX; yRix; and by maxPi bX the alternative x 2 bX such that for all y 2 bX;
xRiy: Let z�(z; �) be the terminal node that results in � when agents start playing at z

according to �. We are now ready the de�ne obviously dominant strategies.

De�nition 2 Let � 2 G be a game and Pi 2 Di be a preference for agent i 2 N:We say
that �i is obviously dominant in � for i with Pi if for all �0i 6= �i and all Ii 2 �(�i; �0i),

min
Pi
fx 2 X j there exist ��i 2 ��i and z 2 Ii such that x = g(z�(z; (�i; ��i)))g

Rimax
Pi
fx 2 X j there exist ��i 2 ��i and z 2 Ii such that x = g(z�(z; (�0i; ��i)))g:

18Note that the set of actions A is embeded in the de�nition of A. Moreover, � is not yet a game in
extensive form because agents�preferences over alternatives are still missing. But given a game � and a

preference pro�le P over X; the pair (�; P ) de�nes a game in extensive form where each agent i uses Pi to

evaluate the alternatives, associated to all terminal nodes, induced by strategy pro�les (de�ned below).
19Since (Z;�) is a rooted tree, it has the property that, for all z 2 Znfz0g, jIP (z)j = 1 (namely, the

tree is a graph with no curls).
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De�nition 3 The SCF f : D ! X is obviously strategy-proof (OSP, or OSP-implementable)

if there exists � 2 G such that (i) for each P 2 D, there exists a strategy pro�le
�P = (�P11 ; : : : ; �

Pn
n ) 2 � such that f(P ) = g(z�(z0; �

P )) and (ii) for all i 2 N and

all Pi 2 Di; �Pii is obviously dominant in � for i with Pi:

When (i) holds we say that (�; f�PgP2D) induces f: When (i) and (ii) hold we say
that (�; f�PgP2D) OSP-implements f and refer to the strategy �Pii played by i with Pi in
� as the truth-telling strategy.20 When f�PgP2D is obvious from the context we will just

say respectively that � induces f and � OSP-implements f .

Obvious strategy-proofness entails an extreme behavioral hypothesis: agents are pes-

simistic when evaluating the consequences of truth-telling while they are optimistic when

evaluating non-truthfulness.

It is easy to verify that similarly to what happens with SP-implementability, OSP-

implementability is a hereditary property of SCFs in the following sense.21

Remark 1 If f : D ! X is OSP-implementable, then the subfunction f : eD ! X is

OSP-implementable, where eDi � Di for all i 2 N .
3.2 The Pruning Principle

To show that a SCF f : D ! X is OSP, it is su¢ cient to exhibit a game � 2 G that
induces f , and that, for all P 2 D and all i 2 N , �Pii is an obviously dominant strategy.

Apparently, to show that f is not OSP, it would be necessary to check that for each �

that induces f , there are i and Pi for which �
Pi
i is not obviously dominant in �. And this

may be very di¢ cult, indeed. The Pruning Principle facilitates this task. The idea is as

follows. Let � be a game that induces a SCF f : D ! X: Now, prune � by just keeping

(from the tree used to de�ne �) the plays consistent with the truth-telling strategies

f�PgP2D: Namely, histories that are not realized for any pro�le of preferences are deleted.
Denote this pruned game by e�. Then, it holds that if � OSP-implements f , then e� also
OSP-implements f . Therefore, to show that f is not OSP it is su¢ cient to show that no

�pruned�game OSP-implements f , and this seems much easier.

We now, following Li (2017), state the Pruning Principle formally. Assume � 2 G
induces f : D ! X and consider the set of strategy pro�les f�PgP2D. The extensive
20To better understand the meaning of �Pii it may be useful to use the Bayesian interpretation of a

strategy in an incomplete information game: each player i; before knowing his type Pi 2 Di, chooses a
strategy to play �; contingent on his realized type. Hence, �Pii is the strategy played by i, when i�s type

is Pi; in the game �. Observe that, since whether or not �
Pi
i is obviously dominant is independent of

(Pj)j2Nnfig 2
Q
j2NnfigDj , �

Pi
i can also be interpreted as i�s play with type Pi in any game in extensive

form (�; (Pi; (Pj)j2Nnfig)): Since � will induce f : D ! X; �Pii will become meaningful.
21The proof of Proposition 5 in Li (2017) contains this observation.
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game form e� = (N;X; ( eZ;�); eN ; eI; eA; eg) 2 G with consequences in X; called the pruning
of � with respect to f�PgP2D, is de�ned as follows:
(i) eZ = fz 2 Z jthere is P 2 D such that z � z�(z0; �P )g:
(ii) For all i, if Ii 2 Ii then Ii \ eZ 2 eIi:
(iii) (�; eN ; eI; eA; eg) are restricted to eZ:
The Pruning Principle (Proposition 2 in Li (2017)) Assume � 2 G induces f :
D ! X and let e� be the pruning of � with respect to f�PgP2D. Denote by fe�PgP2D
the restriction of f�PgP2D on e�. If (�; f�PgP2D) OSP-implements f : D ! X; then

(e�; fe�PgP2D) OSP-implements f : D ! X:

4 Extended majority voting rules

Consider the simplest social choice problem where X = fx; yg. To de�ne the family of
extended majority voting rules on fx; yg, �x w 2 fx; yg. A family Lw � 2N of subsets

of N is a committee for w if it satis�es the following monotonicity property: S 2 Lw and
S ( T imply T 2 Lw. A monotonic Lw that is either empty (Lw = f;g) or contains the
empty set (f;g 2 Lw) is called a trivial committee.22

De�nition 3 A SCF f : P ! fx; yg is an extended majority voting rule (EMVR) if
there exists a committee Lw for w 2 fx; yg with the property that for all P 2 P ;

f(P ) = w if and only if fi 2 N j t(Pi) = wg 2 Lw: (1)

In this case we say that Lw is the committee associated to f: Observe that if the EMVR
is onto, then its associated committee (for w) Lw is not trivial (i.e., f;g =2 Lw 6= f;g).
However, if the EMVR is not onto, and so it is constant, then f;g 2 Lw if it is the constant
w and Lw = f;g if it is the constant w0 6= w. Since constant SCFs are trivially OSP, from
now on we will assume that all committees under consideration are not trivial.

The following remark says that if an EMVR can be simultaneously represented by

a committee for x and a committee for y; then the two committees have to satisfy a

consistency property, stated as condition (2) below.

Remark 2 Let f : P ! fx; yg be an EMVR. Let Lx be its associated committee for x
(i.e., condition (1) holds for w = x) and let Ly be a committee for y with the property
that

S 2 Ly if and only if S \ S 0 6= ; for all S 0 2 Lx: (2)

Then, condition (1) holds for w = y as well; namely,

f(P ) = y if and only if fi 2 N j t(Pi) = yg 2 Ly:
22A non-trivial committee can be seen as a monotonic simple TU-game (N; v) in which, in addition to

v(;) = 0 and v(N) = 1, a coalition S � N belongs to the committee if and only if v(S) = 1.
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That is, an EMVR f can be associated indistinctly to its committee for x; Lx; or to
its committee for y; Ly; whenever (2) holds.
Given Lx we denote by Lmx the family of minimal winning coalitions of Lx; that is,

S 2 Lmx if and only if S 2 Lx and S 0 =2 Lx for all S 0 ( S: Agent i 2 N is a dummy in Lx
if i =2 [S2Lmx S: Obviously, agent i is a dummy in the EMVR f : P ! fx; yg if and only if
i is a dummy in Lx; where Lx is the committee associated to f: Agent i is decisive in Lx
if fig 2 Lx and a vetoer in Lx if i 2 \S2LxS:

4.1 Anonymous extended majority voting rules

Before considering the general case, we focus on the anonymous subfamily of EMVRs,

those for which agents�identities do not play any role, and so their associated commit-

tees have the property that either all coalitions with the same cardinality belong to the

committee or they do not.

A committee Lx is voting by quota q 2 f1; : : : ; ng if the following holds: S 2 Lx if and
only if jSj � q (or equivalently, Lmx = fS 2 Lx j jSj = qg).

The following remark states two useful characterizations of strategy-proof SCFs in this

setting with two alternatives.

Remark 3

(3.1) A SCF f : P ! fx; yg is strategy-proof if and only if f is an EMVR.
(3.2) A SCF f : P ! fx; yg is strategy-proof and anonymous if and only if the associated
committee of f is voting by quota.

Proposition 0 A SCF f : P ! fx; yg is anonymous and OSP if and only if f is an
EMVR whose associated committee Lx is either voting by quota 1 or voting by quota n:23

Proof Let f be an EMVR whose associated committee Lx is voting by quota 1; and
so f is anonymous. We want to show that f is OSP. Without loss of generality, take the

order 1; : : : ; n of the set of agents, and consider the game depicted in Figure 1, denoted by

�(x; y;Lx); played from left to right, where z0 � z1; and for all i 2 N; Zi = fzig; N (zi) = i
and A(zi) = fx; yg: First, observe that each agent only plays once and �(x; y;Lx) 2 G.
Second, �x an arbitrary P 2 P and consider �P = (�P11 ; : : : ; �

Pn
n ) 2 � such that for all

i 2 N; �Pii (zi) = x if and only if t(Pi) = x; then �(x; y;Lx) induces f (voting by quota 1)
since f(P ) = g(z�(z0; �P )) = x if and only if there exists i such that �

Pi
i (zi) = x:

23Observe that by Remark 2, if Lx is voting by quota 1 then Ly is voting by quota n, and if Lx is voting
by quota n then Ly is voting by quota 1: Moreover, in this binary setting non-onto SCFs are constant
which correspond to the two cases where Lx is trivial and, as we have already said, Proposition 0 refers
to onto SCF.
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Figure 1

We want to show that, for each i, �Pii is obviously dominant in �(x; y;Lx) for i with
Pi.

Fix i 2 N; and let �0i 6= �Pii (i.e., �0i(zi) 6= t(Pi)). Observe that fzig = �(�Pii ; �0i) is the
earliest point of departure for �Pii and �0i. Let i = n and assume t(Pn) = x. Then, n has

to play at node zn, reached after the sequence (y; : : : ; y)| {z }
(n�1)-times

is played. Hence,

min
Pn
fw 2 X j w = g(z�(zn; (�Pnn ; ��n)) for some ��ng = x (3)

and

max
Pn
fw 2 X j w = g(z�(zn; (�0n; ��n)) for some ��ng = y; (4)

because �Pnn (zn) = t(Pn) = x and �
0
n(zn) = y, the set in (3) is the singleton fxg and the

set in (4) is the singleton fyg: Since xPny; �Pnn is obviously dominant. Symmetrically if

t(Pn) = y: Let i < n and let �0i 6= �Pii (i.e., �0i(zi) 6= t(Pi)). Observe that fzig = �(�Pii ; �0i)
is the earliest point of departure for �Pii and �

0
i. Assume t(Pi) = y. Then, i has to play at

zi which is either z0 (if i = 1), reached after the empty history, or else zi 6= z0; (if 1 < i),
which is reached after the sequence (y; : : : ; y)| {z }

(i�1)-times

is played. Hence,

fw 2 X j w = g(z�(zi; (�Pii ; ��i)) for some ��ig = fx; yg;

since there is at least one b��i such that g(z�(zi; (�Pii ; b��i)) = x and at least another ��i
such that g(z�(zi; (�

Pi
i ; ��i)) = y: But then minPifx; yg = x because t(Pi) = y: On the

other hand,

fw 2 X j w = g(z�(zi; (�0i; ��i)) for some ��ig = fxg;

because �0i(zi) = x: Since minPifx; yg = xRix = maxPifxg; �Pii is obviously dominant.

Assume now that t(Pi) = x. Then,

min
Pi
fw 2 X j w = g(z�(zi; (�Pii ; ��i)) for some ��ig = x:

and

max
Pi
fw 2 X j w = g(z�(zi; (�0i; ��i)) for some ��ig = x;

where �0 6= �Pii and hence, �0i(zi) = y: To see that, observe that there is at least one b��i
such that g(z�(zi; (�0i; b��i)) = x and at least another one ��i such that g(z�(zi; (�0i; ��i)) =
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y; and maxPifx; yg = x because t(Pi) = x: Hence, �Pii is obviously dominant in �(x; y;Lx)
for i with Pi: Since this holds for all i 2 N and any arbitrary P; f is OSP.

Assume now that the associated committee for x is voting by quota n: By Remark 2,

we can construct a symmetric game �(y; x;Ly), whose associated committee Ly is voting
by quota 1; and proceed as we did for �(x; y;Lx); replacing the roles of x and y:
To prove that the converse holds, let f : P ! fx; yg be an OSP and anonymous SCF.

Hence, f is SP-implementable and by condition (3.2) in Remark 3, f is voting by quota q.

We now show that either q = 1 or q = n: Assume otherwise, i.e., 1 < q < n: We proceed

by distinguishing between the case n = 3 and n > 3:

Assume �rst that n = 3, and so q = 2: We proceed by contradiction; i.e., assume

f is OSP and let � 2 G be a pruned game that OSP-implements f . Since � induces
f (voting by quota 2) there exists at least one information set at which one agent has

available two actions. Let i be the �rst agent in � with this property, and denote by

Ii such information set. Hence, Ii = fzg where z 2 Zi: Fix a pro�le (P1; P2; P3) 2 P :
Without loss of generality, assume t(Pi) = x: Since � induces f ,

fw 2 X j w = g(z�(z; (�Pii ; ��i))) for some ��ig = fx; yg;

because q = 2 and the way i was selected. Let �0i 2 �i be such that �0i = �
P yi
i . Hence,

�Pii (z) 6= �0i(z); because � is pruned. Then, as i is the agent who �rst has an information
set Ii with two available actions; Ii 2 �(�Pii ; �0i): Consider any subpro�le �

P 0�i
�i such that��fj 2 Nnfig j t(P 0j) = xg�� = 1 (and hence

��fj 2 Nnfig j t(P 0j) = yg�� = 1). Since q = 2

and � is pruned and induces f; g(z�(z; (�Pii ; �
P 0�i
�i ))) = x and g(z�(z; (�0i; �

P 0�i
�i ))) = y:

Furthermore, since � induces f ,

fw 2 X j w = g(z�(z; (�0i; ��i))) for some ��ig = fx; yg;

because q = 2 and the way i was selected. Hence, sincemaxPifx; yg = xPiy = minPifx; yg,
�Pii is not obviously dominant, a contradiction.

Assume now that n > 3 and 1 < q < n: By Remark 1, to obtain a contradiction it is

su¢ cient to exhibit a subdomain eP of f where f : eP ! X is not OSP. Anonymity allows

us to consider the particular subdomain

eP = fP x1 ; P y1 g � fP x2 ; P y2 g � fP x3 ; P y3 g| {z }
3 agents

� fP x4 g � � � � � fP xq+2g| {z }
q�2 agents

� fP yq+3g � � � � � fP yng| {z }
n�q�1 agents

:

Let ef be the restriction of f on eP : Assume that ef is OSP and let � 2 G be a pruned
game that OSP-implements ef: Since ef is not constant and � induces ef; there exists an
information set at which a player has available at least two actions. Let i 2 N be the �rst

player who �rst faces this situation, and Ii be this information set. Obviously; i 2 f1; 2; 3g:
Agents 1; 2 and 3 face a situation which is equivalent to the situation where n = 3 and
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q = 2; i.e., given the �xed preferences of the remaining n� 3 agents, to be selected both
x and y require only two additional agents to support them as top alternatives. Thus, we

can also reach the conclusion that ef is not OSP, a contradiction. �

4.2 The general case

Let Lx be a committee for x and k 2 f1; : : : ; ng: Denote by Lkx = fS 2 Lmx j jSj = kg the
family of minimal winning coalitions of Lx with cardinality k.24

We present the property of a committee that plays a key role in this section as well

as in Section 5. In words, a committee satis�es the increasing order inclusion property

if there exists an order of distinct agents for which any minimal winning coalition of

cardinality k � 2 contains the �rst k � 1 agents in the order.25

De�nition 5 A committee Lx for x satis�es the increasing order inclusion (IOI) prop-
erty if there exists an order of distinct agents i1; : : : ; iK such that for all k > 1;

if S 2 Lkx then fi1; : : : ; ik�1g � S:

Example 1 illustrates the IOI property.

Example 1 The committee Lmx = ff1g; f2; 3g; f2; 4g; f2; 5; 6; 7; 8g; f2; 5; 6; 7; 9gg sat-
is�es IOI by the order 2; 5; 6; 7 or by the orders 2; 5; 7; 6; 2; 6; 5; 7; 2; 6; 7; 5; 2; 7; 5; 6 or

2; 7; 6; 5:On the other hand, the committee bLmx = ff1g; f2; 3g; f2; 4g; f5; 6; 7; 8g; f5; 6; 7; 9gg
does not satisfy IOI because agent 2 has to be �rst in any possible order since bL2x =
ff2; 3g; f2; 4gg but 2 =2 f5; 6; 7; 8g 2 bL4x. �

Before proceeding, several remarks about IOI are appropriate. First, there are com-

mittees that satisfy IOI trivially. For instance if Lx is voting by quota 1 (Lkx = ; for all
k > 1) or quota n (Lkx = ; for all k < n and Lnx = fNg), then Lx satis�es IOI for any order
of the set of agents. Second, there may be some connected parts of the order of agents

for which the speci�c ordering is important and some other parts for which the speci�c

ordering is irrelevant. For instance, in any order for which the committee Lx in Example
1 satis�es IOI, agent 2 should be �rst, followed by agents 5, 6, and 7, in any ordering.

Along the play of any game that could be use to show that the EMVR associated to Lx
is OSP, the role of agent 2 will be di¤erent from the roles of agents 5, 6, 7; in particular,

agent 2 will have to play earlier. And third, by its de�nition, if Lx satis�es IOI, then
decisive and dummy agents do not belong to any of its associated orders, although they

play a very di¤erent role in Lx:
24In the notation Lmx ; the letter m will always refer to the word �minimal�, and never to an integer.
25As it will become clear later, this order may not be unique.
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We are now ready to state the result characterizing all SCFs that are OSP in this

setting with two alternatives.

Proposition 1 A SCF f : P ! fx; yg is OSP if and only if f is an EMVR whose

committee Lx satis�es IOI.

Proof See the Appendix in subsection 7.1.26 �

Example 1 (continued) Assume n = 9 and consider again the committee Lx for
x where Lmx = ff1g; f2; 3g; f2; 4g; f2; 5; 6; 7; 8g; f2; 5; 6; 7; 9gg; which satis�es IOI by the
order 2; 5; 6; 7; that is, i1 = 2; i2 = 5; i3 = 6 and i4 = 7: De�ne the game �(x; y;Lx) that
OSP-implements the EMVR associated to Lx, depicted in Figure 2, as follows. Players
play sequentially from left to right, z0 � z1; and for all i 2 N; Zi = fzig; N (zi) = i and
A(zi) = fx; yg:
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r
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rz1 z2 z3 z4 z5 z6 z7 z8 z9
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y x y y x x x y y

x y x x y y y x x

y

Figure 2

It is worthwhile to point out by means of this example two general properties of any

such game �(x; y;Lx). First, although the roles of agents 1 and 2 are very di¤erent in
Lx; along the game �(x; y;Lx) they are somehow similar. After agent 1 (�decisive�for x)
chooses y, agent 2 becomes �decisive�for y: Also, for instance, at node z7; agent 7 becomes

�decisive�for y while, at node z8, agent 8 becomes �decisive�for x: Hence, whenever an

agent has to play, truth-telling is an obvious optimal choice, regardless of any consideration

about the other agents�future behavior.

Second, the game depicted in Figure 2 could also be the game obtained if instead

we would have used the committee Ly for y, the one obtained by means of Remark 2,
associated to the same EMVR. By Remark 2,

Lmy = ff1; 2g; f1; 3; 4; 5g; f1; 3; 4; 6g; f1; 3; 4; 7g; f1; 3; 4; 8; 9gg:

It is easy to see two things. First, Ly satis�es IOI by the order 1; 3; 4; 8 (for instance);
that is, i1 = 1; i2 = 3; i3 = 4 and i4 = 8: Second, the corresponding game �(y; x;Ly)
coincides with �(x; y;Lx): Finally, the fact that f1; 2g 2 Lmy explains why the two agents
have similar power, although this was not apparent in Lx:27 �
26The proof of su¢ ciency is constructive: it exhibits an extensive game form that OSP-implements a

given EMVR whose committee Lx satis�es IOI.
27The game in Figure 2 is a proto-dictatorship game according to the terminology used by Bade and
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5 Generalized median voter schemes

Consider a social choice problem where the set of alternatives X = f�; : : : ; �g is a �nite
and linearly ordered set. Without loss of generality we may assume that X is a �nite

subset of integers between � and �; where �; � 2 Z. Moreover, we may also assume that
jXj > 2; otherwise, we are back to the setting of the previous section.
There is a rich literature studying this class of problems for the case where, given this

structure of the set of alternatives, agents�preferences are assumed to be single-peaked

relative to the order over X: Agent i�s preference Pi is single-peaked over X if for all

x; y 2 X; x < y � t(Pi) or t(Pi) � y < x implies yPix: Let SP i be the set of all agent i�s
single-peaked preferences over X: De�ne SP = SP1 � � � � � SPn:
We de�ne now a class of SCFs known as generalized median voter schemes. One

description is based on the notion of left coalition system on X, which is a family of

non-trivial committees fLxgx2X with the additional monotonicity property that, for all
x < �, S 2 Lx implies S 2 Lx+1; and the boundary condition that L� = 2Nnf;g. If
S 2 Lx we say that S is a left-winning coalition at x:

De�nition 6 A SCF f : SP ! X is a generalized median voter scheme (GMVS) if

there exists a left coalition system fLwgw2X such that, for all P 2 SP ;

f(P ) = x if and only if (i) fi 2 N j t(Pi) � xg 2 Lx and
(ii) for all x0 < x; fi 2 N j t(Pi) � x0g =2 Lx0 :

Namely, the alternative x selected by the GMVS f at P is the smallest one for which

the top alternatives of all agents of a left-winning coalition at x are smaller than or equal

to x.

A similar description can be provided through the symmetric concept of right coalition

system on X, which is a family of non-trivial committees fRxgx2X with the additional
monotonicity property that, for all � < x, S 2 Rx implies S 2 Rx�1; and the boundary

condition that R� = 2
Nnf;g. If S 2 Rx we say that S is a right-winning coalition at x:

De�nition 6� A SCF f : SP ! X is a generalized median voter scheme (GMVS) if

there exists a right coalition system fRwgw2X such that, for all P 2 SP,

f(P ) = x if and only if (i) fi 2 N j t(Pi) � xg 2 Rx and

(ii) for all x0 > x; fi 2 N j t(Pi) � x0g =2 Rx0 :

Gonczarowski (2017). Their Theorem 4.1 states that a mechanism (an extensive game form) is OSP

if and only if it is a proto-dictatorship. In contrast, our characterization in Proposition 1 identi�es by

means of the IOI property those EMVRs that are OSP. See the Final Remarks section for a comment

relating our characterization result in Proposition 1 and their Theorem 4.1.
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Symmetrically, the alternative x selected by the GMVS f at P is the largest one for which

the top alternatives of all agents of a right-winning coalition at x are larger than or equal

to x.

The left or the right coalition system can be taken indistinctly as the primitive concept

for the de�nition of a GMVS. But yet, a precise relationship between a left coalition system

and a right coalition system has to hold if they have to generate the same GMVS. We

state this relationship in Remark 4, which generalizes Remark 2 for the case with more

than two alternatives.28

Remark 4 A left coalition system fLxgx2X and a right coalition system fRxgx2X de�ne
the same GMVS f : SP ! X if and only if, for all x > �,

T 2 Rx if and only if T \ S 6= ? for all S 2 Lx�1:

In this case we will say that fLxgx2X is the left coalition system associated to the GMVS
f and fRxgx2X is the right coalition system associated to the GMVS f .

Alternatively, and more metaphorically, a GMVS might be understood as a force that,

starting at the lowest alternative, pushes up towards the highest possible alternative.

However, the left coalition system distributes the power to stop this force in such a way

that all members of a left-winning coalition at x can make sure that, by declaring that

their top alternative is smaller than or equal to x, the pushing force of f will not overcome

x.

It is well known that a SCF f : SP ! X is strategy-proof if and only if f is a GMVS.29

The smallest alternative for which its left-committee contains a singleton set will play

a relevant role in this section. Given the left coalition system fLwgw2X and x 2 X; let
DeLx = fi 2 N j fig 2 Lxg be the set of left-decisive agents at x: De�ne x1 = minfx 2
X j DeLx 6= ;g: Observe that x1 is well de�ned since DeL� = N: Similarly, given the right
coalition system fRwgw2X and x 2 X; let DeRx = fi 2 N j fig 2 Rxg be the set of
right-decisive agents at x: Let i1 2 DeLx1 be one of the agents for which fi1g 2 Lx1.
We now present a strengthening of IOI that will play a crucial role in the characteri-

zation of the class of SCFs that are OSP on the domain of single-peaked preferences.
28See Barberà, Massó and Neme (1997) for a proof of Remark 4.
29See Barberà, Gul and Stacchetti (1993). Sprumont (1995) shows that the tops-only property in

Moulin (1980)�s characterization is not required. If the social choice function is not onto, de�ne a new and

smaller set of alternatives by deleting the subset of alternatives that have not been chosen, and restrict

then the set of single-peaked preferences and the social choice function to this new set. Then, strict

single-peaked preferences remain single-peaked over the restricted set of alternatives, and the restricted

social choice function is onto. Unic-top single-peaked preferences admitting indi¤erences may no longer

be unic-top single-peaked over the restricted set of alternatives. See Barberà and Jackson (1994) to deal

with this later (and much more involved) case. The characterization just stated refers to this restricted

(onto) function.
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De�nition 7 A left (right) committee Lx (Rx) for x satis�es the increasing order in-

clusion (IOI) property with respect to ix 2 N if there exists an order of distinct agents

i1; : : : ; iK such that for all k > 1;

if S 2 Lk(x) then fi1; : : : ; ik�1g � S and i1 = ix

(if S 2 Rk(x) then fi1; : : : ; ik�1g � S and i1 = ix):

That is, a committee satis�es IOI with respect to an agent if the committee satis�es

IOI relative to an order where this agent goes �rst.

Proposition 2 below characterizes the class of all SCFs that are OSP on the domain

of single-peaked preferences.

Proposition 2 A SCF f : SP ! X is OSP if and only if f is a GMVS whose

associated left and right coalition systems, fLxgx2X and fRxgx2X ; satisfy the following
two properties:

(L-IOI) For every � > x � x1 � 1; there exists ix 2 N such that Lx satis�es IOI with
respect to ix and fixg 2 Lx+1:
(R-IOI) For every � < x � x1 + 1; there exists ix 2 N such that Rx satis�es IOI with

respect to ix and fixg 2 Rx�1:
30

Proof See the Appendix in subsection 7.2. �

As a consequence of Proposition 2 we obtain Corollary 1 characterizing the class of all

OSP and anonymous SCFs on the domain of single-peaked preferences.

Corollary 1 A SCF f : SP ! X is anonymous and OSP if and only if f is a

GMVS whose associated left coalition system fLxgx2X has the property that there exists
x1 2 f�; : : : ; �g such that (i) Lx = fNg for all x < x1 and (ii) Lmx = ff1g; : : : ; fngg for
all x � x1.

Observe that the two SCFs associated to x1 = � and x1 = � correspond respectively

to the one that, at each pro�le, selects the smallest and largest peak. Corollary 1 holds

for the following reasons. Let fLxgx2X be a left coalition system satisfying the necessary

and su¢ cient condition in Corollary 1. We check that (L-IOI) and (R-IOI) in Proposition

2 hold. First, fLxgx2X satis�es (L-IOI): for all x � x1 � 1; Lx satis�es IOI with respect
to any i 2 N and fig 2 Lx+1: Second, by Remark 4, the right coalition system fRxgx2X
associated to f satis�es (i) Rm

x = ff1g; : : : ; fngg for all x � x1 and (ii) Rx = fNg for
all x > x1. And indeed, the right coalition system fRxgx2X satis�es (R-IOI): for all

x � x1 + 1; Rx satis�es IOI with respect to any i 2 N and fig 2 Rx�1:

30In these two statements, x1 � 1 or x1 + 1 could be read as � or � if x1 = � or x1 = �, respectively.
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Figure 3 illustrates Corollary 1, for the case X = f�; � + 1; x1 � 1; x1; x1 + 1; �g, by
simultaneously describing the anonymous GMVS by means of its left and right coalition

system.

-r r r r r rLmx

�

N

�+ 1

N

x1 � 1

N

x1

figi2N

x1 + 1

figi2N

�

figi2N

Rm
xNNfigi2Nfigi2Nfigi2Nfigi2N

Figure 3

Assume fLxgx2X and fRxgx2X are the left and the right coalition systems associated to
the same GMVS f: If x1 2 f�; �g, Remark 4 gives the relationship between them and one
can directly check whether or not fLxgx2X and fRxgx2X respectively satisfy (L-IOI) and
(R-IOI). But if � < x1 < �; (L-IOI) and (R-IOI) in Proposition 2 only impose conditions

on fLx1�1;Lx1 ; : : : ;L��1g and fR�+1; : : : ;Rx1 ;Rx1+1g, respectively. In the Appendix,
subsection 7.3, we answer the following natural question: can we fully describe f as a

GMVS only through either fLxgx2X or fRxgx2X? In particular, Proposition 3 identi�es
the property on the left coalition system, that together with (L-IOI), characterizes all

SCFs that are OSP on the domain of single-peaked preferences. Although one may see

the characterization in Proposition 3 as being more transparent and natural, we give more

prominence to Proposition 2 because the extensive game form that OSP-implements a

given GMVS is identi�ed along the proof of Proposition 2.

We �nish this section with two examples illustrating the statements of Propositions 2

and 3. The statement and proof of Proposition 3 is in the Appendix, subsection 7.3.31

Example 2 Assume X = f�; x; �g; n = 5 and consider the left coalition system

fLwgw2X where:

Lm� = ff1g; f2; 3; 4g; f2; 3; 5gg
Lmx = ff1g; f2g; f3g; f4; 5gg
Lm� = ff1g; f2g; f3g; f4g; f5gg:

The committees L� and Lx satisfy (L-IOI) by the orders 2; 3 and 4, and with respect to
the agents i� = 2 and ix = 4, respectively. Observe that x1 = � and i1 = 1. De�ne the

game �, depicted in Figure 4, that OSP-implements the GMVS associated to fLwgw2X
as follows.

31Example 2 illustrates Case 1 in the proof of Proposition 2 and Example 3 illustrates Case 3 in the

proof of Proposition 2 as well as Proposition 3.
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Players play sequentially from left to right, z0 = z�+1 ; the subscript in any of the other

nodes indicates the agent that has to play at that node by choosing between � and x,

if the superscript is �+; or between x and �; if the superscript is x+; for instance, (i)

z�+4 2 Z4 and agent 4 has to choose at z�+4 one action from the set f�; xg and (ii) zx+3 2 Z3
and agent 3 has to choose at zx+3 one action from the set fx; �g:32 �
Example 3 AssumeX = f�; x; x1�1; x1; x1+1; �g; n = 9 and consider the left coalition
system fLwgw2X where:

Lm� = ff1; 2; 3gg
Lmx = ff1; 2; 3gg

Lmx1�1 = ff1; 2; 3g; f1; 2; 4gg
Lmx1 = ff1g; f2; 3g; f2; 4g; f2; 5; 6; 7; 8g; f2; 5; 6; 7; 9gg

Lmx1+1 = ff1g; f2g; f3; 4gg
Lm� = ff1g; f2g; f3g; f4g; f5g; f6g; f7g; f8g; f9gg:

Then, by Remark 4, the right coalition system fRwgw2X that de�nes the same GMVS is:

Rm
� = ff1; 2; 3g; f1; 2; 4gg

Rm
x1+1

= ff1; 2g; f1; 3; 4; 5g; f1; 3; 4; 6g; f1; 3; 4; 7g; f1; 3; 4; 8; 9gg
Rm
x1

= ff1g; f2g; f3; 4gg
Rm
x1�1 = ff1g; f2g; f3gg
Rm
x = ff1g; f2g; f3gg

Rm
� = ff1g; f2g; f3g; f4g; f5g; f6g; f7g; f8g; f9gg:

32The game in Figure 4 will be used in the �nal section to compare our characterization result in

Proposition 2 with the characterization results in Theorems 2 and 5.1 in Pycia and Troyan (2017) and

Bade and Gonczarowski (2017), respectively.
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Figure 5

Figure 5 depicts a game � that OSP-implements the GMVS associated to fLwgw2X and
fRwgw2X , where z0 2 Z1; the subscript in any of the other nodes indicates the agent that
has to play at that node by choosing between y and y + 1, if the superscript is y+; or

between y and y � 1; if the superscript is y�; where y is a generic alternative in the set
Xnf�; �g; for instance, (i) z(x1+1)+4 2 Z4 and agent 4 has to choose at z(x1+1)+4 one action

from the set fx1 + 1; �g and (ii) z(x1�1)�3 2 Z3 and agent 3 has to choose at z(x1�1)�3 one

action from the set fx1�1; xg: Indeed, x1 is the smallest alternative for which there exists
i 2 N such that fig 2 Lx1 , and � < x1 < �, so Case 3 is the relevant one in the proof
of Proposition 2. Note that i1 = 1: We �rst check that fLwgw2X satis�es (L-IOI). First,
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Lx1�1 satis�es IOI by the order 1; 2 with respect to ix1�1 = 1; Lx1 satis�es IOI by the
order 2; 5; 6; 7 with respect to ix1 = 2 and Lx1+1 satis�es IOI by the order 3 with respect
to ix1+1 = 3; hence fLwgw2X satis�es (L-IOI).33 We now check that fRwgw2X satis�es

(R-IOI). First, Rx1+1 satis�es IOI by the order 1; 3; 4; 8 with respect to i
x1+1 = 1; Rx1

satis�es IOI by the order 3 with respect to ix1 = 3; and Rx1�1; and Rx1 satisfy IOI by

any order with respect to any agent; hence, fRwgw2X satis�es (R-IOI). �

6 Final remarks

We �rst relate our results to those in Pycia and Troyan (2017) and Bade and Gonczarowski

(2017). As we have already said in the Introduction, these two papers contain revelation

principle like results identifying classes of games inside which one can restrict attention

when searching for a game that OSP-implements some families of SCFs. However, there

are two important di¤erences between these two results and the revelation principle for

SP-implementation. First, given a SCF f : D ! X, the revelation principle for strategy-

proofness identi�es a unique normal game form (N;D; f) for which truth-telling has to
be a weakly dominant strategy for each agent in N: In contrast, the classes of games

identi�ed in Pycia and Troyan (2017) and Bade and Gonczarowski (2017) are large and

many games in those classes would not OSP-implement the given f but another SCF.

Hence, the question of which game has to be used to OSP-implement a particular SCF

f remains open, although their results may help because they delimit the class of games

within which to look for. Second, if f is not OSP (but this is still unknown to the designer)

one ought to check that each game in their respective class does not OSP-implement f; and

this may not be easy. In addition, Pycia and Troyan (2017) and Bade and Gonczarowski

(2017) results say respectively that if a game OSP-implements a SCF, then there exists a

multipede game or a gradual mechanism (or a proto-dictatorship game for the case of two

alternatives) that does as well. Our characterizations in Propositions 1, 2 and 3 however

give necessary and su¢ cient conditions on the SCFs that are OSP-implementable, and

those conditions can be checked directly on the SCF under consideration and not on the

game. Moreover, our su¢ ciency proofs of Propositions 1 and 2 are constructive; that

is, they give a procedure to construct an extensive game form that OSP-implements the

SCF. Examples 1 and 2, and their respective Figures 2 and 4, illustrate these points.

The game in Figure 2 is indeed a multipede and proto-dictatorship game. How-

ever, consider the game in Figure 6, which is obtained from Figure 2 by exchanging

at node z3 the y and the x choices of agent 3, because now the y choice �nishes the

game with outcome y while the x choice moves the game to node z4, and everything

33Observe that L� and Lx satisfy IOI both by the order 1; 2 and fLwgw2X satis�es (L2-IOI) by setting
ix1�1 = 3 and ix = 1; de�ned in the Appendix.

23



else remains the same. The new game is also multipede and proto-dictatorship but

now it OSP-implements another SCF, the one whose associated committee is bLx =
ff1g; f2; 3; 4g; f2; 3; 5; 6; 7; 8g; f2; 3; 5; 6; 7; 9gg; which satis�es also the IOI property (by
the order 2; 3; 5; 6; 7). Our proof tells us, given a committee associated to an EMVR, how

to construct the (multipede and proto-dictatorship) game that OSP-implements it.
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Figure 6

The game in Figure 4 is neither multipede nor gradual. Theorem 2 in Pycia and

Troyan (2017) characterizing multipede games does not apply to the problem of a linearly

ordered set with single-peaked preferences because the general conditions on preferences

in their general model imply the universal domain of preferences, when the cardinality of

the set of alternatives is larger than or equal to three.34 It is not gradual because at node

z�+2 agent 2, by playing the strategy �2(z�+2 ) = �2(z
x+
2 ) = x, can force the outcome to be

x, regardless of the other agents�strategies. But agent 2 does not have a choice at z�+2
inducing immediately outcome x. Our design of the game in Figure 4 comes from the

description of the GMVS as a sequence of EMVRs satisfying (in this case) the (L-IOI)

property. However, the game can be modi�ed into a gradual one, as the one depicted

in Figure 7. This game is a dictatorship with safeguards against extremism with proto-

dictatorship games added to the non-terminal nodes z14 and z
2
4 (this is what Bade and

Gonczarowski (2017) call �arbitration�). Together, and only together, agents 4 and 5

are also playing a safeguard role against the extremes � (by sharing the power to induce

jointly x at the subgame starting at z14) and � (by sharing the power to induce jointly x

at the subgame starting at z24). The general message that Bade and Gonczarowski (2017)

tries to convey is that in the limit, with a continuum of possible alternatives, dictatorships

with safeguards against extremism (without arbitration via proto-dictatorships) are the

unique OSP and onto SCFs. Our Proposition 2 characterizes, for a discrete and �nite set

of linearly ordered alternatives, the subclass of SCFs on the single-peaked domain that are

OSP; and the characterization is based on the description of the SCFs as GMVSs whose

associated left and right coalition systems satisfy respectively the (L-IOI) and (R-IOI)

properties. Of course, the proofs of Theorem 5.1 in Bade and Gonczarowski (2017) and

34Hence, the game depicted in Figure 4 illustrates why the general conditions (a) and (b) on preferences

in Pycia and Troyan (2017) can not be dispensed for their Theorem 2 to hold.
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our Proposition 2 are very di¤erent because they are based on two alternative descriptions

of the SCFs under consideration.
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We want to emphasize that our statements in Propositions 1 and 2 do not refer explic-

itly to either ontoness or unanimity, although the SCF under consideration has to be onto,

perhaps relative to a subset of alternatives and corresponding subdomains of preferences

obtained from the range of the original and non-onto SCF that we are interested in (see

footnotes 23 and 29).

We want to �nish by referring to two other settings where the class of all strategy-

proof and onto social choice functions are based on the majority principle. The �rst one

is the multidimensional extension of the single-peaked model studied by Barberà, Gul

and Stacchetti (1993). In this case, the family of multidimensional generalized median

voter schemes coincides with the class of strategy-proof and onto social choice functions

on the domain of multidimensional single-peaked preferences. The second setting is the

one where voting by committees (studied in Barberà, Sonnenschein and Zhou (1991))

are used to collectively select a subset, from a given set of objects K. The family of

voting by committees constitute the class of all strategy-proof and onto social choice

functions, mapping pro�les of separable preferences (over 2K) into the family 2K . They

are also based on the extension of the majority principle, applied to each object in order

to decide whether or not the object belongs to the chosen subset, at a given preference

pro�le. However, neither multidimensional generalized median voter schemes nor voting

by committees are e¢ cient and hence, they are not weak group strategy-proof. Then, by

Proposition 1 in Li (2017), which states that obviously strategy-proofness implies weak

group strategy-proofness, they are not obviously strategy-proof.
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7 Appendix

7.1 Proof of Proposition 1

Proposition 1 A SCF f : P ! fx; yg is OSP if and only if f is an EMVR whose

committee Lx satis�es IOI.

Proof of Proposition 1 To prove necessity, assume that f is OSP, and hence f is SP.

By (3.1) in Remark 3, f is an EMVR. Let Lx be its associated committee for x and �x
k 2 f1; : : : ; ng. Denote by Sk the intersection of minimal winning coalitions of cardinality
k; namely,

Sk =
T
S2Lkx

S:

We start with a recursive de�nition and two key results, stated in Lemma 1 below. De�ne

�rst r1 = minfjSj j S 2 Lmx and jSj > 1g and for t 2 f2; : : : ; Tg; given rt�1, de�ne
recursively rt = minfjSj j S 2 Lmx and jSj > rt�1g:35

Lemma 1 Let f be OSP and let Lx be its associated committee for x. Then, for all
t 2 f1; : : : ; Tg; the following two statements hold.
(1.1) If jLrtx j � 2; then jSrtj = rt � 1 and Srt � Srt0 for all t0 > t:
(1.2) If jLrtx j = 1; then there exists jt 2 Srt such that Srtnfjtg � Srt0 for all t0 > t:
Proof (1.1) Let t 2 f1; : : : ; Tg be such that jLrtx j � 2 and assume jSrtj < rt� 1: Then,
there exist S; S 0; S 00 2 Lrtx (where S 0 and S 00 may be the same set, for instance whenever
jLrtx j = 2) and j0; j00 2 S such that j0 2 SnS 0 and j00 2 SnS 00: De�ne S� = S \ S 0 \ S 00

and S = S [ S 0 [ S 00: Note that S� could be empty and that, since S� � Snfj0; j00g;
jS�j < rt � 1 and SnS� 6= ;: Let P xi and P

y
i be the two preferences such that xP

x
i y and

yP yi x; respectively. When agent i�s preference is P
w
i ; we will say that i votes for w: De�ne

the subdomain eP = eP1 � � � � � ePn where for all i 2 S�; ePi = fP xi g; for all i 2 NnS;ePi = fP yi g and for all i 2 SnS�; ePi = fP xi ; P yi g: Assume that f : P ! fx; yg is OSP. Letef be the restriction of f on eP : Then, by Remark 1, ef is OSP. Let � 2 G be a pruned
game that OSP-implements ef . Since � induces ef and ef is not constant, there exists an
information set at which a player has available two actions. Let i 2 N be the agent who

�rst faces this situation, and let Ii be this information set. Since � induces ef , i 2 SnS�:
Fix a pro�le P 2 eP and assume t(Pi) = x: Since � induces ef ,

fw 2 X j w = g(z�(z; (�Pii ; ��i))) for some ��i and z 2 Iig = fx; yg:

To see that x belongs to this set, observe that there is a pro�le in the subdomain where

all agents in S vote for x; and this is a winning coalition for x: To see that y belongs

to this set, observe that there is a pro�le in the subdomain where only the agents in

35For the committee Lx in Example 1, r1 = 2 and r2 = 5:
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S� [ fig vote for x; but this is not a winning coalition for x; because S� [ fig ( S or

S� [ fig ( S 0 or S� [ fig ( S 00; where the strict inclusions follow from jS�j < rt � 1 and
jSj = jS 0j = jS 00j = rt:
Now, let �0i 2 �i be such that �0i = �

P yi
i . Hence, �

Pi
i (z) 6= �0i(z); because � is pruned.

Then, as i is the agent who �rst has an information set Ii with two available actions;

Ii 2 �(�Pii ; �0i): Now, as t(P 0i ) = fyg and since � induces ef ,
fw 2 X j w = g(z�(z; (�0i; ��i))) for some ��i and z 2 Iig = fx; yg:

Then,

max
Pi
fw 2 X j w = g(z�(z; (�0i; ��i))) for some ��i and z 2 Iig = max

Pi
fx; yg;

min
Pi
fw 2 X j w = g(z�(z; (�Pii ; ��i))) for some ��i and z 2 Iig = min

Pi
fx; yg

and maxPifx; ygPiminPifx; yg: Thus, �Pii is not obviously dominant in �, and so � does

not OSP-implement ef , a contradiction.
Assume now that t 2 f1; : : : ; Tg is such that jLrtx j � 2, jSrtj = rt�1 and Srt * Srt0 for

some t0 > t: Hence, there exists i 2 SrtnSrt0 ; implying that there exists S 0 2 L
rt0
x such that

i =2 S 0: Let S; S 00 2 Lrtx be two distinct coalitions, which they do exist because jLrtx j � 2.
Since S and S 00 are minimal winning, there exists j 2 SnS 00 such that j 6= i because

i 2 Srt : De�ne S� = S \ S 0 \ S 00 and S = S [ S 0 [ S 00; and note that, since S� � Snfi; jg;
jS�j < rt � 1 and SnS� 6= ;: By following an argument similar to the one already used,
we obtain a contradiction.

(1.2) Let t 2 f1; : : : ; Tg be such that jLrtx j = 1: We �rst show that the following two
claims hold.

Claim 1 There exists jt 2 Srt such that Srtnfjtg � Srt+1 :
Proof of Claim 1 Assume there exist i; j 2 Srt such that i; j =2 Srt+1 . Since Lrtx =
fSrtg; Srt is a minimal winning coalition. Hence, there exist S 0; S 00 2 Lrt+1x such that

i =2 S 0 and j =2 S 00: De�ne S� = Srt \ S 0 \ S 00 and S = Srt [ S 0 [ S 00; and note that, since
S� � Srtnfi; jg; jS�j < rt� 1 and SnS� 6= ;: By following an argument similar to the one
already used, we obtain a contradiction. �

Claim 2 There exists S 00 2 Lrt+1x such that jt =2 S 00, where jt is the agent identi�ed in
Claim 1.

Proof of Claim 2 Assume jt 2 S for all S 2 Lrt+1x : Then, by Claim 1, Srt � Srt+1 :
Hence, Srt ( S for all S 2 Lrt+1x ; which is a contradiction with Srt 2 Lmx , which follows
from jLrtx j = 1: �

To proceed with the proof of (1.2), assume that there exists t0 > t + 1 such that

Srtnfjtg * Srt0 : Then, there exist j 2 Srtnfjtg and S 0 2 L
rt0
x such that j =2 S 0: By Claim 2,
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there exists S 00 2 Lrt+1x such that jt =2 S 00: De�ne S� = Srt \S 0 \S 00 and S = Srt [S 0 [S 00;
and note that, since S� � Srtnfj; jtg; jS�j < rt� 1 and SnS� 6= ;: Following an argument
similar to the one already used, we obtain a contradiction. And this �nishes the proof of

Lemma 1. �

Before proceeding with the proof of necessity, de�ne, for each t 2 f1; : : : ; Tg; the set

Qt =

(
Srt if jLrtx j � 2 or t = T
Srtnfjtg if jLrtx j = 1 and t < T;

where jt is the agent identi�ed in Claim 1. We �rst argue that

Q1 � Q2 � � � � � QT (5)

holds. If jLrt+1x j � 2 or t + 1 = T; Lemma 1 directly implies Qt � Qt+1: Assume now

that jLrt+1x j = 1 and t + 1 < T hold. By Lemma 1, Qtnfjt+1g � Qt+1: By de�nition

of jt+1; jt+1 =2 Srt+2 : Suppose that jt+1 2 Qt: Then, by Lemma 1, jt+1 2 Srt+2 which is
a contradiction. Therefore, jt+1 =2 Qt and Qt � Qt+1: It is easy to check that, also by

Lemma 1,

Qt � S for all S 2 Lrtx and all t 2 f1; : : : ; Tg (6)

and

jQtj = rt � 1 for all t 2 f1; : : : ; Tg (7)

hold as well.

We want to show that Lx satis�es IOI. By (5) and (7), we can write, for all t 2
f1; : : : ; Tg, the set Qt as

Qt = fi1; : : : ; ir1�1; ir1 ; : : : ir2�1; ir2 ; : : : ; ir3�1; : : : ; irt�1 ; : : : ; irt�1g: (8)

Consider the order

i1; : : : ; ir1�1; ir1 ; : : : ir2�1; ir2 ; : : : ; ir3�1; : : : ; irt�1 ; : : : ; irt�1; : : : ; irT�1 ; : : : ; irT�1; (9)

and note that it is not necessarily unique since any reordering of the agents inside each

Qt in (9) is arbitrary and it would also allow us to follow the argument below.

Consider S 2 Lrtx for some t � 1: Then, by (6), Qt � S; implying that

fi1; : : : ; ir1�1; ir1 ; : : : ir2�1; ir2 ; : : : ; ir3�1; : : : ; irt�1 ; : : : ; irt�1g � S;

which means that Lx satis�es IOI with respect to the order in (9). This �nishes the proof
of necessity.

To prove su¢ ciency, assume Lx satis�es IOI; namely, there exists an order of distinct
agents i1; : : : ; iK such that for all k > 1;

if S 2 Lkx then fi1; : : : ; ik�1g � S:
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Using the notation established in the proof of necessity and, by (9) letting K = rT �1,
de�ne the following subsets of agents:36

Xx
0 = fi 2 N j fig 2 Lxg;
Y x1 = fi1; : : : ; ir1�1g;
Xx
1 = fi 2 Nn (Xx

0 [ Y x1 ) j there exists S 2 Lr1x such that i 2 Sg;

for 1 < t < T ,

Y xt = firt�1 ; : : : ; irt�1g:
Xx
t = fi 2 Nn[(

S
t0<t

Xx
t0) [ (

S
t0�t
Y xt0 )] j there exists S 2 Lrtx such that i 2 Sg;

and

Y xT = firT�1 ; : : : ; irT�1g;
Xx
T = fi 2 Nn[(

S
t0<T

Xx
t0) [ (

S
t0�T

Y xt0 )] j there exists S 2 LrTx such that i 2 Sg:

We now construct an extensive game form with perfect information �(x; y;Lx).37 Each
agent only plays once, following the ordering given by the (obvious) order of agents in-

duced by the sequence of sets Xx
0 ; Y

x
1 ; X

x
1 ; : : : ; Y

x
t ; X

x
t ; : : : ; Y

x
T ; X

x
T : Denote this order by

j1; : : : ; jn:
38 De�ne the set of non-terminal nodes ZNT by assigning each agent i in the or-

der to a non-terminal node zi; in such a way that if i goes earlier in the order than j; then

zi � zj: At each zi 2 ZNT ; agent i 2 N has available the set of actionsA(zi) = fx; yg: Look
at any agent jh in the order with 1 � h < n: If jh 2 Xx

t ; for t = 0; : : : ; T; and �jh(zjh) = x;

then the history (zjh ; �jh(zjh)) = z is a terminal node and set g(z) = x: If �jh(zjh) = y

then the history (zjh ; �jh(zjh)) = zjh+1 is a non-terminal node at which agent jh+1 plays.

If jh 2 Y xt ; for t = 1; : : : ; T; and �jh(zjh) = y; then the history (zjh ; �jh(zjh)) = z is a

terminal node and set g(z) = y: If �jh(zjh) = x then the history (zjh ; �jh(zjh)) = zjh+1
is a non-terminal node at which agent jh+1 plays. Look now at agent jn, the last in the

order. Then, the history (zjn ; �jn(zjn)) = z is a terminal node, independently of whether

�jn(zjn) = x (in which case set g(z) = x) or �jn(zjn) = y (in which case set g(z) = y).

And this �nishes the de�nition of �(x; y;Lx) (Figure 2, at the end of the statement of
Proposition 1, depicts �(x; y;Lx) for the case of the committee Lx of Example 1).
36We use the superscript x in the notation of these sets because later on we will need to de�ne the

corresponding sets for the committee Ly; for which we will use then the superscript y:
37Remember that there may be many such games because agents belonging to the sets Xx

0 and Y
x
t s

can be freely ordered. The orderings inside the sets Xx
t s are determined by the sequence i1; : : : ; iK which

also may not be unique.
38Without loss of generality we are assuming that no agent is dummy in Lx; otherwise, the obtained

sequence would be j1; : : : ; jn0 ; with n0 < n; and we would proceed by setting Zi = ; for any dummy i; so
that i would not play at �(x; y;Lx):
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For each P 2 P, let �P = (�P11 ; : : : ; �Pnn ) 2 � be the truth-telling pro�le of strategies
in �(x; y;Lx); i.e., for all i 2 N; �Pii (zi) = x if and only if t(Pi) = x; where zi denotes the
unique node at which agent i has to play at �(x; y;Lx). It is easy to see that �(x; y;Lx)
induces f since f(P ) = g(z�(z0; �P )) for arbitrary P 2 P :We want to show that, for each
agent i, �Pii is obviously dominant in �(x; y;Lx): Fix jh 2 N; and suppose jh is called to
play. We distinguish between two cases.

Case 1: jh 2 Xx
t for some t = 0; : : : ; T: Assume �rst that t(Pjh) = x; and so �

Pjh
jh
(zjh) = x:

Then, (zjh ; �
Pjh
jh
(zjh)) = z 2 ZT and g(z) = x = t(Pjh): Hence, �

Pjh
jh

is trivially obviously

dominant for jh. Suppose now that t(Pjh) = y; and let �
0
jh
be the strategy �0jh(zjh) = x:

Then, (zjh ; �
0
jh
(zjh)) = z 2 ZT and g(z) = x; which is the worst alternative according to

Pjh : Hence, �
Pjh
jh

is obviously dominant for jh.

Case 2: jh 2 Y xt for some t = 1; : : : ; T: Assume �rst that t(Pjh) = y; and so �
Pjh
jh
(zjh) = y:

Then,(zjh ; �
Pjh
jh
(zjh)) = z 2 ZT and g(z) = y = t(Pjh): Hence, �

Pjh
jh

is trivially obviously

dominant for jh. Suppose now that t(Pjh) = x; and let �
0
jh
be the strategy �0jh(zjh) = y:

Then, (zjh ; �
0
jh
(zjh)) = z 2 ZT and g(z) = y; which is the worst alternative according to

Pjh : Hence, �
Pjh
jh

is obviously dominant for jh. �

7.2 Proof of Proposition 2

Proposition 2 A SCF f : SP ! X is OSP if and only if f is a GMVS whose

associated left and right coalition systems, fLxgx2X and fRxgx2X ; satisfy the following
two properties:

(L-IOI) For every � > x � x1 � 1; there exists ix 2 N such that Lx satis�es IOI with
respect to ix and fixg 2 Lx+1:
(R-IOI) For every � < x � x1 + 1; there exists ix 2 N such that Rx satis�es IOI with

respect to ix and fixg 2 Rx�1:

The proof of Proposition 2 will require, at each x 2 X and each k 2 f2; : : : ; ng,
to look at the family of minimal winning coalitions of cardinality k; as well as at their

intersections. Given x 2 X and k 2 f1; : : : ; ng; denote by

Lk(x) = fS 2 Lmx j jSj = kg and Rk(x) = fS 2 Rm
x j jSj = kg

the respective families of minimal winning coalitions with cardinality k 2 f1; : : : ; ng; and
let

SLk (x) =
\

S2Lk(x)

S and SRk (x) =
\

S2Rk(x)

S

be their intersections.39 We say that k is a non-empty left-cardinality at x; written
39At the beginning of Subsection 4.2, we have already de�ned Lk(x) as Lkx; but we now change slightly

the notation to write it in the context also of many committees and right coalition systems.
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k 2 NEL(x); if Lk(x) 6= ; and k � 2; and similarly, we say that k is a non-empty

right-cardinality at x; written k 2 NER(x); if Rk(x) 6= ; and k � 2:

Proof of Proposition 2 To prove necessity, assume f : SP ! X is OSP. To obtain

a contradiction, suppose �rst that (L-IOI) does not hold. We distinguish between two

cases.

Case 1: There exists x 2 X such that x � x1 � 1 and Lx does not satisfy IOI. Since
L� satis�es IOI trivially, x < �: De�ne bN =

S
S2Lmx S and

bLmx = Lmx . For i 2 bN; letgSP i be i�s subset of single-peaked preferences whose tops are either x or x + 1; and for
i 2 Nn bN let gSP i be i�s subset of single-peaked preferences whose top is x + 1: De�negSP =gSP1�� � ��gSPn and consider the SCF ef :gSP ! fx; x+1g which is the restriction
of f in the subdomaingSP. Since, by assumption, bLmx does not satisfy IOI, Proposition
1 implies that ef :gSP ! fx; x + 1g is not OSP and, by Remark 1, f : SP ! X is not

OSP-implementable, a contradiction.

Case 2: Assume Lx satis�es IOI for all x � x1 � 1, but there exists bx � x1 � 1 such that
for all ibx such that Lmbx satis�es IOI with respect to ibx; fibxg =2 Lbx+1: Since for all i 2 N;
fig 2 L1(�); we have that bx < �: Furthermore, if jSj = 1 for all S 2 Lmbx , then there
exists i such that fig 2 Lmbx which, by the monotonicity property in the de�nition of a left
coalition system, requires that fig 2 Lmbx+1: Furthermore Lmbx satis�es IOI with respect to
i trivially; in contradiction with our initial hypothesis: Hence,

fT 2 Lmbx j jT j � 2g 6= ;: (10)

Denote by F (Lbx) the set of agents for whom Lbx satis�es IOI with respect to each
of them; namely, F (Lbx) = fi 2 N j Lbx satis�es IOI with respect to ig: By assumption
F (Lbx) 6= ;: Let x0 = minfx 2 X jthere exists ibx 2 F (Lbx) and fibxg 2 Lxg and let i�bx be
one of the agents in F (Lbx) such that fi�bxg 2 Lx0. By de�nition of x0; and the contradiction
hypothesis, bx+1 < x0 (note that x0 may be equal to �) and for all ibx 2 F (Lbx), fibxg =2 Lmex
for all ex < x0: Since bx � x1 � 1; and the de�nition of x1; there exists i� such that
fi�g 2 Lbx+1 (note that bx + 1 � x1): Since fig =2 Lbx+1 for all i 2 F (Lbx); we have that
i� =2 F (Lbx): Moreover, because Lbx satis�es IOI and i� =2 F (Lbx); by (10), there exists
S 2 fT 2 Lmbx j jT j � 2g such that i� =2 S: As i�bx 2 T

k2NEL(x) S
L
k (bx); i�bx 2 S and

there exists j 6= i�bx such that j 2 S. Given i�; j; i�bx 2 N and S we de�ne a Cartesian

product subset of the set of all single-peaked preference pro�les as follows. LetgSP i� be
i��s subset of single-peaked preferences whose tops are either bx + 1 or x0: For i 2 fj; i�bxg
let gSP i be i�s subset of single-peaked preferences whose tops are either bx or x0: For
i 2 Snfj; i�bxg letgSP i be i�s subset of single-peaked preferences whose top is bx. Finally,
for i 2 Nn(S [ fi�g) let gSP i be i�s subset of single-peaked preferences whose top is x0:
De�negSP =gSP1 � � � � �gSPn and consider the SCF ef :gSP ! fbx; bx+ 1; x0g which is f
restricted to this subdomaingSP. As f is OSP, by Remark 1, ef is OSP. Let � be a pruned
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game that OSP-implements ef: Since � induces ef and ef is not constant, there exists an
information set at which a player has available two actions. It is clear that such agent

belongs to the set fi�; j; i�bxg:
Assume i� is the agent who �rst has an information set Ii� with at least two available

actions in � and suppose that t(Pi�) = bx + 1 and x0Pi�bx: Then, since fi�g 2 Lmbx+1 and
i� =2 S 2 Lmbx ,
min
Pi�
fx 2 X j x = g(z�(z; (�Pi�i� ; ��i�))) for some ��i� and z 2 Ii�g = min

Pi�
fbx; bx+ 1g = bx:

(11)

Now, let �0i� 2 �i� be such that �0i� = �
P 0
i�
i� ; where t(P

0
i�) = x

0. Remember that since �

is pruned, agent i� only has at � strategies associated to single-peaked preferences whose

tops are either bx+ 1 or x0. Hence, �Pi�i� (z) 6= �0i�(z) because � induces the tops-only SCFef . Then, as i� is the agent who �rst has an information set Ii� with at least two available
actions; Ii� 2 �(�Pi�i� ; �0i�) and by the de�nitions of x0; Pi� andgSP;
max
Pi�
fx 2 X j x = g(z�(z; (�0i� ; ��i�))) for some ��i� and z 2 Ii�g = max

Pi�
fbx; x0g = x0:

(12)

But again, x0Pi�bx and conditions (11) and (12) imply that �Pi�i� is not obviously dominant

in �, contradicting that � OSP-implements ef:
Assume now that agent j0 2 fi�bx; jg is the agent who �rst has an information set Ij0

with at least two available actions in � and suppose that t(Pj0) = bx: Then, since S 2 Lmbx
implies S 2 Lmbx+1; by single-peakedness of Pj0 and the de�nition ofgSP;
min
Pj0
fx 2 X j x = g(z�(z; (�Pj0j0 ; ��j0))) for some ��j0 and z 2 Ij0g = min

Pj0
fbx; bx+1; x0g = x0:

(13)

Now, let �0j0 2 �j0 be such that �0j0 = �
P 0
j0
j0 ; where t(P

0
j0) = x0. Remember that since �

is pruned, agent j0 only has at � strategies associated to single-peaked preferences whose

tops are either bx or x0. Hence, �Pj0j0 (z) 6= �0j0(z) because � induces the tops-only SCF ef:
Then, as j0 is the agent who �rst has an information set Ij0 with at least two available

actions; Ij0 2 �(�
Pj0
j0 ; �

0
j0) and by de�nitions of x

0; P 0j0 andgSP,
max
Pj0
fx 2 X j x = g(z�(z; (�0j0 ; ��j0))) for some ��j0 and z 2 Ij0g = max

Pj0
fbx+1; x0g = bx+1:

(14)

By single-peakedness of Pj0, bx+1Pj0x0; which together with conditions (13) and (14) imply
that �

Pj0
j0 is not obviously dominant in �, contradicting that � OSP-implements ef . Hence,

(L-IOI) holds.

Now we prove that (R-IOI) holds. Since (L-IOI) holds, by Lemma 2 (in Case 3 below),

there exists i 2 N such that fig 2 Rm
x1
: Then, the largest alternative for which the right

coalition system has a decisive agent is equal to or larger than x1: Now the proof that

(R-IOI) holds follows a symmetric argument to the one used to show that (L-IOI) holds.
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To prove su¢ ciency, assume f : SP ! X is a GMVS whose associated left and right

coalition systems, fLxgx2X and fRxgx2X , satisfy (L-IOI) and (R-IOI), respectively. We
distinguish among three cases, depending on whether x1 = � (case 1), x1 = � (case 2) or

x1 =2 f�; �g (case 3). In the three cases the game constructed in the su¢ ciency proof of
Proposition 1 will play a fundamental role, since a GMVS f may be seen as a sequence of

EMVRs, each between x and x+1 , when f is described as a left coalition system (with the

associated game �(x; x+1;Lx)), or a sequence of EMVRs, each between x and x�1; when
f is described as a right coalition system (with the associated game �(x; x � 1;Rx)). If

x1 2 f�; �g only one of the two sequences will be needed in the construction of the overall
�; while if x1 =2 f�; �g we will have to consider �(x1; x1 + 1;Lx1); : : : ;�(� � 1; �;L��1)
and �(x1; x1� 1;Rx1); : : : ;�(�+1; �;R�+1): The choice of whether the game � proceeds

by following the �rst or the second sequence will depend on a particular agent that will

simultaneously be left-decisive and right-decisive at x1; and that we will identify in Lemma

2 (in Case 3 below).

Case 1: x1 = �: Suppose that for all � � x < �; Lx satis�es IOI with respect to ix

and fixg 2 Lx+1: We de�ne a game � by considering the sequence of games �(�; � +
1;L�);�(� + 1; � + 2;L�+1); : : : ;�(� � 1; �;L��1) de�ned in the proof of Proposition 1,
where for each � � x < �; the �rst agents to play at the game �(x; x+ 1;Lx) are the set
of decisive agents at x (i.e., the set Xx

0 in the notation used in the proof of Proposition

1), with any ordering, but making sure that for each � < x < �; agent ix is the agent

that plays immediately after the decisive agents in x (i.e., ix 2 Y x1 in the notation used
in the proof of Proposition 1 and among the set of agents in Y x1 ; i

x is the �rst agent to

play). We will write g(zx+(:; :)) instead of g(z�(x;x+1;Lx)(:; :)):We now proceed to describe

the details of the steps used to de�ne �:

The set of agents in N� = [S2Lm� S play the game �(�; � + 1;L�). In this game, each
i 2 N� plays only once. Let z�+i 2 Z�(�;�+1;L�) be the node at which i plays, where i
has available the set of actions A(z�+i ) = f�; � + 1g: For each i 2 N�; we denote by
a�+i 2 f�; �+1g the action chosen by i at z�+i in �(�; �+1;L�) and by a�+ = (a�+i )i2N�
the pro�le of actions.40 Abusing notation, let z�+0 be the node assigned to the �rst agent

playing in �(�; � + 1;L�). Then, we make sure that the following three properties of �
hold, regarding the outcome of �(�; �+ 1;L�).
First, if g(z�+(z�+0 ; a�+)) = �; then the overall game � ends and the outcome is �:

Second, if g(z�+(z�+0 ; a�+)) = �+ 1 and a�+i� = �; then the overall game ends and the

outcome is �+ 1:

Third, if g(z�+(z�+0 ; a�+)) = �+1 and a�+i� 6= �; then agents in N�+1 = [S2Lm�+1S play
the game �(�+1; �+2;L�+1); whose initial node is this terminal node of �(�; �+1;L�):
40We are de�ning the (behavioral) strategies in the full game � by specifying the actions taken by

agents at each of the games induced by their corresponding EMVRs.
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In this game �(�+1; �+2;L�+1), each agent i 2 N�+1 plays only once. Let z(�+1)+i 2
Z�(�+1;�+2;L�+1) be the node at which i plays. Then, agents in DeL�+1 play in any order

and they are immediately followed by agent i�+1 (such agent exists since L�+1 satis�es
(L-IOI) with respect to i�+1 and i�+1 2 DeL�+2): Each agent i 2 N�+1 has available at
z
(�+1)+
i the set of actions A(z(�+1)+i ) = f� + 1; � + 2g: For each i 2 N�+1; we denote
by a(�+1)+i 2 f� + 1; � + 2g the action chosen by i in �(� + 1; � + 2;L�+1) and by
a(�+1)+ = (a

(�+1)+
i )i2N�+1 the pro�le of actions. Abusing notation, let z

(�+1)+
0 be the node

assigned to the �rst agent playing in �(�+ 1; �+ 2;L�+1): Then, we make sure that the
following three properties of � hold, regarding the outcome of �(�+ 1; �+ 2;L�+1):
First, if g(z(�+1)+(z�+10 ; a(�+1)+)) = � + 1; then the overall game � ends and the

outcome is �+ 1:

Second, if g(z(�+1)+(z�+10 ; a(�+1)+)) = �+2 and a(�+1)+i�+1 = �+1; then the overall game

� ends and the outcome is �+ 2:

Third, if g(z(�+1)+(z�+10 ; a(�+1)+)) = �+2 and a(�+1)+i�+1 6= �+1; then agents in N�+2 =
[S2Lm�+2S play the game �(�+2; �+3;L�+2); whose initial node is this terminal node of
�(�+ 1; �+ 2;L�+1):
We continue with the construction of � in the same way for each x 2 f�; : : : ; � � 2g;

if any. Let zx+0 the node assigned to the �rst agent playing in the game �(x; x + 1;Lx):
Identify the ordering of play and the set of available actions as in the previous cases

and, in particular, make sure that the following three properties of � hold, regarding the

outcome of �(x; x+ 1;Lx):
First, if g(zx+(zx+0 ; a

x+)) = x; then the overall game � ends and the outcome is x:

Second, if g(zx+(zx+0 ; a
x+)) = x + 1 and ax+ix = x; then the overall game � ends and

the outcome is x+ 1:

Third, if g(zx+(zx+0 ; a
x+)) = x+ 1 and ax+ix 6= x; then agents in Nx+1 = [S2Lmx+1S play

the game �(x+1; x+2;Lx+1); whose initial node is this terminal node of �(x; x+1;Lx):
Finally, when ��1 is reached, agents inN��1 = [S2Lm��1S play the game �(��1; �;L�)

starting at z��10 with the feature that the following two properties hold.

First, if g(z(��1)+(z��10 ; a(��1)+)) = � � 1; then the overall game � ends and the
outcome is � � 1:
Second, if g(z(��1)+(z��10 ; a(��1)+)) = �; then the overall game � ends and the outcome

is �:

Let � be the extensive game form just constructed. Since all information sets are

singletons, � has perfect information. Fix x < � and let i 2 N be arbitrary. If i 2 Nx;
then there exists one and only one node in �(x; x+1;Lx) at which agent i plays. We have
denoted this node by zx+i : Again, for an arbitrary i 2 N; let Ai = fx 2 X j i 2 Nxg be
the set of such x�s at which i is called to play at zx+i in �(x; x + 1;Lx): If Ai = ; then i
is a dummy agent in all committees (i.e., for all x < �; i =2 S for all S 2 Lmx ) and Zi = ;
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in �: But then, i�s truth-telling strategy is trivially obviously dominant. For each agent

i 2 N; a strategy �i : Zi ! A in � is a function that, for each zx+i with x 2 Ai; selects an
action in A(zx+i ) = fx; x+ 1g (i.e., �i(zx+i ) 2 fx; x+ 1g).
For P 2 SP, let �P = (�P11 ; : : : ; �

Pn
n ) 2 � be the pro�le of truth-telling strategies;

namely, for all x 2 X, all i 2 Nx; and all zx+i 2 Zi, �Pii (zx+i ) = x if and only if t(Pi) � x
(and hence, �Pii (z

x+
i ) = x+ 1 if and only if t(Pi) � x+ 1).

Let f : SP ! X be a GMVS whose left coalition system has the property that

x1 = �: Then, it is easy to see that � induces f : SP ! X since for all P 2 SP,
f(P ) = g(z�(z0; �

P )).

We want to show that, for each i, �Pii is obviously dominant in �: Fix i 2 N and

let �0i be any strategy of i with the property that �
0
i 6= �Pii . Denote by z�x+i the earliest

point of departure for �Pii and �0i; i.e., �
Pi
i (z

x+
i ) = �0i(z

x+
i ) for all x < �x with x 2 Ai

and �Pii (z
�x+
i ) [ �0i(z�x+i ) = f�x; �x + 1g: We proceed by distinguishing among several cases,

depending on the role of i with respect to the committee L�x:
Case 1.a: i 2 X �x+

t for some t = 0; : : : ; T , where X �x+
t corresponds to the set of agents

that by choosing �x in the game �(�x; �x + 1;L�x) it ends at �x (see the su¢ ciency proof of
Proposition 1).

Case 1.a.1: Assume �rst that t(Pi) � �x; and so �Pii (z
�x+
i ) = �x: Then, the node z that

follows zx+i after i plays �x has the property that z 2 ZT and

fx 2 X j x = g(z�(z�x+i ; (�Pii ; ��i))) for some ��ig = f�xg:

As z�x+i is the earliest point of departure for �Pii and �0i, �
0
i(z

�x+
i ) = �x+ 1: Hence,

fx 2 X j x = g(z�(z�x+i ; (�0i; ��i))) for some ��ig � f�x; : : : ; �g:

Therefore, since t(Pi) � �x and Pi is single-peaked, �Pii is obviously dominant.

Case 1.a.2: Assume now that �x < t(Pi); and so �
Pi
i (z

�x+
i ) = �x+1 and �

0
i(z

�x+
i ) = �x: By the

de�nition of �, the node z that follows z�x+i after i plays �x has the property that z 2 ZT
and

fx 2 X j x = g(z�(z�x+i ; (�0i; ��i))) for some ��ig = f�xg:

The last equality follows because if i 2 X �x+
t for some t = 0; : : : ; T , then i can induce �x by

choosing �x in the game �(�x; �x + 1;L�x), which means that �x is the outcome of � as well.
However,

fx 2 X j x = g(z�(z�x+i ; (�Pii ; ��i))) for some ��ig � f�x; : : : ; t(Pi)g;

where the last inclusion follows because, according to the hypothesis of Case 1.a, either

(i) i 2 X �x+
0 or else (ii) i 2 X �x+

t for some t � 1: If (i) holds, fig 2 Lx0 for all x0 � �x; and

thus g(z�(z�x+i ; (�
Pi
i ; ��i)) will not be larger than t(Pi): If (ii) holds, observe that when i
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is called to play at z�x+i , agent i
�x (who plays before i in �(�x; �x+1;L�x) because is the �rst

agent in Y �x
1 ) has already chosen the action �x in z

�x+
i . Then, the outcome of the game is �x

or �x+ 1 and �x+ 1 � t(Pi) in this case.
Case 1.b: i 2 Y �x+

t for some t = 1; : : : ; T , where Y �x+
t corresponds to the set of agents that

by choosing �x+1 in the game �(�x; �x+1;L�x) it ends at �x+1 (see the su¢ ciency proof of
Proposition 1).

Case 1.b.1: Assume �rst that �x < t(Pi): Thus, �
Pi
i (z

�x+
i ) = �x + 1 and �0i(z

�x+
i ) = �x: We

distinguish between two cases, depending on i�s identity.

Case 1.b.1.1: i = i�x: Then, by (L-IOI) and the monotonicity property in the de�nition of

a left coalition system, fi�xg 2 Lmx0 for all x0 � �x+ 1: Therefore,

fx 2 X j x = g(z�(z�x+i ; (�Pii ; ��i))) for some ��ig = f�x+ 1; : : : ; t(Pi)g:

Furthermore, since �0i(z
�x+
i ) = �x;

fx 2 X j x = g(z�(z�x+i ; (�0i; ��i))) for some ��ig = f�x; �x+ 1g:

Then, since �x < �x+ 1 � t(Pi) and Pi is single-peaked, �Pii is obviously dominant.

Case 1.b.1.2: i 6= i�x: Then,

fx 2 X j x = g(z�(z�x+i ; (�Pii ; ��i))) for some ��ig = f�x+ 1g

and

fx 2 X j x = g(z�(z�x+i ; (�0i; ��i))) for some ��ig � f�x; �x+ 1g:

To see that the last statements hold, observe that when i is called to play at z�x+i , agent i
�x

(who plays before i in �(�x; �x+ 1;L�x)) has already chosen the action �x in z�x+i . Therefore,
and since �x < �x+ 1 � t(Pi) and Pi is single-peaked, �Pii is obviously dominant.

Case 1.b.2: Assume now that t(Pi) � �x: Thus, �Pii (z�x+i ) = �x and �0i(z�x+i ) = �x+ 1: Hence,

fx 2 X j x = g(z�(z�x+i ; (�0i; ��i))) for some ��ig � f�x+ 1; : : : ; �g:

Furthermore,

fx 2 X j x = g(z�(z�x+i ; (�Pii ; ��i))) for some ��ig � f�x; �x+ 1g:

Therefore, since t(Pi) � �x < �x+ 1 and Pi is single-peaked, �Pii is obviously dominant.

Case 2: x1 = �: Suppose that for all � < x � �; Rx satis�es IOI with respect to ix

and fixg 2 Rx�1: Now, the proof follows a symmetric argument to the one already used

in Case 1, using instead the right coalition system fRxgx2X and the sequence of games
�(�; � � 1;R�);�(� � 1; � � 2;R��1); :::;�(�+ 1; �;R�+1):
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Case 3: x1 =2 f�; �g: We start by identifying an agent who is simultaneously left-decisive
and right-decisive at x1: Lemma 2 does that, but to state it we need some additional

notation. De�ne

SL(x1 � 1) =
T

k2NEL(x1�1)
SLk (x1 � 1)

and

SR(x1 + 1) =
T

k2NER(x1+1)
SRk (x1 + 1);

where recall that NEL(x) = fk 2 f2; : : : ; ng j Lk(x) 6= ;g; and the other sets needed
to de�ne SL(x1 � 1) and SR(x1 + 1) are NER(x) = fk 2 f2; : : : ; ng j Rk(x) 6= ;g;
SLk (x1 � 1) =

T
S2Lk(x1�1) S and S

R
k (x1 + 1) =

T
S2Rk(x1+1)

S:41

Lemma 2 Assume i 2 SL(x1 � 1) and fig 2 Lmx1 : Then,
(L2.1) fig 2 Rm

x1
;

(L2.2) either (a) i 2 SR(x1 + 1) if SR(x1 + 1) 6= ; or (b) fig 2 Rm
x1+1

; and

(L2.3) if S 2 Rm
x and i =2 S; then x � x1:

Proof of Lemma 2 Condition (L2.1) follows from i 2 SL(x1 � 1), the relationship
between the families of left and right coalition systems stated in Remark 4 and the de�ni-

tion of x1. To see that (L2.2) holds, observe that since fig 2 Lmx1 holds, Remark 4 implies
that i 2 T for every T 2 Rm

x1+1
; then, either (a) i 2 SR(x1 + 1) if SR(x1 + 1) 6= ; or (b)

fig 2 Rm
x1+1

follow. To see that (L2.3) holds, observe that since fig 2 Lmx1 holds, again
by Remark 4, i 2 T for every T 2 Rm

x for each x � x1 + 1: �
Since Lx1�1 satis�es (L-IOI) and by x1�s de�nition, there exists i1 2 N such that

i1 2 SL(x1 � 1) (i.e., Lx1�1 satis�es IOI with respect to the i1 and SL(x1 � 1) 6= ;) and
fi1g 2 Lx1 : By Lemma 2, fi1g 2 Rx1 as well. To de�ne a game � that OSP-implements

f; agent i1 is the �rst to play, at z0 (the initial node of �), and has available the following

three actions: A(z0) = fx1 � 1; x1; x1 + 1g: To continue with the construction of � we
describe the subgame (if any) that follows each of the three choices of i1 at z0.

(a) Agent i1 selects x1. Then, the overall game � ends and the outcome is x1:

(b) Agent i1 selects x1 + 1. Then, the game � proceeds with the sequence of games

�(x1; x1+1;Lx1); : : : ;�(�� 1; �;L��1) as described in Case 1 starting at x1 instead of �:
(c) Agent i1 selects x1 � 1. Then, the game � proceeds with the sequence of games

�(x1; x1 � 1;Rx1); : : : ;�(� + 1; �;R�+1) as described in Case 2 starting at x1 instead of

�:

Let � be the game described above and let P 2 SP be arbitrary. For any agent i 6= i1;
the reasons why �Pii (see its de�nition in Case 1) is obviously dominant in � are the same

41To illustrate these sets, consider the left and right committees, Lx and Rx (where Rx was Ly in the
notation of Section 4), in Example 1 at the end of Section 4. Then, NEL(x) = f2; 5g; NER(x) = f2; 4; 5g;
SL(x) = f2g and SR(x) = f1g:
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to the ones already used to prove it in Cases 1 and 2, since when the game � proceeds into

either case (b) or (c) above it follows only one of the two corresponding sequences until

� ends. Now, consider agent i1: We want to show that agent i1�s truth-telling strategy

�
Pi1
i1
is also obviously dominant in �: Any strategy of agent i1 selects an action at z0 and

at a node in each of the games �(x; x + 1;Lx) for x1 � x < �; and �(x; x � 1;Rx) for

� < x � x1: In particular, agent i1�s truth-telling strategy �
Pi1
i1
is de�ned as follows: at

z0;

�
Pi1
i1
(z0) =

8><>:
x1 � 1 if t(Pi1) < x1
x1 if t(Pi1) = x1
x1 + 1 if t(Pi1) > x1;

at any zx+i where x1 � x < �;

�
Pi1
i1
(zx+i1 ) =

(
x if t(Pi1) � x
x+ 1 if t(Pi1) > x;

and at any zx�i where � < x � x1;

�
Pi1
i1
(zx�i1 ) =

(
x if t(Pi1) � x
x� 1 if t(Pi1) < x:

To show that �Pii1 is obviously dominant in �; let �
0
i1
be any strategy of agent i1 with

the property that �0i1 6= �
Pi
i1
. Denote by z the earliest point of departure for �

Pi1
i1
and �0i1 :

If z 6= z0; then z 2 fzx+i1 ; z
x�
i1
g for some x. As we did in Case 1 (if z = zx+i1 ) and in Case 2

(if z = zx�i1 ), we can show that

min
Pi1

X
Pi1
+;�Ri1 max

Pi1

X 0
+;�; (15)

where X
Pi1
+;� = fx 2 X j x = g(z�(z; (�Pi1i1 ; ��i1))) for some ��i1g and X

0
+;� = fx 2 X j

x = g(z�(z; (�0i1 ; ��i1))) for some ��i1g: Assume z = z0 and suppose �rst that t(Pi1) = x1;
and so �

Pi1
i1
(z) = x1: Then,

fx 2 X j x = g(z�(z; (�Pi1i1 ; ��i1))) for some ��i1g = fx1g:

Since t(Pi1) = x1;

x1Ri1 max
Pi1

fx 2 X j x = g(z�(z; (�0i1 ; ��i1))) for some ��i1g: (16)

Suppose now that t(Pi1) < x1; and so �
Pi1
i1
(z) = x1 � 1: Then,

X
Pi1
0 = fx 2 X j x = g(z�(z; (�Pi1i1 ; ��i1))) for some ��i1g � ft(Pi1); : : : ; x1g: (17)
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The inclusion follows from the de�nition of � and because, by Lemma 2 and the monotonic-

ity property in the de�nition of a right coalition system, fi1g 2 Rx for all x � x1. Since
�0i1(z) 6= x1 � 1, �0i1(z) 2 fx1; x1 + 1g: Then,

X 0
0 = fx 2 X j x = g(z�(z; (�0i1 ; ��i1))) for some ��i1g � fx1; : : : ; �g: (18)

The inclusion follows because x1 2 X 0
0 if �

0
i1
(z) = x1 and because X 0

0 � fx1; : : : ; �g
if �0i1(z) = x1 + 1; where this last inclusion follows again from the de�nition of � and

because fi1g 2 Lx1 implies that, by the monotonicity property in the de�nition of a left
coalition system, fi1g 2 Lx for all x1 � x: By (17) and (18), single-peakedness of Pi1 and
t(Pi1) < x1;

min
Pi1

X
Pi1
0 Ri1 max

Pi1

X 0
0: (19)

Suppose that t(Pi1) > x1; and so �
Pi1
i1
(z) = x1+1: Then, the proof proceeds as in the above

case where t(Pi1) < x1: Hence, from (15), (16), and (19) (and the symmetric condition to

(19) when t(Pi1) > x1), �
Pi1
i1
is obviously dominant in �: �

7.3 Proposition 3 and its proof

The (L2-IOI) property stated below plays a crucial role to identify the property on the

left coalition system, that together with (L-IOI), characterize all GMVSs that are OSP

in terms only of its associated left coalition system.42

(L2-IOI) For every � < x � x1 � 1; Lx satis�es IOI and (i) there exists ix 2 N such that

fixg [ (
T
S2Lmx S) 2 L

m
x and (ii) ix 2 S for all S 2 Lmx�1:

By the monotonicity property in the de�nition of a left coalition system, Remark 5

holds.

Remark 5 Assume x � x1 � 1: If Lmx = fSg; then for all x0 � x and all S 0 2 Lmx0 ;
S � S 0.

Lemma 3 will be useful in the proof of Proposition 3, which is the result that contains

the answer to our question. It roughly says that IOI for the left translates into IOI for

the right, +1; namely, for all � < x � �; either Lx�1 and Rx satisfy both IOI or neither

of them do.

Lemma 3 Let fLwgw2X and fRwgw2X be, respectively, the left and the right coalition
systems associated to the same GMVS f and let � < x � �: Then, Rx satis�es IOI if

and only if Lx�1 satis�es IOI.
42Of course, we could also state a corresponding property (R2-ISI) for the right coalition system.

However, we omit this symmetric analysis.
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Proof of Lemma 3 Assume Lx�1 satis�es IOI. Let bN =
S
S2Lmx�1

S and, for each

i 2 bN , let bPi be the set of i�s strict preferences on fx�1; xg: Let bf :Qi2 bN bPi ! fx�1; xg
be the EMVR associated to the committee bLx�1; the restriction of Lx�1 into bN . Observe
that if j =2 bN; then j is dummy at Lx�1 and j is dummy at Rx: Since Lx�1 satis�es
IOI, bLx�1 does as well. By Proposition 1, bf is OSP. Then, again by Proposition 1,
and a symmetric argument, bRx satis�es IOI. But then, Rx satis�es IOI as well. Using

a symmetric argument we can show that if Rx satis�es IOI, then Lx�1 satis�es IOI as
well. �
Proposition 3 Let fLxgx2X and fRxgx2X be, respectively, the left and the right coali-
tion systems associated to the same GMVS and let � < x1 < �. Then, (L-IOI) and

(R-IOI) hold if and only if (L-IOI) and (L2-IOI) hold.

Proof of Proposition 3 Assume (L-IOI) and (R-IOI) hold. It is su¢ cient to show

that (L2-IOI) holds. Let � < x � x1 � 1 and assume �rst that jLmx j = 1: Let S 6= ;
be such that Lmx = fSg and so, for any i 2 S, fig [ S 2 Lmx holds trivially and, by

Remark 5, if S 0 2 Lmx�1; then S � S 0 and i 2 S 0: Hence, (L2-IOI) holds. Assume now
that jLmx j � 2: Then, x+1 < x1+1 and by (R-IOI), Rx+1 satis�es IOI. By Lemma 3, Lx
satis�es IOI. Furthermore, by (R-IOI) and x+1 < x1+1; there exists ix+1 2 N such that

Rx+1 satis�es IOI with respect to ix+1 and fix+1g 2 Rx: Since ix+1 is the �rst element

in the order for which Rx+1 satis�es IOI with respect to, ix+1 2 S for all S 2 Rk(x + 1)

and all k � 2. Since (fix+1g [ (
S
fig2Rx+1

fig)) \ S 6= ; for all S 2 Rm
x+1, by Remark 4,

fix+1g [ (
S
fig2Rx+1

fig) 2 Lx holds. Now, we prove that fix+1g [ (
S
fig2Rx+1

fig) 2 Lmx :
Assume there exists S 0 ( fix+1g [ (

S
fig2Rx+1

fig) such that S 0 2 Lx. By Remark 4,
S 0 \ fig 6= ; for all i such that fig 2 Rx+1: Hence, S 0 =

S
fig2Rx+1

fig: By Remark 4,S
fig2Rx+1

fig =
T

S2Lmx
S (20)

holds, implying that
T
S2Lmx S 2 Lmx and jLmx j = 1; which contradicts that jLmx j � 2:

Therefore, fix+1g [ (
S
fig2Rx+1

fig) 2 Lmx . By (20), fix+1g [ (
T
S2Lmx S) 2 L

m
x ; which is (i)

in (L2-IOI). Moreover, since fix+1g 2 Rx; by Remark 4, ix+1 2 S for all S 2 Lmx�1.
Assume (L-IOI) and (L2-IOI) hold. It is su¢ cient to show that (R-IOI) holds. Let

� < x � x1 + 1: We proceed by considering two cases separately.
Case 1: � < x < x1 + 1: Then, x� 1 � x1 � 1 and by (L2-IOI), Lx�1 satis�es IOI. Then,
by Lemma 3, Rx satis�es IOI. We further distinguish between two subcases.

Case 1.a: � = x � 1: Then, for any i 2 N; Rx satis�es trivially IOI with respect to i,

since the boundary condition in the de�nition of a right coalition system implies that

fig 2 Rx�1 = R�: Hence, (R-IOI) holds in Case 1.a.

Case 1.b: � < x� 1: By (L2-IOI), there exists ix�1 2 N such that

fix�1g [ (
T

S2Lmx�1
S) 2 Lmx�1 (21)
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and

ix�1 2 S for all S 2 Lmx�2: (22)

By Remark 4 and (22), fix�1g 2 Rx�1: It is su¢ cient to show that Rx satis�es IOI with

respect to ix�1 or, equivalently, that ix�1 2 S for all S 2 Rm
x with jSj � 2: By Remark

4,
S
fig2Rx

fig =
T
S2Lmx�1

S; and, by (21), fix�1g [ (
S
fig2Rx

fig) 2 Lx�1. Consider any
S 2 Rm

x with jSj � 2 and assume that ix�1 =2 S: By the fact that S 2 Rm
x ; i =2 S for

all i such that fig 2 Rx. Therefore, (fix�1g [ (
S
fig2Rx

fig) \ S) = ; which contradicts,
together with Remark 4, that fix�1g [ (

S
fig2Rx

fig) 2 Lmx�1.
Case 2: x = x1+1: By (L-IOI), Lx1�1 satis�es IOI with respect to ix1�1 and fix1�1g 2 Lx1 :
By de�nition of x1; ix1�1 2 SL(x1�1) 6= ;: By (L2.1) and (L2.2) in Lemma 2, Rx1 satis�es

IOI with respect to ix1�1 and fix1�1g 2 Rx1�1: Thus, (R-IOI) follows. �
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