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Abstract: We consider the class of voting by committees to be used by a

society to collectively choose a subset of a given set of objects. We o¤er a

simple criterion to compare two voting by committees without dummy agents

according to their manipulability. This criterion is based on the set-inclusion

relationships of the two corresponding decisive and vetoer sets of agents. We

show that the binary relation �to be as manipulable as� endows the set of

equivalence classes of anonymous voting by committees (i.e., voting by quotas)

with a complete upper semilattice structure, whose supremum is the equivalence

class containing all voting by quotas with the property that the quota of each

object is strictly larger than one and strictly lower than the number of agents.

Finally, we extend the comparability criterion to the full class of all voting by

committees.
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1 Introduction

Consider a set of agents who collectively have to choose a subset of a given set of

objects K: There are many social choice problems where the set of social alternatives

is the family of all subsets of a given set. For instance, when the set of agents is

the tenured members of a department and the set of objects is the set of junior

candidates under consideration to become new assistant professors. Or a scienti�c

society whose current fellows have to elect new fellows from a given list of candidates.

Voting by committees have been proposed to solve this class of problems. One of

the main reasons why voting by committees are attractive social choice procedures is

that they constitute the class of all strategy-proof social choice functions respecting

voter sovereignty (all subsets of objects can be chosen) on the domain of separable

preference pro�les.1 An agent�s preferences are separable on the family of all subsets

of objects 2K if they are guided by the partition separating the set of objects into the

set of good objects (as singleton sets, objects that are better than the empty set) and

bad objects (as singleton sets, objects that are worse than the empty set). Adding

a good object to any set leads to a better set, while adding a bad object leads to a

worse set. Note that all additively representable preferences are separable.

Voting by committees are attractive because they induce good strategic incentives

to agents, whenever they have separable preferences. But in addition they are appeal-

ing because they are simple. Following Barberà, Sonnenschein and Zhou (1991) voting

by committees are de�ned by a collection of monotonic families of winning coalitions

(committees), one for each object, W = (Wx)x2K : Then the choice of the subset of

objects made by W at a preference pro�le is done object-by-object as follows. Fix a

voting by committees W = (Wx)x2K and a preference pro�le, and consider object x.

Then, x belongs to the chosen set (the one selected by W at the preference pro�le)

if and only if the set of agents whose best subset of objects contains x belongs to the

committee Wx. Hence, voting by committees can be seen as a family of extended

majority voting (one for each object) where the two alternatives at stake are whether

or not x belongs to the collectively chosen subset of objects.

An especially interesting subclass of voting by committees are those without

dummy agents. Agent i is dummy at object x in the committee Wx if i does not

belong to any minimal winning coalition of Wx; that is, i�s opinion about object x is

not used at all in the decision of whether or not x belongs to the chosen subset. And

1A strategy-proof social choice function leads truth-telling as a weakly dominant strategy in the

direct revelation mechanism induced by the social choice function at all preference pro�les of its

domain. See Barberà, Sonnenschein and Zhou (1991) for a description of this class of problems and

this axiomatic characterization of voting by committees.
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among the class of voting by committees without dummy agents the subclass of voting

by quotas is particularly appealing. A voting by committees is voting by quotas if the

set of winning coalitions for each object x are the sets of agents with equal or larger

cardinality than a given strictly positive integer qx; the quota of x. Hence, in any

voting by quotas all agents play the same role when determining whether or not ob-

jects belong to the chosen subset. Using Barberà, Sonnenschein and Zhou (1991) it is

easy to see that the class of all anonymous and strategy-proof social choice functions

satisfying voter sovereignty on the domain of separable preference pro�les coincides

with all voting by quotas.

Again, voting by committees are simple for two reasons. First, they are tops-only

because they only depend on the pro�le of top subsets of objects, one for each agent.

Second, they are object-by-object decomposable, and this is precisely the reason why

they are strategy-proof on the domain of separable preference pro�les: agent i, when

considering whether or not to give support to object x, does not need to know the

other set of elected objects because i wants to support x if and only if x is a good

object as a singleton set (i.e., x belongs to the best subset of objects) since its addition

improves, by separability, any subset of objects.

However, in many applications the set of conceivable preferences of agents may

be larger than the set of separable preferences: when adding an object to a set, some

complementarities or substitutable considerations with respect to objects already in

the set may become relevant, yet they are not admissible if preferences are separable.

For instance, although a voter for new assistant professors in the department considers

that candidates x and y are the best and the second best candidates, both working

in a similar research area, the voter may consider that, for the sake of diversity, the

subset fx; zg is better than the subset fx; y; zg, where z is a third good candidate
who works in a very di¤erent area from the one that x and y work. For this and

similar cases we know that non-trivial voting by committees become manipulable,

once non separable preferences are admitted in the domain where they operate. But

since separable preferences may be conceivable too, voting by committees have still

to be used in order to guarantee that the social choice procedure remains strategy-

proof on the separable subdomain of preference pro�les. But the large mechanism

design literature studying strategy-proof social choice functions has mainly neglected

the potential interest of comparing two social choice functions according to their

manipulability. Our contribution in this paper is to compare, by applying a criterion

we introduced in Arribillaga and Massó (2015), voting by committees according to

their manipulability when they have to operate on the full domain of preferences on

2K : As we have already argued in Arribillaga and Massó (2015) the manipulability of

a social choice function does not indicate the degree of its lack of strategy-proofness.

2



There may be only one instance at which the social choice function is manipulable

or there may be many such instances. The mechanism design literature that has

focused on strategy-proofness has not distinguished between these two situations; it

has declared both social choice functions as being not strategy-proof.2

As in Arribillaga and Massó (2015) our criterion to compare two social choice

functions takes the point of view of individual agents. We say that an agent is able to

manipulate a social choice function at a preference (the true one) if there exist a list

of preferences, one for each one of the other agents, and another preference for the

agent (the strategic one) such that if submitted, the agent obtains a strictly better

alternative according to the true preference. Consider two voting by committees, W
and V ; operating on the universal domain of preference pro�les. Assume that for
each agent the set of preferences under which the agent is able to manipulate W is

contained in the set of preferences under which the agent is able to manipulate V :
Then, from the point of view of all agents, V is more manipulable thanW : Hence, we
think that W is unambiguously a better voting by committees than V according to
the strategic incentives induced to agents. Often, it may be reasonable to think that

agents�preferences are separable, but if the designer foresees that agents may have

also non separable preferences, then W may be a better choice than V if strategic
incentives are relevant and important for the designer.

Before presenting our general result in Theorem 2, we focus on voting by commit-

tees without dummy agents. In Theorem 1 we provide a simple necessary and suf-

�cient condition for the comparability of two voting by committees without dummy

agents in terms of their manipulability. This condition re�ects the power of agents to

in�uence the choice of the objects in the two voting by committees. Two notions are

relevant to describe this power. Fix a voting by committees W = (Wx)x2K , an agent

i, and an object x:We say that agent i is decisive at x if the singleton set fig belongs
toWx; that is, fig is a winning coalition of x and hence, i can impose object x in the
�nal chosen subset by voting for x (i.e., by declaring that x belongs to the top subset

of objects). We say that agent i is vetoer at x if i belongs to all winning coalitions of

Wx; that is, i can make sure that x is not in the �nal chosen subset by not voting for

x (i.e., by declaring that x does not belong to the top subset of objects). Then, the

voting by committees without dummy agents V is more manipulable than the voting
by committees without dummy agents W if and only if, for all agents, the decisive

and vetoer sets of objects at V are contained respectively in the decisive and vetoer
sets of objects at W. Then we show that, when the number of agents n is larger

or equal to 3; the binary relation �to be at least as manipulable as�on the family

2Kelly (1977), Campbell and Kelly (2009), Pathak and Sönmez (2013) and Arribillaga and Massó

(2015) are exemptions.
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of equivalence classes of voting by quotas (i.e., anonymous voting by committees) is

a complete upper semilattice, whose maximal element is the equivalence class con-

taining all voting by quotas where all quotas are strictly larger than 1 and strictly

smaller than n. In the other hand, the equivalence classes of voting by quotas that are

not more manipulable than any other equivalence class of voting by quotas are those

where all objects have either quota 1 or quota n. We also identify, in Proposition 2,

among all voting by committees without dummies those that are less manipulable.

They can be characterized by two properties. First, the set of objects at which all

agents are not vetoers is a subset of the set of decisive objects of each agent and

second, the set of objects at which each agent is not a vetoer is contained in the set of

objects at which some agent is decisive. In Theorem 2 we give the necessary and suf-

�cient condition for the comparability according to their manipulability of two voting

by committees, potentially with dummy agents. The condition is more involved that

the one used in the comparability of voting by committees without dummy agents

and it incorporates, in addition to the inclusion of decisive and vetoer sets of objects,

the inclusion of dummy sets of objects. However, the inclusions of the three sets

of objects are not necessary, but we show that they may not hold only in two very

special circumstances, that we fully identify.

The paper is organized as follows. Section 2 contains preliminary notation and

de�nitions. Separable preferences and voting by committees are de�ned in Section

3. Section 4 presents preliminary results. Section 5 compares voting by committees

without dummy agents and Theorem 2 in Section 6 provides the complete criterion

to compare any pair of voting by committees.

2 Preliminaries

Agents are the elements of a �nite set N = f1; :::; ng: The set of objects is a �nite
set K. We assume that n � 2 and jKj � 2. Generic agents will be denoted by i and
j and generic objects by x and y. Subsets of agents will be represented by S and T

and subset of objects by A and B: The society formed by the set of agents N has to

choose a subset of K: Hence, the set of alternatives is the family 2K of all subsets of

objects. Given S � N and A 2 2K we denote by jSj and jAj their cardinalities and
by S and A their complement sets; namely, S = NnS and A = 2KnA:
The (strict) preference of each agent i 2 N on the set of alternatives is a linear

order Pi on 2K ; namely, Pi is a complete, antisymmetric and transitive binary relation

on 2K . As usual, let Ri denote the weak preference relation on 2K induced by Pi;

namely, for all A;B 2 2K ; ARiB if and only if either APiB or A = B. The top

alternative according to Pi is the subset of objects that is preferred to any other
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alternative. We denote by t(Pi) the top of Pi; i.e., t(Pi)PiA for all A 2 2Knft(Pi)g.
Let P be the set of all preferences on 2K . A preference pro�le P = (P1; :::; Pn) 2 Pn

is an n-tuple of preferences, one for each agent. To emphasize the role of agent i a

preference pro�le P will be represented by (Pi; P�i).

A Cartesian product subset bPn � Pn of preference pro�les (or the set bP itself)

will be called a domain. A social choice function is a function f : bPn ! 2K selecting,

for each preference pro�le P in the domain bPn; a subset of objects f(P ) 2 2K .
A social choice function f : bPn ! 2K satis�es voter sovereignty if for all A 2 2K

there exists a pro�le P 2 bPn such that f(P ) = A; namely, f is onto.
A social choice function f : bPn ! 2K is tops only if for all P; P 0 2 bPn such that

t(Pi) = t(P
0
i ) for all i 2 N; f(P ) = f(P 0).

Social choice functions require each agent to report a preference on a domain bP.
A social choice function is strategy-proof on bPn if it is always in the best interest
of agents to reveal their preferences truthfully. Formally, a social choice function

f : bPn ! 2K is strategy-proof if for all P 2 bPn, all i 2 N , and all P 0i 2 bP,
f(Pi; P�i)Rif(P

0
i ; P�i): (1)

That is, a social choice function f : bPn ! 2K is strategy-proof (on the domain bPn)
if, for each preference pro�le P 2 bPn, truth-telling is a weakly dominant strategy for
each agent in the normal form game induced by f at P: In the sequel we will say

that a social choice function f : bPn ! 2K is not manipulable by i 2 N at Pi 2 bP if

(1) holds for all (P 0i ; P�i) 2 bPn: To compare social choice functions according to their
manipulability, our reference set of preferences will be the full set of preferences P.
The set of manipulable preferences of agent i 2 N at f : Pn ! 2K is given by

Mf
i = fPi 2 P j f(P 0i ; P�i)Pif(Pi; P�i) for some (P 0i ; P�i) 2 Png:

Obviously, a social choice function f : Pn ! 2K is strategy-proof if and only ifMf
i = ;

for all i 2 N . We say that f : Pn ! 2K is more manipulable than g : Pn ! 2K for

i 2 N ifMg
i (M

f
i :

Now, we introduce our criteria to compare social choice functions according to

their manipulability.

De�nition 1 A social choice function f : Pn ! 2K is at least as manipulable as

social choice function g : Pn ! 2K ifMg
i �M

f
i for all i 2 N:

De�nition 2 A social choice function f : Pn ! 2K is equally manipulable as social

choice function g : Pn ! 2K if f is at least as manipulable as g and vice versa; i.e.,

Mg
i =M

f
i for all i 2 N:
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De�nition 3 A social choice function f : Pn ! 2K is more manipulable than social

choice function g : Pn ! 2K if f is at least as but not equally manipulable as social

choice function g; i.e., Mg
i � Mf

i for all i 2 N and there exists j 2 N such that

Mg
j  M

f
j :

Given two social choice functions f : Pn ! 2K and g : Pn ! 2K we write (i)

f % g to denote that f is at least as manipulable as g, (ii) f � g to denote that f

is equally manipulable as g, and (iii) f � g to denote that f is more manipulable

than g: Obviously, there are many pairs of social choice functions that can not be

compared according to their manipulability.

3 Separable Preferences and Voting by Commit-

tees

Barberà, Sonnenschein and Zhou (1991) characterizes, on the restricted domain of

separable preferences, the family of all strategy-proof social choice functions satisfying

voter sovereignty as the class of voting by committees. A preference Pi of agent i is

separable if the division between good objects (fxgPi;) and bad objects (;Pifxg)
guides the ordering of subsets in the sense that adding a good object leads to a better

set, while adding a bad object leads to a worse set. Formally,

De�nition 4 An agent i�s preference Pi 2 P on 2K is separable if for all A 2 2K

and x =2 A,
A [ fxgPiA if and only if fxgPi;:

Let S be the set of all separable preferences on 2K . Observe that for any separable
preference its top is the subset of good objects. That is, for any separable preference

Pi 2 S;
t(Pi) = fx 2 K j fxgPi;g:

The following remark characterizes separable preferences. It follows from transitivity

and says that if we modify any given set of objects A by removing good objects and

adding bad objects, the new set is less preferred.

Remark 1 A preference Pi is separable if and only if for all A 2 2K, T1 � t(Pi)\A
and T2 � t(Pi) \ A,

ARi(AnT1) [ T2:
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We now de�ne the class of social choice functions known as voting by committees.

Let N be a set of agents and x 2 K be an object. A committee Wx for x is a

non-empty set of non-empty coalitions (subsets) of N , which satis�es the following

monotonicity condition:

[M 2 Wx and M �M 0])M 0 2 Wx:

A social choice function f : Pn ! 2K is a voting by committees if for each x 2 K
there exists a committee Wx such that for all P 2 Pn,

x 2 f(P ) if and only if fi 2 N j x 2 t(Pi)g 2 Wx: (2)

Observe that voting by committees are very simple. They are tops-only and the

selected subset of objects at each preference pro�le is obtained in a decomposable

way, object-by-object. Barberà, Sonnenschein and Zhou (1991) characterizes this

class when they operate on the separable domain as follows.

Proposition 1 (Barberà, Sonnenschein and Zhou, 1991) A social choice function

f : Sn ! 2K is strategy-proof and satis�es voter sovereignty if and only if it is voting

by committees.

4 Preliminary Results

LetWx be a committee for object x 2 K: The subset of agents M 2 Wx is a minimal

winning coalition onWx if there is noM 0 2 Wx such thatM 0 (M:Given a committee
Wx we denote by Wm

x the set of its minimal winning coalitions.

Assume f : Pn ! 2K is a voting by committees and let W = (Wx)x2K be its

associated family of committees, one for each object. Abusing notation we will often

write f directly as W : Pn ! 2K ; hence, for P 2 Pn, W(P ) will denote the subset of
objects chosen by the voting by committees W at P:

LetW be a voting by committees. We de�ne three di¤erent notions of power that

agents may have atW with respect to their role on the choice of the subset of objects.

These notions will be relevant to compare voting by committees according to their

manipulability.

First, agent i is dummy at x if i does not belong to any minimal winning coalition

onWx; hence i does not play any role on the choice of whether or not x belongs to the

chosen set of objects according to W : The set of objects at which agent i is dummy,
given W, is de�ned as

DuWi = fx 2 K j @S 2 Wm
x such that i 2 Sg:
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We say that a voting by committees W : Pn ! 2K has no dummies if, for all i 2 N;
DuWi = ;:Without loss of generality we assume that no agent is dummy at all objects.
That is, for all i 2 N;

DuWi 6= K; (3)

otherwise if DuWi = K; then MW
i = ; and therefore we may proceed by setting

N := Nnfig.
Second, agent i is decisive at x if i, as a singleton set, belongs toWx; hence, i can

impose object x by declaring it as an element in the top subset of objects. The set

of objects at which agent i is decisive, given W, is de�ned as

DeWi = fx 2 K j fig 2 Wxg:

Third, agent i is a vetoer at x if i belongs to all coalitions on Wx; hence, i can

veto object x by not declaring it as an element in the top subset of objects. The set

of objects at which agent i is vetoer, given W, is de�ned as

V eWi = fx 2 K j i 2
\
S2Wx

Sg:

Example 1 below illustrates how voting by committees work and the three notions

of power.

Example 1 Let N = f1; 2; 3; 4g be the set of agents and K = fx; y; z; wg the set
of objects. Consider the voting by committees W de�ned by the following (minimal)

committees:

Wm
x = fS � N j jSj = 2g;

Wm
y = ff1; 2g; f2; 3gg;

Wm
z = ff1; 2; 3; 4gg; and

Wm
w = ff1g; f4gg:

Take any pair of preference pro�les P; P 0 2 P4 with the properties that

t(P1) = fx; yg; t(P2) = fy; wg; t(P3) = fx; yg; and t(P4) = fy; z; wg and
t(P 01) = fyg; t(P 02) = fz; wg; t(P 03) = fy; zg; and t(P 04) = fwg:

Then, W(P ) = fx; y; wg and W(P 0) = fwg: Observe that the sets related with the
power of the agents at W are:

DuW1 = ;; DuW2 = fwg; DuW3 = fwg, and DuW4 = fyg;
DeW1 = fwg; DeW2 = ;; DeW3 = ;, and DeW4 = fwg; and
V eW1 = fzg; V eW2 = fy; zg; V eW3 = fzg, and V eW4 = fzg: �
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Our �rst preliminary result states that agent i cannot a¤ect the choice of the

objects at which i is a dummy agent.

Lemma 1 Let W : Pn ! 2K be a voting by committees. Then, for all (Pi; P�i) 2 Pn

and P 0i 2 P ;
W(Pi; P�i) \DuWi =W(P 0i ; P�i) \DuWi :

Proof Fix P�i 2 Pn�1: It will be su¢ cient to show that, for any pair Pi; P 0i 2 P,
W(Pi; P�i)\DuWi � W(P 0i ; P�i): Assume x 2 W(Pi; P�i)\DuWi : Then, there exists
S 2 Wm

x such that x 2 t(Pj) for all j 2 S: Since x 2 DuWi ; i =2 S: Thus, x 2
W(P 0i ; P�i): �

The comparability between two voting by committees in terms of their manipu-

lability will relay strongly on the inclusion relationship between the two induced sets

of alternatives that may be selected by them, once the preference of a �xed agent i

is given.

De�nition 5 Let f : Pn ! 2K be a social choice function and let Pi 2 P. The set
of options left open by Pi 2 P at f is de�ned as follows:

of (Pi) = fA 2 2K j f(Pi; P�i) = A for some P�i 2 Pn�1g:

Given two subsets of objects A;B 2 2K such that A � B let [A;B] be the family
of all subsets of objects that can be obtained from A by adding objects in BnA:
Namely, for any pair of alternatives A � B � K,

[A;B] = fC � K j A � C � Bg:

Although imperfectly, to obtain an intuitive geometric idea, the set [A;B] can be seen

as the elements in the cone lying between A and B; where [;; 2K ] would be the cone
containing all subsets of K (see Figure 1 below).

r ;AA
A
A
A
A
A
A
A
A
A
A
A
A
A

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

C

2K

A

B

Figure 1
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Next lemma characterizes the set of options left open by Pi at W in terms of

t(Pi) and the sets of objects at which i is decisive and non-vetoer. This result plays

a crucial role in the sequel and it will be intensively used. The intuition why it holds

is as follows. Fix a preference Pi 2 P: First, any subset of objects belonging to the
set of options left open by Pi has to contain the set of good objects according to Pi
for which i is simultaneously decisive at them; this is so because agent i has voted for

them and i has the power to include them. Second, any subset of objects in the set of

options left open by Pi has to be contained in the set made by the union of the set of

good objects according to Pi and the subset of objects at which i is not a vetoer; this

is so because any object for which agent i has not voted for and simultaneously i is a

vetoer at will never belong to the chosen subset of objects. Moreover, any subset of

objects that does satisfy the two conditions above will belong to the set of option left

open by Pi at W because, whenever all remaining agents declare this set as their top

subset of objects, it will be selected by W since the vote of i is not required against

the unanimous vote of the remaining set of agents because i is not a vetoer. Figure

2 illustrates the set of options left open by Pi at W.

r ;AA
A
A
A
A
A
A
A
A
A
A
A
A
A

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

t(Pi)

2K

t(Pi) \DeWi

t(Pi) [ V eWi

Figure 2

Lemma 2 Let W : Pn ! 2K be a voting by committees: Then, for all Pi 2 P ;

oW(Pi) = [t(Pi) \DeWi ; t(Pi) [ V eWi ]:

Proof AssumeA 2 oW(Pi): Then, there exists P�i 2 Pn�1 such thatA =W(Pi; P�i):
Let x 2 t(Pi) \ DeWi : Then, x 2 t(Pi) and fig 2 Wx: Hence, x 2 W(Pi; P�i) = A:

Thus, t(Pi) \ DeWi � A: Let x 2 A and assume that x =2 t(Pi): We will prove that
x 2 V eWi : Since x 2 W(Pi; P�i) and x =2 t(Pi); there exists S 2 Wm

x such that

S � fj 2 N j x 2 t(Rj)g and i =2 S: Hence, x 2 V eWi : Thus, A � t(Pi) [ V eWi :
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Now, let A 2 [t(Pi)\DeWi ; t(Pi)[ V eWi ]: For each j 2 N and j 6= i; let Pj be any
preference such that t(Pj) = A. We will prove that W(Pi; P�i) = A: To prove one

of the two inclusions, assume x 2 A: If x 2 t(Pi); then fj 2 N j x 2 t(Pj)g = N:

Hence, x 2 W(Pi; P�i): If x =2 t(Pi); then x 2 V eWi (since A � t(Pi) [ V eWi ). Hence,
fj 2 N j x 2 t(Pj)g = Nnfig 2 Wx and x 2 W(Pi; P�i): To prove the other inclusion,
assume x 2 W(Pi; P�i): By the de�nition of t(Pj); either x 2 A or else x 2 t(Pi)nA
and fig 2 Wx: Hence, either x 2 A or else x 2 t(Pi)\DeWi : Thus, since by assumption
t(Pi) \DeWi � A, x 2 A: �

At the light of Lemma 2 it is easy to see that the larger the decisive and vetoer

sets of objects are the smaller is the option sets left open by a preference at the two

corresponding voting by committees. Figure 3 illustrates this statement and Lemma

3 states it formally.

r
;

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

t(Pi)

2K

t(Pi) \DeVi

t(Pi) [ V eVi

t(Pi) \DeWi

t(Pi) [ V eWi

Figure 3

Lemma 3 Let W : Pn ! 2K and V : Pn ! 2K be two voting by committees with the

property that DeVi � DeWi and V eVi � V eWi : Then, oW(Pi) � oV(Pi) for all Pi 2 P.

Proof It follows immediately from Lemma 2. �

In the last preliminary result of this section we identify the necessary and su¢ cient

conditions under which a voting by committees W is not manipulable by agent i

at a particular preference Pi: These conditions can be seen as a weakening of the

separability conditions because they require to compare in a speci�c way fewer pairs

of subsets of objects. These pairs are composed of two kinds of sets. First, any subset

A that is selected byW when i votes for t(Pi) (i.e., A 2 oW(Pi)). Second, any subset
that can be obtained from A by taking out objects in t(Pi) for which i is not a dummy

agent and by simultaneously adding objects not in A that are in t(Pi) and for which
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i is also a non dummy agent. Lemma 4 can be seen as providing a general maximal

domain result for all voting by committees, which depends on the sets of decisive,

vetoers and dummy objects of agent i at W.3 Figure 4 illustrates a particular pair
of subsets (A and (AnT1) [ T2) in the cone [;; 2K ] that have to be comparable by Pi
(i.e., APi(AnT1) [ T2) if W is not manipulable by i at Pi.

r
;

A
A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�
�
�
�
�
�
��

t(Pi)

2K

A 2 oW(Pi)

(AnT1) [ T2

Figure 4

Lemma 4 LetW : Pn ! 2K be a voting by committees: Then, W is not manipulable

by i 2 N at Pi 2 P if and only if for all A 2 oW(Pi), T1 � t(Ri) \ A \ DuWi and

T2 � t(Ri) \ A \DuWi ,
ARi(AnT1) [ T2:

Proof )) Consider any Pi 2 P, A 2 oW(Pi), T1 � t(Pi) \ A \ DuWi and T2 �
t(Pi) \ A \DuWi : Then, there exists P�i 2 Pn�1 such that

W(Pi; P�i) = A:

Since T1 [ T2 � DuWi ; for each x 2 T1 [ T2; there is Six 2 Wm
x such that i 2 Six. Now,

for each j 2 N and j 6= i; consider any P 0j 2 P such that

t(P 0j) = (t(Pj)nfx 2 T1 [ T2 j j =2 Sixg) [ fx 2 T1 [ T2 j j 2 Sixg; (4)

and any P 0i 2 P such that
t(P 0i ) = (AnT1) [ T2:

3See Barberà, Massó and Neme (1999), Barberà, Sonnesnchein and Zhou (1991) and Serizawa

(1995) for related results identifying maximal domains of preferences under which voting by com-

mittees remain strategy-proof. The results on the second and third papers are less general since they

apply only to voting by committees without vetoer and dummy players or without dummy players,

respectively. The results in the �rst paper are presented in the di¤erent setting of multidimensional

generalized median voters schemes and hence, they are stated in terms of left and right coalition

systems instead of committees.
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Claim 1 W(Pi; P 0�i) = A and W(P 0i ; P 0�i) = (AnT1) [ T2:
Proof of Claim 1 We �rst show that W(Pi; P 0�i) = A: Assume x 2 T2: By (4);

fj 2 Nnfig j x 2 t(P 0j)g = Sixnfig: Hence, and since T2 � t(Pi), x =2 t(Pi): Observe
that i 2 Six 2 Wm

x implies Sixnfig =2 Wx: Thus, x =2 W(Pi; P 0�i): Therefore,

W(Pi; P 0�i) \ T2 = ;: (5)

Assume x 2 T1: By (4), fj 2 Nnfig j x 2 t(P 0j)g = Sixnfig: Furthermore, as T1 �
t(Pi); x 2 t(Ri): Observe that Six 2 Wm

x : Thus, x 2 W(Pi; P 0�i): Therefore,

W(Pi; P 0�i) \ T1 = T1: (6)

Assume x =2 T1 [ T2: By (4), fj 2 Nnfig j x 2 t(P 0j)g = fj 2 Nnfig j x 2 t(Pj)g:
Hence,

(T1 [ T2) \W(Pi; P 0�i) = (T1 [ T2) \W(Pi; P�i): (7)

By (5), (6) and (7),

W(Pi; P 0�i) = [(T1 [ T2) \W(Pi; P 0�i)] [ T1
= [(T1 [ T2) \W(Pi; P�i)] [ T1
= [(T1 [ T2) \ A] [ T1
= A;

where the last equality follows from the facts that T1 � A and T2 � A:
We now show that W(P 0i ; P 0�i) = (AnT1) [ T2: Assume x 2 AnT1. If x 2 t(Pi);

and since W(Pi; P 0�i) = A; fj 2 Nnfig j x 2 t(P 0j)g [ fig 2 Wx holds. If x =2 t(Pi);
and since W(Pi; P 0�i) = A; fj 2 Nnfig j x 2 t(P 0j)g 2 Wx: Hence, in both cases,

fj 2 Nnfig j x 2 t(P 0j)g [ fig 2 Wx (8)

holds. Since x 2 t(P 0i ); fj 2 Nnfig j x 2 t(P 0j)g [ fig = fj 2 N j x 2 t(P 0j)g: Hence,
by (8), fj 2 N j x 2 t(P 0j)g 2 Wx: Thus, x 2 W(P 0i ; P 0�i): Assume now x 2 T2: By
(4), fj 2 Nnfig j x 2 t(P 0j)g = Sixnfig: Hence, and since x 2 t(P 0i ); x 2 W(P 0i ; P 0�i):
Therefore, we have showed that (AnT1) [ T2 � W(P 0i ; P 0�i): To show that the other
inclusion holds, assume x 2 W(P 0i ; P 0�i): If x 2 t(P 0i ); by the de�nition of t(P

0
i );

x 2 (AnT1) [ T2: If, on the other hand, x =2 t(P 0i ),

fj 2 N j x 2 t(P 0j)g = fj 2 Nnfig j x 2 t(P 0j)g: (9)

Hence, and since x 2 W(P 0i ; P 0�i); by (9), x 2 W(Pi; P 0�i) = A: Now, to obtain

a contradiction assume x 2 T1: Hence, fj 2 Nnfig j x 2 t(P 0j)g = Sixnfig and
x =2 t(P 0i ): Therefore, x =2 W(P 0i ; P 0�i) which is a contradiction. Thus, x 2 AnT1: �
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Therefore, by Claim 1 and the fact that W is not manipulable by i at Pi;

ARi(AnT1) [ T2:

() Let Pi 2 P be arbitrary and assume that for all A 2 oW(Pi), T1 � t(Ri)\A\
DuWi and T2 � t(Ri) \ A \DuWi , ARi(AnT1) [ T2 holds. We will show that, for all
(P 0i ; P�i) 2 Pn;

W(Pi; P�i)RiW(P 0i ; P�i):

Assume (P 0i ; P�i) 2 Pn and let W(Pi; P�i) = A 2 oW(Pi); T1 = (AnW(P 0i ; P�i)) \
DuWi and T2 = (W(P 0i ; P�i)nA) \DuWi : Then,

(AnT1) [ T2 = [(A \DuWi [ A \DuWi )nT1] [ T2
= (A \DuWi ) [ [(A \DuWi )nT1] [ T2 since T1 � DuWi
= (A \DuWi ) [ [(A \DuWi ) \ T1] [ T2
= (A \DuWi ) [ [(A \DuWi ) \ (A [W(P 0i ; P�i) [DuWi )] [ T2
= (A \DuWi ) [ [(A \DuWi ) \W(P 0i ; P�i)] [ T2
= (A \DuWi ) [ [(A \DuWi ) \W(P 0i ; P�i)] [ (W(P 0i ; P�i)nA) \DuWi )
= (A \DuWi ) [ [(A \W(P 0i ; P�i) [ (W(P 0i ; P�i)nA)] \DuWi
= (A \DuWi ) [ (W(P 0i ; P�i) \DuWi )
= (W(P 0i ; P�i) \DuWi ) [ (W(P 0i ; P�i) \DuWi ) by Lemma 1

=W(P 0i ; P�i):

Furthermore, T1 � t(Ri)\A\DuWi and T2 � t(Ri)\A\DuWi since AnW(P 0i ; P�i) �
t(Ri) and W(P 0i ; P�i)nA � t(Pi). Thus, by hypothesis,

W(Pi; P�i) = ARi(AnT1) [ T2 =W(P 0i ; P�i):

�

5 Comparing Voting by Committees without dum-

mies

5.1 Main result without dummies

Theorem 1 below gives an easy and operative way of comparing voting by committees

without dummies according to their manipulability. A voting by committees V is at
least as manipulable as voting by committees W if and only if, for each agent i 2 N ,
the sets of objects at which agent i is decisive and vetoer in V is each contained in the
corresponding sets inW. The results in the preceding lemmata are key to understand
this characterization. Larger decisive and vetoer sets of objects make the option sets
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left open smaller and this leaves more freedom on the comparability between subsets

of objects, reducing hence the set of preferences under which the agent is able to

manipulate.

Theorem 1 Let V : Pn ! 2K andW : Pn ! 2K be two voting by committees without

dummies. Then, V %W if and only if, for all i 2 N , DeVi � DeWi and V eVi � V eWi :

Proof () To prove su¢ ciency, assume that for all i 2 N; DeVi � DeWi and V eVi �
V eWi : We prove that V % W by showing that, for all i 2 N; MW

i � MV
i . Suppose

Pi 2 MW
i : Observe that since V and W have no dummies, DuWi = DuVi = K holds.

Then, by Lemma 4, there exist A 2 oW(Pi), T1 � t(Pi) \ A and T2 � t(Pi) \ A such
that

(AnT1) [ T2PiA:

By Lemma 3, oW(Pi) � oV(Pi): Hence, A 2 oV(Pi): Thus, by Lemma 4, Pi 2 MV
i :

Therefore, V is at least as manipulable as W :
)) To prove necessity assume that V is at least as manipulable as W : Hence, for

all i 2 N ,
MW

i �MV
i : (10)

Assume, to obtain a contradiction, that there exists x 2 K such that x 2 V eVi nV eWi
or x 2 DeVi nDeWi . We distinguish between these two cases.
Case 1: There exists x 2 V eVi nV eWi : Consider any P 0i 2 P such that t(P 0i ) = ;
satisfying in addition the following properties:

(i) BP 0iCP
0
ifxg if x =2 B and x 2 C;

(ii) AR0iB if A � B and x =2 B:

Three comments on the preference P 0i are appropriate. First, such preference

exists and because we assumed that jKj � 2, there exists C � K such that x 2 C
and fxg 6= C: Second, any pair of subsets of objects that are unrestricted by conditions
(i) and (ii) can be ordered arbitrarily by P 0i : Third, of course P

0
i is not separable since,

for instance, KP 0ifxg while all objects are bad.
Since x 2 V eVi nV eWi ; fxg 2 oW(P 0i ): Set A = fxg; T1 = ; and T2 = Cnfxg where

C is such that x 2 C and fxg 6= C (which exists because jKj � 2). Observe �rst that
A 2 oW(P 0i ) and, by (i) in the de�nition of P 0i , (AnT1) [ T2 = CP 0ifxg = A: Hence,
by Lemma 4, P 0i 2MW

i : Second, take any B 2 oV(P 0i ): Since x 2 V eVi and x =2 t(P 0i );
x =2 B: Let T2 � A be arbitrary. By (i) and (ii) in the de�nition of P 0i ; BR0iB [ T2:
Hence, by Lemma 4, P 0i =2MV

i : Thus, P
0
i 2MW

i nMV
i holds, which contradicts (10).
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Case 2: There exists x 2 DeVi nDeWi : Consider any P 00i 2 MW
i such that t(P 00i ) = K

satisfying in addition the following properties:

(i) BP 00i CP
00
i Knfxg if x 2 B and x =2 C;

(ii) AR00iB if B � A and x 2 B:

Three comments on the preference P 00i are also appropriate. First, such preference

exists and because we assumed that jKj � 2, there exists C � K such that x =2 C
and C 6= ;: Second, any pair of subsets of objects that are unrestricted by conditions
(i) and (ii) can be ordered arbitrarily by P 00i : Obviously, P

00
i is not separable since

;P 00i Knfxg while all objects are good.
Since x 2 DeVi nDeWi ; Knfxg 2 oW(P 00i ): Set �rst A = Knfxg; T2 = ; and T1 = C,

where C is such that x =2 C and C 6= ;: Observe that A 2 oW(P 00i ), x =2 (AnT1) [ T2
and (AnT1)[T2 6= ;: Then, by (i) in the de�nition of P 00i , (AnT1)[T2P 00i Knfxg = A:
Hence, by Lemma 4, P 00i 2 MW

i : Second, take any B 2 oV(P 00i ): Since x 2 DeVi and
x 2 t(P 00i ); x 2 B: Let T1 � B be arbitrary. By (i) and (ii) in the de�nition of

P 00i ; BR
00
iBnT1: Hence, by Lemma 4, P 00i =2 MV

i : Thus, P
00
i 2 MW

i nMV
i holds, which

contradicts (10). �

Next proposition identi�es those voting by committees without dummies that are

less manipulable. They have the properties that (i) the set of objects at which all

agents are not vetoers is a subset of the set of decisive objects of each agent, and (ii)

the set of objects at which each agent is not a vetoer is contained in the set of objects

at which some agent is decisive. But before stating it we present a simple remark

that will be used in its proof.

Remark 2 AssumeW : Pn ! 2K is a voting by committees without dummies. Then,

for all i 2 N , DeWi � V eWi :

To see why Remark 2 holds, assume there exists x 2 DeWi such that x 2 V eWi .
Then, Wm

x = ffigg. Hence, each j 6= i is a dummy agent at x, which is a contradic-
tion.

Proposition 2 Let W : Pn ! 2K be a voting by committees without dummies:

Then, there does not exist a voting by committee without dummies V : Pn ! 2K such

that W � V if and only if

\i2NV eWi � DeWj for all j 2 N; (11)

V eWj � [i2NDeWi for all j 2 N: (12)

Proof )) We distinguish between two cases.
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Case 1: There exist j 2 N and x 2 K such that x 2 \i2NV eWi and x =2 DeWj : De�ne
V as follows:

Vmy =
(
Wm
y if y 6= x

fS 2 Wm
x j j =2 Sg [ fSnfjg � N j S 2 Wm

x s.t. j 2 Sg [ ffjgg if y = x:

Since x =2 DeWj and W does not have dummies, ; =2 fSnfjg � N j S 2 Wm
x s.t.

j 2 Sg and V is a voting by committees well de�ned. Now, we prove that V is a
voting by committees without dummies. For each object y 6= x it is immediate to see
that Vy has no dummies since Wy does not have any. We prove that no agent is a

dummy at x at V. Let i 2 N: If i = j; it is immediate to see that i is not dummy
at x since fig 2 Vmx by de�nition. If i 6= j; there exists S 2 Wm

x such that i 2 S
(since W is a voting by committees without dummies). Hence, Snfjg 2 Vmx and i is

not dummy at x at V. Now, we prove that W � V. By, Theorem 1; it is su¢ cient

to prove that DeWi � DeVi and V eWi � V eVi for all i 2 N and that DeVj 6= DeWj : The
last inequality follows from the fact that x 2 DeVj and x =2 DeWj : Then, we only have
to show that DeWi � DeVi and V eWi � V eVi for all i 2 N:
Assume y 2 DeWi : Then, fig 2 Wm

y ; Hence, by de�nition of Vmy ; fig 2 Vmy : Hence,
y 2 DeVi :
Assume y 2 V eWi : Then, i 2 \S2Wm

y
S: Since y 2 V eWi ; and x 2 \i2NV eWi holds,

y 6= x: Hence, by de�nition of Vmy , j 2 \S2Vmy S and y 2 V eVi .
Case 2: Assume that there exist j 2 N and x 2 K such that x 2 V eWj and x =2
[i2NDeWi : To de�ne V, set S 0 = \S2Wm

x
S and consider any i 6= j: De�ne the collection

of subsets of agents Ti associated to i as follows:

T 2 Ti if and only if i =2 S 0 and T = fi; jg [ S 0:

De�ne now V by setting

Vmy =
(
Wm
y if y 6= x

fTigi6=j if y = x:

Since x 2 V eWj ; j =2 S 0: Therefore, Vmx is minimal. Furthermore, as x 2 V eWj andW is

a voting by committees without dummies; there exists S $ N such that j 2 S 2 Wm
x :

Therefore, S 0 $ Nnfjg: Hence, Vmx 6= ; and V is a voting by committees well de�ned.
Moreover, Vy is a committee without dummies because Wy is a committee without

dummies at any y 6= x: Furthermore, by its de�nition, Vx is a committee without
dummies. Then, V is a voting by committees without dummies. Now, we prove that
W � V. By Theorem 1; it is su¢ cient to show that DeWi � DeVi and V eWi � V eVi for
all i 2 N and that V eWj 6= V eVj : The last inequality follows from the fact that x =2 V eWj
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and x 2 V eVj : Hence, we only have to show that DeWi � DeVi and V eWi � V eVi for all
i 2 N:
Assume y 2 DeWi : Then, fig 2 Wm

y and, since x =2 [i2NDeWi ; y 6= x: Hence, by
the de�nition of Vmy ; fig 2 Vmy : Thus, y 2 DeVi :
Assume y 2 V eWi and y 6= x. Hence, by the de�nition of Vmy , y 2 V eVi .
Now, assume x 2 V eWi . Then, i 2 \S2Wm

x
S = S 0: Then, by de�nition of Vmx ,

x 2 V eVi .
() Assume (11) and (12) hold and let V : Pn ! 2K be a voting by committees

without dummies such that W � V. By Theorem 1; DeWi � DeVi and V eWi � V eVi
for all i 2 N: We prove that DeWi = DeVi and V e

W = V eVi for all i 2 N and hence,

W � V.
Assume there exist j 2 N and x 2 K such that x 2 DeVj nDeWj . By Remark 2,

x 2 V eVj nDeWj : Since V eWj � V eVj ; x 2 V eWj nDeWj : By (11), there exists i 6= j such
that x 2 V eWi . Thus, x 2 V eVi which contradicts that x 2 DeVj and i 6= j since

i =2 fjg 2 Vmx .
Now, assume there exist j 2 N and x 2 K such that x 2 V eVj nV eWj . Then,

x 2 V eWj nV eVj : By Remark 2, x 2 V eWj nDeVj : Since DeWi � DeVi ; x 2 V eWj nDeWj : By
(12), there exists i 6= j such that x 2 DeWi . Thus, x 2 DeVi which contradicts that
x 2 V eVj and i 6= j since j =2 fig 2 Vmx : �

5.2 Anonymity

A social choice function f : bPn ! 2K is anonymous if it is invariant with respect to

the agents�names; namely, for all one-to-one mapping � : N ! N and all P 2 bPn,
f(P1; :::; Pn) = f(P�(1); :::; P�(n)):

Remark 3 Let W : Pn ! 2K be an anonymous voting by committees. Then, for all

x 2 K, Wx does not have dummy agents.4

A voting by committees W : Pn ! 2K is a voting by quotas if for each object

x 2 K there exists an integer qWx between 1 and n such that

Wx = fS � N j jSj � qWx g:

Observe that Barberà, Sonnenschein and Zhou (1991) call voting by quota to a voting

by quotas that is in addition neutral in the sense that qWx = qWy for all x; y 2 K:
The following remark states that the subclass of anonymous voting by committees

coincides with all voting by quotas (not necessarily neutral).

4To see that, assume i is dummy at x: Then, by anonymity, j must be dummy at x for all j 2 N .
Hence, Wx = ; wich is a contradiction.
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Remark 4 A voting by committees is anonymous if and only if it is voting by quotas.

LetW : Pn ! 2K be a voting by quotas. Denote by AW1 and A
W
n the set of objects

in K that have quota 1 and quota n; respectively; namely, AW1 = fx 2 K j qWx = 1g
and AWn = fx 2 K j qWx = ng: Since for all voting by quotas W : Pn ! 2K it

holds that DeWi = AW1 and V eWi = AWn for all i 2 N; we obtain as a consequence of
Theorem 1 the following Corollary.

Corollary 1 Let W : Pn ! 2K and V : Pn ! 2K be two voting by quotas. Then,

V %W if and only if AV1 � AW1 and AVn � AWn :

The next corollary identi�es the class of anonymous voting by committees that

do not admit a less manipulable anonymous voting by committees. This class is the

family of all voting by quotas such that the quota of each object is either 1 or n:

Corollary 2 Let W : Pn ! 2K be a voting by quotas. Then, there does not exist a

voting by quotas (or an anonymous voting by committees without dummies) V : Pn !
2K such that W � V if and only if AWn = KnAW1 :

Let V bQ be the family of the all voting by quotas relative to a given set of agents

N (i.e., all anonymous voting by committees). Using Theorem 1 we can partition

the set of all voting by quotas V bQ into equivalence classes in such a way that each

equivalence class contains voting by quotas that are all equally manipulable. Denote

the (quotient) set of those equivalence classes by V bQ= �. Furthermore, we can
extend % on V bQ to the set of equivalence classes V bQ= � in a natural way. Denote
this extension by [%]: In this subsection we will show that the pair (V bQ= �; [%]) is
a complete upper semilattice; namely, any nonempty subset of equivalence classes in

V bQ= � has a supremum according to [%]: Formally, givenW 2 V bQ; denote by [W ]
the equivalence class of W with respect to �; i.e.,

[W ] = fV 2 V bQ j W � Vg:

By Corollary 1, [W ] can be identi�ed with the pair (AW1 ; AWn ): Denote by V bQ= � the
set of all equivalence classes induced by � on V bQ and consider the binary relation

[%] on V bQ= � de�ned as follows. For any pair [W ]; [V ] 2 V bQ= �; set

[W ][%][V ] if and only if W % V :

Since % is a preorder on V bQ; it follows that [%] is a partial order on V bQ= � :

Furthermore, by Corollary 1 ,

[V ][%][W ] if and only if AV1 � AW1 and AVn � AWn :

19



We can now state and prove the result of this subsection.

Proposition 3 Assume n � 3: Then, the pair (V bQ= �; [%]) is a complete upper
semilattice.

Proof Let ; 6= Z � V bQ= �. Consider any voting by quotas V : Pn ! 2K such

that

AV1 = \[W]2ZA
W
1 , A

V
n = \[W]2ZA

W
n ; and

for all x =2 AV1 [ AVn (if any) set qVx equal to any integer other than 1 and n (which
exists because n � 3). Since AW1 \ AWn = ; for all [W ] 2 Z; V is well de�ned as a
voting by quotas. By Corollary 1 and the de�nition of [V ], sup[%] Z = [V ]. Thus,
(V bQ= �; [%]) is a complete upper semilattice. �

Example 2 and Figure 5 below show the complete upper semilattice structure of

(V bQ= �; [%]) when jKj = 3:

Example 2 Assume n � 3 and let K = fx; y; zg be the set of objects. Given [W ] 2
V bQ we identify the equivalence class [W ] by the pair (AW1 ; AWn ) and furthermore we
denote fxg by x; fx; yg by xy and fx; y; zg by xyz; and similarly for fyg; fzg; fx; zg;
and fy; zg:

Figure 5
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From Corollaries 1 and 2 we obtain a complete upper semilattice of the set of equiv-

alence classes of voting by quotas. Figure 5 represents this partial order where if two

pairs (AW1 ; A
W
n ) and (A

V
1 ; A

V
n) are directly connected, the one above is more manip-

ulable than the one below and moreover, all connections that can be obtained by

transitivity are omitted.

6 Comparing all Voting by Committees

We start with a remark and a de�nition.

Remark 5 Let W : Pn ! 2K be a voting by committees and let x 2 K and i 2 N be

such that x 2 DuWi . Then, x 2 V eWi and x 2 DeWi :

We say that a voting by committees W : Pn ! 2K is dictatorial if there exists

i 2 N such that for all x 2 K; Wm
x = ffigg: Obviously, all dictatorial voting by

committees are strategy-proof in any domain and hence, they are less manipulable

than any other voting by committees. Thus, it is not necessary to include them in

the main result of the paper that we state below as Theorem 2.

Theorem 2 Let V : Pn ! 2K and W : Pn ! 2K be two non dictatorial voting by

committees. Then, V %W if and only if for all i 2 N;

DeVi � DeWi and V eVi � V eWi and DuVi � DuWi or (A)

(DeVi nDeWi ) [ (V eVi nV eWi ) = fxg = DuWi or (B)

DeWi \ V eWi = fxg = DuVi nDuWi : (C)

Before proving Theorem 2 we exhibit in Example 3 below two voting by commit-

tees that illustrate conditions (A), (B) and (C) above.

Example 3 Let N = f1; 2; 3g be the set of agents and K = fx; y; zg the set
of objects. Consider two voting by committees V and W de�ned by the following

(minimal) committees:

Vmx = ff1; 2g; f3gg Wm
x = ff3gg

Vmy = ff1g; f2gg Wm
y = ff1g; f2; 3gg

Vmz = ff3gg Wm
z = ff3gg:

We consider the decisive, vetoer and dummy sets of objects for each of the three

agents separately.

For agent 1, DeV1 = De
W
1 = fyg; V eV1 = V eW1 = ;, DuV1 = fzg and DuW1 = fx; zg:

Thus,

DeV1 = De
W
1 and V eV1 = V e

W
1 and DuV1 � DuW1 ,
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which means that condition (A) holds for agent 1. Observe that conditions (B) and

(C) do not hold for agent 1 since DuW1 = fyg and (DeV1 nDeW1 ) [ (V eV1 nV eW1 ) = ;,
and DeW1 \ V eW1 = K, respectively.

For agent 2, DeV2 = fyg; DeW2 = ;; V eV2 = V eW2 = ;, DuV2 = fzg and DuW2 =

fx; zg: Hence, DeV2 nDeW2 = fyg; V eV2 nV eW2 = ; and DuW2 = fyg: Thus,

(DeV2 nDeW2 ) [ (V eV2 nV eW2 ) = fyg = DuW2 ;

which means that condition (B) holds for agent 2. Observe that conditions (A) and

(C) do not hold for agent 2 since DeV2 " DeW2 , and DeW2 \ V eW2 = K, respectively.

For agent 3, DeV3 = De
W
3 = fx; zg; V eV3 = fzg; V eW3 = fx; zg, DuV3 = fyg and

DuW3 = ;: Hence, DeW3 \ V eW3 = fx; zg and DuV3 nDuW3 = fyg: Thus,

DeW3 \ V eW3 = fyg = DuV3 nDuW3 ;

which means that condition (C) holds for agent 3. Observe that conditions (A) and

(B) do not hold for agent 3 since DuV3 " DuW3 , and DuW3 = K, respectively.

Thus, by Theorem 2, V %W. Moreover, DuW1 nDuV1 = fxg; DuV1 = fx; yg and
DeV1 \ V eV1 = fx; y; zg: Hence, by Theorem 2, W % V does not hold. Thus, V � W.
We next exhibit a preference P1 such that P1 2MV

1 but P1 =2MW
1 : Let P1 be the

following preference:

fygP1fx; y; zgP1fy; zgP1fy; xgP1;P1fxgP1fzgP1fx; zg:

Let (P 01; P
0
2; P

0
3) 2 P3 be any preference pro�le with the property that t(P 01) = fx; yg;

t(P 02) = fxg and t(P 03) = fzg. Then,

V(P 01; P 02; P 03) = fx; y; zgP1fy; zg = V(P1; P 02; P 03)

and hence, P1 2 MV
1 . In the other hand, consider any arbitrary preference pro�le

(P �1 ; P2; P3) 2 P3: Then, for some (potentially empty subset) A � Knfyg;

W(P1; P2; P3) = fyg [ A and A � W(P �1 ; P2; P3) � fyg [ A :

Hence, by the de�nition of P1;

W(P1; P2; P3)R1W(P �1 ; P2; P3):

Thus, P1 =2MW
1 : �

Proof of Theorem 2 () To prove su¢ ciency, �x i 2 N and assume that Pi 2
MW

i : We want to show that Pi 2 MV
i . By Lemma 4, there exist A 2 oW(Pi),

T1 � t(Pi) \ A \DuWi and T2 � t(Pi) \ A \DuWi such that

(AnT1) [ T2PiA: (14)
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We distinguish among three cases, depending on whether (A), (B) or (C) holds.

Case 1: Suppose that (A) holds; namely, DeVi � DeWi and V eVi � V eWi and DuVi �
DuWi : Hence,

T1 � t(Pi) \ A \DuVi and T2 � t(Pi) \ A \DuVi : (15)

By Lemma 2, A 2 oV(Pi): By (14), (15) and Lemma 4, Pi 2MV
i :

Case 2: Suppose that (B) holds; namely, (DeVi nDeWi ) [ (V eVi nV eWi ) = fxg = DuWi :
Since x 2 (DeVi nDeWi ) [ (V eVi nV eWi ); either x 2 DeVi or x 2 V eVi : By Remark 5,
x 2 DuVi . Hence,

T1 � t(Pi) \ A \DuVi and T2 � t(Pi) \ A \DuVi : (16)

By (14), (16) and Lemma 4, it is su¢ cient to show that A 2 oV(Pi); or equivalently,
by Lemma 2, that t(Pi) \ DeVi � A and A � t(Pi) [ V eVi . We distinguish between
two subcases.

Case 2.1: Suppose x =2 t(Pi): Then, sinceDeVi nDeWi � fxg; t(Pi)\DeVi � t(Pi)\DeWi
holds. By assumption, A 2 oW(Pi). Hence, t(Pi) \DeWi � A. Thus,

t(Pi) \DeVi � A: (17)

Since x =2 t(Pi) andDuWi = fxg hold, we have that t(Pi)\DuWi = ; and t(Pi)\DuWi =

fxg. Moreover, since T1 � t(Pi) \ A \ DuWi , T2 � t(Pi) \ A \ DuWi and (14) hold,

we have that T1 = ; and T2 = fxg hold as well. Since T2 � A, x =2 A. Hence, since
A 2 oW(Pi); A � t(Pi) [ (V eWi nfxg). But the hypothesis that V eVi nV eWi � fxg we
have

A � t(Pi) [ V eVi : (18)

Case 2.2: Suppose x 2 t(Pi): Then, since DuWi = fxg, t(Pi) \ DuWi = fxg and
t(Pi) \DuWi = ;: Since T1 � t(Pi) \A \DuWi , T2 � t(Pi) \A \DuWi and (14) hold,

we have that T1 = fxg and T2 = ; hold as well. Since T1 � A, x 2 A: Hence, since
A 2 oW(Pi); (t(Pi) \DeWi ) [ fxg � A: But the hypothesis that DeVi nDeWi � fxg we
have

t(Pi) \DeVi � A: (19)

Since V eVi nV eWi � fxg and x 2 t(Pi), t(Pi)[V eWi � t(Pi)[V eVi . Furthermore, since
A 2 oW(Pi); A � t(Pi) [ V eWi . Thus,

A � t(Pi) [ V eVi : (20)

Case 3: Suppose that (C) holds; namely, DeWi \ V eWi = fxg = DuVi nDuWi : Since
x 2 DuVi ; by Remark 5, x 2 V eVi and x 2 DeVi . Hence,

DeVi � Knfxg = DeWi \ V eWi = DeWi \ V eWi � DeWi and (21)
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V eWi � DeWi [ V eWi = DeWi \ V eWi = fxg � V eVi . (22)

By Lemma 3, (21) and (22), oW(Pi) � oV(Pi): Hence, and since A 2 oW(Pi), A 2
oV(Pi). We want to prove that Pi 2 MV

i : By Lemma 4 and (14), it is su¢ cient to

show that

T1 � t(Pi) \ A \DuVi and T2 � t(Pi) \ A \DuVi (23)

hold. We distinguish between two subcases.

Case 3.1: Suppose x 2 t(Pi): As (C) holds, V eWi � fxg and Knfxg � DeWi . Hence,
by Lemma 2, oW(Pi) � ft(Pi)nfxg; t(Pi)g. By (14), A = t(Pi)nfxg: Then, since
x =2 A and x 2 t(Pi), x =2 T1 and x =2 T2 hold, respectively. Hence, and since

T1 � t(Pi) \ A \DuWi , T2 � t(Pi) \ A \DuWi and DuVi nDuWi = fxg hold, we have
that T1 � t(Pi) \ A \DuVi and T2 � t(Pi) \ A \DuVi hold as well.
Case 3.2: Suppose x =2 t(Pi): As (C) holds, V eWi � fxg and Knfxg � DeWi . Hence,
by Lemma 2, oW(Pi) � ft(Pi); t(Pi) [ fxgg. By (14), A = t(Pi) [ fxg: Then, since
x =2 t(Pi) and x 2 A, x =2 T1 and x =2 T2 hold, respectively. Hence, and since

T1 � t(Pi) \ A \DuWi , T2 � t(Pi) \ A \DuWi and DuVi nDuWi = fxg hold, we have
that T1 � t(Pi) \ A \DuVi and T2 � t(Pi) \ A \DuVi hold as well.

)) To prove necessity, assume V andW are non dictatorial voting by committees

and V %W ; i.e.,
MW

i �MV
i for all i 2 N: (24)

Fix i 2 N and assume that (A) and (B) do not hold. We will show that (C) holds;

i.e.,

DeWi \ V eWi = fxg = DuVi nDuWi :

Claim 1 If
��DuVi nDuWi �� � 2 and V %W ; then i is a dictator in W :

Proof of Claim 1 Assume x 2 DuVi nDuWi and suppose that there exists y 2 K such

that y =2 DeWi : Since
��DuVi nDuWi �� � 2 we can assume without loss of generality that

y 6= x. Let P 0i 2 P be any preference such that t(P 0i ) = fx; yg and satisfying in
addition the following properties:

(i) fx; ygP 0ifygP 0i;P 0ifxgP 0iA;
for all A =2 ffx; yg; fyg; ;; fxgg;

(ii) AR0iB if B \ t(P 0i ) � A \ t(P 0i ) and A \ t(P 0i ) � B \ t(P 0i );
for all A;B =2 ffx; yg; fyg; ;; fxgg:

The preference P 0i can be seen as having two separate blocks. The �rst one orders

the subsets fx; yg; fyg; ;; fxg in a nonseparable way. All other subsets are dispreferred
to each of these four subsets but, among those that are di¤erent to these four, any

set A that can be obtained from B by adding objects in t(P 0i ) and deleting objects in
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t(P 0i ) is preferred to B. Moreover, any pair of subsets of objects that are unrestricted

by conditions (i) and (ii) can be ordered arbitrarily by P 0i :

Since y =2 DeWi ; fxg 2 oW(P 0i ): Set A = fxg; T2 = ; and T1 = fxg: Observe
that A 2 oW(P 0i ) and, by (i) in the de�nition of P 0i , (AnT1) [ T2 = ;P 0ifxg = A:

Hence, by Lemma 4, P 0i 2MW
i : Take now any A 2 oV(P 0i ): Let T1 � t(P 0i )\A\DuVi

and T2 � t(P 0i ) \ A \ DuVi be arbitrary. We can assume that either T1 6= ; or
T2 6= ;; otherwise, A = (AnT1)[ T2 and AI 0i(AnT1)[ T2 trivially. Since x 2 DuVi and
t(P 0i ) = fx; yg; T1 � fyg and x; y =2 T2: We distinguish between two cases.
Case 1: If (AnT1)[ T2 =2 ffx; yg; fyg; ;; fxgg then, by (i) and (ii) in the de�nition of
P 0i , AR

0
i(AnT1) [ T2:

Case 2: If (AnT1)[T2 2 ffx; yg; fyg; ;; fxgg then T2 = ; and T1 = fyg: Hence, y 2 A
and (AnT1)[T2 = Anfyg: Since (AnT1)[T2 2 ffx; yg; fyg; ;; fxgg and (AnT1)[T2 =
Anfyg; either A = fyg and (AnT1)[T2 = ; or else A = fx; yg and (AnT1)[T2 = fxg:
But then, and according to (i) in the de�nition of P 0i , AP

0
i (AnT1) [ T2 must hold.

Hence, by Lemma 4, P 0i =2MV
i in both cases. Thus, P

0
i 2MW

i nMV
i , which contradicts

that V % W. Therefore, we can not suppose that there exists y 2 K such that

y =2 DeWi : Thus,
DeWi = K: (25)

Now, suppose that there exists y 2 K such that y 2 V eWi : Since x 2 DuVi nDuWi and��DuVi nDuWi �� � 2 we can assume without loss of generality that y 6= x. Let P 00i 2 P
be any preference such that t(P 00i ) = fxg and satisfying in addition the following
properties:

(i) fxgP 00i ;P 00i fygP 00i fx; ygP 00i A;
for all A =2 ffxg; ;; fyg; fx; ygg;

(ii) AR00iB if B \ t(P 00i ) � A \ t(P 00i ) and A \ t(P 00i ) � B \ t(P 00i );
for all A;B =2 ffxg; ;; fyg; fx; ygg:

The preference P 00i can also be seen as having two separate blocks. The �rst one

orders the subsets fxg; ;; fyg; fx; yg in a nonseparable way. All other subsets are
dispreferred to each of these four subsets but, among those that are di¤erent to these

four, any set A that can be obtained from B by adding objects in t(P 00i ) and deleting

objects in t(P 00i ) is preferred to B. Moreover, any pair of subsets of objects that are

unrestricted by conditions (i) and (ii) can be ordered arbitrarily by P 00i :

Since y 2 V eWi ; fx; yg 2 oW(P 00i ): Set A = fx; yg; T1 = fxg and T2 = ;: Observe
that A 2 oW(P 00i ) and, by (i) in the de�nition of P 00i , (AnT1)[T2 = fygP 00i fx; yg = A:
Hence, by Lemma 4, P 00i 2MW

i : Take now any A 2 oV(P 00i ): Let T1 � t(P 00i )\A\DuVi
and T2 � t(P 00i )\A\DuVi be arbitrary. We can assume that either T1 6= ; or T2 6= ;;
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otherwise, A = (AnT1) [ T2 and AI 00i (AnT1) [ T2 trivially. Since x 2 DuVi and

t(P 00i ) = fxg; T1 = ; and x =2 T2: We distinguish between two cases.
Case 1: If (AnT1)[ T2 =2 ffxg; ;; fyg; fx; ygg then, by (i) and (ii) in the de�nition of
P 00i , AR

00
i (AnT1) [ T2:

Case 2: If (AnT1)[ T2 2 ffxg; ;; fyg; fx; ygg then, T2 � fx; yg: Since T1 = ;, x =2 T2
and T2 6= ;, T2 = fyg and y =2 A: Then, either A = ; and (AnT1) [ T2 = fyg or else
A = fxg and (AnT1) [ T2 = fx; yg: But then, and according to (i) in the de�nition
of P 00i ; AP

00
i (AnT1) [ T2 must hold.

Hence, by Lemma 4, P 00i =2 MV
i in both cases. Thus, P

00
i 2 MW

i nMV
i , which contra-

dicts that V % W. Therefore, we can not suppose that there exists y 2 K such that

y 2 V eWi . Thus,
V eWi = ;: (26)

By (25) and (26), i is a dictator in W : This �nishes the proof of Claim 1. �

By hypothesis, W is non dictatorial. By Claim 1,��DuVi nDuWi �� � 1:
We distinguish between two cases.

Case I: Suppose that DuVi nDuWi = fxg: We want to show that DeWi \ V eWi = fxg:
As x 2 DuVi nDuWi ; applying the same argument than the one used in the proof of
Claim 1, we can obtain that DeWi � fxg and V eWi � fxg: Therefore,

DeWi \ V eWi = DeWi [ V eWi � fxg: (27)

Furthermore, since i is not a dictator in W, DeWi 6= ; or V eWi 6= ;: Hence, by
(27),

DeWi \ V eWi = DeWi [ V eWi = fxg = DuVi nDuWi :

Case II: Suppose that DuVi nDuWi = ;:We will obtain a contradiction. Since (A) does
not hold there exists x 2 K such that x 2 (DeVi nDeWi ) [ (V eVi nV eWi ):
Claim 2 DuWi = fxg:
Proof of Claim 2 We distinguish between two cases.

Case 1: Assume x 2 DeVi nDeWi and there exists y 6= x such that y 2 DuWi : Let

P 000i 2 P be any preference such that t(P 000i ) = fx; yg and satisfying in addition the
following properties:

(i) fx; ygP 000i fxgP 000i ;P 000i fygP 000i A
for all A =2 ffx; yg; fyg; ;; fxgg;

(ii) AR000i B if B \ t(P 000i ) � A \ t(P 000i ) and A \ t(P 000i ) � B \ t(P 000i );
for all A;B =2 ffx; yg; fyg; ;; fxgg:
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As previously the preference P 000i can also be seen as having two separate blocks

(we omit the details).

Since x 2 DeVi nDeWi ; fyg 2 oW(P 000i ): Set A = fyg; T2 = ; and T1 = fyg: Observe
that A 2 oW(P 000i ) and, by (i) in the de�nition of P 000i , (AnT1) [ T2 = ;P 000i fyg = A:
Hence, by Lemma 4, P 000i 2 MW

i : Take now any A 2 oV(P 000i ): Since x 2 DeVi nDeWi
and x 2 t(P 000i ); x 2 A: Let T1 � t(P 000i ) \ A \ DuVi and T2 � t(P 000i ) \ A \ DuVi be
arbitrary. We can assume that either T1 6= ; or T2 6= ;; otherwise, A = (AnT1) [ T2
and AI 000i (AnT1) [ T2 trivially. Since t(P 000i ) = fx; yg; T1 � fx; yg and x; y =2 T2: Now
we will consider two subcases.

Subcase 1.1: If (AnT1)[T2 =2 ffx; yg; fyg; ;; fxgg then, by (i) and (ii) in the de�nition
of P 000i ; AR

000
i (AnT1) [ T2:

Subcase 1.2: If (AnT1) [ T2 2 ffx; yg; fyg; ;; fxgg then, T2 = ;; otherwise, if
there exists z 2 T2nfx; yg then z 2 (AnT1) [ T2 and therefore (AnT1) [ T2 =2
ffx; yg; fyg; ;; fxgg: Hence, T1 6= ; and (AnT1) [ T2 = AnT1: We distinguish among
three di¤erent subcases.

Subcase 1.2.1: T1 = fxg: Then, x 2 A and (AnT1) [ T2 = Anfxg: Since (AnT1) [
T2 2 ffx; yg; fyg; ;; fxgg and (AnT1) [ T2 = Anfxg; either (AnT1) [ T2 = fyg and
A = fx; yg or else (AnT1)[ T2 = ; and A = fxg (since x 2 A). But in both cases, by
(i) in the de�nition of P 000i ; AP

000
i (AnT1) [ T2.

Subcase 1.2.2: T1 = fyg: Then, y 2 A and (AnT1)[T2 = Anfyg: Since (AnT1)[T2 2
ffx; yg; fyg; ;; fxgg and (AnT1) [ T2 = Anfyg; (AnT1) [ T2 = fxg and A = fx; yg
(since x 2 A). But then, by (i) in the de�nition of P 000i ; AP 000i (AnT1) [ T2.
Subcase 1.2.3: T1 = fx; yg: Then, x; y 2 A and (AnT1) [ T2 = Anfy; xg: Since
(AnT1)[ T2 2 ffx; yg; fyg; ;; fxgg and (AnT1)[ T2 = Anfy; xg; (AnT1)[ T2 = ; and
A = fx; yg (since x; y 2 A). But then, by (i) in the de�nition of P 000i ; AP 000i (AnT1)[T2.
Hence, by Lemma 4, P 000i =2MV

i . Thus, P
000
i 2MW

i nMV
i holds, which contradicts that

V %W.
Case 2: Assume x 2 V eVi nV eWi and there exists y 6= x such that y 2 DuWi . Let
P 0000i 2 P be any preference such that t(P 0000i ) = fyg and satisfying in addition the
following properties:

(i) fygP 0000i ;P 0000i fxgP 0000i fx; ygP 0000i A
for all A =2 ffx; yg; fyg; ;; fxgg;

(ii) AR0000i B if B \ t(P 0000i ) � A \ t(P 0000i ) and A \ t(P 0000i ) � B \ t(P 0000i );
for all A;B =2 ffx; yg; fyg; ;; fxgg:

As previously the preference P 0000i can also be seen as having two separate blocks

(we omit the details).

27



Since x 2 V eVi nV eWi ; fx; yg 2 oW(P 0000i ): Set A = fx; yg; T1 = fyg and T2 = ;:
Observe that A 2 oW(P 0000i ) and, by (i) in the de�nition of P

0000
i , (AnT1) [ T2 =

fxgP 0000i fx; yg = A: Hence, by Lemma 4, P 0000i 2 MW
i : Take now any A 2 oV(P 0000i ):

Since x 2 V eVi nV eWi and x =2 t(P 0000i ); x =2 A: Let T1 � t(P 0000i ) \ A \ DuVi and
T2 � t(P 0000i ) \ A \ DuVi be arbitrary. We can assume that either T1 6= ; or T2 6= ;;
otherwise, A = (AnT1) [ T2 and AI 0000i (AnT1) [ T2 trivially. Since t(P 0000i ) = fyg;
T1 � fyg and y =2 T2: We distinguish between two subcases.
Case 2.1: If (AnT1) [ T2 =2 ffx; yg; fyg; ;; fxgg then, by (i) and (ii) in the de�nition
of P 0000i ; AR

0000
i (AnT1) [ T2:

Case 2.2: If (AnT1)[T2 2 ffx; yg; fyg; ;; fxgg then, T2 � fxg:We distinguish among
three di¤erent subcases.

Subcase 2.2.1: T1 = ; and T2 = fxg: Then, (AnT1)[T2 = A[fxg: Since (AnT1)[T2 2
ffx; yg; fyg; ;; fxgg and (AnT1) [ T2 = A [ fxg; either (AnT1) [ T2 = fx; yg and
A = fyg or else (AnT1) [ T2 = fxg and A = ; (since x =2 A). But then, by (i) in the
de�nition of P 0000i ; AP

0000
i (AnT1) [ T2.

Subcase 2.2.2: T1 = fyg and T2 = ;: Then, y 2 A and (AnT1) [ T2 = Anfyg: Since
(AnT1) [ T2 2 ffx; yg; fyg; ;; fxgg and (AnT1) [ T2 = Anfyg; either (AnT1) [ T2 = ;
and A = fyg or else (AnT1) [ T2 = fxg and A = fyg (since x =2 A). But then, by (i)
in the de�nition of P 0000i AP 0000i (AnT1) [ T2.
Subcase 2.2.3: T1 = fyg and T2 = fxg: Then, y 2 A and (AnT1)[T2 = Anfyg[ fxg:
Since (AnT1) [ T2 2 ffx; yg; fyg; ;; fxgg and (AnT1) [ T2 = Anfyg [ fxg; (AnT1) [
T2 = fxg and A = fyg (since x =2 A). But then, by (i) in the de�nition of P 0000i ;
AP 0000i (AnT1) [ T2.
Hence, by Lemma 4, P 0000i =2MV

i . Thus, P
0000
i 2MW

i nMV
i holds, which contradicts

that V %W.
Therefore, DuWi � fxg; Furthermore, and since we have assumed without loss of

generality that DuWi 6= ; (see (3));

DuWi = fxg: (28)

This �nishes the proof of Claim 2. �
Finally, assume there exists y 6= x such that y 2 (DeVi nDeWi ) [ (V eVi nV eWi ): By

Claim 2, DuWi = fyg which contradicts (28). Therefore,

(DeVi nDeWi ) [ (V eVi nV eWi ) = fxg = DuWi ;

which contradicts that (B) does not hold. Therefore, Case II is not possible. �
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