Comparing Voting by Committees
According to their Manipulability

R. Pablo Arribillaga† Jordi Massó‡

December 4, 2015

Abstract: We consider the class of voting by committees to be used by a society to collectively choose a subset of a given set of objects. We offer a simple criterion to compare two voting by committees without dummy agents according to their manipulability. This criterion is based on the set-inclusion relationships of the two corresponding decisive and vetoer sets of agents. We show that the binary relation “to be as manipulable as” endows the set of equivalence classes of anonymous voting by committees (i.e., voting by quotas) with a complete upper semilattice structure, whose supremum is the equivalence class containing all voting by quotas with the property that the quota of each object is strictly larger than one and strictly lower than the number of agents. Finally, we extend the comparability criterion to the full class of all voting by committees.

Keywords: Strategy-proofness; Separable Preferences; Voting by Committees.

Journal of Economic Literature Classification Numbers: C78; D78.

*We thank Dolors Berga and Bernardo Moreno for very useful comments at an initial stage of this research. Arribillaga acknowledges financial support from the Universidad Nacional de San Luis, through grant 319502, and from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), through grant PIP 112-200801-00655. Massó acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the Severo Ochoa Programme for Centers of Excellence in R&D (SEV-2011-0075) and through grants ECO2008-0475-FEDER (Grupo Consolidado-C) and ECO2014-53051, and from the Generalitat de Catalunya, through grant SGR2014-515.

†Instituto de Matemática Aplicada San Luis, Universidad Nacional de San Luis and CONICET. Ejército de los Andes 950, 5700 San Luis, Argentina. E-mail: rarribi@unsl.edu.ar

‡Universitat Autònoma de Barcelona and Barcelona GSE. Departament d’Economia i Història Econòmica. Edifici B, UAB. 08193, Bellaterra (Barcelona), Spain. E-mail: jordi.masso@uab.es
1 Introduction

Consider a set of agents who collectively have to choose a subset of a given set of objects K. There are many social choice problems where the set of social alternatives is the family of all subsets of a given set. For instance, when the set of agents is the tenured members of a department and the set of objects is the set of junior candidates under consideration to become new assistant professors. Or a scientific society whose current fellows have to elect new fellows from a given list of candidates. Voting by committees have been proposed to solve this class of problems. One of the main reasons why voting by committees are attractive social choice procedures is that they constitute the class of all strategy-proof social choice functions respecting voter sovereignty (all subsets of objects can be chosen) on the domain of separable preference profiles. An agent’s preferences are separable on the family of all subsets of objects 2^K if they are guided by the partition separating the set of objects into the set of good objects (as singleton sets, objects that are better than the empty set) and bad objects (as singleton sets, objects that are worse than the empty set). Adding a good object to any set leads to a better set, while adding a bad object leads to a worse set. Note that all additively representable preferences are separable.

Voting by committees are attractive because they induce good strategic incentives to agents, whenever they have separable preferences. But in addition they are appealing because they are simple. Following Barberà, Sonnenschein and Zhou (1991) voting by committees are defined by a collection of monotonic families of winning coalitions (committees), one for each object, $W = (W_x)_{x \in K}$. Then the choice of the subset of objects made by W at a preference profile is done object-by-object as follows. Fix a voting by committees $W = (W_x)_{x \in K}$ and a preference profile, and consider object x. Then, x belongs to the chosen set (the one selected by W at the preference profile) if and only if the set of agents whose best subset of objects contains x belongs to the committee W_x. Hence, voting by committees can be seen as a family of extended majority voting (one for each object) where the two alternatives at stake are whether or not x belongs to the collectively chosen subset of objects.

An especially interesting subclass of voting by committees are those without dummy agents. Agent i is dummy at object x in the committee W_x if i does not belong to any minimal winning coalition of W_x; that is, i’s opinion about object x is not used at all in the decision of whether or not x belongs to the chosen subset. And

\[1\] A strategy-proof social choice function leads truth-telling as a weakly dominant strategy in the direct revelation mechanism induced by the social choice function at all preference profiles of its domain. See Barberà, Sonnenschein and Zhou (1991) for a description of this class of problems and this axiomatic characterization of voting by committees.
among the class of voting by committees without dummy agents the subclass of voting by quotas is particularly appealing. A voting by committees is voting by quotas if the set of winning coalitions for each object x are the sets of agents with equal or larger cardinality than a given strictly positive integer q_x, the quota of x. Hence, in any voting by quotas all agents play the same role when determining whether or not objects belong to the chosen subset. Using Barberà, Sommerschein and Zhou (1991) it is easy to see that the class of all anonymous and strategy-proof social choice functions satisfying voter sovereignty on the domain of separable preference profiles coincides with all voting by quotas.

Again, voting by committees are simple for two reasons. First, they are tops-only because they only depend on the profile of top subsets of objects, one for each agent. Second, they are object-by-object decomposable, and this is precisely the reason why they are strategy-proof on the domain of separable preference profiles: agent i, when considering whether or not to give support to object x, does not need to know the other set of elected objects because i wants to support x if and only if x is a good object as a singleton set (i.e., x belongs to the best subset of objects) since its addition improves, by separability, any subset of objects.

However, in many applications the set of conceivable preferences of agents may be larger than the set of separable preferences: when adding an object to a set, some complementarities or substitutable considerations with respect to objects already in the set may become relevant, yet they are not admissible if preferences are separable. For instance, although a voter for new assistant professors in the department considers that candidates x and y are the best and the second best candidates, both working in a similar research area, the voter may consider that, for the sake of diversity, the subset $\{x, z\}$ is better than the subset $\{x, y, z\}$, where z is a third good candidate who works in a very different area from the one that x and y work. For this and similar cases we know that non-trivial voting by committees become manipulable, once non separable preferences are admitted in the domain where they operate. But since separable preferences may be conceivable too, voting by committees have still to be used in order to guarantee that the social choice procedure remains strategy-proof on the separable subdomain of preference profiles. But the large mechanism design literature studying strategy-proof social choice functions has mainly neglected the potential interest of comparing two social choice functions according to their manipulability. Our contribution in this paper is to compare, by applying a criterion we introduced in Arribillaga and Massó (2015), voting by committees according to their manipulability when they have to operate on the full domain of preferences on 2^K. As we have already argued in Arribillaga and Massó (2015) the manipulability of a social choice function does not indicate the degree of its lack of strategy-proofness.
There may be only one instance at which the social choice function is manipulable or there may be many such instances. The mechanism design literature that has focused on strategy-proofness has not distinguished between these two situations; it has declared both social choice functions as being not strategy-proof.\(^2\)

As in Arribillaga and Massó (2015) our criterion to compare two social choice functions takes the point of view of individual agents. We say that an agent is able to manipulate a social choice function at a preference (the true one) if there exist a list of preferences, one for each one of the other agents, and another preference for the agent (the strategic one) such that if submitted, the agent obtains a strictly better alternative according to the true preference. Consider two voting by committees, \(\mathcal{W}\) and \(\mathcal{V}\), operating on the universal domain of preference profiles. Assume that for each agent the set of preferences under which the agent is able to manipulate \(\mathcal{W}\) is contained in the set of preferences under which the agent is able to manipulate \(\mathcal{V}\). Then, from the point of view of all agents, \(\mathcal{V}\) is more manipulable than \(\mathcal{W}\). Hence, we think that \(\mathcal{W}\) is unambiguously a better voting by committees than \(\mathcal{V}\) according to the strategic incentives induced to agents. Often, it may be reasonable to think that agents’ preferences are separable, but if the designer foresees that agents may have also non separable preferences, then \(\mathcal{W}\) may be a better choice than \(\mathcal{V}\) if strategic incentives are relevant and important for the designer.

Before presenting our general result in Theorem 2, we focus on voting by committees without dummy agents. In Theorem 1 we provide a simple necessary and sufficient condition for the comparability of two voting by committees without dummy agents in terms of their manipulability. This condition reflects the power of agents to influence the choice of the objects in the two voting by committees. Two notions are relevant to describe this power. Fix a voting by committees \(\mathcal{W} = (\mathcal{W}_x)_{x \in K}\), an agent \(i\), and an object \(x\). We say that agent \(i\) is decisive at \(x\) if the singleton set \(\{i\}\) belongs to \(\mathcal{W}_x\); that is, \(\{i\}\) is a winning coalition of \(x\) and hence, \(i\) can impose object \(x\) in the final chosen subset by voting for \(x\) (i.e., by declaring that \(x\) belongs to the top subset of objects). We say that agent \(i\) is vetoer at \(x\) if \(i\) belongs to all winning coalitions of \(\mathcal{W}'_x\); that is, \(i\) can make sure that \(x\) is not in the final chosen subset by not voting for \(x\) (i.e., by declaring that \(x\) does not belong to the top subset of objects). Then, the voting by committees without dummy agents \(\mathcal{V}\) is more manipulable than the voting by committees without dummy agents \(\mathcal{W}\) if and only if, for all agents, the decisive and vetoer sets of objects at \(\mathcal{V}\) are contained respectively in the decisive and vetoer sets of objects at \(\mathcal{W}\). Then we show that, when the number of agents \(n\) is larger or equal to 3, the binary relation “to be at least as manipulable as” on the family

\(^2\)Kelly (1977), Campbell and Kelly (2009), Pathak and Sönmez (2013) and Arribillaga and Massó (2015) are exemptions.
of equivalence classes of voting by quotas (i.e., anonymous voting by committees) is a complete upper semilattice, whose maximal element is the equivalence class containing all voting by quotas where all quotas are strictly larger than 1 and strictly smaller than \(n \). In the other hand, the equivalence classes of voting by quotas that are not more manipulable than any other equivalence class of voting by quotas are those where all objects have either quota 1 or quota \(n \). We also identify, in Proposition 2, among all voting by committees without dummies those that are less manipulable. They can be characterized by two properties. First, the set of objects at which all agents are not vetoers is a subset of the set of decisive objects of each agent and second, the set of objects at which each agent is not a vetoer is contained in the set of objects at which some agent is decisive. In Theorem 2 we give the necessary and sufficient condition for the comparability according to their manipulability of two voting by committees, potentially with dummy agents. The condition is more involved that the one used in the comparability of voting by committees without dummy agents and it incorporates, in addition to the inclusion of decisive and vetoer sets of objects, the inclusion of dummy sets of objects. However, the inclusions of the three sets of objects are not necessary, but we show that they may not hold only in two very special circumstances, that we fully identify.

The paper is organized as follows. Section 2 contains preliminary notation and definitions. Separable preferences and voting by committees are defined in Section 3. Section 4 presents preliminary results. Section 5 compares voting by committees without dummy agents and Theorem 2 in Section 6 provides the complete criterion to compare any pair of voting by committees.

2 Preliminaries

Agents are the elements of a finite set \(N = \{1, \ldots, n\} \). The set of objects is a finite set \(K \). We assume that \(n \geq 2 \) and \(|K| \geq 2 \). Generic agents will be denoted by \(i \) and \(j \) and generic objects by \(x \) and \(y \). Subsets of agents will be represented by \(S \) and \(T \) and subset of objects by \(A \) and \(B \). The society formed by the set of agents \(N \) has to choose a subset of \(K \). Hence, the set of alternatives is the family \(2^K \) of all subsets of objects. Given \(S \subseteq N \) and \(A \in 2^K \) we denote by \(|S| \) and \(|A| \) their cardinalities and by \(S^c \) and \(A^c \) their complement sets; namely, \(S^c = N \setminus S \) and \(A^c = 2^K \setminus A \).

The (strict) preference of each agent \(i \in N \) on the set of alternatives is a linear order \(P_i \) on \(2^K \); namely, \(P_i \) is a complete, antisymmetric and transitive binary relation on \(2^K \). As usual, let \(R_i \) denote the weak preference relation on \(2^K \) induced by \(P_i \); namely, for all \(A, B \in 2^K \), \(AR_i B \) if and only if either \(AP_i B \) or \(A = B \). The top alternative according to \(P_i \) is the subset of objects that is preferred to any other
alternative. We denote by $t(P_i)$ the top of P_i; i.e., $t(P_i)P_iA$ for all $A \in 2^K \setminus \{t(P_i)\}$. Let \mathcal{P} be the set of all preferences on 2^K. A preference profile $P = (P_1, ..., P_n) \in \mathcal{P}^n$ is an n-tuple of preferences, one for each agent. To emphasize the role of agent i a preference profile P will be represented by (P_i, P_{-i}).

A Cartesian product subset $\hat{\mathcal{P}}^n \subseteq \mathcal{P}^n$ of preference profiles (or the set $\hat{\mathcal{P}}$ itself) will be called a domain. A social choice function is a function $f : \hat{\mathcal{P}}^n \to 2^K$ selecting, for each preference profile P in the domain $\hat{\mathcal{P}}^n$, a subset of objects $f(P) \in 2^K$.

A social choice function $f : \hat{\mathcal{P}}^n \to 2^K$ satisfies voter sovereignty if for all $A \in 2^K$ there exists a profile $P \in \hat{\mathcal{P}}^n$ such that $f(P) = A$; namely, f is onto.

A social choice function $f : \hat{\mathcal{P}}^n \to 2^K$ is tops only if for all $P, P' \in \hat{\mathcal{P}}^n$ such that $t(P_i) = t(P'_i)$ for all $i \in N$, $f(P) = f(P')$.

Social choice functions require each agent to report a preference on a domain $\hat{\mathcal{P}}$. A social choice function is strategy-proof on $\hat{\mathcal{P}}^n$ if it is always in the best interest of agents to reveal their preferences truthfully. Formally, a social choice function $f : \hat{\mathcal{P}}^n \to 2^K$ is strategy-proof if for all $P \in \hat{\mathcal{P}}^n$, all $i \in N$, and all $P'_i \in \hat{\mathcal{P}}$, $f(P, P_{-i})R_i f(P'_i, P_{-i})$. (1)

That is, a social choice function $f : \hat{\mathcal{P}}^n \to 2^K$ is strategy-proof (on the domain $\hat{\mathcal{P}}^n$) if, for each preference profile $P \in \hat{\mathcal{P}}^n$, truth-telling is a weakly dominant strategy for each agent in the normal form game induced by f at P. In the sequel we will say that a social choice function $f : \hat{\mathcal{P}}^n \to 2^K$ is not manipulable by $i \in N$ at $P_i \in \hat{\mathcal{P}}$ if (1) holds for all $(P'_i, P_{-i}) \in \hat{\mathcal{P}}^n$. To compare social choice functions according to their manipulability, our reference set of preferences will be the full set of preferences \mathcal{P}.

The set of manipulable preferences of agent $i \in N$ at $f : \mathcal{P}^n \to 2^K$ is given by

$$\mathcal{M}_i^f = \{P_i \in \mathcal{P} \mid f(P'_i, P_{-i})P_i f(P_i, P_{-i}) \text{ for some } (P'_i, P_{-i}) \in \mathcal{P}^n\}.$$

Obviously, a social choice function $f : \mathcal{P}^n \to 2^K$ is strategy-proof if and only if $\mathcal{M}_i^f = \emptyset$ for all $i \in N$. We say that $f : \mathcal{P}^n \to 2^K$ is more manipulable than $g : \mathcal{P}^n \to 2^K$ for $i \in N$ if $\mathcal{M}_i^g \subseteq \mathcal{M}_i^f$.

Now, we introduce our criteria to compare social choice functions according to their manipulability.

Definition 1 A social choice function $f : \mathcal{P}^n \to 2^K$ is at least as manipulable as social choice function $g : \mathcal{P}^n \to 2^K$ if $\mathcal{M}_i^g \subseteq \mathcal{M}_i^f$ for all $i \in N$.

Definition 2 A social choice function $f : \mathcal{P}^n \to 2^K$ is equally manipulable as social choice function $g : \mathcal{P}^n \to 2^K$ if f is at least as manipulable as g and vice versa; i.e., $\mathcal{M}_i^g = \mathcal{M}_i^f$ for all $i \in N$.

5
Definition 3 A social choice function $f : \mathcal{P}^n \to 2^K$ is more manipulable than social choice function $g : \mathcal{P}^n \to 2^K$ if f is at least as but not equally manipulable as social choice function g; i.e., $M_i^g \subseteq M_i^f$ for all $i \in N$ and there exists $j \in N$ such that $M_j^g \not\subseteq M_j^f$.

Given two social choice functions $f : \mathcal{P}^n \to 2^K$ and $g : \mathcal{P}^n \to 2^K$ we write (i) $f \succeq g$ to denote that f is at least as manipulable as g, (ii) $f \approx g$ to denote that f is equally manipulable as g, and (iii) $f \succ g$ to denote that f is more manipulable than g. Obviously, there are many pairs of social choice functions that can not be compared according to their manipulability.

3 Separable Preferences and Voting by Committees

Barberà, Sonnenschein and Zhou (1991) characterizes, on the restricted domain of separable preferences, the family of all strategy-proof social choice functions satisfying voter sovereignty as the class of voting by committees. A preference P_i of agent i is separable if the division between good objects ($\{x\}P_i\emptyset$) and bad objects ($\emptyset P_i\{x\}$) guides the ordering of subsets in the sense that adding a good object leads to a better set, while adding a bad object leads to a worse set. Formally,

Definition 4 An agent i’s preference $P_i \in \mathcal{P}$ on 2^K is separable if for all $A \in 2^K$ and $x \notin A$,

$$ A \cup \{x\}P_iA \text{ if and only if } \{x\}P_i\emptyset. $$

Let S be the set of all separable preferences on 2^K. Observe that for any separable preference its top is the subset of good objects. That is, for any separable preference $P_i \in S$,

$$ t(P_i) = \{x \in K \mid \{x\}P_i\emptyset\}. $$

The following remark characterizes separable preferences. It follows from transitivity and says that if we modify any given set of objects A by removing good objects and adding bad objects, the new set is less preferred.

Remark 1 A preference P_i is separable if and only if for all $A \in 2^K$, $T_1 \subset t(P_i) \cap A$ and $T_2 \subset \overline{t(P_i)} \cap \overline{A}$,

$$ AR_i(A \setminus T_1) \cup T_2. $$
We now define the class of social choice functions known as voting by committees. Let N be a set of agents and $x \in K$ be an object. A committee W_x for x is a non-empty set of non-empty coalitions (subsets) of N, which satisfies the following monotonicity condition:

$$[M \in W_x \text{ and } M \subset M'] \Rightarrow M' \in W_x.$$

A social choice function $f : \mathcal{P}^n \to 2^K$ is a voting by committees if for each $x \in K$ there exists a committee W_x such that for all $P \in \mathcal{P}^n$,

$$x \in f(P) \text{ if and only if } \{i \in N \mid x \in t(P_i)\} \in W_x.$$ \hfill (2)

Observe that voting by committees are very simple. They are tops-only and the selected subset of objects at each preference profile is obtained in a decomposable way, object-by-object. Barberà, Sonnenschein and Zhou (1991) characterizes this class when they operate on the separable domain as follows.

Proposition 1 (Barberà, Sonnenschein and Zhou, 1991) A social choice function $f : S^n \to 2^K$ is strategy-proof and satisfies voter sovereignty if and only if it is voting by committees.

4 Preliminary Results

Let W_x be a committee for object $x \in K$. The subset of agents $M \in W_x$ is a minimal winning coalition on W_x if there is no $M' \in W_x$ such that $M' \subseteq M$. Given a committee W_x we denote by W^m_x the set of its minimal winning coalitions.

Assume $f : \mathcal{P}^n \to 2^K$ is a voting by committees and let $W = (W_x)_{x \in K}$ be its associated family of committees, one for each object. Abusing notation we will often write f directly as $W : \mathcal{P}^n \to 2^K$; hence, for $P \in \mathcal{P}^n$, $W(P)$ will denote the subset of objects chosen by the voting by committees W at P.

Let W be a voting by committees. We define three different notions of power that agents may have at W with respect to their role on the choice of the subset of objects. These notions will be relevant to compare voting by committees according to their manipulability.

First, agent i is dummy at x if i does not belong to any minimal winning coalition on W_x; hence i does not play any role on the choice of whether or not x belongs to the chosen set of objects according to W. The set of objects at which agent i is dummy, given W, is defined as

$$Du_i^W = \{x \in K \mid \exists S \in W^m_x \text{ such that } i \in S\}.$$
We say that a voting by committees $\mathcal{W} : \mathcal{P}^n \to 2^K$ has no dummies if, for all $i \in N$, $D u_i^W = \emptyset$. Without loss of generality we assume that no agent is dummy at all objects. That is, for all $i \in N$,

$$Du_i^W \neq K;$$

otherwise if $Du_i^W = K$, then $\mathcal{M}_i^W = \emptyset$ and therefore we may proceed by setting $N := N \setminus \{i\}$.

Second, agent i is \textit{decisive} at x if i, as a singleton set, belongs to \mathcal{W}_x; hence, i can impose object x by declaring it as an element in the top subset of objects. The set of objects at which agent i is decisive, given \mathcal{W}, is defined as

$$De_i^W = \{ x \in K | \{i\} \in W_x \}.$$

Third, agent i is a \textit{vetoer} at x if i belongs to all coalitions on \mathcal{W}_x; hence, i can veto object x by not declaring it as an element in the top subset of objects. The set of objects at which agent i is vetoer, given \mathcal{W}, is defined as

$$Ve_i^W = \{ x \in K | i \in \bigcap_{S \in W_x} S \}.$$

Example 1 below illustrates how voting by committees work and the three notions of power.

\textbf{Example 1} Let $N = \{1, 2, 3, 4\}$ be the set of agents and $K = \{x, y, z, w\}$ the set of objects. Consider the voting by committees \mathcal{W} defined by the following (minimal) committees:

$$\mathcal{W}^m_x = \{ S \subset N | |S| = 2 \},$$
$$\mathcal{W}^m_y = \{ \{1, 2\}, \{2, 3\} \},$$
$$\mathcal{W}^m_z = \{ \{1, 2, 3, 4\} \},$$
$$\mathcal{W}^m_w = \{ \{1\}, \{4\} \}. $$

Take any pair of preference profiles $P, P' \in \mathcal{P}^4$ with the properties that

$$t(P_1) = \{x, y\}, \; t(P_2) = \{y, w\}, \; t(P_3) = \{x, y\}, \; \text{and} \; t(P_4) = \{y, z, w\} \text{ and}$$
$$t(P'_1) = \{y\}, \; t(P'_2) = \{z, w\}, \; t(P'_3) = \{y, z\}, \; \text{and} \; t(P'_4) = \{w\}.$$

Then, $W(P) = \{x, y, w\}$ and $W(P') = \{w\}$. Observe that the sets related with the power of the agents at \mathcal{W} are:

$$Du_1^W = \emptyset, \; Du_2^W = \{w\}, \; Du_3^W = \{w\}, \; \text{and} \; Du_4^W = \{y\},$$
$$De_1^W = \{w\}, \; De_2^W = \emptyset, \; De_3^W = \emptyset, \; \text{and} \; De_4^W = \{w\}, \; \text{and}$$
$$Ve_1^W = \{z\}, \; Ve_2^W = \{y, z\}, \; Ve_3^W = \{z\}, \; \text{and} \; Ve_4^W = \{z\}. \; \Box$$
Our first preliminary result states that agent \(i \) cannot affect the choice of the objects at which \(i \) is a dummy agent.

Lemma 1 Let \(W : \mathcal{P}^n \to 2^K \) be a voting by committees. Then, for all \((P_i, P_{-i}) \in \mathcal{P}^n \) and \(P'_i \in \mathcal{P} \),

\[
W(P_i, P_{-i}) \cap Du_i^W = W(P'_i, P_{-i}) \cap Du_i^W.
\]

Proof Fix \(P_{-i} \in \mathcal{P}^{n-1} \). It will be sufficient to show that, for any pair \(P_i, P'_i \in \mathcal{P} \), \(W(P_i, P_{-i}) \cap Du_i^W \subset W(P'_i, P_{-i}) \). Assume \(x \in W(P_i, P_{-i}) \cap Du_i^W \). Then, there exists \(S \in W_{x}^{m} \) such that \(x \in t(P_j) \) for all \(j \in S \). Since \(x \in Du_i^W \), \(i \notin S \). Thus, \(x \in W(P'_i, P_{-i}) \). \(\square \)

The comparability between two voting by committees in terms of their manipulability will relay strongly on the inclusion relationship between the two induced sets of alternatives that may be selected by them, once the preference of a fixed agent \(i \) is given.

Definition 5 Let \(f : \mathcal{P}^n \to 2^K \) be a social choice function and let \(P_i \in \mathcal{P} \). The set of options left open by \(P_i \in \mathcal{P} \) at \(f \) is defined as follows:

\[
o^f(P_i) = \{ A \in 2^K \mid f(P_i, P_{-i}) = A \text{ for some } P_{-i} \in \mathcal{P}^{n-1} \}.
\]

Given two subsets of objects \(A, B \in 2^K \) such that \(A \subset B \) let \([A, B] \) be the family of all subsets of objects that can be obtained from \(A \) by adding objects in \(B \setminus A \). Namely, for any pair of alternatives \(A \subset B \subset K \),

\[
[A, B] = \{ C \subset K \mid A \subset C \subset B \}.
\]

Although imperfectly, to obtain an intuitive geometric idea, the set \([A, B] \) can be seen as the elements in the cone lying between \(A \) and \(B \), where \([0, 2^K] \) would be the cone containing all subsets of \(K \) (see Figure 1 below).

![Figure 1](image-url)
Next lemma characterizes the set of options left open by P_i at W in terms of $t(P_i)$ and the sets of objects at which i is decisive and non-vetoer. This result plays a crucial role in the sequel and it will be intensively used. The intuition why it holds is as follows. Fix a preference $P_i \in \mathcal{P}$. First, any subset of objects belonging to the set of options left open by P_i has to contain the set of good objects according to P_i for which i is simultaneously decisive at them; this is so because agent i has voted for them and i has the power to include them. Second, any subset of objects in the set of options left open by P_i has to be contained in the set made by the union of the set of good objects according to P_i and the subset of objects at which i is not a vetoer; this is so because any object for which agent i has not voted for and simultaneously i is a vetoer at will never belong to the chosen subset of objects. Moreover, any subset of objects that does satisfy the two conditions above will belong to the set of option left open by P_i at W because, whenever all remaining agents declare this set as their top subset of objects, it will be selected by W since the vote of i is not required against the unanimous vote of the remaining set of agents because i is not a vetoer. Figure 2 illustrates the set of options left open by P_i at W.

\[\text{Figure 2}\]

Lemma 2 Let $W : \mathcal{P}^n \rightarrow 2^K$ be a voting by committees. Then, for all $P_i \in \mathcal{P}$,

\[o^W(P_i) = [t(P_i) \cap De_i^W, t(P_i) \cup \overline{Ve_i^W}].\]

Proof Assume $A \in o^W(P_i)$. Then, there exists $P_{-i} \in \mathcal{P}^{n-1}$ such that $A = W(P_i, P_{-i})$.

Let $x \in t(P_i) \cap De_i^W$. Then, $x \in t(P_i)$ and \{i\} $\in W_x$. Hence, $x \in W(P_i, P_{-i}) = A$. Thus, $t(P_i) \cap De_i^W \subset A$. Let $x \in A$ and assume that $x \notin t(P_i)$. We will prove that $x \in \overline{Ve_i^W}$. Since $x \in W(P_i, P_{-i})$ and $x \notin t(P_i)$, there exists $S \in W_x^m$ such that $S \subset \{j \in N \mid x \in t(R_j)\}$ and $i \notin S$. Hence, $x \in \overline{Ve_i^W}$. Thus, $A \subset t(P_i) \cup \overline{Ve_i^W}$.

10
Now, let $A \in [t(P_i) \cap De_i^W, t(P_i) \cup Ve_i^W]$. For each $j \in N$ and $j \neq i$, let P_j be any preference such that $t(P_j) = A$. We will prove that $W(P_i, P_{-i}) = A$. To prove one of the two inclusions, assume $x \in A$. If $x \in t(P_i)$, then $\{j \in N \mid x \in t(P_j)\} = N$. Hence, $x \in W(P_i, P_{-i})$. If $x \notin t(P_i)$, then $x \in Ve_i^W$ (since $A \subset t(P_i) \cup Ve_i^W$). Hence, $\{j \in N \mid x \in t(P_j)\} = N \setminus \{i\} \in W_x$ and $x \in W(P_i, P_{-i})$. To prove the other inclusion, assume $x \in W(P_i, P_{-i})$. By the definition of $t(P_j)$, either $x \in A$ or else $x \in t(P_i) \setminus A$ and $\{i\} \in W_x$. Hence, either $x \in A$ or else $x \in t(P_i) \cap De_i^W$. Thus, since by assumption $t(P_i) \cap De_i^W \subset A$, $x \in A$.

At the light of Lemma 2 it is easy to see that the larger the decisive and vetoer sets of objects are the smaller is the option sets left open by a preference at the two corresponding voting by committees. Figure 3 illustrates this statement and Lemma 3 states it formally.

Figure 3

![Diagram](image)

Lemma 3 Let $W : \mathcal{P}^n \to 2^K$ and $V : \mathcal{P}^n \to 2^K$ be two voting by committees with the property that $De_i^V \subset De_i^W$ and $Ve_i^V \subset Ve_i^W$. Then, $o^W(P_i) \subset o^V(P_i)$ for all $P_i \in \mathcal{P}$.

Proof It follows immediately from Lemma 2.
i is also a non dummy agent. Lemma 4 can be seen as providing a general maximal domain result for all voting by committees, which depends on the sets of decisive, vetoers and dummy objects of agent i at W. Figure 4 illustrates a particular pair of subsets \((A \text{ and } (A \setminus T_1) \cup T_2)\) in the cone \([0, 2^K]\) that have to be comparable by \(P_i\) (i.e., \(AP_i(A \setminus T_1) \cup T_2)\) if \(W\) is not manipulable by i at \(P_i\).

Figure 4

Lemma 4 Let \(W : \mathcal{P}^n \rightarrow 2^K\) be a voting by committees. Then, \(W\) is not manipulable by \(i \in N\) at \(P_i \in \mathcal{P}\) if and only if for all \(A \in o^W(P_i)\), \(T_1 \subset t(R_i) \cap A \cap \overline{Du_i^W}\) and \(T_2 \subset \overline{t(R_i) \cap A \cap \overline{Du_i^W}}\),

\[AR_i(A \setminus T_1) \cup T_2.\]

Proof \(\Rightarrow\) Consider any \(P_i \in \mathcal{P}, A \in o^W(P_i), T_1 \subset t(R_i) \cap A \cap \overline{Du_i^W}\) and \(T_2 \subset \overline{t(R_i) \cap A \cap \overline{Du_i^W}}\). Then, there exists \(P_{-i} \in \mathcal{P}^{n-1}\) such that

\[W(P_i, P_{-i}) = A.\]

Since \(T_1 \cup T_2 \subset \overline{Du_i^W}\), for each \(x \in T_1 \cup T_2\), there is \(S_x^i \in \mathcal{W}_x^m\) such that \(i \in S_x^i\). Now, for each \(j \in N\) and \(j \neq i\), consider any \(P_j' \in \mathcal{P}\) such that

\[t(P_j') = (t(P_j) \setminus \{x \in T_1 \cup T_2 \mid j \notin S_x^i\}) \cup \{x \in T_1 \cup T_2 \mid j \in S_x^i\},\]

and any \(P_i' \in \mathcal{P}\) such that

\[t(P_i') = (A \setminus T_1) \cup T_2.\]

3See Barberà, Massó and Neme (1999), Barberà, Sonneschein and Zhou (1991) and Serizawa (1995) for related results identifying maximal domains of preferences under which voting by committees remain strategy-proof. The results on the second and third papers are less general since they apply only to voting by committees without vetoer or dummy players or without dummy players, respectively. The results in the first paper are presented in the different setting of multidimensional generalized median voters schemes and hence, they are stated in terms of left and right coalition systems instead of committees.
Claim 1 \(W(P_1, P'_{-i}) = A \) and \(W(P'_i, P'_{-i}) = (A \setminus T_1) \cup T_2 \).

Proof of Claim 1 We first show that \(W(P_i, P'_{-i}) = A \). Assume \(x \in T_2 \). By (4), \(\{ j \in N \setminus \{ i \} \mid x \in t(P'_j) \} = S'_x \setminus \{ i \} \). Hence, and since \(T_2 \subset t(P'_i) \), \(x \notin t(P'_i) \). Observe that \(i \in S'_x \in W_x^m \) implies \(S'_x \setminus \{ i \} \notin W_x \). Thus, \(x \notin W(P'_i, P'_{-i}) \). Therefore,

\[
W(P'_i, P'_{-i}) \cap T_2 = \emptyset. \tag{5}
\]

Assume \(x \in T_1 \). By (4), \(\{ j \in N \setminus \{ i \} \mid x \in t(P'_j) \} = S'_x \setminus \{ i \} \). Furthermore, as \(T_1 \subset t(P_i) \), \(x \in t(R_i) \). Observe that \(S'_x \in W_x^m \). Thus, \(x \in W(P_i, P'_{-i}) \). Therefore,

\[
W(P_i, P'_{-i}) \cap T_1 = T_1. \tag{6}
\]

Assume \(x \notin T_1 \cup T_2 \). By (4), \(\{ j \in N \setminus \{ i \} \mid x \in t(P'_j) \} = \{ j \in N \setminus \{ i \} \mid x \in t(P'_j) \} \). Hence,

\[
(\overline{T_1} \cup \overline{T_2}) \cap W(P_i, P'_{-i}) = (\overline{T_1} \cup \overline{T_2}) \cap W(P_i, P_{-i}). \tag{7}
\]

By (5), (6) and (7),

\[
W(P'_i, P'_{-i}) = [(\overline{T_1} \cup \overline{T_2}) \cap W(P'_i, P'_{-i})] \cup T_1
\]
\[
= [(\overline{T_1} \cup \overline{T_2}) \cap W(P'_i, P_{-i})] \cup T_1
\]
\[
= [(\overline{T_1} \cup \overline{T_2}) \cap A] \cup T_1
\]
\[
= A,
\]

where the last equality follows from the facts that \(T_1 \subset A \) and \(T_2 \subset \overline{A} \).

We now show that \(W(P'_i, P'_{-i}) = (A \setminus T_1) \cup T_2 \). Assume \(x \in A \setminus T_1 \). If \(x \in t(P'_i) \), and since \(W(P'_i, P'_{-i}) = A \), \(\{ j \in N \setminus \{ i \} \mid x \in t(P'_j) \} \cup \{ i \} \in W_x \) holds. If \(x \notin t(P'_i) \), and since \(W(P'_i, P'_{-i}) = A \), \(\{ j \in N \setminus \{ i \} \mid x \in t(P'_j) \} \in W_x \). Hence, in both cases,

\[
\{ j \in N \setminus \{ i \} \mid x \in t(P'_j) \} \cup \{ i \} \in W_x \tag{8}
\]

holds. Since \(x \in t(P'_i) \), \(\{ j \in N \setminus \{ i \} \mid x \in t(P'_j) \} \cup \{ i \} = \{ j \in N \mid x \in t(P'_j) \} \). Hence, by (8), \(\{ j \in N \mid x \in t(P'_j) \} \in W_x \). Thus, \(x \in W(P'_i, P'_{-i}) \). Assume now \(x \in T_2 \). By (4), \(\{ j \in N \setminus \{ i \} \mid x \in t(P'_j) \} = S'_x \setminus \{ i \} \). Hence, and since \(x \in t(P'_i) \), \(x \in W(P'_i, P'_{-i}) \). Therefore, we have showed that \((A \setminus T_1) \cup T_2 \subset W(P'_i, P'_{-i}) \). To show that the other inclusion holds, assume \(x \in W(P'_i, P'_{-i}) \). If \(x \in t(P'_i) \), by the definition of \(t(P'_i) \), \(x \in (A \setminus T_1) \cup T_2 \). If, on the other hand, \(x \notin t(P'_i) \),

\[
\{ j \in N \mid x \in t(P'_j) \} = \{ j \in N \setminus \{ i \} \mid x \in t(P'_j) \}. \tag{9}
\]

Hence, and since \(x \in W(P'_i, P'_{-i}) \), by (9), \(x \in W(P_i, P'_{-i}) = A \). Now, to obtain a contradiction assume \(x \in T_1 \). Hence, \(\{ j \in N \setminus \{ i \} \mid x \in t(P'_j) \} = S'_x \setminus \{ i \} \) and \(x \notin t(P'_i) \). Therefore, \(x \notin W(P'_i, P'_{-i}) \) which is a contradiction. Thus, \(x \in A \setminus T_1 \). \(\Box \)
Therefore, by Claim 1 and the fact that \mathcal{W} is not manipulable by i at P_i,

$$AR_i(A\setminus T_1) \cup T_2.$$

\iff Let $P_i \in \mathcal{P}$ be arbitrary and assume that for all $A \in \mathcal{O}^W(P_i)$, $T_1 \subset t(R_i) \cap A \cap \overline{Du_i^W}$ and $T_2 \subset \overline{t(R_i)} \cap \overline{A} \cap \overline{Du_i^W}$, $AR_i(A\setminus T_1) \cup T_2$ holds. We will show that, for all $(P'_i, P_{-i}) \in \mathcal{P}^n$,

$$\mathcal{W}(P_i, P_{-i}) \cap \mathcal{W}(P'_i, P_{-i}).$$

Assume $(P'_i, P_{-i}) \in \mathcal{P}^n$ and let $\mathcal{W}(P_i, P_{-i}) = A \in \mathcal{O}^W(P_i)$, $T_1 = (A \setminus \mathcal{W}(P'_i, P_{-i})) \cap \overline{Du_i^W}$ and $T_2 = (\mathcal{W}(P'_i, P_{-i}) \setminus A) \cap \overline{Du_i^W}$. Then,

$$(A\setminus T_1) \cup T_2 = [(A \cap Du_i^W \cup A \cap \overline{Du_i^W}) \setminus T_1] \cup T_2$$

$$= (A \cap Du_i^W) \cup [(A \cap \overline{Du_i^W}) \setminus T_1] \cup T_2$$

$$= (A \cap Du_i^W) \cup [(A \cap \overline{Du_i^W}) \cap (\overline{A} \cup \mathcal{W}(P'_i, P_{-i}) \cup Du_i^W)] \cup T_2$$

$$= (A \cap Du_i^W) \cup [(A \cap \overline{Du_i^W}) \cap \mathcal{W}(P'_i, P_{-i})] \cup T_2$$

$$= (A \cap Du_i^W) \cup [(A \cap \overline{Du_i^W}) \cap \mathcal{W}(P'_i, P_{-i}) \setminus (A \setminus \mathcal{W}(P'_i, P_{-i})) \cap Du_i^W]$$

$$= (A \cap Du_i^W) \cup (\mathcal{W}(P'_i, P_{-i}) \cap Du_i^W)$$

$$= (A \cap Du_i^W) \cup (\mathcal{W}(P'_i, P_{-i}) \cap Du_i^W)$$

$$= (\mathcal{W}(P'_i, P_{-i}) \cap Du_i^W) \cup (\mathcal{W}(P'_i, P_{-i}) \cap Du_i^W)$$

by Lemma 1.

Furthermore, $T_1 \subset t(R_i) \cap A \cap \overline{Du_i^W}$ and $T_2 \subset \overline{t(R_i)} \cap \overline{A} \cap \overline{Du_i^W}$ since $A \setminus \mathcal{W}(P'_i, P_{-i}) \subset t(R_i)$ and $\mathcal{W}(P'_i, P_{-i}) \setminus A \subset \overline{t(P_i)}$. Thus, by hypothesis,

$$\mathcal{W}(P_i, P_{-i}) = AR_i(A\setminus T_1) \cup T_2 = \mathcal{W}(P'_i, P_{-i}).$$

\blacksquare

5 Comparing Voting by Committees without dummies

5.1 Main result without dummies

Theorem 1 below gives an easy and operative way of comparing voting by committees without dummies according to their manipulability. A voting by committees \mathcal{V} is at least as manipulable as voting by committees \mathcal{W} if and only if, for each agent $i \in N$, the sets of objects at which agent i is decisive and vetoer in \mathcal{V} is each contained in the corresponding sets in \mathcal{W}. The results in the preceding lemmata are key to understand this characterization. Larger decisive and vetoer sets of objects make the option sets
left open smaller and this leaves more freedom on the comparability between subsets
of objects, reducing hence the set of preferences under which the agent is able to
manipulate.

Theorem 1 Let $\mathcal{V} : \mathcal{P}^n \rightarrow 2^K$ and $\mathcal{W} : \mathcal{P}^n \rightarrow 2^K$ be two voting by committees without
dummies. Then, $\mathcal{V} \succ \mathcal{W}$ if and only if, for all $i \in N$, $De_i^\mathcal{V} \subset De_i^\mathcal{W}$ and $Ve_i^\mathcal{V} \subset Ve_i^\mathcal{W}$.

Proof \Leftarrow To prove sufficiency, assume that for all $i \in N$, $De_i^\mathcal{V} \subset De_i^\mathcal{W}$ and $Ve_i^\mathcal{V} \subset Ve_i^\mathcal{W}$. We prove that $\mathcal{V} \succ \mathcal{W}$ by showing that, for all $i \in N$, $\mathcal{M}_i^\mathcal{W} \subset \mathcal{M}_i^\mathcal{V}$. Suppose $P_i \in \mathcal{M}_i^\mathcal{W}$. Observe that since \mathcal{V} and \mathcal{W} have no dummies, $Du_i^\mathcal{W} = Du_i^\mathcal{V} = K$ holds. Then, by Lemma 4, there exist $A \in o^\mathcal{V}(P_i)$, $T_1 \subset t(P_i) \cap A$ and $T_2 \subset t(P_i) \cap \overline{A}$ such that

$$(A \setminus T_1) \cup T_2 P_i A.$$

By Lemma 3, $o^\mathcal{W}(P_i) \subset o^\mathcal{V}(P_i)$. Hence, $A \in o^\mathcal{V}(P_i)$. Thus, by Lemma 4, $P_i \in \mathcal{M}_i^\mathcal{V}$. Therefore, \mathcal{V} is at least as manipulable as \mathcal{W}.

\Rightarrow To prove necessity assume that \mathcal{V} is at least as manipulable as \mathcal{W}. Hence, for all $i \in N$,

$$\mathcal{M}_i^\mathcal{W} \subset \mathcal{M}_i^\mathcal{V}. \quad (10)$$

Assume, to obtain a contradiction, that there exists $x \in K$ such that $x \in Ve_i^\mathcal{V} \setminus Ve_i^\mathcal{W}$ or $x \in De_i^\mathcal{V} \setminus De_i^\mathcal{W}$. We distinguish between these two cases.

Case 1: There exists $x \in Ve_i^\mathcal{V} \setminus Ve_i^\mathcal{W}$. Consider any $P_i' \in \mathcal{P}$ such that $t(P_i') = \emptyset$ satisfying in addition the following properties:

(i) $BP_i' CP_i'\{x\}$ if $x \notin B$ and $x \in C$,

(ii) $AR_i'B$ if $A \subset B$ and $x \notin B$.

Three comments on the preference P_i' are appropriate. First, such preference
exists and because we assumed that $|K| \geq 2$, there exists $C \subset K$ such that $x \in C$ and $\{x\} \not\subset C$. Second, any pair of subsets of objects that are unrestricted by conditions
(i) and (ii) can be ordered arbitrarily by P_i'. Third, of course P_i' is not separable since, for instance, $KP_i'\{x\}$ while all objects are bad.

Since $x \in Ve_i^\mathcal{V} \setminus Ve_i^\mathcal{W}$, $\{x\} \in o^\mathcal{V}(P_i')$. Set $A = \{x\}$, $T_1 = \emptyset$ and $T_2 = C \setminus \{x\}$ where C is such that $x \in C$ and $\{x\} \not\subset C$ (which exists because $|K| \geq 2$). Observe first that $A \in o^\mathcal{W}(P_i')$ and, by (i) in the definition of P_i', $(A \setminus T_1) \cup T_2 = CP_i'\{x\} = A$. Hence, by Lemma 4, $P_i' \in \mathcal{M}_i^\mathcal{W}$. Second, take any $B \in o^\mathcal{V}(P_i')$. Since $x \in Ve_i^\mathcal{V}$ and $x \notin t(P_i')$, $x \notin B$. Let $T_2 \subset \overline{A}$ be arbitrary. By (i) and (ii) in the definition of P_i', $BR_i'B \cup T_2$. Hence, by Lemma 4, $P_i' \notin \mathcal{M}_i^\mathcal{V}$. Thus, $P_i' \in \mathcal{M}_i^\mathcal{W} \setminus \mathcal{M}_i^\mathcal{V}$ holds, which contradicts (10).
Case 2: There exists \(x \in D e_1^W \setminus D e_i^W \). Consider any \(P''_i \in M_i^W \) such that \(t(P''_i) = K \) satisfying in addition the following properties:

(i) \(B P''_i C P''_i K \setminus \{x\} \) if \(x \in B \) and \(x \notin C \),

(ii) \(A R''_i B \) if \(B \subset A \) and \(x \in B \).

Three comments on the preference \(P''_i \) are also appropriate. First, such preference exists and because we assumed that \(|K| \geq 2 \), there exists \(C \in K \) such that \(x \notin C \) and \(C \neq \emptyset \). Second, any pair of subsets of objects that are unrestricted by conditions (i) and (ii) can be ordered arbitrarily by \(P''_i \). Obviously, \(P''_i \) is not separable since \(\emptyset P''_i K \setminus \{x\} \) while all objects are good.

Since \(x \in D e_1^W \setminus D e_i^W \), \(K \setminus \{x\} \in o^W(P''_i) \). Set first \(A = K \setminus \{x\} \), \(T_2 = \emptyset \) and \(T_1 = C \), where \(C \) is such that \(x \notin C \) and \(C \neq \emptyset \). Observe that \(A \in o^W(P''_i) \), \(x \notin (A \setminus T_1) \cup T_2 \) and \((A \setminus T_1) \cup T_2 \neq \emptyset \). Then, by (i) in the definition of \(P''_i \), \((A \setminus T_1) \cup T_2 P''_i K \setminus \{x\} = A \). Hence, by Lemma 4, \(P''_i \in M_i^W \). Second, take any \(B \in o^W(P''_i) \). Since \(x \in D e_1^W \) and \(x \in t(P''_i) \), \(x \in B \). Let \(T_1 \subset B \) be arbitrary. By (i) and (ii) in the definition of \(P''_i \), \(BR''_i B \setminus T_1 \). Hence, by Lemma 4, \(P''_i \notin M_i^W \). Thus, \(P''_i \in M_i^W \setminus M_i^W \) holds, which contradicts (10).

Next proposition identifies those voting by committees without dummies that are less manipulable. They have the properties that (i) the set of objects at which all agents are not vetoers is a subset of the set of decisive objects of each agent, and (ii) the set of objects at which each agent is not a vetoer is contained in the set of objects at which some agent is decisive. But before stating it we present a simple remark that will be used in its proof.

Remark 2 Assume \(\mathcal{W} : \mathcal{P}^n \rightarrow 2^K \) is a voting by committees without dummies. Then, for all \(i \in N \), \(D e_i^W \subseteq V e_i^W \).

To see why Remark 2 holds, assume there exists \(x \in D e_i^W \) such that \(x \in V e_i^W \). Then, \(\mathcal{W}_x^m = \{\{i\}\} \). Hence, each \(j \neq i \) is a dummy agent at \(x \), which is a contradiction.

Proposition 2 Let \(\mathcal{W} : \mathcal{P}^n \rightarrow 2^K \) be a voting by committees without dummies. Then, there does not exist a voting by committee without dummies \(\mathcal{V} : \mathcal{P}^n \rightarrow 2^K \) such that \(\mathcal{W} \succ \mathcal{V} \) if and only if

\[
\cap_{i \in N} V e_i^W \subset D e_j^W \text{ for all } j \in N, \tag{11}
\]

\[
V e_j^W \subset \cup_{i \in N} D e_i^W \text{ for all } j \in N. \tag{12}
\]

Proof \(\Rightarrow \) We distinguish between two cases.
Case 1: There exist \(j \in \mathbb{N} \) and \(x \in K \) such that \(x \in \cap_{i \in \mathbb{N}} Ve_i^W \) and \(x \notin De_j^W \). Define \(\mathcal{V} \) as follows:

\[
\mathcal{V}_y^m = \begin{cases}
\mathcal{W}_y^m & \text{if } y \neq x \\
\{S \in \mathcal{W}_x^m \mid j \notin S \} \cup \{S \setminus \{j\} \subset N \mid S \in \mathcal{W}_x^m \text{ s.t. } j \in S \} \cup \{\{j\}\} & \text{if } y = x.
\end{cases}
\]

Since \(x \notin De_j^W \) and \(\mathcal{W} \) does not have dummies, \(\emptyset \notin \{S \setminus \{j\} \subset N \mid S \in \mathcal{W}_x^m \text{ s.t. } j \in S \} \) and \(\mathcal{V} \) is a voting by committees well defined. Now, we prove that \(\mathcal{V} \) is a voting by committees without dummies. For each object \(y \neq x \) it is immediate to see that \(\mathcal{V}_y \) has no dummies since \(\mathcal{W}_y \) does not have any. We prove that no agent is a dummy at \(x \) at \(\mathcal{V} \). Let \(i \in \mathbb{N} \). If \(i = j \), it is immediate to see that \(i \) is not dummy at \(x \) since \(\{i\} \in \mathcal{V}_x^m \) by definition. If \(i \neq j \), there exists \(S \in \mathcal{W}_x^m \) such that \(i \in S \) (since \(\mathcal{W} \) is a voting by committees without dummies). Hence, \(S \setminus \{j\} \in \mathcal{V}_x^m \) and \(i \) is not dummy at \(x \) at \(\mathcal{V} \). Now, we prove that \(\mathcal{W} \succ \mathcal{V} \). By Theorem 1, it is sufficient to prove that \(De_i^W \subset De_i^\mathcal{V} \) and \(Ve_i^W \subset Ve_i^\mathcal{V} \) for all \(i \in \mathbb{N} \) and that \(De_j^\mathcal{V} \neq De_j^W \). The last inequality follows from the fact that \(x \in De_j^\mathcal{V} \) and \(x \notin De_j^W \). Then, we only have to show that \(De_i^W \subset De_i^\mathcal{V} \) and \(Ve_i^W \subset Ve_i^\mathcal{V} \) for all \(i \in \mathbb{N} \).

Assume \(y \in De_i^W \). Then, \(\{i\} \in \mathcal{W}_y^m \). Hence, by definition of \(\mathcal{V}_y^m \), \(\{i\} \in \mathcal{V}_y^m \). Hence, \(y \in De_i^\mathcal{V} \).

Assume \(y \in Ve_i^W \). Then, \(\bigcap_{S \in \mathcal{W}_y^m} S \). Since \(y \in Ve_i^W \), and \(x \in \cap_{i \in \mathbb{N}} Ve_i^W \) holds, \(y \neq x \). Hence, by definition of \(\mathcal{V}_y^m \), \(j \in \bigcap_{S \in \mathcal{W}_y^m} S \) and \(y \in Ve_i^\mathcal{V} \).

Case 2: Assume that there exist \(j \in \mathbb{N} \) and \(x \in K \) such that \(x \in \overline{Ve_j^W} \) and \(x \notin \cup_{i \in \mathbb{N}} De_i^W \). To define \(\mathcal{V} \), set \(S' = \bigcap_{S \in \mathcal{W}_x^m} S \) and consider any \(i \neq j \). Define the collection of subsets of agents \(\mathcal{T}_i \) associated to \(i \) as follows:

\[
T \in \mathcal{T}_i \text{ if and only if } i \notin S' \text{ and } T = \{i, j\} \cup S'.
\]

Define now \(\mathcal{V} \) by setting

\[
\mathcal{V}_y^m = \begin{cases}
\mathcal{W}_y^m & \text{if } y \neq x \\
\{\mathcal{T}_i\}_{i \neq j} & \text{if } y = x.
\end{cases}
\]

Since \(x \in \overline{Ve_j^W} \), \(j \notin S' \). Therefore, \(\mathcal{V}_y^m \) is minimal. Furthermore, as \(x \in \overline{Ve_j^W} \) and \(\mathcal{W} \) is a voting by committees without dummies, there exists \(S \subset N \) such that \(j \notin S \in \mathcal{W}_x^m \). Therefore, \(S' \subset N \setminus \{j\} \). Hence, \(\mathcal{V}_y^m \neq \emptyset \) and \(\mathcal{V} \) is a voting by committees well defined. Moreover, \(\mathcal{V}_y \) is a committee without dummies because \(\mathcal{W}_y \) is a committee without dummies at any \(y \neq x \). Furthermore, by its definition, \(\mathcal{V}_x \) is a committee without dummies. Then, \(\mathcal{V} \) is a voting by committees without dummies. Now, we prove that \(\mathcal{W} \succ \mathcal{V} \). By Theorem 1, it is sufficient to show that \(De_i^W \subset De_i^\mathcal{V} \) and \(Ve_i^W \subset Ve_i^\mathcal{V} \) for all \(i \in \mathbb{N} \) and that \(Ve_j^W \neq Ve_j^\mathcal{V} \). The last inequality follows from the fact that \(x \notin Ve_j^W \).
and $x \in V e^y_i$. Hence, we only have to show that $De^W_i \subseteq De^y_i$ and $Ve^W_i \subseteq Ve^y_i$ for all $i \in N$.

Assume $y \in De^W_i$. Then, $\{i\} \in W^m_y$ and, since $x \not\in \cup_{i \in N} De^W_i$, $y \neq x$. Hence, by the definition of V^m_y, $\{i\} \in V^m_y$. Thus, $y \in De^y_i$.

Assume $y \in Ve^W_i$ and $y \neq x$. Hence, by the definition of V^m_y, $y \in Ve^y_i$.

Now, assume $x \in Ve^W_i$. Then, $i \in \cap_{S \in W^m_i} S = S'$. Then, by definition of V^m_x, $x \in Ve^y_i$.

\Leftarrow Assume (11) and (12) hold and let $V : P^n \to 2^K$ be a voting by committees without dummies such that $W \supseteq V$. By Theorem 1, $De^W_i \subseteq De^y_i$ and $Ve^W_i \subseteq Ve^y_i$ for all $i \in N$. We prove that $De^W_i = De^y_i$ and $Ve^W_i = Ve^y_i$ for all $i \in N$ and hence, $W \neq V$.

Assume there exist $j \in N$ and $x \in K$ such that $x \in De^y_i \setminus De^y_j$. By Remark 2, $x \in V e^W_j \setminus V e^W_i$. Since $V e^W_j \subseteq V e^y_j$, $x \in V e^W_j \setminus V e^W_i$. By (11), there exists $i \neq j$ such that $x \in V e^W_i$. Thus, $x \in V e^y_i$ which contradicts that $x \in De^y_i$ and $i \neq j$ since $i \notin \{j\} \in V^m_x$.

Now, assume there exist $j \in N$ and $x \in K$ such that $x \in V e^W_i \setminus V e^W_j$. Then, $x \in V e^W_j \setminus V e^W_i$. By Remark 2, $x \in V e^W_i \setminus V e^W_j$. Since $V e^W_i \subseteq V e^y_i$, $x \in V e^W_i \setminus V e^W_j$. By (12), there exists $i \neq j$ such that $x \in De^W_i$. Thus, $x \in De^y_i$ which contradicts that $x \in V e^y_i$ and $i \neq j$ since $j \notin \{i\} \in V^m_x$.

\section{5.2 Anonymity}

A social choice function $f : \hat{P}^n \to 2^K$ is \textit{anonymous} if it is invariant with respect to the agents’ names; namely, for all one-to-one mapping $\sigma : N \to N$ and all $P \in \hat{P}^n$, $f(P_1, \ldots, P_n) = f(P_{\sigma(1)}, \ldots, P_{\sigma(n)})$.

\textbf{Remark 3} Let $W : P^n \to 2^K$ be an anonymous voting by committees. Then, for all $x \in K$, W_x does not have dummy agents.4

A voting by committees $W : P^n \to 2^K$ is a \textit{voting by quotas} if for each object $x \in K$ there exists an integer q^W_x between 1 and n such that

$$W_x = \{S \subseteq N \mid |S| \geq q^W_x\}.$$

Observe that Barberà, Sonnenschein and Zhou (1991) call voting by quota to a voting by quotas that is in addition neutral in the sense that $q^W_x = q^W_y$ for all $x, y \in K$. The following remark states that the subclass of anonymous voting by committees coincides with all voting by quotas (not necessarily neutral).

4To see that, assume i is dummy at x. Then, by anonymity, j must be dummy at x for all $j \in N$. Hence, $W_x = \emptyset$ which is a contradiction.
Remark 4 A voting by committees is anonymous if and only if it is voting by quotas.

Let $W : \mathcal{P}^n \to 2^K$ be a voting by quotas. Denote by A_1^W and A_n^W the set of objects in K that have quota 1 and quota n, respectively; namely, $A_1^W = \{x \in K \mid q_x^W = 1\}$ and $A_n^W = \{x \in K \mid q_x^W = n\}$. Since for all voting by quotas $W : \mathcal{P}^n \to 2^K$ it holds that $D e_i^W = A_1^W$ and $V e_i^W = A_n^W$ for all $i \in N$, we obtain as a consequence of Theorem 1 the following Corollary.

Corollary 1 Let $W : \mathcal{P}^n \to 2^K$ and $V : \mathcal{P}^n \to 2^K$ be two voting by quotas. Then, $V \succeq W$ if and only if $A_1^V \subseteq A_1^W$ and $A_n^V \subseteq A_n^W$.

The next corollary identifies the class of anonymous voting by committees that do not admit a less manipulable anonymous voting by committees. This class is the family of all voting by quotas such that the quota of each object is either 1 or n.

Corollary 2 Let $W : \mathcal{P}^n \to 2^K$ be a voting by quotas. Then, there does not exist a voting by quotas (or an anonymous voting by committees without dummies) $V : \mathcal{P}^n \to 2^K$ such that $W \succeq V$ if and only if $A_n^W = K \setminus A_1^W$.

Let VbQ be the family of the all voting by quotas relative to a given set of agents N (i.e., all anonymous voting by committees). Using Theorem 1 we can partition the set of all voting by quotas VbQ into equivalence classes in such a way that each equivalence class contains voting by quotas that are all equally manipulable. Denote the (quotient) set of those equivalence classes by VbQ/\approx. Furthermore, we can extend \succeq on VbQ to the set of equivalence classes VbQ/\approx in a natural way. Denote this extension by $[\succeq]$. In this subsection we will show that the pair $(VbQ/\approx, [\succeq])$ is a complete upper semilattice; namely, any nonempty subset of equivalence classes in VbQ/\approx has a supremum according to $[\succeq]$. Formally, given $W \in VbQ$, denote by $[W]$ the equivalence class of W with respect to \approx; i.e.,

$$[W] = \{V \in VbQ \mid W \approx V\}.$$

By Corollary 1, $[W]$ can be identified with the pair (A_1^W, A_n^W). Denote by VbQ/\approx the set of all equivalence classes induced by \approx on VbQ and consider the binary relation $[\succeq]$ on VbQ/\approx defined as follows. For any pair $[W], [V] \in VbQ/\approx$, set

$$[W][\succeq][V]$$

if and only if $W \succeq V$.

Since \succeq is a preorder on VbQ, it follows that $[\succeq]$ is a partial order on VbQ/\approx. Furthermore, by Corollary 1 ,

$$[V][\succeq][W]$$

if and only if $A_1^V \subseteq A_1^W$ and $A_n^V \subseteq A_n^W$.

19
We can now state and prove the result of this subsection.

Proposition 3 Assume $n \geq 3$. Then, the pair $(VbQ/\sim, [\sim])$ is a complete upper semilattice.

Proof Let $\emptyset \neq Z \subseteq VbQ/\sim$. Consider any voting by quotas $V : \mathcal{P}^n \rightarrow 2^K$ such that

$$A_1^V = \cap_{[W] \in Z} A_1^W, \quad A_n^V = \cap_{[W] \in Z} A_n^W,$$

and for all $x \notin A_1^V \cup A_n^V$ (if any) set q_x^V equal to any integer other than 1 and n (which exists because $n \geq 3$). Since $A_1^V \cap A_n^V = \emptyset$ for all $[W] \in Z$, V is well defined as a voting by quotas. By Corollary 1 and the definition of $[V]$, $\sup_{[\sim]} Z = [V]$. Thus, $(VbQ/\sim, [\sim])$ is a complete upper semilattice.

Example 2 and Figure 5 below show the complete upper semilattice structure of $(VbQ/\sim, [\sim])$ when $|K| = 3$.

Example 2 Assume $n \geq 3$ and let $K = \{x, y, z\}$ be the set of objects. Given $[W] \in VbQ$ we identify the equivalence class $[W]$ by the pair (A_1^W, A_n^W) and furthermore we denote $\{x\}$ by x, $\{x, y\}$ by xy and $\{x, y, z\}$ by xyz, and similarly for $\{y\}, \{z\}, \{x, z\}$, and $\{y, z\}$.

![Figure 5](image-url)
From Corollaries 1 and 2 we obtain a complete upper semilattice of the set of equivalence classes of voting by quotas. Figure 5 represents this partial order where if two pairs \((A^W_1, A^W_n)\) and \((A^V_1, A^V_n)\) are directly connected, the one above is more manipulable than the one below and moreover, all connections that can be obtained by transitivity are omitted.

6 Comparing all Voting by Committees

We start with a remark and a definition.

Remark 5 Let \(W : \mathcal{P}^n \rightarrow 2^K\) be a voting by committees and let \(x \in K\) and \(i \in N\) be such that \(x \in Du^W_i\). Then, \(x \in V e^W_i\) and \(x \in De^W_i\).

We say that a voting by committees \(W : \mathcal{P}^n \rightarrow 2^K\) is dictatorial if there exists \(i \in N\) such that for all \(x \in K\); \(W^m_x = \{i\}\). Obviously, all dictatorial voting by committees are strategy-proof in any domain and hence, they are less manipulable than any other voting by committees. Thus, it is not necessary to include them in the main result of the paper that we state below as Theorem 2.

Theorem 2 Let \(V : \mathcal{P}^n \rightarrow 2^K\) and \(W : \mathcal{P}^n \rightarrow 2^K\) be two non dictatorial voting by committees. Then, \(V \succeq W\) if and only if for all \(i \in N\),

\[
\begin{align*}
De^V_i &\subset De^W_i \quad \text{and} \quad Ve^V_i \subset Ve^W_i \quad \text{and} \quad Du^V_i \subset Du^W_i \quad \text{or} \\
(De^V_i \setminus De^W_i) &\cup (Ve^V_i \setminus Ve^W_i) = \{x\} = Du^W_i \quad \text{or} \\
De^V_i \cap Ve^W_i & = \{x\} = Du^V_i \setminus Du^W_i.
\end{align*}
\]

Before proving Theorem 2 we exhibit in Example 3 below two voting by committees that illustrate conditions (A), (B) and (C) above.

Example 3 Let \(N = \{1, 2, 3\}\) be the set of agents and \(K = \{x, y, z\}\) the set of objects. Consider two voting by committees \(V\) and \(W\) defined by the following (minimal) committees:

\[
\begin{align*}
V^m_x & = \{\{1, 2\}, \{3\}\} \quad W^m_x = \{\{3\}\} \\
V^m_y & = \{\{1\}, \{2\}\} \quad W^m_y = \{\{1\}, \{2, 3\}\} \\
V^m_z & = \{\{3\}\} \quad W^m_z = \{\{3\}\}.
\end{align*}
\]

We consider the decisive, vetoer and dummy sets of objects for each of the three agents separately.

For agent 1, \(De^V_1 = De^W_1 = \{y\}, V e^V_1 = V e^W_1 = \emptyset, Du^V_1 = \{z\}\) and \(Du^W_1 = \{x, z\}\). Thus,

\[
De^V_1 = De^W_1 \quad \text{and} \quad Ve^V_1 = Ve^W_1 \quad \text{and} \quad Du^V_1 \subset Du^W_1,
\]
which means that condition (A) holds for agent 1. Observe that conditions (B) and (C) do not hold for agent 1 since $Du_1^W = \{y\}$ and $(De_1^W \setminus De_1^V) \cup (Ve_1^V \setminus Ve_1^W) = \emptyset$, and $De_1^W \cap Ve_1^W = K$, respectively.

For agent 2, $De_2^W = \{y\}$, $De_2^V = \emptyset$, $Ve_2^V = Ve_2^W = \emptyset$, $Du_2^V = \{z\}$ and $Du_2^W = \{x, z\}$. Hence, $De_2^W \setminus De_2^V = \{y\}$, $Ve_2^V \setminus Ve_2^W = \emptyset$ and $Du_2^W = \{y\}$. Thus,

$$(De_2^V \setminus De_2^W) \cup (Ve_2^V \setminus Ve_2^W) = \{y\} = Du_2^W,$$

which means that condition (B) holds for agent 2. Observe that conditions (A) and (C) do not hold for agent 2 since $De_2^V \not\subseteq De_2^W$, and $Du_2^W = \emptyset$, respectively.

For agent 3, $De_3^V = De_3^W = \{x, z\}$, $Ve_3^V = \{z\}$, $Ve_3^W = \{x, z\}$, $Du_3^V = \{y\}$ and $Du_3^W = \emptyset$. Hence, $De_3^W \cap Ve_3^W = \{x, z\}$ and $Du_3^V \setminus Du_3^W = \{y\}$. Thus,

$$De_3^W \cap Ve_3^W = \{y\} = Du_3^V \setminus Du_3^W,$$

which means that condition (C) holds for agent 3. Observe that conditions (A) and (B) do not hold for agent 3 since $Du_3^W \not\subseteq Du_3^W$, and $Du_3^W = K$, respectively.

Thus, by Theorem 2, $\mathcal{V} \succ \mathcal{W}$. Moreover, $Du_1^W \setminus Du_1^V = \{x\}$, $Du_2^V = \{x, y\}$ and $De_1^W \cap Ve_1^W = \{x, y, z\}$. Hence, by Theorem 2, $\mathcal{W} \succ \mathcal{V}$ does not hold. Thus, $\mathcal{V} \succ \mathcal{W}$.

We next exhibit a preference P_1 such that $P_1 \in \mathcal{M}_1^V$ but $P_1 \notin \mathcal{M}_1^W$. Let P_1 be the following preference:

$$\{y\} P_1 \{x, y, z\} P_1 \{y, z\} P_1 \{y, x\} P_1 \emptyset P_1 \{x\} P_1 \{z\} P_1 \{x, z\}.$$

Let $(P'_1, P'_2, P'_3) \in \mathcal{P}^3$ be any preference profile with the property that $t(P'_1) = \{x, y\}$, $t(P'_2) = \{x\}$ and $t(P'_3) = \{z\}$. Then,

$$\mathcal{V}(P'_1, P'_2, P'_3) = \{x, y, z\} P_1 \{y, z\} P_1 \{y, x\} \mathcal{V}(P'_1, P'_2, P'_3)$$

and hence, $P_1 \in \mathcal{M}_1^V$. In the other hand, consider any arbitrary preference profile $(P^*_1, P_2, P_3) \in \mathcal{P}^3$. Then, for some (potentially empty subset) $A \subset K \backslash \{y\}$,

$$\mathcal{W}(P_1, P_2, P_3) = \{y\} \cup A \text{ and } A \subset \mathcal{W}(P^*_1, P_2, P_3) \subset \{y\} \cup A.$$

Hence, by the definition of P_1,

$$\mathcal{W}(P_1, P_2, P_3) \cap R_1 \mathcal{W}(P^*_1, P_2, P_3).$$

Thus, $P_1 \notin \mathcal{M}_1^W$. \hfill \square

Proof of Theorem 2 \quad \Leftarrow) To prove sufficiency, fix $i \in \mathcal{N}$ and assume that $P_i \in \mathcal{M}_i^W$. We want to show that $P_i \in \mathcal{M}_i^V$. By Lemma 4, there exist $A \in \s_o^W(P_i)$, $T_1 \subset t(P_i) \cap A \cap Du_i^W$ and $T_2 \subset \overline{t(P_i)} \cap A \cap Du_i^W$ such that

$$(A \setminus T_1) \cup T_2 \cap A.$$

(14)
We distinguish among three cases, depending on whether (A), (B) or (C) holds.

Case 1: Suppose that (A) holds; namely, \(De^V_i \subset De^W_i \) and \(Ve^V_i \subset Ve^W_i \) and \(Du^V_i \subset Du^W_i \). Hence,

\[
T_1 \subset t(P_i) \cap A \cap Du^V_i \quad \text{and} \quad T_2 \subset t(P_i) \cap A \cap Du^W_i. \tag{15}
\]

By Lemma 2, \(A \in o^V(P_i) \). By (14), (15) and Lemma 4, \(P_i \in \mathcal{M}_i^V \).

Case 2: Suppose that (B) holds; namely, \((De^V_i \setminus De^W_i) \cup (Ve^V_i \setminus Ve^W_i) = \{x\} = Du^W_i \).

Since \(x \in (De^V_i \setminus De^W_i) \cup (Ve^V_i \setminus Ve^W_i) \), either \(x \in De^V_i \) or \(x \in Ve^V_i \). By Remark 5, \(x \in Du^V_i \).

Hence,

\[
T_1 \subset t(P_i) \cap A \cap Du^V_i \quad \text{and} \quad T_2 \subset t(P_i) \cap A \cap Du^W_i. \tag{16}
\]

By (14), (16) and Lemma 4, it is sufficient to show that \(A \in o^V(P_i) \); or equivalently, by Lemma 2, that \(t(P_i) \cap De^V_i \subset A \) and \(A \subset t(P_i) \cup \overline{Ve^V_i} \). We distinguish between two subcases.

Case 2.1: Suppose \(x \notin t(P_i) \). Then, since \(De^V_i \setminus De^W_i \subset \{x\} \), \(t(P_i) \cap De^V_i \subset t(P_i) \cap De^W_i \) holds. By assumption, \(A \in o^W(P_i) \). Hence, \(t(P_i) \cap De^W_i \subset A \). Thus,

\[
t(P_i) \cap De^V_i \subset A. \tag{17}
\]

Since \(x \notin t(P_i) \) and \(Du^W_i = \{x\} \) hold, we have that \(t(P_i) \cap Du^W_i = \emptyset \) and \(t(P_i) \cap Du^W_i = \{x\} \). Moreover, since \(T_1 \subset t(P_i) \cap A \cap Du^W_i \), \(T_2 \subset t(P_i) \cap A \cap Du^W_i \) and (14) hold, we have that \(T_1 = \emptyset \) and \(T_2 = \{x\} \) hold as well. Since \(T_2 \subset \overline{A}, x \notin A \). Hence, since \(A \in o^W(P_i), \ A \subset t(P_i) \cup (Ve^W_i \setminus \{x\}) \). But the hypothesis that \(Ve^V_i \setminus Ve^W_i \subset \{x\} \) we have

\[
A \subset t(P_i) \cup \overline{Ve^V_i}. \tag{18}
\]

Case 2.2: Suppose \(x \in t(P_i) \). Then, since \(Du^W_i = \{x\} \), \(t(P_i) \cap Du^W_i = \{x\} \) and \(t(P_i) \cap Du^W_i = \emptyset \). Since \(T_1 \subset t(P_i) \cap A \cap Du^W_i \), \(T_2 \subset t(P_i) \cap A \cap Du^W_i \) and (14) hold, we have that \(T_1 = \{x\} \) and \(T_2 = \emptyset \) hold as well. Since \(T_1 \subset A, x \in A \). Hence, since \(A \in o^W(P_i), (t(P_i) \cap De^W_i) \cup \{x\} \subset A \). But the hypothesis that \(De^V_i \setminus De^W_i \subset \{x\} \) we have

\[
t(P_i) \cap De^V_i \subset A. \tag{19}
\]

Since \(Ve^V_i \setminus Ve^W_i \subset \{x\} \) and \(x \in t(P_i), t(P_i) \cup Ve^W_i \subset t(P_i) \cup Ve^V_i \). Furthermore, since \(A \in o^W(P_i), A \subset t(P_i) \cup \overline{Ve^V_i} \). Thus,

\[
A \subset t(P_i) \cup \overline{Ve^V_i}. \tag{20}
\]

Case 3: Suppose that (C) holds; namely, \(Du^W_i \cap Ve^W_i = \{x\} = Du^V_i \setminus Du^W_i \). Since \(x \in Du^V_i \), by Remark 5, \(x \in Ve^V_i \) and \(x \in De^V_i \). Hence,

\[
De^V_i \subset K \setminus \{x\} = \overline{De^W_i \cap Ve^W_i} = De^W_i \cap Ve^W_i \subset De^W_i \quad \text{and} \quad \tag{21}
\]
By Lemma 3, (21) and (22), $o^W(P_i) \subset o^V(P_i)$. Hence, and since $A \in o^W(P_i)$, $A \in o^V(P_i)$. We want to prove that $P_i \in \mathcal{M}^V_i$. By Lemma 4 and (14), it is sufficient to show that

$$T_1 \subset t(P_i) \cap A \cap \overline{Du_i^W} \quad \text{and} \quad T_2 \subset t(P_i) \cap \overline{A} \cap \overline{Du_i^W}$$

(23)

hold. We distinguish between two subcases.

Case 3.1: Suppose $x \in t(P_i)$. As (C) holds, $Ve_i^W \subset \{x\}$ and $K \{x\} \subset Du_i^W$. Hence, by Lemma 2, $o^W(P_i) \subset \{t(P_i) \setminus \{x\}, t(P_i)\}$. By (14), $A = t(P_i) \setminus \{x\}$. Then, since $x \notin A$ and $x \in t(P_i)$, $x \notin T_1$ and $x \notin T_2$ hold, respectively. Hence, and since $T_1 \subset t(P_i) \cap A \cap \overline{Du_i^W}$, $T_2 \subset t(P_i) \cap \overline{A} \cap \overline{Du_i^W}$ and $Du_i^W \setminus Du_i^W = \{x\}$ hold, we have that $T_1 \subset t(P_i) \cap A \cap \overline{Du_i^W}$ and $T_2 \subset t(P_i) \cap \overline{A} \cap \overline{Du_i^W}$ hold as well.

Case 3.2: Suppose $x \notin t(P_i)$. As (C) holds, $Ve_i^W \subset \{x\}$ and $K \{x\} \subset Du_i^W$. Hence, by Lemma 2, $o^W(P_i) \subset \{t(P_i), t(P_i) \cup \{x\}\}$. By (14), $A = t(P_i) \cup \{x\}$. Then, since $x \notin t(P_i)$ and $x \in A$, $x \notin T_1$ and $x \notin T_2$ hold, respectively. Hence, and since $T_1 \subset t(P_i) \cap A \cap \overline{Du_i^W}$, $T_2 \subset t(P_i) \cap \overline{A} \cap \overline{Du_i^W}$ and $Du_i^W \setminus Du_i^W = \{x\}$ hold, we have that $T_1 \subset t(P_i) \cap A \cap \overline{Du_i^W}$ and $T_2 \subset t(P_i) \cap \overline{A} \cap \overline{Du_i^W}$ hold as well.

\Rightarrow To prove necessity, assume V and W are non dictatorial voting by committees and $V \succeq W$; i.e.,

$$\mathcal{M}^W_i \subset \mathcal{M}_i^V \text{ for all } i \in N.$$

(24)

Fix $i \in N$ and assume that (A) and (B) do not hold. We will show that (C) holds; i.e.,

$$Du_i^W \cap Ve_i^W = \{x\} = Du_i^W \setminus Du_i^W.$$

Claim 1 If $|Du_i^W \setminus Du_i^W| \geq 2$ and $V \succeq W$, then i is a dictator in W.

Proof of Claim 1 Assume $x \in Du_i^W \setminus Du_i^W$ and suppose that there exists $y \in K$ such that $y \notin Du_i^W$. Since $|Du_i^W \setminus Du_i^W| \geq 2$ we can assume without loss of generality that $y \neq x$. Let $P_i \in \mathcal{P}$ be any preference such that $t(P_i) = \{x, y\}$ and satisfying in addition the following properties:

(i) $\{x, y\} P_i \{y\} P_i \emptyset P_i \{x\} P_i A,$

for all $A \notin \{\{x, y\}, \{y\}, \emptyset, \{x\}\}$,

(ii) $AR_i B$ if $B \cap t(P_i) \subset A \cap t(P_i)$ and $A \cap t(P_i) \subset B \cap t(P_i)$,

for all $A, B \notin \{\{x, y\}, \{y\}, \emptyset, \{x\}\}$.

The preference P_i can be seen as having two separate blocks. The first one orders the subsets $\{x, y\}, \{y\}, \emptyset, \{x\}$ in a nonseparable way. All other subsets are dispreferred to each of these four subsets but, among those that are different to these four, any set A that can be obtained from B by adding objects in $t(P_i)$ and deleting objects in
\(t(P'_i) \) is preferred to \(B \). Moreover, any pair of subsets of objects that are unrestricted by conditions (i) and (ii) can be ordered arbitrarily by \(P'_i \).

Since \(y \notin De_i^W, \{x\} \in o^W(P'_i) \). Set \(A = \{x\}, T_2 = \emptyset \) and \(T_1 = \{x\} \). Observe that \(A \in o^W(P'_i) \) and, by (i) in the definition of \(P'_i \), \((A \setminus T_1) \cup T_2 = \emptyset \) or \(T_1 = \{x\} \). Hence, by Lemma 4, \(P'_i \in \mathcal{M}_i^W \). Take now any \(A \in o^W(P'_i) \). Let \(T_1 \subset t(P'_i) \cap A \cap \overline{Du}_i^W \) and \(T_2 \subset t(P'_i) \cap \overline{A} \cap \overline{Du}_i^W \) be arbitrary. We can assume that either \(T_1 \neq \emptyset \) or \(T_2 \neq \emptyset \); otherwise, \(A = (A \setminus T_1) \cup T_2 \) and \(\mathcal{P}_i(A \setminus T_1) \cup T_2 \) trivially. Since \(x \in Du_i^W \) and \(t(P'_i) = \{x,y\} \), \(T_1 \subset \{y\} \) and \(x,y \notin T_2 \). We distinguish between two cases.

Case 1: If \((A \setminus T_1) \cup T_2 \notin \{\{x,y\}, \emptyset, \{x\}\}\) then, by (i) and (ii) in the definition of \(P'_i \), \(AR'_i(A \setminus T_1) \cup T_2 \).

Case 2: If \((A \setminus T_1) \cup T_2 \notin \{\{x,y\}, \emptyset, \{x\}\}\) then \(T_2 = \emptyset \) and \(T_1 = \{y\} \). Hence, \(y \in A \) and \((A \setminus T_1) \cup T_2 = A \setminus \{y\}\). Since \((A \setminus T_1) \cup T_2 \notin \{\{x,y\}, \emptyset, \{x\}\}\) and \((A \setminus T_1) \cup T_2 = A \setminus \{y\}\), either \(A = \{y\} \) and \((A \setminus T_1) \cup T_2 = \emptyset \) or else \(A = \{x,y\} \) and \((A \setminus T_1) \cup T_2 = \{x\}\). But then, and according to (i) in the definition of \(P'_i \), \(AR'_i(A \setminus T_1) \cup T_2 \) must hold.

Hence, by Lemma 4, \(P'_i \notin \mathcal{M}_i^W \) in both cases. Thus, \(P'_i \in \mathcal{M}_i^W \setminus \mathcal{M}_i^W \), which contradicts that \(\mathcal{V} \succ \mathcal{W} \). Therefore, we can not suppose that there exists \(y \in K \) such that \(y \notin De_i^W \). Thus,

\[
De_i^W = K. \tag{25}
\]

Now, suppose that there exists \(y \in K \) such that \(y \in \overline{V}_i^W \). Since \(x \in Du_i^W \setminus Du_i^W \) and \(|Du_i^W \setminus Du_i^W| \geq 2 \) we can assume without loss of generality that \(y \neq x \). Let \(P''_i \in \mathcal{P} \) be any preference such that \(t(P''_i) = \{x\} \) and satisfying in addition the following properties:

(i) \(\{x\} P''_i \emptyset P''_i \{y\} P''_i \{x,y\} P''_i A, \)

for all \(A \notin \{\{x\}, \emptyset, \{y\}, \{x,y\}\} \),

(ii) \(AR'_i B \) if \(B \cap t(P''_i) \subset A \cap t(P''_i) \) and \(A \cap \overline{t(P''_i)} \subset B \cap \overline{t(P''_i)} \),

for all \(A, B \notin \{\{x\}, \emptyset, \{y\}, \{x,y\}\} \).

The preference \(P''_i \) can also be seen as having two separate blocks. The first one orders the subsets \(\{x\}, \emptyset, \{y\}, \{x,y\} \) in a nonseparable way. All other subsets are dispreferred to each of these four subsets but, among those that are different to these four, any set \(A \) that can be obtained from \(B \) by adding objects in \(t(P''_i) \) and deleting objects in \(\overline{t(P''_i)} \) is preferred to \(B \). Moreover, any pair of subsets of objects that are unrestricted by conditions (i) and (ii) can be ordered arbitrarily by \(P''_i \).

Since \(y \in \overline{V}_i^W, \{x,y\} \in o^W(P''_i) \). Set \(A = \{x,y\}, T_1 = \{x\} \) and \(T_2 = \emptyset \). Observe that \(A \in o^W(P''_i) \) and, by (i) in the definition of \(P''_i \), \((A \setminus T_1) \cup T_2 = \emptyset \) or \(T_1 = \{x\} \). Hence, by Lemma 4, \(P''_i \in \mathcal{M}_i^W \). Take now any \(A \in o^W(P''_i) \). Let \(T_1 \subset t(P''_i) \cap A \cap \overline{Du}_i^W \) and \(T_2 \subset \overline{t(P''_i)} \cap \overline{A} \cap \overline{Du}_i^W \) be arbitrary. We can assume that either \(T_1 \neq \emptyset \) or \(T_2 \neq \emptyset \);
otherwise, \(A = (A \setminus T_1) \cup T_2 \) and \(\text{Ar}''(A \setminus T_1) \cup T_2 \) trivially. Since \(x \in Du_i^W \) and \(t(P''_i) = \{ x \} \), \(T_1 = \emptyset \) and \(x \notin T_2 \). We distinguish between two cases.

Case 1: If \((A \setminus T_1) \cup T_2 \notin \{ \{ x \}, \emptyset, \{ y \}, \{ x, y \} \} \) then, by (i) and (ii) in the definition of \(P''_i \), \(\text{Ar}''(A \setminus T_1) \cup T_2 \).

Case 2: If \((A \setminus T_1) \cup T_2 \in \{ \{ x \}, \emptyset, \{ y \}, \{ x, y \} \} \) then, \(T_2 \subset \{ x, y \} \). Since \(T_1 = \emptyset \), \(x \notin T_2 \) and \(T_2 \neq \emptyset \), \(T_2 = \{ y \} \) and \(y \notin A \). Then, either \(A = \emptyset \) and \((A \setminus T_1) \cup T_2 = \{ y \} \) or else \(A = \{ x \} \) and \((A \setminus T_1) \cup T_2 = \{ x, y \} \). But then, and according to (i) in the definition of \(P''_i \), \(\text{Ar}''(A \setminus T_1) \cup T_2 \) must hold.

Hence, by Lemma 4, \(P''_i \notin \mathcal{M}_i^W \) in both cases. Thus, \(P''_i \in \mathcal{M}_i^W \setminus \mathcal{M}_i^W \), which contradicts that \(\mathcal{V} \succ \mathcal{W} \). Therefore, we can not suppose that there exists \(y \in K \) such that \(y \in \overline{Ve_i^W} \). Thus,

\[
\overline{Ve_i^W} = \emptyset. \tag{26}
\]

By (25) and (26), \(i \) is a dictator in \(\mathcal{W} \). This finishes the proof of Claim 1. \(\square \)

By hypothesis, \(\mathcal{W} \) is non dictatorial. By Claim 1,

\[
|Du_i^W \setminus Du_i^W| \leq 1.
\]

We distinguish between two cases.

Case I: Suppose that \(Du_i^V \setminus Du_i^W = \{ x \} \). We want to show that \(\overline{De_i^W} \cap \overline{Ve_i^W} = \{ x \} \).

As \(x \in Du_i^V \setminus Du_i^W \), applying the same argument than the one used in the proof of Claim 1, we can obtain that \(\overline{De_i^W} \subset \{ x \} \) and \(\overline{Ve_i^W} \subset \{ x \} \). Therefore,

\[
\overline{De_i^W} \cap \overline{Ve_i^W} = \overline{De_i^W} \cup \overline{Ve_i^W} = \{ x \} = Du_i^V \setminus Du_i^W. \tag{27}
\]

Furthermore, since \(i \) is not a dictator in \(\mathcal{W} \), \(\overline{De_i^W} \neq \emptyset \) or \(\overline{Ve_i^W} \neq \emptyset \). Hence, by (27),

\[
\overline{De_i^W} \cap \overline{Ve_i^W} = \overline{De_i^W} \cup \overline{Ve_i^W} = \{ x \} = Du_i^V \setminus Du_i^W.
\]

Case II: Suppose that \(Du_i^V \setminus Du_i^W = \emptyset \). We will obtain a contradiction. Since (A) does not hold there exists \(x \in K \) such that \(x \in (De_i^V \setminus De_i^W) \cup (Ve_i^V \setminus Ve_i^W) \).

Claim 2 \(\overline{Du_i^W} = \{ x \} \).

Proof of Claim 2 \ We distinguish between two cases.

Case I: Assume \(x \in De_i^V \setminus De_i^W \) and there exists \(y \neq x \) such that \(y \in Du_i^W \). Let \(P''_i \in \mathcal{P} \) be any preference such that \(t(P''_i) = \{ x, y \} \) and satisfying in addition the following properties:

(i) \(\{ x, y \} P''_i \{ x \} P''_i \emptyset P''_i \{ y \} P''_i A \) for all \(A \notin \{ \{ x, y \}, \{ y \}, \emptyset, \{ x \} \} \),

(ii) \(\text{Ar}''_i B \) if \(B \cap t(P''_i) \subset A \cap t(P''_i) \) and \(A \cap \overline{t(P''_i)} \subset B \cap \overline{t(P''_i)} \), for all \(A, B \notin \{ \{ x, y \}, \{ y \}, \emptyset, \{ x \} \} \).
As previously the preference P'''_i can also be seen as having two separate blocks (we omit the details).

Since $x \in DE_i^V \setminus DE_i^W$, $\{y\} \in o^W(P'''_i)$. Set $A = \{y\}$, $T_2 = \emptyset$ and $T_1 = \{y\}$. Observe that $A \in o^W(P'''_i)$ and, by (i) in the definition of P'''_i, $(A \setminus T_1) \cup T_2 = \emptyset P'''_i \{y\} = A$. Hence, by Lemma 4, $P'''_i \in M_i^W$. Take now any $A \in o^W(P'''_i)$. Since $x \in DE_i^V \setminus DE_i^W$ and $x \in t(P'''_i)$, $x \in A$. Let $T_1 \subset t(P'''_i) \cap A \cap \overline{DU}_i^W$ and $T_2 \subset \overline{t(P'''_i) \cap A} \cap \overline{DU}_i^W$ be arbitrary. We can assume that either $T_1 \not= \emptyset$ or $T_2 \not= \emptyset$; otherwise, $A = (A \setminus T_1) \cup T_2$ and $AR'''_i(A \setminus T_1) \cup T_2$ trivially. Since $t(P'''_i) = \{x, y\}$, $T_1 \subset \{x, y\}$ and $x, y \not\in T_2$. Now we will consider two subcases.

Subcase 1.1: If $(A \setminus T_1) \cup T_2 \not\in \{\{x, y\}, \{y\}, \emptyset, \{x\}\}$ then, by (i) and (ii) in the definition of P'''_i, $AR'''_i(A \setminus T_1) \cup T_2$.

Subcase 1.2: If $(A \setminus T_1) \cup T_2 \in \{\{x, y\}, \{y\}, \emptyset, \{x\}\}$ then, $T_2 = \emptyset$; otherwise, if there exists $z \in T_2 \setminus \{x, y\}$ then $z \in (A \setminus T_1) \cup T_2$ and therefore $(A \setminus T_1) \cup T_2 \not\in \{\{x, y\}, \{y\}, \emptyset, \{x\}\}$. Hence, $T_1 \not= \emptyset$ and $(A \setminus T_1) \cup T_2 = A \setminus T_1$. We distinguish among three different subcases.

Subcase 1.2.1: $T_1 = \{x\}$. Then $x \in A$ and $(A \setminus T_1) \cup T_2 = A \setminus \{x\}$. Since $(A \setminus T_1) \cup T_2 \in \{\{x, y\}, \{y\}, \emptyset, \{x\}\}$ and $(A \setminus T_1) \cup T_2 = A \setminus \{x\}$, either $(A \setminus T_1) \cup T_2 = \{y\}$ and $A = \{x, y\}$ or else $(A \setminus T_1) \cup T_2 = \emptyset$ and $A = \{x\}$ (since $x \in A$). But in both cases, by (i) in the definition of P'''_i, $AR'''_i(A \setminus T_1) \cup T_2$.

Subcase 1.2.2: $T_1 = \{y\}$. Then $y \in A$ and $(A \setminus T_1) \cup T_2 = A \setminus \{y\}$. Since $(A \setminus T_1) \cup T_2 \in \{\{x, y\}, \{y\}, \emptyset, \{x\}\}$ and $(A \setminus T_1) \cup T_2 = A \setminus \{y\}$, $(A \setminus T_1) \cup T_2 = \{x\}$ and $A = \{x, y\}$ (since $x \in A$). But then, by (i) in the definition of P'''_i, $AR'''_i(A \setminus T_1) \cup T_2$.

Subcase 1.2.3: $T_1 = \{x, y\}$. Then $x, y \in A$ and $(A \setminus T_1) \cup T_2 = A \setminus \{x, y\}$. Since $(A \setminus T_1) \cup T_2 \in \{\{x, y\}, \{y\}, \emptyset, \{x\}\}$ and $(A \setminus T_1) \cup T_2 = A \setminus \{x, y\}$, $(A \setminus T_1) \cup T_2 = \emptyset$ and $A = \{x, y\}$ (since $x, y \in A$). But then, by (i) in the definition of P'''_i, $AR'''_i(A \setminus T_1) \cup T_2$.

Hence, by Lemma 4, $P'''_i \not\in M_i^W$. Thus, $P'''_i \in M_i^W \setminus M_i^V$ holds, which contradicts that $V \supseteq W$.

Case 2: Assume $x \in Ve_i^V \setminus Ve_i^W$ and there exists $y \not= x$ such that $y \in \overline{DU}_i^W$. Let $P'''_i \in P$ be any preference such that $t(P'''_i) = \{y\}$ and satisfying in addition the following properties:

(i) $\{y\} P'''_i \emptyset P'''_i \{x\} P'''_i \{x, y\} P'''_i A$ for all $A \not\in \{\{x, y\}, \{y\}, \emptyset, \{x\}\}$,

(ii) $AR'''_i B$ if $B \cap t(P'''_i) \subset A \cap t(P'''_i)$ and $A \cap \overline{t(P'''_i)} \subset B \cap \overline{t(P'''_i)}$, for all $A, B \not\in \{\{x, y\}, \{y\}, \emptyset, \{x\}\}$.

As previously the preference P'''_i can also be seen as having two separate blocks (we omit the details).
Since $x \in Ve_i^V\setminus Ve_i^W$, $\{x, y\} \in o^W(P_i^{mm})$. Set $A = \{x, y\}$, $T_1 = \{y\}$ and $T_2 = \emptyset$. Observe that $A \in o^W(P_i^{mm})$ and, by (i) in the definition of P_i^{mm}, $(A \setminus T_1) \cup T_2 = \{x\}P_i^{mm}\{x, y\} = A$. Hence, by Lemma 4, $P_i^{mm} \in \mathcal{M}^W_i$. Take now any $A \in o^W(P_i^{mm})$. Since $x \in Ve_i^V\setminus Ve_i^W$ and $x \notin t(P_i^{mm})$, $x \notin A$. Let $T_1 \subset t(P_i^{mm}) \cap A \cap \overline{Du}_i^W$ and $T_2 \subset \overline{t(P_i^{mm})} \cap A \cap \overline{Du}_i^W$ be arbitrary. We can assume that either $T_1 \neq \emptyset$ or $T_2 \neq \emptyset$; otherwise, $A = (A \setminus T_1) \cup T_2$ and $AI^{mm}(A \setminus T_1) \cup T_2$ trivially. Since $t(P_i^{mm}) = \{y\}$, $T_1 \subset \{y\}$ and $y \notin T_2$. We distinguish between two subcases.

Case 2.1: If $(A \setminus T_1) \cup T_2 \notin \{\{x, y\}, \{y\}, \emptyset, \{x\}\}$ then, by (i) and (ii) in the definition of P_i^{mm}, $AR_i^{mm}(A \setminus T_1) \cup T_2$.

Case 2.2: If $(A \setminus T_1) \cup T_2 \in \{\{x, y\}, \{y\}, \emptyset, \{x\}\}$ then, $T_2 \subset \{x\}$. We distinguish among three different subcases.

Subcase 2.2.1: $T_1 = \emptyset$ and $T_2 = \{x\}$. Then, $(A \setminus T_1) \cup T_2 = A \cup \{x\}$. Since $(A \setminus T_1) \cup T_2 \in \{\{x, y\}, \{y\}, \emptyset, \{x\}\}$ and $(A \setminus T_1) \cup T_2 = A \cup \{x\}$, either $(A \setminus T_1) \cup T_2 = \{x, y\}$ and $A = \{y\}$ or else $(A \setminus T_1) \cup T_2 = \{x\}$ and $A = \emptyset$ (since $x \notin A$). But then, by (i) in the definition of P_i^{mm}, $AP_i^{mm}(A \setminus T_1) \cup T_2$.

Subcase 2.2.2: $T_1 = \{y\}$ and $T_2 = \emptyset$. Then, $y \in A$ and $(A \setminus T_1) \cup T_2 = A \setminus \{y\}$. Since $(A \setminus T_1) \cup T_2 \in \{\{x, y\}, \{y\}, \emptyset, \{x\}\}$ and $(A \setminus T_1) \cup T_2 = A \setminus \{y\}$, either $(A \setminus T_1) \cup T_2 = \emptyset$ and $A = \{y\}$ or else $(A \setminus T_1) \cup T_2 = \{x\}$ and $A = \{y\}$ (since $x \notin A$). But then, by (i) in the definition of P_i^{mm}, $AP_i^{mm}(A \setminus T_1) \cup T_2$.

Subcase 2.2.3: $T_1 = \{y\}$ and $T_2 = \{x\}$. Then, $y \in A$ and $(A \setminus T_1) \cup T_2 = A \setminus \{y\} \cup \{x\}$. Since $(A \setminus T_1) \cup T_2 \in \{\{x, y\}, \{y\}, \emptyset, \{x\}\}$ and $(A \setminus T_1) \cup T_2 = A \setminus \{y\} \cup \{x\}$, $(A \setminus T_1) \cup T_2 = \{x\}$ and $A = \{y\}$ (since $x \notin A$). But then, by (i) in the definition of P_i^{mm}, $AP_i^{mm}(A \setminus T_1) \cup T_2$.

Hence, by Lemma 4, $P_i^{mm} \notin \mathcal{M}_i^W$. Thus, $P_i^{mm} \in \mathcal{M}_i^W \setminus \mathcal{M}_i^W$ holds, which contradicts that $V \supseteq W$.

Therefore, $\overline{Du}_i^W \subset \{x\}$. Furthermore, and since we have assumed without loss of generality that $Du_i^W \neq \emptyset$ (see (3)),

$$\overline{Du}_i^W = \{x\}. \quad (28)$$

This finishes the proof of Claim 2.

Finally, assume there exists $y \neq x$ such that $y \in (De_i^V \setminus De_i^W) \cup (Ve_i^V \setminus Ve_i^W)$. By Claim 2, $\overline{Du}_i^W = \{y\}$ which contradicts (28). Therefore,

$$(De_i^V \setminus De_i^W) \cup (Ve_i^V \setminus Ve_i^W) = \{x\} = \overline{Du}_i^W,$$

which contradicts that (B) does not hold. Therefore, Case II is not possible. \qed
References

