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Abstract

We characterize the set of all obviously strategy-proof and onto social choice functions on the domain 
of single-peaked preferences. Since obvious strategy-proofness implies strategy-proofness, and the set of 
strategy-proof and onto social choice functions on this domain coincides with the class of generalized me-
dian voter schemes, we focus on this class. We identify a condition on generalized median voter schemes for 
which the following characterization holds. A generalized median voter scheme is obviously strategy-proof 
if and only if it satisfies the increasing intersection property. Our proof is constructive; for each generalized 
median voter scheme that satisfies the increasing intersection property we define an extensive game form 
that implements it in obviously dominant strategies.
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1. Introduction

The purpose of this paper is to identify the class of all obviously strategy-proof and onto 
social choice functions on the domain of single-peaked preferences. Specifically, we consider 
social choice problems where a set of agents has to choose an alternative from a finite and lin-
early ordered set of alternatives. For instance, when alternatives are possible levels or locations 
of a public good, political parties’ platforms, temperatures in a room, etc. In these cases, and in 
a broad variety of economic and political settings, it is natural and meaningful to assume that 
agents have strict single-peaked preferences over alternatives. A preference is single-peaked if 
there is a best alternative, or top, and alternatives that are further away from this top are progres-
sively less preferred. A central result in the mechanism design literature studying strategy-proof 
social choice functions on restricted domains of preferences is that a social choice function is 
strategy-proof and onto on the domain of single-peaked preferences if and only if it is a general-
ized median voter scheme.1

But in general, the mechanism design literature has mainly neglected the question of how easy 
is for the agents to realize that truth-telling is indeed weakly dominant (i.e., how much contingent 
reasoning is required to do so). Li (2017) proposes the notion of obvious strategy-proofness as a 
criterion to deal with this question. Obvious strategy-proofness has already been used to identify, 
among the class of strategy-proof mechanisms in different settings, those mechanisms that are 
“easy to play” because truth-telling is an undoubtedly optimal decision. Here, we answer the 
following question: what is the property that a generalized median voter scheme has to satisfy to 
be obviously strategy-proof.

A social choice function is obviously strategy-proof if there exists an extensive game form, 
whose set of players is the set of agents and its outcomes are alternatives (i.e., there exists a 
sequential mechanism), with two properties. First, for each preference profile one can identify a 
profile of truth-telling (behavioral) strategies with the property that if agents play the extensive 
game form according to it, the outcome of the game is the alternative selected by the social 
choice function at the preference profile (i.e., the extensive game form induces the social choice 
function). Second, agents use the two most extreme behavioral assumptions when comparing the 
truth-telling strategy with any other strategy; agents are absolutely pessimistic when assessing 
the consequence of truth-telling and absolutely optimistic when assessing the consequence of 
any other behavior, and they weakly prefer the former to the latter. Whenever an agent has to 
play along the sequential mechanism, truth-telling appears then as being obviously optimal.

Obvious strategy-proofness is stronger than strategy-proofness. Hence, to describe the class 
of all obviously strategy-proof and onto social choice functions on the domain of single-peaked 
preferences we must restrict our search into the class of generalized median voter schemes. 
A generalized median voter scheme can be described as a sequence of electoral confrontations 
between pairs of correlative alternatives. Each electoral confrontation is settled by a committee, a 
monotone family of winning coalitions, associated to one of the two alternatives (call it x). Then, 
given a profile of single-peaked preferences, x is selected if and only if the set of agents that 

1 See for instance Moulin (1980) or Barberà et al. (1993). Generalized median voter schemes are extensions of the 
median voter rule and since they respect unanimity they are onto..
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prefer x to the other alternative belongs to the committee. For instance, if the number of agents 
is odd, majority voting between two alternatives is the committee that associates to one of the 
two alternatives all coalitions with more than half of the agents. More specifically, a generalized 
median voter scheme can be represented by a coalition system that associates to each alterna-
tive a committee and operates as follows. Fix a profile of single-peaked preferences over the set 
of alternatives.2 At any generic alternative x, and starting at the smallest one, agents face two 
possibilities. Either to select the current alternative x as the one finally chosen or else to select, 
tentatively, x + 1. If the set of agents that prefer x to x + 1, according to the preference profile, 
is a winning coalition at x (that is, it is a member of the committee at x), then x is selected, and 
finally chosen; otherwise, x +1 becomes the new current alternative that is confronted with x +2
by applying the committee at x + 1.

Our contribution is two-fold. First, we give the explicit description of each obviously strategy-
proof and onto social choice function on the domain of single-peaked preferences. We do it 
by showing that a generalized median voter scheme is obviously strategy-proof if and only if 
its associated coalition system satisfies the increasing intersection property. The property has 
two parts, both applied to each alternative and related with the cardinalities of the intersections 
of (minimal) winning coalitions. Second, we propose an algorithm that, when applied to each 
coalition system with the increasing intersection property, defines an extensive game form that 
implements in obviously dominant strategies the corresponding social choice function. The algo-
rithm is based on the description of generalized median voter schemes as a sequence of electoral 
confrontations between pairs of correlative alternatives and it uses the increasing intersection 
property of their associated coalition systems.

Literature review

There is a large literature, prior to Li (2017), dealing with the difficulties that agents might 
have when trying to identify that truth-telling is dominant in strategy-proof mechanisms. See for 
instance Attiyeh et al. (2000), Cason et al. (2006), Friedman and Shenker (1998), Kawagoe and 
Mori (2001) and Yamamura and Kawasaki (2013). Even earlier, Kagel et al. (1987) interpret their 
experimental results as suggesting that the breakdown of the equivalence between the English as-
cending clock and the second-price sealed-bid auctions “on a behavioral level can be attributed to 
differential information flows inherited in the structure of the two auctions.” Glazer and Rubin-
stein (1996) already argues that complexity considerations may suggest the convenience of using 
extensive game forms to facilitate the identification of the set of strategies that survive iterative 
elimination of dominated strategies.

Li (2017)’s notion of obvious strategy-proofness is based on an extreme and strong behavioral 
criterion. Thus, it is not surprising that the literature has already identified settings for which 
either none of the strategy-proof social choice functions are obviously strategy-proof or only 
a very special and small subset of them satisfy the stronger requirement. For instance, in the 
complete impossibility case, Li (2017) already shows that the top-trading cycles algorithm in the 
house allocation problem of Shapley and Scarf (1974) is not obviously strategy-proof. Ashlagi 
and Gonczarowski (2018) shows that the deferred acceptance algorithm in the marriage model is 
not obviously strategy-proof for the agents belonging to the offering side.

In the partial (or total) possibility case, Li (2017) characterizes the monotone price mecha-
nisms (generalizations of ascending auctions) as those that are obviously strategy-proof on the 

2 Without loss of generality, we may assume that the set of alternatives is a finite set of correlative integers.
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domain of quasi-linear preferences. Li (2017) also shows that, for online advertising auctions, 
the Vickrey-Clarke-Groves mechanism is obviously strategy-proof. Ashlagi and Gonczarowski
(2018) shows however that the deferred acceptance algorithm becomes obviously strategy-proof, 
for the agents belonging to the offering side, on the restricted domain of acyclic preferences intro-
duced by Ergin (2002).3 Arribillaga et al. (2019) surprisingly finds that, for the discrete division 
problem with single-peaked preferences, each sequential allotment rule (i.e., each strategy-proof, 
efficient and replacement monotonic social choice function) is indeed obviously strategy-proof. 
This is shown by means of an algorithm that, for each sequential allotment rule, delivers the 
extensive game form that implements the rule in obviously dominant strategies.

But the closest paper to ours is Bade and Gonczarowski (2017). They establish a general 
revelation principle like result for obvious strategy-proofness: a social choice function is imple-
mentable in obviously dominant strategies if and only if some obviously incentive compatible 
gradual mechanism implements it. For the problem of assigning a set of objects to a set of 
agents, Bade and Gonczarowski (2017) shows that an efficient social choice function is obviously 
strategy-proof if and only if it can be implemented by an extensive game form with sequential 
barters with lurkers; this class consists of generalizations of serial dictatorships. They also show 
that Li (2017)’s positive result on monotone price mechanisms for binary allocation problems 
does not hold for more general problems with two or more goods. For the case of voting over 
two alternatives, Bade and Gonczarowski (2017) shows that if a social choice function is obvi-
ously strategy-proof and onto then it can be implemented by a proto-dictatorship. Finally, for 
the problem of an infinite and linearly ordered set of alternatives with single-peaked preferences, 
Bade and Gonczarowski (2017) shows that if a social choice function is obviously strategy-proof 
and onto then it can be implemented by an extensive game form consisting of dictatorships with 
safeguards against extremisms (and arbitration via proto-dictatorships, if the set of alternatives is 
discrete).

Bade and Gonczarowski (2017) and our paper have important overlaps regarding the two-
alternative case and the model with single-peaked preferences.4 The main differences between 
the two papers are the following. First, in the single-peaked case, our assumption that the set 
of alternatives is finite is important and becomes crucial for the construction of the algorithm. 
On the contrary, Bade and Gonczarowski (2017) assumes that the set of alternatives is infinite. 
Our finite assumption allows us to obtain the result for the two-alternative case as a particular 
instance of our general result (see Corollary 1 and subsequent comments in Section 6) without 
having to look at it as a separate model, as in Bade and Gonczarowski (2017). Second, our ap-
proach, proposed extensive game forms and proofs of the results differ from theirs because we 
formally describe and characterize obviously strategy-proof and onto social choice functions as 
generalized median voter schemes. In contrast, Bade and Gonczarowski (2017) describe their 
class of dictatorships with safeguards against extremisms directly and verbally. Third, in contrast 
with Bade and Gonczarowski (2017), and the existing positive results described above (and ex-
cept the result in Arribillaga et al., 2019), our characterization is not a revelation principle like 
result identifying a class of extensive game forms where, without loss of generality (but not nec-
essarily), the designer has to look for in order to implement in obviously dominant strategies a 
particular and given social choice function. But these revelation principle like results do not iden-

3 For other partially positive or revelation principle like results see also Bade and Gonczarowski (2017), Pycia and 
Troyan (2018) and Troyan (2019).

4 We have obtained our results in an independent way, before knowing the existence of the first version of Bade and 
Gonczarowski (2017), as well as those of Pycia and Troyan (2018) and Mackenzie (2018).
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tify the specific mechanism, among all in the class, that has to be used in order to implement that 
given social choice function; and this is important because different mechanisms in the class may 
implement different social choice functions. Instead, our proof is constructive. We propose and 
algorithm that, for each obviously strategy-proof and onto social choice function, generates (and 
shows how to construct) an extensive game form that implements the social choice function in 
obviously dominant strategies. For the important class of social choice functions defined on the 
domain of single-peaked preferences, our characterization identifies the increasing intersection 
property as being necessary and sufficient for obvious strategy-proofness. Given a generalized 
median voter scheme, one can easily check whether or not it is obviously strategy-proof by using 
our property, since it is short and reasonably transparent.

To state and prove our results we will use two previous general results that simplify the search 
for a specific extensive game form that can be used to implement in obviously dominant strategies 
a given social choice function. First, we will use a revelation principle like result saying that in 
our setting, and without loss of generality, we can assume that the extensive game form that 
induces the social choice function has perfect information (see Ashlagi and Gonczarowski, 2018
and Mackenzie, 2018). Second, and following Mackenzie (2018), the new notion of obvious 
strategy-proofness can be fully captured by the classical notion of strategy-proofness applied 
to extensive form games with perfect information. In addition, we use in one of our proofs the 
proto-dictatorship revelation principle like result, established by Bade and Gonczarowski (2017)
for the two-alternative case.

The paper is organized as follows. Section 2 contains the basic notation and definitions. In 
Section 3 we present the notion of obvious strategy-proofness applied to our context. In Sec-
tion 4 we define the increasing intersection property and state in Theorem 1 the characterization 
result. In Section 5 we construct the algorithm that, taking as input a generalized median voter 
scheme satisfying the increasing intersection property, gives as output the extensive game form 
that implements it in obviously dominant strategies (this result is stated in Theorem 2). In Sec-
tion 6 we apply our general results to the two-alternative case and/or to anonymous social choice 
functions. In Section 7 we conclude. An Appendix A collects the proofs of the two results, omit-
ted in the main text.

2. Preliminaries

A set of agents N = {1, . . . , n}, with n ≥ 2, has to choose an alternative from a finite and 
linearly ordered set X = {x1, . . . , xM}, with M ≥ 2. Without loss of generality, we will often as-
sume that X is the set of correlative integers {1, . . . , M}. Each agent i ∈ N has a strict preference
Pi (a linear order) over X. We denote by Ri the weak preference over X associated to Pi ; i.e., 
for all x, y ∈ X, xRiy if and only if either x = y or xPiy. There is a rich literature studying 
this class of problems when agents’ preferences are single-peaked. Agent i’s preference Pi over 
X is single-peaked if (i) there exists t (Pi) ∈ X, called the top of Pi , such that t (Pi)Pix for all 
x ∈ X\{t (Pi)} and (ii) for all x, y ∈ X, x < y ≤ t (Pi) or t (Pi) ≤ y < x implies yPix. Given 
i ∈ N and x ∈ X we write P x

i to denote a generic single-peaked preference such that t (P x
i ) = x. 

Let P be the set of single-peaked preferences over X. When |X| = 2, the linear order structure 
of X plays no role and the set of single-peaked preferences is simply the universal domain of 
strict preferences over X. A (preference) profile is a n-tuple P = (P1, . . . , Pn), an ordered list of 
n preferences, one for each agent. Let PN be the set of single-peaked preference profiles. Given 
P = (P1, . . . , Pn) ∈ PN , we denote the vector of tops at P by t (P ) = (t (P1), . . . , t (Pn)). Given 
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a profile P and an agent i, P−i denotes the subprofile in P−i =PN\{i} obtained by removing Pi

from P .
A social choice function (SCF) f : PN → X selects, for each preference profile P ∈ PN , an 

alternative f (P ) ∈ X.
A SCF f : PN → X is strategy-proof (SP) if for all P ∈PN , all i ∈ N and all P ′

i ∈ P ,

f (Pi,P−i )Rif (P ′
i , P−i ).

The literature refers to a strategy-proof SCF as being implementable in dominant strategies (or 
SP-implementable) in the following sense. Let f : PN → X be a SCF. Construct its associ-
ated normal game form, where N is the set of players, P is the set of strategy profiles and f
is the outcome function, mapping strategy profiles into the set of alternatives. Then, f is SP-
implementable if the normal game form has the property that, for all P ∈PN and all i ∈ N , Pi is 
a weakly dominant strategy for i in the game in normal form, where each i ∈ N uses Pi to eval-
uate the outcomes of strategy profiles. The normal game form is known as the direct revelation 
mechanism that SP-implements f .

We define several properties that a SCF f : PN → X may satisfy and that we will use in the 
sequel. We say that f is (i) onto if for each x ∈ X there exists P ∈ PN such that f (P ) = x,5

and (ii) anonymous if for all P ∈ PN and all one-to-one mapping π : N → N , f (P ) = f (P π)

where, for all i ∈ N , P π
i = Pπ(i).

The description of the family of all strategy-proof and onto SCFs f : PN → X is based on 
the notion of a committee. Let 2N denote the family of all subsets of N (we call them coali-
tions). A non-empty family C ⊂ 2N\{∅} of non-empty coalitions is a committee if it is (coalition) 
monotonic in the sense that for each pair S, T ⊆ N such that S ∈ C and S � T , we have T ∈ C. 
Coalitions in C are called winning. Given C, denote by Cm the family of minimal winning coali-
tions of C; namely,

Cm = {S ∈ C | there is no S′ ∈ C such that S′ � S}.
Observe that specifying Cm is enough to completely determine C.

We define now a class of SCFs, known as generalized median voter schemes, by means of a 
coalition system. A family of committees {Cx}x∈X , one for each alternative in X, is a coalition 
system if (i) it is (outcome) monotonic in the sense that, for each pair x, x ′ ∈ X such that x < x′, 
S ∈ Cx implies S ∈ Cx′ , and (ii) CM = 2N\{∅}.
Definition 1. A SCF f :PN → X is a generalized median voter scheme if there exists a coalition 
system {Cx}x∈X such that, for all P ∈PN ,

f (P ) = x if and only if (i) {i ∈ N | t (Pi) ≤ x} ∈ Cx and

(ii) for all x′ < x, {i ∈ N | t (Pi) ≤ x′} /∈ Cx′ .

Namely, the alternative x selected by the generalized median voter scheme f at P is the 
smallest one for which the top alternatives of all agents of a winning coalition at x are smaller 
than or equal to x.6

5 A SCF f :PN → X is unanimous if, for all P ∈ PN such that t (Pi ) = x for all i ∈ N , f (P ) = x. Although ontoness 
is weaker than unanimity, it is easy to see that among the class of all strategy-proof SCFs, the classes of unanimous and 
onto SCFs coincide.

6 The term generalized median voter scheme is used in the literature to refer to a minimax rule (introduced in Moulin
(1980) for the case X = R∪ {−∞, +∞}) when applied to a finite and multidimensional set of alternatives; see for 



R.P. Arribillaga et al. / Journal of Economic Theory 186 (2020) 104992 7
Alternatively, and more metaphorically, a generalized median voter scheme described by a 
coalition system might be understood as a force that, starting at the lowest alternative, pushes up 
towards the highest possible alternative. However, the coalition system distributes among agents 
the power to stop this force in such a way that all members of a winning coalition at x can make 
sure that, by declaring that their top alternative is smaller than or equal to x, the pushing force of 
f will not overcome x.

It is well-known that a SCF f : PN → X is strategy-proof and onto if and only if f is a 
generalized median voter scheme.7 By definition, all generalized median voter schemes are unan-
imous, and so they are onto.

Example 1 contains a generalized median voter scheme that illustrates Definition 1 and that 
we will use in the sequel.

Example 1. Assume X = {x1, x2, x3} and n = 5. Consider the coalition system C = {Cx1 , Cx2 ,

Cx3} where

Cm
x1

= {{1}, {2,3,4}, {2,3,5}}
Cm

x2
= {{1}, {2}, {3}, {4,5}}

Cm
x3

= {{1}, {2}, {3}, {4}, {5}},
and let f : PN → X be the generalized median voter scheme defined by C = {Cx1 , Cx2 , Cx3}. 
Consider any profile P ∈ PN whose vector of tops is t (P ) = (x3, x1, x2, x1, x3). Then, since {i ∈
N | t (Pi) ≤ x1} = {2, 4} /∈ Cx1 and {i ∈ N | t (Pi) ≤ x2} = {2, 3, 4} ∈ Cx2 , f (P ) = x2. Consider 
now any profile P ′ ∈ PN whose vector of tops is t (P ′) = (x3, x1, x1, x1, x3). Then, since {i ∈
N | t (P ′

i ) ≤ x1} = {2, 3, 4} ∈ Cx1 , f (P ′) = x1. �
3. Obvious strategy-proofness

We briefly describe the notion of obvious strategy-proofness, adapted to our setting. Li (2017)
proposes this notion with the aim of reducing the contingent reasoning required by agents to 
identify that truth-telling is a weakly dominant strategy. A SCF f : PN → X is obviously 
strategy-proof if there exists an extensive game form �, with N as the set of players and X
as the set of outcomes, with two properties. First, for each profile P = (P1, . . . , Pn) ∈ PN one 
can identify a behavioral strategy profile, to be interpreted as being truth-telling, such that if 
agents played � according to such strategy the outcome would be f (P ), the alternative selected 
by the SCF f at P ; that is, � induces f . Second, whenever agent i with preference Pi has to 
play at a history in �, i evaluates the consequence of choosing the action prescribed by i’s truth-
telling strategy according to the worse possible outcome, among all outcomes that may occur as 
an effect of later actions made by the other agents along the rest of �. In contrast, i evaluates the 
consequence of choosing an action different from the one prescribed by i’s truth-telling strategy 
according to the best possible outcome, among all outcomes that may occur again as an effect 
of later actions chosen by the other agents along the rest of �. Then, i’s truth-telling strategy is 

instance Barberà et al. (1993) or Barberà et al. (1997). Since we represent strategy-proof SCFs on the domain of single-
peaked preferences by means of coalition systems (instead of using the equivalent representation by collections of fixed 
ballots, as first used by Moulin, 1980), we adopt this terminology here.

7 See Barberà et al. (1993).
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obviously dominant in � if, at all histories where i has to play, its pessimistic outcome is at least 
as preferred as the optimistic outcome used to evaluate any other strategy. If � induces f and 
for each agent truth-telling is obviously dominant, then f is obviously strategy-proof. Obvious 
strategy-proofness is stronger than strategy-proofness (see Corollary 1 in Li, 2017).

Two important simplifications related to obvious strategy-proofness have been identified in 
the literature that follows from Li (2017), and that we can use in our context. First, without loss 
of generality we can assume that the extensive game form that induces the rule has perfect infor-
mation (see Ashlagi and Gonczarowski, 2018 and Mackenzie, 2018). Second, the new notion of 
obvious strategy-proofness can be fully captured by the classical notion of strategy-proofness ap-
plied to extensive form games with perfect information. This last observation essentially follows 
from the fact that, the best possible outcome obtained when agent i chooses an action different 
from the one prescribed by i’s truth-telling strategy and the worst possible outcome obtained 
when agent i chooses the action prescribed by i’s truth-telling strategy, are both obtained with 
only one strategy profile of the other agents. This holds because the perfect information implies 
that all information sets are singleton sets (and each one belongs to either the subgame that fol-
lows the truth-telling choice or else to the subgame that follows the alternative choice).8 Then, for 
easy presentation and following this literature, we will say that a SCF is obviously strategy-proof 
if it is implemented by an extensive game form with perfect information for which truth-telling 
is a weakly dominant strategy (see Definition 2 below). We present the general notion of an 
extensive game form that will be used here to state and prove our results.

An extensive game form with perfect information associated to (N, X) consists of the follow-
ing elements.

1. A finite and partially ordered set of histories (H, ≺), where:
(a) ∅ ∈ H is the empty history for which ∅ ≺ h for all h ∈ H\{∅}.
(b) For each h ∈ H\{∅}, there is a unique h′, the immediate predecessor of h, such that 

h′ ≺ h and there is no h̄ such that h′ ≺ h̄ ≺ h (that is, (H, ≺) can be seen as a rooted 
tree).

(c) H can be partitioned into two sets, the set of terminal histories HT = {h ∈ H | there is 
no h̄ ∈ H such that h ≺ h̄} and the set of non-terminal histories HNT = {h ∈ H | there is 
h̄ ∈ H such that h ≺ h̄}.

2. A mapping N : HNT → N that assigns to each non-terminal history h ∈ HNT the agent 
N (h) that has to play at history h. For each i ∈ N , define Hi = {h ∈ HNT | N (h) = i}.

3. A set of actions A and a correspondence A : HNT � A\{∅} where, for each h ∈ HNT , A(h)

is the non-empty set of actions available to player N (h) at h.
4. An outcome function o : HT → X that assigns an alternative o(h) ∈ X to each terminal 

history h ∈ HT .

An extensive game form with perfect information associated to (N, X) is a six-tuple � =
(N, X, (H,≺) , N , A, o) with the above properties.9 The set of agents N and the set of alter-

8 Mackenzie (2018) formally proves this statement for a special class of extensive game forms with perfect information, 
called round table mechanisms, but its proof can be adapted to any extensive game form with perfect information..

9 Note that the set of actions A is embedded in the definition of A. Moreover, � is not yet a game in extensive form 
because agents’ preferences over alternatives are still unspecified. But given a game � and a preference profile P , the 
pair (�, P) defines a game in extensive form where each agent i uses Pi to evaluate alternatives, associated to terminal 
histories, induced by strategy profiles.
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natives X will be fixed throughout the paper. Let G be the class of all extensive game forms 
satisfying conditions 1 to 4 above.10

Fix an extensive game form � ∈ G and an agent i ∈ N . A (behavioral and pure) strategy of i in 
� is a function σi : Hi → A such that, for each h ∈ Hi , σi(h) ∈ A(h); namely, σi selects at each 
history h where i has to play one of i’s available actions at h. Let �i be the set of i’s strategies 
in �. A strategy profile σ = (σ1, . . . , σn) ∈ �1 ×· · ·×�n ≡ � is an ordered list of strategies, one 
for each agent. Given i ∈ N , σ ∈ � and σ ′

i ∈ �i we often write (σ ′
i , σ−i ) to denote the strategy 

profile where σi is replaced in σ by σ ′
i . Let h�(σ ) be the terminal history that results in � when 

agents play � according to σ ∈ �.
Fix an extensive game form � ∈ G and a preference Pi ∈ P . A strategy σi is weakly dominant

in � at Pi if, for all σ−i and all σ ′
i ,

o(h�(σi, σ−i ))Rio(h�(σ ′
i , σ−i )).

We are now ready to define obvious strategy-proofness in our context.

Definition 2. A SCF f : PN → X is obviously strategy-proof if there is an extensive game 
form � ∈ G associated to (N, X) such that, for each P ∈ PN , there exists a strategy profile 
σP = (σ

P1
1 , . . . , σPn

n ) ∈ � with the properties that

(i) f (P ) = o(h�(σP )) and
(ii) for all i ∈ N and all Pi ∈P , σPi

i is weakly dominant in � at Pi .

When (i) holds we say that � induces f . When (i) and (ii) hold we say that � OSP-
implements f .

4. The increasing intersection property and the characterization result

We present the key definition of the paper and our characterization of the class of all obviously 
strategy-proof and onto SCFs on the domain of single-peaked preferences. To state the property 
and the result, we need the following notation.

For each x ∈ X, let kx denote the cardinality of the coalitions in Cm
x with maximal cardinality; 

namely,

kx = max{|S| ∈ {1, . . . , n} | S ∈ Cm
x }.

For any k ≥ 1, denote by I k
x the intersection of the coalitions in Cm

x with cardinality greater than 
or equal to k; namely,

I k
x =

⋂
S∈Cm

x :|S|≥k

S.

Of course, I k
x = ∅ for all k > kx . By convention, we set I 0

x = ∅. In Example 1, kx1 = 3, kx2 = 2, 
kx3 = 1, and I 1

x1
= ∅, I 2

x1
= I 3

x1
= {2, 3}, I 1

x2
= ∅, I 2

2 = {4, 5} and I 1
x3

= ∅.

10 According to Mackenzie (2018) a game � ∈ G is a round table mechanism if the set of actions A is the family of 
all non-empty subsets of preference relations 2P \{∅} and (i) the set of actions at any history are disjoint subsets of 
preferences, (ii) when a player has to play for the first time the set of actions is a partition of P , and (iii) later, the set of 
actions at history h is the intersection of the actions taken by agent N (h) at all predecessors that lead to h.
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Definition 3. A coalition system {Cx}x∈X satisfies the Increasing Intersection (InIn) property if, 
for each x ∈ {1, . . . , M − 1},

(a)
∣∣I k

x

∣∣ ≥ k − 1 for all k ≤ kx , and
(b) if kx > 1, there exists i ∈ I 2

x such that I 1
x+1 ∪ {i} ∈ Cm

x+1.

To describe the definition, and its role in our results, fix an alternative x and let kx be the 
largest cardinality of minimal winning coalitions in the committee at x. Part (a) requires that, for 
each integer k ≤ kx , the cardinality of the intersection of all coalitions with more than k agents 
that belong to the committee at x is larger than or equal to k − 1; namely, all minimal winning 
coalitions at x of a given cardinality can diverge at most by one agent. This property will allow 
us to distinguish, at each alternative x, those agents that are able to impose x in its pairwise 
electoral confrontation with a contiguous alternative, from those that are able to veto x (and 
so, transforming the contiguous alternative with the one used as reference in the new electoral 
confrontation). Part (b) requires that if the committee at x has a winning coalition with at least 
two agents, then the committee at x + 1 contains a minimal winning coalition formed by an 
agent that belongs to all minimal winning coalitions with more than two agents at x (such agent 
does exist by part (a)) and all agents that belong to all minimal winning coalitions at x + 1. This 
property ensures that the agent that has the power to veto the current alternative will not regret 
of doing so because the agent will have the power to make the new current alternative the finally 
selected one, if the agent wishes to do so.

Theorem 1. A social choice function f : PN → X is obviously strategy-proof and onto if and 
only if f is a generalized median voter scheme whose associated coalition system C = {Cx}x∈X

satisfies the increasing intersection property.

Proof. See Appendix A. �
The proof of the sufficiency part of Theorem 1 will be constructive. For each generalized 

median voter scheme f whose associated coalition system C satisfies the (InIn) property we will 
construct an extensive game form �C that OSP-implements f . In Section 5 below we will define 
an algorithm that takes C as input and delivers as output the extensive game form �C . However, 
before moving to Section 5, we illustrate the (InIn) property, introduce additional notation, and 
present a preliminary result and another example.

Given a coalition system {Cx}x∈X we say that condition (a) of the (InIn) property holds at x if 
(a) holds for x ∈ X. Similarly for (b). We will say that the (InIn) property holds at x if conditions 
(a) and (b) hold at x. We say that a generalized median voter scheme satisfies the (InIn) property 
if its associated coalition system satisfies it.

The agent identified in condition (b) of the (InIn) property is not necessarily unique, and we 
denote one of such agents by ix ; for instance, in Example 1, ix1 could be agent 2 or 3 and ix2

could be agent 4 or 5.11

11 Whenever we want to identify a single agent satisfying a property that several agents may satisfy, we could select 
the smallest agent (according to the order 1 < · · · < n) among the set of agents that satisfy the property, and this will be 
without loss of generality.
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Example 1 (continued). The two tables below might help the reader to check that the coalition 
system C = {Cx1 , Cx2 , Cx3} of Example 1 satisfies the (InIn) property.

x1, k
x1 = 3 k = 1 k = 2 k = 3

Intersections I 1
x1

= ∅ I 2
x1

= {2,3} I 3
x1

= {2,3}
(a) of (InIn)

∣∣I 1
x1

∣∣ = 0 ≥ 0
∣∣I 2

x1

∣∣ = 2 > 1
∣∣I 3

x1

∣∣ = 2 ≥ 2

(b) of (InIn) ix1 ∈ {2,3} and I 1
x2

∪ {ix1} = {∅} ∪ {ix1} ∈ Cm
x2

x2, k
x2 = 2 k = 1 k = 2

Intersections I 1
x2

= ∅ I 2
x2

= {4,5}
(a) of (InIn)

∣∣I 1
x2

∣∣ = 0 ≥ 0
∣∣I 2

x2

∣∣ = 2 > 1

(b) of (InIn) ix2 ∈ {4,5} and I 1
x3

∪ {ix2} = {∅} ∪ {ix2} ∈ Cm
x3

Remark 1. Let {Cx}x∈X be a coalition system. Then, the following properties hold.

(1.1) If kx = 1, the (InIn) property holds at x. To see that, observe that kx = 1 implies Cm
x ⊆ {{i} |

i ∈ N}. Hence, 0 ≤ ∣∣I 1
x

∣∣ ≤ 1 and condition (a) of the (InIn) property holds at x. Moreover, 
since kx = 1, condition (b) of the (InIn) property at x does not apply.

(1.2) If 
∣∣Cm

x

∣∣ = 1, condition (a) of the (InIn) property holds at x. To see that, let S be the unique 
coalition in Cm

x . Hence, kx = |S| and, for all k ≤ kx , I k
x = S. Then, for all k ≤ kx , 

∣∣I k
x

∣∣ =
|S| = kx > k − 1.

(1.3) If X = {x1, x2}, condition (b) of the (InIn) property holds at x1. This is because I 1
x2

= ∅
and {i} ∈ Cm

x2
for all i ∈ N .

To highlight the additional requirements of obvious strategy-proofness with respect to 
strategy-proofness, we exhibit a simple example with a SCF that is SP but not OSP-implement-
able.

Example 2. Assume X = {x, x + 1} and n = 5. Consider the SCF f : PN → X defined by 
the coalition system C = {Cx, Cx+1}, where Cm

x = {{1, 2}, {1, 3}, {4, 5}} and Cx+1 = 2N\{∅}. We 
already know that f is SP-implementable because it is a generalized median voter scheme but 
f is not OSP-implementable because it does not satisfy the (InIn) property because kx = 2 and ∣∣I 2

x

∣∣ = 0 < 1 = kx − 1. In the direct revelation mechanism that SP-implements f , truth-telling 
is a weakly dominant strategy: to give support to the top is always optimal independently of 
whether or not the top is selected. In contrast, consider any extensive game form � that could 
OSP-implement f . The notion requires that (i) � induces f and (ii) truth-telling is weakly (i.e., 
obviously) dominant in �. In the example, (i) requires that the agent that has to move first in �
has to have available two actions, both inducing x and x + 1 as possible outcomes, since for all 
i ∈ N , it holds simultaneously that {i} /∈ Cx (i can not impose x) and there exists S ∈ Cm

x such 
that i /∈ S (i can not impose x + 1). But then, for the agent that has to move first the outcome 
associated to the optimistic view of not truth-telling is strictly preferred to the outcome associated 
to the pessimistic view of truth-telling, and so truth-telling is not an obvious optimal decision for 
this agent. SCFs that are OSP-implementable have to exclude this possibility. The (InIn) property 
is the condition that does that, and so it discriminates the SCFs that are OSP-implementable from 
those that are not. �



12 R.P. Arribillaga et al. / Journal of Economic Theory 186 (2020) 104992
5. The extensive game form

To prove the necessity part of Theorem 1, we will define an algorithm that takes each coalition 
system C satisfying the (InIn) property and delivers an extensive game form �C that OSP-
implements the generalized median voter scheme associated to C. The algorithm will be based 
on a collection of elections confronting x and x + 1 (for x < M) by means of an extensive form 
game, defined also by an algorithm and denoted by �x . The specific sequence along which these 
elections take place will be determined later, in Subsection 5.2.

To proceed, and given a committee Cx , we need the following notation. For each k ≤ kx , let 
Fk

x be the subset of agents not in I k
x with the property that each of them completes, together with 

those in I k
x , a minimal winning coalition at x; namely,

Fk
x = {i ∈ N\I k

x | I k
x ∪ {i} ∈ Cm

x }. (1)

By convention, we set F 0
x = ∅. It can be shown that if condition (a) of the (InIn) property holds 

at x, each minimal winning coalition at x can be written as the union of I k
x and {i} for some 

k ≤ kx and i ∈ Fk
x , or just as I kx

x (see (f) and (g) in Remark 2 at the beginning of Appendix A). 
Moreover, for all 1 < k ≤ kx ,

if Fk
x \Fk−1

x = ∅ then either Fk
x = ∅ or Fk

x = Fk−1
x . (2)

To see that, assume Fk
x �= ∅. Since Fk

x \Fk−1
x = ∅, i ∈ Fk

x implies that i ∈ Fk−1
x . Therefore, by 

definition of Fk
x , I k

x ∪ {i} ∈ Cm
x and i /∈ I k

x imply I k−1
x ∪ {i} ∈ Cm

x and i /∈ I k−1
x . Since I k−1

x ⊂ I k
x , 

I k−1
x = I k

x ; otherwise, there would exist i ∈ I k
x \I k−1

x such that I k−1
x ∪{i} � I k

x ∪{i}, contradicting 
that I k

x ∪ {i} ∈ Cm
x . Therefore, by (1), Fk

x = Fk−1
x .

Example 3 contains a committee Cx that illustrates the above definition, and that we will use 
in the sequel.

Example 3. Let n = 10 and Cm
x = {{1}, {2, 3}, {2, 4}, {2, 5, 6}, {2, 5, 7, 8, 9}, {2, 5, 7, 8, 10}}. 

Note that kx = 5. Then,

I 1
x = ∅ F 1

x = {1}
I 2
x = {2} F 2

x = {3,4}
I 3
x = {2,5} F 3

x = {6}
I 4
x = {2,5,7,8} F 4

x = {9,10}
I 5
x = {2,5,7,8} F 5

x = {9,10}.
Observe that condition (a) of the (InIn) property holds at x since kx = 5 > 1 and 

∣∣I 1
x

∣∣ = 0 ≥ 0, ∣∣I 2
x

∣∣ = 1 ≥ 1, 
∣∣I 3

x

∣∣ = 2 ≥ 2, 
∣∣I 4

x

∣∣ = 4 ≥ 3 and 
∣∣I 5

x

∣∣ = 4 ≥ 4 hold. Moreover, any S ∈ Cm
x can be 

written as S = I k
x ∪ {i} for some i ∈ Fk

x and k ≤ kx . �
5.1. The algorithm confronting x and x + 1 (for x < M)

Here, we focus only on the election confronting x and x + 1, for x < M , by means of Cx .
Fix Cx . The algorithm consists of two types of Stages, A and B, that are played alternately, and 

each with (potentially) several steps. Agents play sequentially at most once, and when they do, 
their choice set is {x, x+1}. Agents playing in steps of Stage A (agents belonging to I 1

x , . . . , I kx

x ) 
can either impose x +1 (by choosing x +1) or let the extensive game form proceed (by choosing 
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x). Agents playing in steps of Stage B (agents belonging to the sets F 1
x , . . . , Fkx

x ) can either 
impose x (by choosing x) or let the extensive game form proceed (by choosing x + 1). The agent 
playing in the last step can impose x (by choosing x) or x + 1 (by choosing x + 1).

The algorithm defining the extensive game form �x

Input: A committee Cx satisfying condition (a) of the (InIn) property at x.

Initialization: Identify the integer kx and, for each 1 ≤ k ≤ kx , the subsets of agents I k
x and Fk

x . 
Set k = 1 and go to Stage A.1.

Stage A.k (1 ≤ k ≤ kx ).

If I k
x \I k−1

x �= ∅, agents in I k
x \I k−1

x play sequentially in any order choosing an action in the
set {x, x + 1}.

If one agent chooses x + 1, �x ends with outcome x + 1.
If all agents choose x, go to Stage B.k.

If I k
x \I k−1

x = ∅, go to Stage B.k.

Stage B.k (1 ≤ k ≤ kx ).

(i) Assume 1 ≤ k < kx .

If Fk
x \Fk−1

x �= ∅, agents in Fk
x \Fk−1

x play sequentially in any order choosing an
action in the set {x, x + 1}.

If one agent chooses x, �x ends with outcome x.
If all agents choose x + 1, go to Stage A.k+1.

If Fk
x \Fk−1

x = ∅, go to Stage A.k+1.

(ii) Assume k = kx .

If Fk
x \Fk−1

x �= ∅, agents in Fk
x \Fk−1

x play sequentially in any order choosing an
action in the set {x, x + 1}.

If one agent chooses x, �x ends with outcome x.
If all agents choose x + 1, �x ends with outcome x + 1.

If Fk
x \Fk−1

x = ∅.
If Fk

x = ∅, �x ends with outcome x.
If Fk

x = Fk−1
x �= ∅, �x ends with outcome x + 1.12

Output: �x .

The extensive game form �x is a proto-dictatorship, as defined by Bade and Gonczarowski
(2017). Each agent plays at most once by choosing either x or x + 1 and, except for the last 
player, one and only one of the two choices induces a terminal history while for the last player 
both choices induce a terminal history.

Example 3 (continued). Fig. 1 represents the extensive game form �x for the committee Cx of 
Example 3, where agents play from left to right, with the order 1, . . . , 10, and the set of actions 
is {x, x + 1} for all agents.

12 By (2), these two cases are the only possible ones.
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x + 1 x x + 1 x + 1 x x + 1 x x x + 1 x + 1

x x + 1 x x x + 1 x x + 1 x + 1 x x

x + 1

Fig. 1. Extensive game form �x of Example 3.

Below, we apply the algorithm to Cx to obtain �x depicted in Fig. 1.
At Stage A.1, since I 1

x = ∅, go to Stage B.1. At Stage B.1, since F 1
x = {1}, only 1 plays. 

If 1 chooses x, �x ends with x, and if 1 chooses x + 1, go to Stage A.2. At Stage A.2, since 
I 2
x \I 1

x = {2}, only 2 plays. If 2 chooses x + 1, �x ends with x + 1, and if 2 chooses x, go to
Stage B.2. At Stage B.2, since F 2

x \F 1
x = {3, 4}, 3 and 4 play (in Fig. 1, 3 plays before 4). If 

3 chooses x, �x ends with x, and if 3 chooses x + 1, 4 plays. If 4 chooses x, �x ends with 
x, and if 4 chooses x + 1, go to Stage A.3. At Stage A.3, since I 3

x \I 2
x = {5}, only 5 plays. 

If 5 chooses x + 1, �x ends with x + 1, and if 5 chooses x, go to Stage B.3. At Stage B.3, 
since F 3

x \F 2
x = {6}, only 6 plays. If 6 chooses x, �x ends with x, and if 6 chooses x + 1, go 

to Stage A.4. At Stage A.4, since I 4
x \I 3

x = {7, 8}, 7 and 8 play (in Fig. 1, 7 plays before 8). 
If 7 chooses x + 1, �x ends with x + 1, and if 7 chooses x, 8 plays. If 8 chooses x + 1, �x

ends with x + 1, and if 8 chooses x, go to Stage B.4. At Stage B.4, since F 4
x \F 3

x = {9, 10}, 
9 and 10 play (in Fig. 1, 9 plays before 10). If 9 chooses x, �x ends with x, and if 9 chooses 
x + 1, agent 10 plays. If 10 chooses x, �x ends with x, and if 10 chooses x + 1, go to Stage 
A.5. At Stage A.5, since I 5

x \I 4
x = ∅, go to Stage B.5. At Stage B.5, since k = kx = 5 and 

F 5
x = F 4

x = {9, 10}, �x ends with outcome x + 1 and the algorithm stops after Stage B.5 with 
output �x . �
5.2. The extensive game form �C

This subsection contains the description of the algorithm defining the full extensive game 
form that OSP-implements a given generalized median voter scheme f : PN → X satisfying 
the (InIn) property. This description will require to identify, given the coalition system {Cx}x∈X

associated to f , (i) the smallest alternative x∗ ∈ X with the property that its committee Cx∗ has 
a singleton set and (ii) one of the agents that alone is a minimal winning coalition at x∗, denoted 
by i∗. Namely,

x∗ = arg min{x ∈ X | {i} ∈ Cm
x for some i ∈ N}.

The alternative x∗ is well defined since Cm
M = {{1}, . . . , {n}}. Define13

i∗ =
{

arg min{i ∈ N | {i} ∈ Cm
x∗ } if x∗ = 1

ix
∗−1 otherwise.

13 If x∗ > 1, kx∗−1 > 1 holds since no singleton coalition belongs to Cm
x∗−1. Observe also that, since condition (b) 

of the (InIn) property holds at x∗ − 1, {ix∗−1} ∈ Cm
x∗ because, by the definitions of x∗ and ix∗−1, either I1

x∗ = ∅ or 
I1∗ = {ix∗−1} and so Cm∗ = {{ix∗−1}}.

x x
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The algorithm defining the extensive game form �C

Input: A coalition system {Cx}x∈X satisfying the (InIn) property.

Initialization: Identify the alternative x∗, the agent i∗ and, for each x < M , the integer kx , the 
agent ix (if kx > 1) and, for each 1 ≤ k ≤ kx , the subsets of agents I k

x and Fk
x . Go to Stage I.

Stage I. The first agent to play is N (∅) = i∗ choosing an action in the set A(∅), where

A(∅) =

⎧⎪⎨⎪⎩
{x∗, x∗ + 1} if x∗ = 1

{x∗ − 1, x∗, x∗ + 1} if 1 < x∗ < M

{x∗ − 1, x∗} if x∗ = M.

If i∗ chooses x∗, �C ends with outcome x∗.
If i∗ chooses x∗ + 1, go to Stage Up.1.
If i∗ chooses x∗ − 1, go to Stage Down.1.

Stage Up.k (k ≥ 1). Set x = x∗ + (k − 1).

(i) Assume x + 1 < M .

If kx > 1, agents play �x as previously defined except that in Stage A.2, agent
ix ∈ I 2

x \I 1
x plays first.14

If ix chooses x + 1, go to Stage Up.k+1.
If ix chooses x, the other agents in I 2

x \ I 1
x play sequentially, in any order.

The outcome of �x is the outcome of �C .

If kx = 1, agents play �x .
If the outcome of �x is x, then �C ends with outcome x.
If the outcome of �x is x + 1, go to Stage Up.k+1.

(ii) Assume x + 1 = M . Agents play �x and the outcome of �x is the outcome of �C .

Stage Down.k (k ≥ 1). Set x = x∗ − k.

(i) Assume x > 1.

If 
∣∣Cm

x

∣∣ > 1, agents play �x as previously defined except that in Stage B.1 agent
ix−1 ∈ F 1

x plays first.15

If ix−1 chooses x, go to Stage Down.k+1.
If ix−1 chooses x + 1, the other agents in F 1

x play sequentially, in any order.
The outcome of �x is the outcome of �C .

If 
∣∣Cm

x

∣∣ = 1, agents play �x .
If the outcome of �x is x + 1, then �C ends with outcome x + 1.
If the outcome of �x is x, go to Stage Down.k+1.

(ii) Assume x = 1. Agents play �x and the outcome of �x is the outcome of �C .

Output: �C .

14 Observe that since kx > 1, x∗ ≤ x < M , and condition (b) of the (InIn) property holds at x, we have that I1
x = ∅ and 

ix ∈ I2
x \I1

x .
15 Observe that, since 1 < x < x∗ and condition (b) of the (InIn) property holds at x − 1, we have that {ix−1} /∈ Cm

x and 
I1
x ∪ {ix−1} ∈ Cm

x . Since 
∣∣Cm

x

∣∣ > 1, I1
x /∈ Cm

x holds, and so ix−1 /∈ I1
x and ix−1 ∈ F 1

x .
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The following figures represent the building blocks that make up the algorithm.

Stage I.

If 1 < x∗ < M

� � �

�

Stage Down.1 Stage Up.1
x∗ − 1 x∗ + 1

x∗

x∗

i∗

If x∗ = 1 If x∗ = M

� �

�

Stage Up.1
x∗ + 1

x∗

x∗

i∗
� �

�

Stage Down.1
x∗ − 1

x∗

x∗

i∗

Stage Up.k. For x = x∗ + (k − 1)

... ...� � � � � � � � �

� � � � �

�

Stage Up.k+1

x x x + 1 x

x + 1 x + 1 x

x+1 x + 1 x x + 1

ix

Stages A.1 and B.1 in �x Stage A.2 in �x Remaining stages in �x



R.P. Arribillaga et al. / Journal of Economic Theory 186 (2020) 104992 17
Stage Down.k. For x = x∗ − k

... ...� � � � � � � � �

� � � � �

�

Stage Down.k+1

x x x x + 1

x + 1 x + 1 x + 1

x + 1 x + 1 x + 1 x

ix−1

Stage A.1 in �x Stage B.1 in �x Remaining stages in �x

The algorithm can be seen as a sequence of electoral confrontations between x and x + 1, 
each by means of �x . However, obvious strategy-proofness requires that the transition from �x

to �x+1, if x∗ ≤ x, or from �x to �x−1, if x < x∗, can not just depend on the outcome of �x . 
When �x is played in an up stage (i.e., x∗ ≤ x), and the outcome of �x is x + 1 after ix chooses 
x, the overall game �C does not move to �x+1 but instead it finishes with final outcome x + 1. 
Similarly, when �x is played in a down stage (i.e., x < x∗), and the outcome of �x is x after 
ix−1 chooses x + 1, the overall game �C does not move to �x−1 but instead it finishes with final 
outcome x. Observe that by definitions of ix and ix−1 the outcome of �x is respectively x + 1
if x∗ ≤ x and ix chooses x + 1 or x if x < x∗ and ix−1 chooses x; and then the corresponding 
�x+1 or �x−1 will be played after �x . To preserve obvious strategy-proofness, agent ix or agent

corresix−1 has to be the first to choose respectively in the ponding stages A.2 or B.1 of �x .
We now illustrate the algorithm by applying it to the coalition system C = {Cx1 , Cx2 , Cx3} of 

Example 1. We have already checked that C satisfies the (InIn) property.

Example 1 (continued). Remember that X = {x1, x2, x3}, n = 5,

Cm
x1

= {{1}, {2,3,4}, {2,3,5}}
Cm

x2
= {{1}, {2}, {3}, {4,5}}

Cm
x3

= {{1}, {2}, {3}, {4}, {5}}
and, without loss of generality, assume x2 = x1 + 1 and x3 = x2 + 1.

The application of the algorithm to obtain �C (see Fig. 2)

Input: The coalition system C = {Cx1 , Cx2 , Cx3} that satisfies the (InIn) property.

Initialization: Identify the alternative x∗ = x1, the agent i∗ = 1, and the cardinalities, subsets of 
agents and agents shown in the table below.
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x1 x2 x3

kx1 = 3 kx2 = 2 kx3 = 1

I 1
x1

= ∅ F 1
x1

= {1} I 1
x2

= ∅ F 1
x2

= {1,2,3} I 1
x3

= ∅ F 1
x3

= {1,2,3,4,5}.
I 2
x1

= {2,3} F 2
x1

= {4,5} I 2
x2

= {4,5} F 2
x2

= ∅
I 3
x1

= {2,3} F 3
x1

= {4,5}
ix1 = 2 ix2 = 4

Go to Stage I.

Stage I. Agent 1 is the first to play choosing an action in the set {x1, x2}.
If 1 chooses x1, �C ends with outcome x1.
If 1 chooses x2, go to Stage Up.1.

Stage Up.1. Set x = x1.

Since x2 < x3 and kx1 = 3 > 1, agents play �x1 with the modification that ix1 = 2
plays first in Stage A.2.

�x1

Stage A.1. Since I 1
x1

\I 0
x1

= ∅, go to Stage B.1.

Stage B.1. Since kx1 = 3 > 1 and F 1
x1

\F 0
x1

= {1}, agent 1 plays choosing an action
in the set {x1, x2}.

If 1 chooses x1, �C ends with outcome x1.
If 1 chooses x2, go to Stage A.2.

Stage A.2. Since I 2
x1

\I 1
x1

= {2, 3} and ix1 = 2, agents 2 and 3 play in this order by
choosing an action in the set {x1, x2}.

If 2 chooses x2, go to Stage Up.2.
If 2 chooses x1, 3 plays.

If 3 chooses x2, �C ends with outcome x2.
If 3 chooses x1, go to Stage B.2.

Stage B.2. Since kx1 = 3 > 2 and F 2
x1

\F 1
x1

= {4, 5}, agents 4 and 5 play in any other
by choosing an action in the set {x1, x2}. Set the order 4, 5.

If 4 chooses x1, �C ends with outcome x1.
If 4 chooses x2, 5 plays.

If 5 chooses x1, �C ends with outcome x1.
If 5 chooses x2, go to Stage A.3.

Stage A.3. Since I 3
x1

\I 2
x1

= ∅, go to Stage B.3.

Stage B.3. Since kx1 = 3 and F 3
x1

= F 1
x1

= {4, 5}, �C ends with x2.

Stage Up.2. Set x = x2.

Since x2 + 1 = x3, agents play �x2 and the outcome of �x2 is the outcome of �C .

�x2

Stage A.1. Since I 1
x2

\I 0
x2

= ∅, go to Stage B.1.

Stage B.1. Since kx2 = 2 > 1 and F 1
x2

\F 0
x2

= {1, 2, 3}, agents 1, 2 and 3 play in any
order by choosing an action in the set {x2, x3}. Set the order 1, 2, 3.
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x2 x2 x2 x3 x3

x2 x1 x1 x2 x2 x2

x1 x2 x2 x1 x1

x2 x2 x2 x3 x3

x3 x3 x3 x2 x2 x2

Fig. 2. Extensive game form �C of Example 1.

If 1 chooses x2, �C ends with outcome x2.
If 1 chooses x3, 2 plays.

If 2 chooses x2, �C ends with outcome x2.
If 2 chooses x3, 3 plays.

If 3 chooses x2, �C ends with outcome x2.
If 3 chooses x3, go to Stage A.2.

Stage A.2. Since I 2
x2

\I 1
x2

= {4, 5}, agents 4 and 5 play in any order by choosing and
action in the set {x2, x3}. Set the order 4, 5.

If 4 chooses x3, �C ends with outcome x3.
If 4 chooses x2, 5 plays.

If 5 chooses x3, �C ends with outcome x3.
If 5 chooses x2, go to Stage B.2.

Stage B.2. Since kx2 = 2 and F 2
x2

= ∅, �C ends with outcome x2.

Output: �C .

Fig. 2 depicts the extensive game form �C , output of the algorithm, that OSP-implements the 
generalized median voter scheme associated to C.

Two comments about Fig. 2 are pertinent. First, at the beginning of the game, player 1 plays 
twice in a row with the same set of actions. The game without the first node is strategically 
equivalent to �C . We have maintained this potential redundancy in order to be consistent with 
the definition of the general algorithm which distinguishes between agent i∗, who moves first in
Stage I, and the first agent to move in �x∗

, who moves just after i∗ has chosen x∗ + 1; in the ex-
ample, these two agents coincide (both are player 1) but in general they may be different. Second, 
the example may help to clarify the role of the (InIn) property to guarantee that truth-telling is 
obviously dominant as well as why Stage A.2 (in Stage Up.k) of �x has to be modified, and the 
special role given to player ix (player 2 in the example).16 In Fig. 2, and to see why truth-telling 
is an obviously dominant strategy in �x for any i ∈ {1, 3, 4}, consider i’s choice at any history 
where i plays (the case i = 5 is trivial). If i’s top coincides with the alternative that i can induce 

16 The truth-telling strategies here consist of choosing always the preferred alternative on the set of available actions, 
either {x1, x2} or {x2, x3}.
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as final outcome, then truth-telling is obviously dominant since the worse outcome is the top. If 
i’s top does not coincide with the alternative that i can induce as final outcome, then truth-telling 
is obviously dominant since the worse outcome it induces coincides with the outcome of not 
truth-telling. Consider now agent 2 (in the role of player ix1 ) who plays first in Stage A.2 (in
Stage Up.1) in the modified �x1 . Observe that, despite the fact that none of 2’s actions induces a 
terminal node, truth-telling is obviously dominant. If 2 chooses x1, x3 is not a possible outcome 
because �x2 is not played after 2 chooses x1. Moreover, when 2 chooses x2, and �x2 is played, x1
is not a possible outcome but, at the same time, 2 has the power to avoid x3. Otherwise, x3 could 
be the worse outcome if 2, with the single-peaked preference x2P2x1P2x3 chooses x2 (i.e., truth-
tells) while x2 could be the best outcome after choosing x1. Condition (b) of the (InIn) property 
guarantees that 2 is a minimal winning coalition at x2 and so, 2 can impose x2 (i.e., avoid x3) 
after choosing x2. When agent 2’s preference is x1P2x2P2x3, x2P2x3P2x1 or x3P2x2P2x1, x2 is 
the worse outcome of truth-telling and the best of not doing so. Thus, truth-telling is obviously 
dominant for 2. �

We are now ready to state Theorem 2, the second main result of the paper. Theorem 2 implies 
the sufficiency part of Theorem 1 but, in addition, it gives for each obviously strategy-proof SCF 
an extensive game form that OSP-implements it.

Theorem 2. Let f : PN → X be a generalized median voter scheme whose associated coalition 
system C = {Cx}x∈X satisfies the increasing intersection property. Then, �C implements f in 
obviously dominant strategies.

Proof. See Appendix A. �
6. Particular results: the two-alternative case and/or anonymity

We apply our results to special cases of our setting, those in which X only contains two 
alternatives and/or the SCFs are anonymous.

Assume |X| = 2 and, without loss of generality, let X = {x, x + 1}. Then, the set P of single-
peaked preferences over X is the universal domain of (strict) preferences over {x, x + 1}. Let 
f : PN → {x, x + 1} be a strategy-proof and onto SCF (i.e., it is not constant) and let {Cx, Cx+1}
be its associated coalition system. By (1.3) in Remark 1, {Cx, Cx+1} trivially satisfies condition 
(b) of the (InIn) property. Hence, we obtain as a corollary of our results the characterization of 
all obviously strategy-proof and onto SCFs for the two-alternative case.

Corollary 1. Assume X = {x, x + 1}. Then, a social choice function f : PN → X is obviously 
strategy-proof and onto if and only if the committee Cx associated to f satisfies condition (a) of 
the (InIn) property at x. Moreover, the extensive game form �x , outcome of the algorithm applied 
to Cx , implements f in obviously dominant strategies.

Corollary 1 helps to further clarify the boundary between Bade and Gonczarowski (2017)
and our work. We can present in an unified way the two-alternative result and the single-peaked 
result into a sole result about single-peaked preferences. Bade and Gonczarowski (2017) cannot 
do this, as their single-peaked result is for infinite sets of alternatives. For this reason, they have 
to treat the two cases separately (their Theorem 4.1 refers to the two-alternative case). In addition 
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to the fact that the approaches of the two papers are different,17 this is an additional evidence that 
the results of the two independent papers are distinct and complement each other well.

A committee Cx is anonymous if Cx = {S ∈ 2N | |S| ≥ q} for some q ∈ {1, . . . , n}. The asso-
ciated anonymous SCF and Cx itself are named voting by quota q (see Barberà et al., 1991). The 
two special and extreme cases q = n and q = 1 correspond to the two unanimity cases. Unanim-
ity for x when q = n (i.e., to be elected, x needs n votes) and unanimity for x + 1 when q = 1
(i.e., to be elected, x + 1 needs n votes). Among all voting by quota, these two extreme cases are 
the unique ones for which condition (a) of the (InIn) property holds at x. Indeed, if q = 1, then 
kx = 1 and 

∣∣I 1
x

∣∣ = 0. If q = n, then kx = n and, for all 1 ≤ k ≤ n, 
∣∣I k

x

∣∣ = n > k − 1. In contrast, if 
n > 2 and 1 < q < n, then kx = q and, for all 1 < k ≤ q , 

∣∣I k
x

∣∣ = 0 < k − 1; hence, condition (a) 
of the (InIn) property does not hold at x. We state as corollary of our results the following char-
acterization of all obviously strategy-proof, anonymous, and onto SCFs for the two-alternative 
case.

Corollary 2. Assume X = {x, x + 1}. Then, a social choice function f : PN → X is obviously 
strategy-proof, anonymous and onto if and only if f is either voting by quota 1 or voting by 
quota n.

The reason of why voting by quota 1 is obviously strategy-proof is as follows. Let �x be 
the extensive game form that OSP-implements voting by quota 1. When agent i has to move, 
i has two choices: voting for x (i.e., vetoing x + 1), and so ending the game with x, or voting 
for x + 1, and so passing to the next agent in the sequence (if any) the power to impose x. If 
i prefers x, truth-telling (voting for x) gives to i the top alternative, at least as preferred as the 
outcome of not truth-telling. If i prefers x +1, not truth-telling (voting for x) gives to i the worse 
alternative, indifferent or less preferred to the outcome of truth-telling (voting for x + 1). Hence, 
truth-telling is obviously dominant. Symmetrically for voting by quota n. The reason of why any 
voting by quota 1 < q < n is not obviously strategy-proof is as follows. Let � be an extensive 
game form that induces voting by quota q . Look at the first agent (called i) who has available a 
set of two actions.18 None of them can be decisive (both have to leave as possible outcomes x and 
x + 1), as otherwise � would not induce voting by quota q . Hence, the other agents can always 
impose both outcomes on i, irrespective of i’ choice. Thus, the worse possible outcome of i’s 
truth-telling strategy is strictly worse than the best possible outcome of any alternative strategy. 
Hence, voting by quota 1 < q < n is not obviously strategy-proof.

As a consequence of our results, we finally obtain Corollary 3 characterizing the class of all 
obviously strategy-proof, anonymous and onto SCFs on the domain of single-peaked preferences 
over an arbitrary finite set of alternatives X = {1, . . . , M}, with M ≥ 2. The result follows as a 
consequence of two observations. By Corollary 2, condition (a) of the (InIn) property requires 
that, for all x ∈ {1, . . . , M − 1}, Cx is either voting by quota 1 or voting by quota n (observe 
that Cm

M = {{1}, . . . , {n}} is voting by quota 1). Moreover, outcome monotonicity of the coalition 
system requires that it should exist x∗ ∈ X such that, for all x < x∗ (if any), Cx is voting by quota 
n and, for all x ≥ x∗, Cx is voting by quota 1. Namely,

17 Bade and Gonczarowski (2017) gives revelation principle like results while our approach, based on the algorithm, 
identifies for each obviously strategy-proof and onto SCF an extensive game form that implements it in obviously domi-
nant strategies.
18 By Bade and Gonczarowski (2017), this simplification can be done without loss of generality.
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x1 x2 x3 x4 x5

{1,2,3} {1,2,3} {3}
{2}
{1}

{3}
{2}
{1}

{3}
{2}
{1}

Fig. 3. Anonymous generalized median voter scheme for M = 5, n = 3 and x∗ = x3.

Corollary 3. A social choice function f : PN → X is obviously strategy-proof, anonymous and 
onto if and only if f is a generalized median voter scheme whose associated coalition system 
{Cx}x∈X has the property that there exists x∗ ∈ X such that (i) for all 1 ≤ x < x∗ (if any), Cm

x =
{N} and (ii) for all x∗ ≤ x ≤ M , Cm

x = {{1}, . . . , {n}}.

Note that if M = 2, then x∗ = 1 corresponds to the case of voting by quota 1 and x∗ = 2 cor-
responds to the case of voting by quota n. Fig. 3 represents one of those anonymous generalized 
median voter schemes for the case where M = 5, n = 3 and x∗ = x3. For each x ∈ X, Cm

x is 
depicted on the top of x.

Observe that in general, the two cases x∗ = 1 and x∗ = M correspond to the SCFs that se-
lect the minimum and maximum top alternative, respectively. Corollary 3 says that there are 
still other obviously strategy-proof, anonymous and onto SCFs different of these two extremes. 
For instance, in the example depicted in Fig. 3, at any P = (P1, P2, P3) with the property that 
t (P ) = (x1, x4, x5), f (P ) = x3 is neither the maximum nor the minimum top alternative but f
is somehow simple, and far of being a dictatorship. In fact, f can be described as follows: f (P )

is the maximum top, as long as all tops are below x3, f (P ) is the minimum top, as long as all 
tops are above x3, and f (P ) = x3, as long as there are tops below and above x3.

7. Conclusion

For the class of social choice problems where a set of agents have to select an alternative from 
a finite and linearly ordered set of alternatives over which agents have single-peaked preferences, 
we have characterized the set of all obviously strategy-proof and onto social choice functions. 
Our contribution is to identify the (InIn) property as being necessary and sufficient for OSP-
implementation. Moreover, we use the property to define an algorithm that for each obviously 
strategy-proof social choice function delivers an extensive game form that OSP-implements it. 
This is in contrast with a major part of the literature on obvious strategy-proofness containing 
revelation principle like results.

The (InIn) property is restrictive and substantially reduces the class of strategy-proof social 
choice functions in this setting. Often, apparently a simple mechanism (e.g., in the two-alternative 
case, voting by quota q when 1 < q < n) that seems to suggest that truth-telling is clearly 
dominant, nonetheless the mechanism is not obviously strategy-proof. Our paper confirms the 
conviction that obvious strategy-proofness is a very restrictive notion. However, our companion 
paper (Arribillaga et al., 2019) indicates that in another setting this is not necessarily the case; 
e.g., when alternatives have private components, OSP may not have any additional bite at all. 
This means that for each specific setting a particular analysis has to be carried out. Our two pa-
pers are two examples of those, each with two extreme and different conclusions: restrictive in 
the public-good case and not at all in the private-good case.
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Appendix A

We start with the proof of Theorem 2 since it implies the sufficiency part of Theorem 1. 
Observe that Theorem 2 does not only guarantee that a generalized median voter scheme that 
satisfies the (InIn) property is obviously strategy-proof but it also says that the extensive game 
form defined in Subsection 5.2 OSP-implements it.

We state a remark that will be used in the sequel.

Remark 2. Let C = {Cx}x∈X be a coalition system that satisfies the (InIn) property and let x ∈ X. 
Then, the following statements hold.

(a) Assume x∗ ≤ x. Then, {i} ∈ Cm
x if and only if i ∈ I 1

x ∪ F 1
x .

(b) If S ∈ Cm
x is such that |S| ≥ 2, then ix ∈ S.

(c) If 1 < kx and x∗ ≤ x < x′, then {ix} ∈ Cm
x′ .

(d) If x′ < x ≤ x∗, then ix−1 ∈ I 1
x′ .

(e) If x < x∗, then I 1
x+1 ∪ {ix} ⊆ S for every S ∈ Cm

x .

(f) If Fkx

x �= ∅, then

Cm
x = {S ⊂ N | S = I k

x ∪ {i} for some 1 ≤ k ≤ kx and i ∈ Fk
x }. (3)

(g) If Fkx

x = ∅, then

Cm
x = {S ⊂ N | S = I k

x ∪ {i} for some 1 ≤ k ≤ kx − 1 and i ∈ Fk
x } ∪ {I kx

x }. (4)

(h)
∣∣Cm

x

∣∣ = 1 if and only if I 1
x ∈ Cm

x .

We now argue why the statements of Remark 2 hold.
To see that (a) holds, notice that x∗ ≤ x together with outcome monotonicity of C imply that 

Cm
x contains at least one singleton coalition. Hence, either I 1

x is a singleton set and Cm
x = {I 1

x }, in 
which case F 1

x = ∅, or else I 1
x = ∅. Then, by definition of F 1

x , the statement follows.
Statement (b) holds because, by hypothesis, kx > 1 and, by the definitions of ix and I 2

x , 
ix ∈ I 2

x and I 2
x ⊆ S.

Statement (c) holds because, by hypothesis, I 1
x = ∅ and so, by outcome monotonicity of the 

coalition system, I 1
x+1 = ∅. By condition (b) of the (InIn) property, {ix} ∈ Cm

x+1 and, by outcome 
monotonicity of the coalition system, {ix} ∈ Cm

x′ if x < x′.
Statement (d) holds because, by definition of x∗, kx−1 > 1. By the definition of ix−1 and 

condition (b) of the (InIn) property, ix−1 ∈ I 2
x−1. By definition of x∗ and the hypothesis x′ < x ≤

x∗, I 1
x−1 = I 2

x−1 and I 1
x′ = I 2

x′ hold. By outcome monotonicity of the coalition system, I 1
x−1 ⊂ I 1

x′ . 
Hence, ix−1 ∈ I 1

x′ .
To see that (e) holds, assume x < x∗. By definition of x∗, kx > 1. Let S ∈ Cm

x be arbitrary. 
Notice first that I 2

x ⊆ S and ix ∈ I 2
x , and so ix ∈ S. Second, by outcome monotonicity of the 

coalition system, S ∈ Cx+1. Hence, I 1
x+1 ⊆ S. Thus, I 1

x+1 ∪ {ix} ⊆ S.
Statement (f) holds because the fact that Cm

x includes the set in the right side of (3) follows 
from the definition of Fk

x . To see that the other inclusion in (3) holds as well, let S ∈ Cm
x and set 

k = |S|. Observe that Fkx

x �= ∅ implies that there exists S′ ∈ Cm
x such that 

∣∣S′∣∣ ≥ k, and so I k
x � S

and, by condition (a) of the (InIn) property, 
∣∣I k

x

∣∣ = k − 1. By the definition of Fk
x , there exists 

i ∈ Fk
x such that S = I k

x ∪ {i}.
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To see that (g) holds, observe first that Fkx

x = ∅ implies I kx

x ∈ Cm
x . Now, the fact that the union 

of the two sets in the right side of (4) is included in Cm
x follows from the definition of Fk

x . To see 
that the other inclusion in (4) holds as well, let S ∈ Cm

x and set k = |S|. If k < kx , the inclusion 
follows by the same argument used to show that (f) holds. If k = kx , Fkx

x = ∅ implies S = I kx

x

and so S belongs to the union of the two sets.
Statement (h) follows immediately from the definition of I 1

x .

Proof of Theorem 2. Let f : PN → X be a generalized median voter scheme whose associated 
coalition system C = {Cx}x∈X satisfies the (InIn) property. Let �C be the extensive game form 
obtained by the algorithm defined in Subsection 5.2. For each P ∈ PN , define the profile of 
truth-telling strategies σP = (σ

P1
1 , . . . , σPn

n ) in �C as follows. For each i ∈ N , let h be a history 
with the property that N (h) = i. Suppose h is a history in Stage I (namely, h = ∅ and i = i∗). 
Then,

σ
Pi

i (h) =

⎧⎪⎨⎪⎩
x∗ − 1 if x∗ > 1 and t (Pi) ≤ x∗ − 1

x∗ if t (Pi) = x∗

x∗ + 1 if x∗ < M and t (Pi) ≥ x∗ + 1.

Suppose h is a history in Stage Up.k or in Stage Down.k, for some k ≥ 1. Then,

σ
Pi

i (h) =
{

x if t (Pi) ≤ x

x + 1 if t (Pi) ≥ x + 1,

where x = x∗ + k − 1 if h belongs to Stage Up.k and x = x∗ − k if h belongs to Stage Down.k. 
Namely, σPi

i chooses always the best available action according to Pi .
We prove Theorem 2 by showing that, for each profile P ∈PN , the following two statements 

hold.

(I.a) f (P ) = o(h�C
(σP )).

(I.b) σP is weakly dominant in �C .

Proof of (I.a) Let P = (P1, . . . , Pn) ∈ PN be an arbitrary profile and let o(h�C
(σP )) be the 

outcome of the extensive game form �C when agents play it according to σP . We will distinguish 
among three cases depending on whether h�C

(σP ) is a terminal history in Stage I, Stage Up.k
(for some k ≥ 1) or Stage Down.k (for some k ≥ 1).

Case I: Assume h�C
(σP ) is a terminal history in Stage I. Then, x∗ = o(h�C

(σP )). Let i =N (∅)

be the agent that has chosen the terminal action x∗ in Stage I (namely, i = i∗). By the definition of 
σP , t (Pi) = x∗. Since {i} ∈ Cm

x∗ , f (P ) ≤ x∗. If x∗ = 1, f (P ) = x∗ and so f (P ) = o(h�C
(σP )). 

Assume now x∗ > 1. By the definition of x∗, Cm
x∗−1 does not contain any singleton coalition. By 

definition, i = ix
∗−1 ∈ I 2

x∗−1. Therefore, i ∈ S for all S ∈ Cx∗−1. Since t (Pi) = x∗, f (P ) ≥ x∗. 

Hence, f (P ) = x∗ and so f (P ) = o(h�C
(σP )).

Case II: Assume h�C
(σP ) is a terminal history in Stage Up.k for some k ≥ 1. Let x = x∗ + (k −

1). By definition of �C , o(h�C
(σP )) ∈ {x, x + 1}.

We first show that

f (P ) ∈ {x, x + 1}.
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We start by showing that f (P ) ≥ x, which is immediate if x = 1. Consider the case x > 1. 
When considering the reasons why �C has reached Stage Up.k we distinguish between the cases 
k = 1 and k > 1.

Assume k = 1, i.e., x = x∗. By construction of �C , agent ix
∗−1 has chosen x∗ + 1 in Stage I. 

Since ix
∗−1 is playing according to the truth-telling strategy, t (Pix

∗−1) ≥ x∗ + 1. Since ix
∗−1 ∈

I 2
x∗−1 and, by definition of x∗, Cm

x∗−1 has no minimal winning coalition of cardinality equal to 
one, f (P ) ≥ x∗ = x.

Assume k > 1, i.e., x > x∗. We distinguish between the two cases in Stage Up.k-1 that lead 
�C to reach Stage Up.k. Suppose kx−1 > 1 and so I 1

x−1 = ∅. Since �C has reached Stage Up.k, 
each agent i ∈ F 1

x−1 ∪ {ix−1} has chosen x when playing (the modified) �x−1 in Stage Up.k-1.
By the definition of σP , t (Pi) ≥ x for all i ∈ F 1

x−1 ∪ {ix−1}. Then, by (a) and (b) in Remark 2, 
f (P ) ≥ x. Suppose kx−1 = 1. Since �C has reached Stage Up.k, each agent i ∈ I 1

x−1 ∪ F 1
x−1

has chosen x when playing (the modified) �x−1 in Stage Up.k-1, because the outcome of �x−1

must be x. Therefore, by the definition of σP , t (Pi) ≥ x for all i ∈ I 1
x−1 ∪ F 1

x−1. Since kx−1 = 1
holds, by (f) and (g) in Remark 2, S ∈ Cm

x−1 if and only if S = {i} for some i ∈ I 1
x−1 ∪ F 1

x−1. 
Then, f (P ) ≥ x. Hence, and independently of whether kx−1 > 1 or kx−1 = 1,

f (P ) ≥ x. (5)

We now proceed by showing that f (P ) ≤ x + 1, which is immediate if x + 1 = M . Consider 
the case x + 1 < M . We distinguish between the two circumstances under which �C has ended 
in Stage Up.k. Suppose kx > 1. Since x∗ ≤ x, by outcome monotonicity of C, Cm

x contains 
at least a minimal winning coalition of cardinality equal to one and so, by assumption, I 1

x = ∅. 
Therefore, there exists ı̄ ∈ F 1

x ∪{ix} that has chosen x in �x , i.e., t (Pı̄) ≤ x. Therefore, by (a) and 
(c) in Remark 2, either {ı̄} ∈ Cm

x (and f (P ) = x) or {ı̄} ∈ Cx+1 (i.e., ı̄ = ix and f (P ) ≤ x + 1). 
Therefore, f (P ) ≤ x + 1. Suppose kx = 1. Since �C has ended in Stage Up.k, at least one 
i ∈ I 1

x ∪ F 1
x has chosen x in �x . Therefore, by the definition of σP , t (Pi) ≤ x for at least one 

i ∈ I 1
x ∪ F 1

x . By (f) and (g) in Remark 2, S ∈ Cm
x if and only if S = {i} for some i ∈ I 1

x ∪ F 1
x . 

Then, f (P ) ≤ x. Hence, and independently of whether kx > 1 or kx = 1,

f (P ) ≤ x + 1. (6)

Thus, by (5) and (6),

f (P ) ∈ {x, x + 1}. (7)

Consider now (the modified) �x played in Stage Up.k. By hypothesis, o(h�C
(σP )) is the 

outcome of �x when agents play it according to σP . We show that f (P ) = o(h�C
(σP )) by 

distinguishing between two cases.
First assume that the outcome of (the modified) �x takes place in Stage A.k, with 1 ≤ k ≤ kx . 

This implies that I k
x \I k−1

x �= ∅, o(h�C
(σP )) = x + 1 and the following two conditions hold.

(1.A) There exists i ∈ I k
x \I k−1

x that has chosen x + 1, i.e., x + 1 ≤ t (Pi).
(2.A) For all k′ < k, each i ∈ Fk′

x has chosen x + 1, i.e., x + 1 ≤ t (Pi).
Let S ∈ Cm

x be such that |S| ≥ k. Then I k
x ⊆ S, and by (1.A) above, there exists i ∈ S such that 

x + 1 ≤ t (Pi). Thus, there is no S ∈ Cm
x such that |S| ≥ k and t (Pi) ≤ x for all i ∈ S.

Let S ∈ Cm
x be such that |S| = k < k. Then, as k < k ≤ kx , by (f) and (g) in Remark 2, S =

I k
x ∪ {i} for some i such that i ∈ Fk

x . By (2.A) above, there exists i ∈ S such that x + 1 ≤ t (Pi). 
Thus, there is no S ∈ Cm

x such that |S| < k and t (Pi) ≤ x for all i ∈ S.
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Therefore, f (P ) ≥ x + 1. By (7), f (P ) = x + 1 and so f (P ) = o(h�C
(σP )).

Assume now that the outcome of (the modified) �x takes place in Stage B.k, with 1 ≤ k ≤ kx . 
We proceed by distinguishing among several cases and subcases.

Case 1: k < kx . Then, Fk
x \Fk−1

x �= ∅, o(h�C
(σP )) = x and the following two conditions hold.

(1.B.1) There exists ı̄ ∈ Fk
x \Fk−1

x that has chosen x, i.e., t (Pı̄) ≤ x.
(2.B.1) Each i ∈ I k

x has chosen x, i.e., t (Pi) ≤ x.
By definition of Fk

x , it holds that for agent ı̄ identified in (1.B.1), I k
x ∪ {ı̄} ∈ Cm

x . By (1.B.1) 
and (2.B.1), t (Pi) ≤ x for all i ∈ I k

x ∪ {ı̄}, implying that f (P ) ≤ x. Hence, by (7), f (P ) = x and 
so f (P ) = o(h�C

(σP )).

Case 2: k = kx . The following two conditions hold.
(1.B.2) Each i ∈ I kx

x has chosen x, i.e., t (Pi) ≤ x.
(2.B.2) For all k′ < kx , each i ∈ Fk′

x has chosen x + 1, i.e., x + 1 ≤ t (Pi).
Subcase 2.1: Fk

x \Fk−1
x �= ∅. We distinguish between two cases.

Subcase 2.1.1: There exists ı̄ ∈ Fk
x \Fk−1

x that has chosen x, i.e., t (Pı̄) ≤ x. Then, o(h�C
(σP )) =

x. By definition of Fk
x , I k

x ∪ {ı̄} ∈ Cm
x . By (1.B.2), t (Pi) ≤ x for all i ∈ I k

x ∪ {ı̄}, implying that 
f (P ) ≤ x. Hence, by (7), f (P ) = x and so f (P ) = o(h�C

(σP )).
Subcase 2.1.2: Each i ∈ Fk

x \Fk−1
x has chosen x + 1, i.e., x + 1 ≤ t (Pi) for all i ∈ Fk

x \Fk−1
x . 

Then, o(h�C
(σP )) = x + 1. By condition (2.B.2), for all k′ ≤ kx , each i ∈ Fk′

x has chosen x + 1. 
By (f) in Remark 2, there is no S ∈ Cm

x such that t (Pi) ≤ x for all i ∈ S. Thus, x + 1 ≤ f (P ). 
Hence, by (7), f (P ) = x + 1 and so f (P ) = o(h�C

(σP )).
Case 2.2: Fk

x \Fk−1
x = ∅. By (2), we distinguish only between two cases.

Subcase 2.2.1: Fkx

x = ∅. Then, o(h�C
(σP )) = x. By (g) in Remark 2, I kx

x ∈ Cm
x , which implies, 

by (1.B.2) above, that f (P ) ≤ x. Hence, by (7), f (P ) = x and so f (P ) = o(h�C
(σP )).

Subcase 2.2.2: Fkx

x = Fkx−1
x �= ∅, Then, o(h�C

(σP )) = x + 1. Condition (2.B.2) implies that, 
for all k′ ≤ kx , each i ∈ Fk′

x has chosen x + 1. By (f) in Remark 2, there is no S ∈ Cm
x such 

that t (Pi) ≤ x for all i ∈ S. Thus, x + 1 ≤ f (P ). Hence, by (7), f (P ) = x + 1 and so f (P ) =
o(h�C

(σP )).

Case III: Assume h�C
(σP ) is a terminal history in Stage Down.k for some k ≥ 1. Let x = x∗ −k. 

By definition of �C , o(h�C
(σP )) ∈ {x, x + 1}.

We first show that

f (P ) ∈ {x, x + 1}.
We start be showing that f (P ) ≤ x + 1, which is immediate if x + 1 = M . Consider the case 

x + 1 < M . When considering the reasons why �C has reached Stage Down.k we distinguish 
between the cases k = 1 and k > 1.

Assume k = 1, i.e., x = x∗ − 1. By construction of �C , agent ix
∗−1 has chosen x∗ − 1 in

Stage I. Since ix
∗−1 is playing according to the truth-telling strategy, t (Pix

∗−1) ≤ x∗ − 1. Since 
{ix∗−1} ∈ Cm

x∗ (see footnote 13), f (P ) ≤ x∗ = x + 1.
Assume k > 1, i.e., x < x∗ − 1. We distinguish between the two cases in Stage Down.k-1

that lead �C to reach Stage Down.k. Suppose 
∣∣Cm

x+1

∣∣ > 1. Since �C has moved to Stage 
Down.k, each agent i ∈ I 1

x+1 ∪{ix} has chosen x + 1 when playing (the modified) �x+1 in Stage 
Down.k-1. By definition of σP , t (Pi) ≤ x +1 for all i ∈ I 1

x+1 ∪{ix}. Since x +1 < x∗, kx+1 > 1. 
By condition (b) of the (InIn) property, I 1 ∪ {ix} ∈ Cm holds, and then f (P ) ≤ x + 1. Sup-
x+1 x+1
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pose 
∣∣Cm

x+1

∣∣ = 1. Then, in Stage Down.k-1 the outcome of �x+1 is x + 1, which means that each 
i ∈ I 1

x+1 has chosen x + 1 in �x+1. By definition of σP , t (Pi) ≤ x + 1 for all i ∈ I 1
x+1. Since ∣∣Cm

x+1

∣∣ = 1, by (h) in Remark 2, I 1
x+1 ∈ Cm

x+1, and then f (P ) ≤ x + 1. Hence, and independently 
of whether 

∣∣Cm
x+1

∣∣ > 1 or 
∣∣Cm

x+1

∣∣ = 1,

f (P ) ≤ x + 1. (8)

We now proceed by showing that f (P ) ≥ x, which is immediate if x = 1. Consider the 
case 1 < x. We distinguish between the two circumstances under which �C has ended at Stage 
Down.k. Suppose 

∣∣Cm
x

∣∣ > 1. Then, there exists ı̄ ∈ I 1
x ∪ {ix−1} that has chosen x + 1 when play-

ing (the modified) �x in Stage Down.k. By definition of σP , t (Pı̄) ≥ x + 1. By (e) in Remark 2, 
there is no S ∈ Cm

x−1 such that t (Pi) ≤ x − 1 for all i ∈ S, and then f (P ) ≥ x. Suppose 
∣∣Cm

x

∣∣ = 1. 
Then, in Stage Down.k the outcome of �x is x + 1. Then, since 

∣∣Cm
x

∣∣ = 1, by (h) in Remark 2, 
there exists ı̄ ∈ I 1

x that has chosen x + 1 when playing �x in Stage Down.k. By definition of 
σP , t (Pı̄) ≥ x + 1. By (h) in Remark 2, Cm

x = {I 1
x } holds, and so there is no S ∈ Cm

x such that 
t (Pi) ≤ x for all i ∈ S, and then f (P ) ≥ x. Hence, and independently of whether 

∣∣Cm
x

∣∣ > 1 or ∣∣Cm
x

∣∣ = 1,

f (P ) ≥ x. (9)

Thus, by (8) and (9),

f (P ) ∈ {x, x + 1}. (10)

Now, the proof that f (P ) = o(h�C
(σP )) follows as in Case II.

Proof of (I.b) We show that, for each i ∈ N and Pi ∈ P , the strategy σPi

i is weakly dominant in 
�C . Fix i ∈ N and Pi ∈ P , and let σ ′

i �= σ
Pi

i be arbitrary. We consider three cases depending on 
the stage at which σ ′

i chooses for the first time an action different from the one that σPi

i would 
choose.

Case 1: Assume σ ′
i chooses a different action than σPi

i in Stage I, i.e., N (∅) = i = i∗ and 
σ ′

i (∅) �= σ
Pi

i (∅). We distinguish among three cases.

Subcase 1.1: t (Pi) = x∗. Then, σPi

i chooses x∗, the outcome of �C is x∗ and so σPi

i is trivially 
weakly dominant.
Subcase 1.2: t (Pi) ≥ x∗ + 1. Then, σPi

i chooses x∗ + 1. By (c) in Remark 2, {i} ∈ Cm
x′ for all 

x′ ≥ x∗. Hence, the outcome of �C is greater than or equal to x∗ and smaller than or equal to 
t (Pi). Furthermore, σ ′

i (∅) ∈ {x∗ − 1, x∗} in Stage I and so the outcome of �C when i plays 
according to σ ′

i is smaller than or equal to x∗. Hence, since Pi is single-peaked, σPi

i is weakly 
dominant.

Subcase 1.3: t (Pi) ≤ x∗ − 1. Then, σPi

i chooses x∗ − 1. By (d) in Remark 2, i ∈ I 1
x′ for all 

x′ < x∗. Hence, the outcome of �C is smaller than or equal to x∗ − 1 and larger than or equal 
to t (Pi). Furthermore, σ ′

i (∅) ∈ {x∗, x∗ + 1} in Stage I and so the outcome of �C when i plays 
according to σ ′

i is larger than or equal to x∗. Hence, since Pi is single-peaked, σPi

i is weakly 
dominant.

Case 2: Assume σ ′
i chooses a different action than σPi

i in Stage Up.k for some k ≥ 1. Let x =
x∗ + (k − 1). We distinguish between two cases.
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Subcase 2.1: i ∈ I kx

x . Observe two things. First, I k
x ⊆ I kx

x for all 1 ≤ k ≤ kx and i plays in some
Stage A.k′ for some k′ ≥ 1 in (the modified) �x . We distinguish between two cases.
Subcase 2.1.1: t (Pi) ≤ x. Then, σPi

i chooses x in (the modified) �x . We distinguish between the 
cases kx = 1 and kx > 1.

Assume kx = 1. Then, since i ∈ I kx

x , {{i}} = Cm
x and the outcome of �C is x. Since σ ′

i chooses 
x + 1, the outcome of �C is now larger than or equal to x + 1. Hence, since Pi is single-peaked, 
σ

Pi

i weakly dominates σ ′
i .

Assume kx > 1. Since i plays in Stage A.k′ for some k′ ≥ 1, agent i, and every agent j ∈ I kx

x

that has played before i, have chosen x. Hence, when i plays according to σPi

i , �C ends with the 
outcome of �x , which is either x or x + 1, regardless of whether or not i = ix . In contrast, when 
i plays according to σ ′

i , i chooses x + 1 and then the outcome of �C is greater than or equal to 
x + 1. Hence, since Pi is single-peaked, σPi

i weakly dominates σ ′
i .

Subcase 2.1.2: t (Pi) ≥ x + 1. Then, σPi

i chooses x + 1 in (the modified) �x , and the outcome of 
�C is greater than or equal to x +1. We distinguish between the cases i = ix and i �= ix . Suppose 
i = ix . Then, by (c) in Remark 2, {i} ∈ Cx′ for all x′ > x, the outcome of �C is smaller than or 
equal to t (Pi). Suppose i �= ix . Since agent i plays x + 1 in Stage A.k and agent ix has chosen 
x and {ix} ∈ Cx+1, the outcome of �C is x + 1. Now, and independently of whether i = ix or 
i �= ix , σ ′

i chooses x and the outcome of �C is x or x + 1. Hence, since Pi is single-peaked, σPi

i

weakly dominates σ ′
i .

Subcase 2.2: i ∈ Fk′
x \ Fk′−1

x for k′ ≤ k. Observe that i plays in some Stage B.k′ for some k′ ≥ 1
in (the modified) �x . We distinguish between two cases.
Subcase 2.2.1: t (Pi) ≤ x. Then, σPi

i chooses x in (the modified) �x and the outcome of �C is x. 
Furthermore, σ ′

i chooses x + 1 and the outcome of �C is greater than or equal to x. Hence, since 
Pi is single-peaked, σPi

i weakly dominates σ ′
i .

Subcase 2.2.2: t (Pi) ≥ x + 1. We distinguish between the cases k′ = 1 and k′ > 1. Suppose 
k′ = 1. Then, i ∈ F 1

x implies {i} ∈ Cm
x′ for x′ ≥ x. Since σPi

i chooses x + 1 in (the modified) 
�x , the outcome of �C is larger than or equal to x and smaller than or equal to t (Pi). Suppose 
k′ > 1. Then, ix has chosen x in �x and so the outcome of �C is either x or x + 1. Hence, and 
independently of whether k′ = 1 or k′ > 1, σ ′

i chooses x and then the outcome of �C is x. Hence, 
since Pi is single-peaked, σPi

i is weakly dominant.

Case 3: Assume σ ′
i chooses a different action than σPi

i in Stage Down.k for some k ≥ 1. This 
case is similar to Case 2, replacing the role of (c) by (d) in Remark 2, and therefore its proof is 
omitted. �
Proof of Theorem 1. The sufficiency part follows from Theorem 2.

To prove necessity, assume f : PN → X is obviously strategy-proof and onto. By Corollary 
1 in Li (2017), f is strategy-proof. By Barberà et al. (1993), f is a generalized median voter 
scheme. Let {Cx}x∈X be the coalition system associated to f . We have to show that {Cx}x∈X

satisfies the (InIn) property. To do so we will use the fact that, similarly to what happens with 
SP-implementability, OSP-implementability is a hereditary property in the following sense. If f
is OSP-implementable in a domain, then the restriction of f on any of its subdomains is also 
OSP-implementable.19

19 The proof of Proposition 5 in Li (2017) contains this observation.
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The subdomains that we will consider are those obtained by considering subsets of single-
peaked preferences over two or at most three consecutive alternatives in X, with tops on one of 
those alternatives. We now show that condition (a) of the (InIn) property holds for every x < M . 
Fix x ∈ {1, . . . , M − 1}, denote by Px the set of the two preferences over {x, x + 1} and con-
sider the generalized median voter scheme f : PN

x → {x, x + 1} defined by the coalition system 
C = {Cx, Cx+1}, where Cx = Cx and Cx+1 = {{i} | i ∈ N}. Since f is obviously strategy-proof so 
is f .20 As we have already mentioned in the Introduction, Bade and Gonczarowski (2017) show 
that to OSP-implement f one can restrict attention only to proto-dictatorship mechanisms (see 
also the proof of Proposition 1 in Arribillaga et al., 2016). That is, we can assume that the exten-
sive game form that OSP-implements f has the following properties. Agents play sequentially, 
at most once, and have to choose either x or x +1. Moreover, they are grouped into alternate sub-
sets in which each agent has either the choice between implementing x (by choosing it) or letting 
the game continue (by choosing x + 1) or the choice between implementing x + 1 (by choosing 
it) or letting the game continue (by choosing x), except the last player in the sequence who has 
the choice between implementing x (by choosing x) or implementing x + 1 (by choosing x + 1).

Let X1 be the first group of agents in the sequence that can implement x or let the game 
continue. Let Y1 be the second group of agents in the sequence that play after the agents in X1, 
and can implement x + 1 or let the game continue. In general, for t ∈ {2, . . . , t}, let Xt the group 
of agents in the sequence that play after the agents in Yt−1, and can implement x or let the game 
continue. Let Yt the group of agents in the sequence that play after the agents in Xt , and can 
implement x + 1 or let the game continue. Finally, let ĵ be the last agent in the sequence that 
plays after the agents in Yt , and can implement either x or x + 1. Hence, the order of play of 
the subsets of agents is given by X1, Y1, X2, . . . , Xt, Yt , Xt+1, . . . , Xt, Yt , ̂j , and agents in each 
subset can play in any order. Observe that X1 and/or Yt could be empty.21

Since the proto-dictatorship OSP-implements f and Cx = Cx , it can be checked that Cm
x can 

be written as the following collection of subsets

Cm
x = {{i} | i ∈ X1}

⋃
{S | S =

t̂⋃
t=1

Yt ∪ {i} s.t. i ∈ Xt̂+1 for some 1 ≤ t̂ ≤ t − 1}

⋃
{

t⋃
t=1

Yt ∪ {ĵ}}.

If k = 1 ≤ kx , 
∣∣I 1

x

∣∣ ≥ 0 holds trivially. Let 1 < k ≤ kx and Ŝ ∈ Cm
x be such that 

∣∣Ŝ∣∣ ≥ k and ∣∣Ŝ∣∣ ≤ |S| for all S ∈ Cm
x such that |S| ≥ k. That is, Ŝ is one of the subsets with the smallest 

cardinality among all subsets in Cm
x with cardinality larger than or equal to k. Clearly, Ŝ /∈ {{i} |

i ∈ X1} and let ̂t ∈ {1, . . . , t} be such that Ŝ =
t̂⋃

t=1
Yt ∪ {̂i}. Observe that if S ∈ Cm

x and |S| ≥ k, 

20 Since generalized median voter schemes are tops only and onto, f is the restriction of f into the subdomain PN
x .

21 Fig. 1 in Example 2 represents the proto-dictatorship mechanism where t = 4 and X1 = {1}, Y1 = {2}, X2 = {3, 4}, 
Y2 = {5}, X3 = {6}, Y3 = {7, 8}, X4 = {9}, Y4 = ∅ and ̂j = 10.
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S =
t ′⋃

t=1
Yt ∪ {i} with t ′ ≥ t̂ and i ∈ Xt ′+1 ∪ {ĵ}. Then, I k

x =
t̂⋃

t=1
Yt and so 

∣∣I k
x

∣∣ =
∣∣∣∣∣ t̂⋃
t=1

Yt

∣∣∣∣∣ ≥∣∣Ŝ∣∣ − 1 ≥ k − 1.
Now we show that condition (b) of the (InIn) property holds at x. Assume kx > 1. Then, there 

exists S ∈ Cm
x such that |S| ≥ 2 and, by condition (a) of the (InIn) property holds at x, I 2

x �= ∅. 
We distinguish between two cases.

Case 1: x + 1 = M . Then Cm
x+1 = {{i} | i ∈ N} and I 1

x+1 = ∅. Therefore, I 1
x+1 ∪ {i} ∈ Cm

x+1 for 
each i ∈ I 2

x , which means that condition (b) of the (InIn) property holds at x.

Case 2: x + 1 < M . We distinguish between two cases.
Subcase 2.1: 

∣∣Cm
x+1

∣∣ = 1. Let {S′} = Cm
x+1, and so I 1

x+1 = S′. By outcome monotonicity of the 
coalition system, S ∈ Cx+1 for all S ∈ Cm

x with |S| ≥ 2. Hence,

S′ =
⋂

S∈Cx+1|S|≥2

S ⊂
⋂

S∈Cm
x|S|≥2

S = I 2
x .

Then, there exists i ∈ S′ ⊂ I 2
x such that S′ ∪ {i} = S′ ∈ Cm

x+1. Thus, condition (b) of the (InIn) 
property holds at x.
Subcase 2.2: 

∣∣Cm
x+1

∣∣ > 1. We distinguish between two cases.
Subcase 2.2.1: There exists j ′ such that {j ′} ∈ Cm

x+1. Define P̃1 ×· · ·× P̃n ≡ P̃ ⊆PN as follows.
i) If {i} ∈ Cm

x , then P̃i = {Pi ∈ P | t (Pi) ∈ {x + 1, x + 2}}.
ii) If {i} /∈ Cm

x , then P̃i = {Pi ∈P | t (Pi) ∈ {x, x + 1, x + 2}}.
Let f̃ be the restriction of f to the set of profiles in P̃ . Since f is OSP-implementable, so is 

f̃ . Let �̃ be an extensive game form that OSP-implements f̃ . From now on, we will use a tilde 
to refer to the components of �̃, and set Ñ = N . Hence, for every P ∈ P̃ , there exists σP such 
that ̃o(h�̃(σP )) = f̃ (P ). For Pi ∈ P̃i , denote σPi

i by σz
i where t (Pi) = z.

Let j be the first agent that has to play in �̃ (i.e., Ñ (∅) = j ). By Mackenzie (2018), we can 
assume without loss of generality that j has at least two actions available at ∅ (i.e., 

∣∣Ã(∅)
∣∣ ≥ 2); 

that is,

σz
j (∅) �= σ z′

j (∅) (11)

for z, z′ ∈ {x, x + 1, x + 2}. We claim that j ∈ I 2
x .

Claim 1. j ∈ I 2
x .

Proof of Claim 1 Suppose otherwise. We distinguish between two cases, depending on whether 
or not {j} is a minimal winning coalition at x.
(1.i) {j} ∈ Cm

x . Since kx > 1, there exists S ∈ Cm
x such that |S| ≥ 2 and j /∈ S. By the definition 

of P̃j , {j} ∈ Cm
x and (11), σx+1

j (∅) �= σx+2
j (∅).

For each i ∈ S and history h in ̃� such that Ñ (h) = i, define

σ̃i (h) =
{

σx+1
i (h) if σx+1

j (∅) � h

σx
i (h) if σx+2

j (∅) � h.

Since ̃� induces f̃ ,

õ(h�̃(σ x+2 , σ̃S, σ x+2)) = õ(h�̃(σ x+2 , σ x, σ x+2)) = f̃ (P x+2 ,P x,P x+2) = x
−S−{j} j −S−{j} S j −S−{j} S j
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and

õ(h�̃(σ x+2
−S−{j}, σ̃S, σ x+1

j )) = õ(h�̃(σ x+2
−S−{j}, σ

x+1
S , σ x+1

j )) = f̃ (P x+2
−S−{j},P

x+1
S ,P x+1

j )

= x + 1.

By single-peakedness, (x + 1)P x+2
j x holds, which implies that σx+2

j is not weakly dominant. 

Hence, j ∈ I 2
x if {j} ∈ Cm

x .
(1.ii) {j} /∈ Cm

x . Then, by our contradiction hypothesis stating that j /∈ I 2
x , there exists S ∈ Cm

x

such that |S| ≥ 2 and j /∈ S. By the definition of P̃j , {j } /∈ Cm
x and (11), there exists y ∈ {x, x +1}

such that σy
j (∅) �= σx+2

j (∅).

For each i ∈ S and history h in ̃� such that Ñ (h) = i, define

σ̃i (h) =
{

σx+1
i (h) if σ

y
j (∅) � h

σx
i (h) if σx+2

j (∅) � h.

Since ̃� induces f̃ ,

õ(h�̃(σ x+2
−S−{j}, σ̃S, σ x+2

j )) = õ(h�̃(σ x+2
−S−{j}, σ

x
S , σ x+2

j )) = f̃ (P x+2
−S−{j},P

x
S ,P x+2

j ) = x

and

õ(h�̃(σ x+2
−S−{j}, σ̃S, σ

y
j )) = õ(h�̃(σ x+2

−S−{j}, σ
x+1
S , σ

y
j )) = f̃ (P x+2

−S−{j},P
x+1
S ,P

y
j ) = x + 1.

By single-peakedness, (x + 1)P x+2
j x holds, which implies that σx+2

j is not weakly dominant. 

Hence, j ∈ I 2
x if {j} /∈ Cm

x , and this concludes the proof of Claim 1. �
To proceed with the proof for this Subcase 2.2.1, assume that condition (b) of the (InIn) 

property does not hold at x. By Claim 1, j ∈ I 2
x , and so I 1

x+1 ∪ {j} /∈ Cm
x+1. Since 

∣∣Cm
x+1

∣∣ > 1
and there exists j ′ such that {j ′} ∈ Cm

x+1, I 1
x+1 = ∅, and so {j } /∈ Cm

x+1. By outcome monotonicity 
of the coalition system, {j} /∈ Cm

x . By the definition of P̃j , {j } /∈ Cm
x and (11), there exists y ∈

{x + 1, x + 2} such that σx
j (∅) �= σ

y
j (∅).

For each i �= j and history h in ̃� such that Ñ (h) = i, define

σ̃i (h) =
{

σx+2
i (h) if σx

j (∅) � h

σx+1
i (h) if σ

y
j (∅) � h.

Since ̃� induces f̃ ,

õ(h�̃(̃σ−j , σ
x
j )) = õ(h�̃(σ x+2

−j , σ x
j )) = f̃ (P x+2

−j ,P x
j ) = x + 2

and

õ(h�̃(̃σ−j , σ
y
j )) = õ(h�̃(σ x+1

−j , σ
y
j )) = f̃ (P x+1

−j ,P
y
j ) = x + 1.

By single-peakedness, (x + 1)P x
j (x + 2) holds, which implies that σx

j is not weakly dominant. 
This contradiction implies that condition (b) of the (InIn) property holds at x for the Subcase 
2.2.1.
Subcase 2.2.2: There is no j ′ such that {j ′} ∈ Cm

x+1. By outcome monotonicity of the coalition 
system, there is no j ′ such that {j ′} ∈ Cm

x . Hence, I 1
x+1 = I 2

x+1. Since condition (a) of the (InIn) 
property holds at x + 1, I 1 = I 2 �= ∅. Define P̃1 × · · · × P̃n ≡ P̃ ⊆PN as follows.
x+1 x+1
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i) If i ∈ I 1
x+1, then P̃i = {Pi ∈ P | t (Pi) ∈ {x, x + 1}}.

ii) If i /∈ I 1
x+1, then P̃i = {Pi ∈P | t (Pi) ∈ {x, x + 1, x + 2}}.

Let f̃ be the restriction of f to the set of profiles in P̃ . Since f is OSP-implementable, so 
is f̃ . Let �̃ be an extensive game form that OSP-implements f̃ . Hence, for every P ∈ P̃ , there 
exists σP such that ̃o(h�̃(σP )) = f̃ (P ). For Pi ∈ P̃i , denote σPi

i by σz
i where t (Pi) = z.

Let j be the first agent that has to play in �̃ (i.e., Ñ (∅) = j ). By Mackenzie (2018), we can 
assume without loss of generality that j has at least two actions available at ∅ (i.e., 

∣∣Ã(∅)
∣∣ ≥ 2); 

that is,

σz
j (∅) �= σ z′

j (∅) (12)

for z, z′ ∈ {x, x + 1, x + 2}. We claim that j ∈ I 2
x .

Claim 2. j ∈ I 2
x .

Proof of Claim 2 Assume otherwise. Then, there exists S ∈ Cm
x such that |S| ≥ 2 and j /∈ S. By 

outcome monotonicity of the coalition system, S ∈ Cx+1, and so j /∈ I 1
x+1. By (12), there exists 

y ∈ {x, x + 1} such that σy
j (∅) �= σx+2

j (∅).

For each i ∈ S and history h in ̃� such that Ñ (h) = i, define

σ̃i (h) =
{

σx+1
i (h) if σ

y
j (∅) � h

σx
i (h) if σx+2

j (∅) � h.

Since ̃� induces f̃ ,

õ(h�̃(σ x+1
−S−{j}, σ̃S, σ x+2

j )) = õ(h�̃(σ x+1
−S−{j}, σ

x
S , σ x+2

j )) = f̃ (P x+1
−S−{j},P

x
S ,P x+2

j ) = x

and

õ(h�̃(σ x+1
−S−{j}, σ̃S, σ

y
j )) = õ(h�̃(σ x+1

−S−{j}, σ
x+1
S , σ

y
j )) = f̃ (P x+1

−S−{j},P
x+1
S ,P

y
j ) = x + 1.

By single-peakedness, (x + 1)P x+2
j x holds, which implies that σx+2

j is not weakly dominant. 
A contradiction. �

To proceed with the proof for this Subcase 2.2.2, assume that condition (b) of the (InIn) 
property does not hold at x. Since by Claim 1, j ∈ I 2

x ,

I 1
x+1 ∪ {j} /∈ Cm

x+1. (13)

We distinguish between two cases, depending on whether or not j belongs to I 1
x+1.

(2.i) j ∈ I 1
x+1. By (13), I 1

x+1 /∈ Cm
x+1. By (12), σx

j (∅) �= σx+1
j (∅).

For each i /∈ I 1
x+1 and history h in ̃� such that N (h) = i, define

σ̃i (h) =
{

σx+2
i (h) if σx

j (∅) � h

σx+1
i (h) if σx+1

j (∅) � h.

Since ̃� induces f̃ and I 1 /∈ Cm ,
x+1 x+1



R.P. Arribillaga et al. / Journal of Economic Theory 186 (2020) 104992 33
õ(h�̃((̃σ−I 1
x+1−{j}, σ

x+1
I 1
x+1

, σ x
j )) = õ(h�̃((σ x+2

−I 1
x+1−{j}, σ

x+1
I 1
x+1

, σ x
j ))

= f̃ (P x+2
−I 1

x+1−{j},P
x+1
I 1
x+1

,P x
j ) = x + 2

and

õ(h�̃(̃σ−I 1
x+1−{j}, σ

x+1
I 1
x+1

, σ x+1
j )) = õ(h�̃(σ x+1

−I 1
x+1−{j}, σ

x+1
I 1
x+1

, σ x+1
j ))

= f̃ (P x+1
1 , . . . ,P x+1

n ) = x + 1.

By single-peakedness, (x + 1)P x
j (x + 2) holds, which implies that σx

j is not weakly dominant. 
A contradiction.
(2.ii) j /∈ I 1

x+1. By (12), there exists y ∈ {x + 1, x + 2} such that σx
j (∅) �= σ

y
j (∅).

For every i /∈ I 1
x+1 ∪ {j} and history h such that Ñ (h) = i, define

σ̃i (h) =
{

σx+2
i (h) if σx

j (∅) � h

σx+1
i (h) if σ

y
j (∅) � h.

Since ̃� induces f̃ and (13) holds,

õ(h�̃(̃σ−I 1
x+1−{j}, σ

x+1
I 1
x+1

, σ x
j )) = õ(h�̃(σ x+2

−I 1
x+1−{j}, σ

x+1
I 1
x+1

, σ x
j ))

= f̃ (P x+2
−I 1

x+1−{j},P
x+1
I 1
x+1

,P x
j ) = x + 2

and

õ(h�̃(̃σ−I 1
x+1−{j}, σ

x+1
I 1
x+1

, σ
y
j )) = õ(h�̃(σ x+1

−I 1
x+1−{j}, σ

x+1
I 1
x+1

, σ
y
j ))

= f̃ (P x+1
−I 1

x+1−{j},P
x+1
I 1
x+1

,P
y
j ) = x + 1.

By single-peakedness, (x + 1)P x
j (x + 2) holds, which implies that σx

j is not weakly dominant.
Thus, condition (b) of the (InIn) property holds at x. �
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