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Abstract: We consider the class of voting by committees to be used by a
society to collectively choose a subset of a given set of objects. We offer a
simple criterion to compare two voting by committees without dummy agents
according to their manipulability. This criterion is based on the set-inclusion
relationships of the two corresponding decisive and vetoer sets of agents. We
show that the binary relation “to be as manipulable as” endows the set of
equivalence classes of anonymous voting by committees (i.e., voting by quotas)
with a complete upper semilattice structure, whose supremum is the equivalence
class containing all voting by quotas with the property that the quota of each
object is strictly larger than one and strictly lower than the number of agents.
Finally, we extend the comparability criterion to the full class of all voting by

committees.
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1 Introduction

Consider a set of agents who collectively have to choose a subset of a given set of
objects K. There are many social choice problems where the set of social alternatives
is the family of all subsets of a given set. For instance, when the set of agents is
the tenured members of a department and the set of objects is the set of junior
candidates under consideration to become new assistant professors. Or a scientific
society whose current fellows have to elect new fellows from a given list of candidates.
Voting by committees have been proposed to solve this class of problems. One of
the main reasons why voting by committees are attractive social choice procedures is
that they constitute the class of all strategy-proof social choice functions respecting
voter sovereignty (all subsets of objects can be chosen) on the domain of separable
preference profiles.! An agent’s preferences are separable on the family of all subsets
of objects 2K if they are guided by the partition separating the set of objects into the
set of good objects (as singleton sets, objects that are better than the empty set) and
bad objects (as singleton sets, objects that are worse than the empty set). Adding
a good object to any set leads to a better set, while adding a bad object leads to a
worse set. Note that all additively representable preferences are separable.

Voting by committees are attractive because they induce good strategic incentives
to agents, whenever they have separable preferences. But in addition they are appeal-
ing because they are simple. Following Barbera, Sonnenschein and Zhou (1991) voting
by committees are defined by a collection of monotonic families of winning coalitions
(committees), one for each object, W = (W,).cx. Then the choice of the subset of
objects made by W at a preference profile is done object-by-object as follows. Fix a
voting by committees W = (W, ).cx and a preference profile, and consider object z.
Then, = belongs to the chosen set (the one selected by W at the preference profile)
if and only if the set of agents whose best subset of objects contains z belongs to the
committee W,. Hence, voting by committees can be seen as a family of extended
majority voting (one for each object) where the two alternatives at stake are whether
or not x belongs to the collectively chosen subset of objects.

An especially interesting subclass of voting by committees are those without
dummy agents. Agent i is dummy at object x in the committee W, if ¢ does not
belong to any minimal winning coalition of W, ; that is, i’s opinion about object x is

not used at all in the decision of whether or not = belongs to the chosen subset. And

L A strategy-proof social choice function leads truth-telling as a weakly dominant strategy in the
direct revelation mechanism induced by the social choice function at all preference profiles of its
domain. See Barbera, Sonnenschein and Zhou (1991) for a description of this class of problems and

this axiomatic characterization of voting by committees.



among the class of voting by committees without dummy agents the subclass of voting
by quotas is particularly appealing. A voting by committees is voting by quotas if the
set of winning coalitions for each object x are the sets of agents with equal or larger
cardinality than a given strictly positive integer ¢,, the quota of x. Hence, in any
voting by quotas all agents play the same role when determining whether or not ob-
jects belong to the chosen subset. Using Barbera, Sonnenschein and Zhou (1991) it is
easy to see that the class of all anonymous and strategy-proof social choice functions
satisfying voter sovereignty on the domain of separable preference profiles coincides
with all voting by quotas.

Again, voting by committees are simple for two reasons. First, they are tops-only
because they only depend on the profile of top subsets of objects, one for each agent.
Second, they are object-by-object decomposable, and this is precisely the reason why
they are strategy-proof on the domain of separable preference profiles: agent i, when
considering whether or not to give support to object x, does not need to know the
other set of elected objects because i wants to support x if and only if z is a good
object as a singleton set (i.e., x belongs to the best subset of objects) since its addition
improves, by separability, any subset of objects.

However, in many applications the set of conceivable preferences of agents may
be larger than the set of separable preferences: when adding an object to a set, some
complementarities or substitutable considerations with respect to objects already in
the set may become relevant, yet they are not admissible if preferences are separable.
For instance, although a voter for new assistant professors in the department considers
that candidates = and y are the best and the second best candidates, both working
in a similar research area, the voter may consider that, for the sake of diversity, the
subset {x,z} is better than the subset {x,y, 2}, where 2 is a third good candidate
who works in a very different area from the one that x and y work. For this and
similar cases we know that non-trivial voting by committees become manipulable,
once non separable preferences are admitted in the domain where they operate. But
since separable preferences may be conceivable too, voting by committees have still
to be used in order to guarantee that the social choice procedure remains strategy-
proof on the separable subdomain of preference profiles. But the large mechanism
design literature studying strategy-proof social choice functions has mainly neglected
the potential interest of comparing two social choice functions according to their
manipulability. Our contribution in this paper is to compare, by applying a criterion
we introduced in Arribillaga and Mass6 (2015), voting by committees according to
their manipulability when they have to operate on the full domain of preferences on
2K As we have already argued in Arribillaga and Massé (2015) the manipulability of

a social choice function does not indicate the degree of its lack of strategy-proofness.



There may be only one instance at which the social choice function is manipulable
or there may be many such instances. The mechanism design literature that has
focused on strategy-proofness has not distinguished between these two situations; it
has declared both social choice functions as being not strategy-proof.>

As in Arribillaga and Massé (2015) our criterion to compare two social choice
functions takes the point of view of individual agents. We say that an agent is able to
manipulate a social choice function at a preference (the true one) if there exist a list
of preferences, one for each one of the other agents, and another preference for the
agent (the strategic one) such that if submitted, the agent obtains a strictly better
alternative according to the true preference. Consider two voting by committees, W
and V), operating on the universal domain of preference profiles. Assume that for
each agent the set of preferences under which the agent is able to manipulate WV is
contained in the set of preferences under which the agent is able to manipulate V.
Then, from the point of view of all agents, ) is more manipulable than V. Hence, we
think that WV is unambiguously a better voting by committees than )V according to
the strategic incentives induced to agents. Often, it may be reasonable to think that
agents’ preferences are separable, but if the designer foresees that agents may have
also non separable preferences, then ¥V may be a better choice than V if strategic
incentives are relevant and important for the designer.

Before presenting our general result in Theorem 2, we focus on voting by commit-
tees without dummy agents. In Theorem 1 we provide a simple necessary and suf-
ficient condition for the comparability of two voting by committees without dummy
agents in terms of their manipulability. This condition reflects the power of agents to
influence the choice of the objects in the two voting by committees. Two notions are
relevant to describe this power. Fix a voting by committees W = (W, ).ck, an agent
i, and an object x. We say that agent i is decisive at x if the singleton set {i} belongs
to W,; that is, {i} is a winning coalition of x and hence, i can impose object x in the
final chosen subset by voting for z (i.e., by declaring that = belongs to the top subset
of objects). We say that agent i is vetoer at x if i belongs to all winning coalitions of
W,; that is, ¢ can make sure that z is not in the final chosen subset by not voting for
x (i.e., by declaring that = does not belong to the top subset of objects). Then, the
voting by committees without dummy agents V is more manipulable than the voting
by committees without dummy agents »V if and only if, for all agents, the decisive
and vetoer sets of objects at V' are contained respectively in the decisive and vetoer
sets of objects at WW. Then we show that, when the number of agents n is larger

or equal to 3, the binary relation “to be at least as manipulable as” on the family

2Kelly (1977), Campbell and Kelly (2009), Pathak and Sénmez (2013) and Arribillaga and Massé

(2015) are exemptions.



of equivalence classes of voting by quotas (i.e., anonymous voting by committees) is
a complete upper semilattice, whose maximal element is the equivalence class con-
taining all voting by quotas where all quotas are strictly larger than 1 and strictly
smaller than n. In the other hand, the equivalence classes of voting by quotas that are
not more manipulable than any other equivalence class of voting by quotas are those
where all objects have either quota 1 or quota n. We also identify, in Proposition 2,
among all voting by committees without dummies those that are less manipulable.
They can be characterized by two properties. First, the set of objects at which all
agents are not vetoers is a subset of the set of decisive objects of each agent and
second, the set of objects at which each agent is not a vetoer is contained in the set of
objects at which some agent is decisive. In Theorem 2 we give the necessary and suf-
ficient condition for the comparability according to their manipulability of two voting
by committees, potentially with dummy agents. The condition is more involved that
the one used in the comparability of voting by committees without dummy agents
and it incorporates, in addition to the inclusion of decisive and vetoer sets of objects,
the inclusion of dummy sets of objects. However, the inclusions of the three sets
of objects are not necessary, but we show that they may not hold only in two very
special circumstances, that we fully identify.

The paper is organized as follows. Section 2 contains preliminary notation and
definitions. Separable preferences and voting by committees are defined in Section
3. Section 4 presents preliminary results. Section 5 compares voting by committees
without dummy agents and Theorem 2 in Section 6 provides the complete criterion

to compare any pair of voting by committees.

2 Preliminaries

Agents are the elements of a finite set N = {1,...,n}. The set of objects is a finite
set K. We assume that n > 2 and |K| > 2. Generic agents will be denoted by ¢ and
J and generic objects by = and y. Subsets of agents will be represented by S and T
and subset of objects by A and B. The society formed by the set of agents N has to
choose a subset of K. Hence, the set of alternatives is the family 2% of all subsets of
objects. Given S C N and A € 25 we denote by |S| and |A| their cardinalities and
by S and A their complement sets; namely, S = N\ S and A = 2K\ A,

The (strict) preference of each agent i € N on the set of alternatives is a linear
order P; on 2%; namely, P, is a complete, antisymmetric and transitive binary relation
on 2K, As usual, let R; denote the weak preference relation on 2% induced by P;;
namely, for all A, B € 2%, AR;B if and only if either AP,B or A = B. The top

alternative according to P; is the subset of objects that is preferred to any other



alternative. We denote by ¢(P;) the top of B;; i.e., t(P;)P;A for all A € 25\ {t(P)}.
Let P be the set of all preferences on 2X. A preference profile P = (P, ..., P,) € P"
is an n-tuple of preferences, one for each agent. To emphasize the role of agent ¢ a
preference profile P will be represented by (P;, P_;).

A Cartesian product subset Pr C P of preference profiles (or the set P itself)
will be called a domain. A social choice function is a function f : P s 2K selecting,
for each preference profile P in the domain 73”, a subset of objects f(P) € 2¥.

A social choice function f : P — 2K gatisfies voter sovereignty if for all A € 2K
there exists a profile P € P such that f(P) = A; namely, f is onto.

A social choice function f : P — 2K s tops only if for all P, P’ € P such that
t(P) =t(P!) foralli € N, f(P) = f(P').

Social choice functions require each agent to report a preference on a domain P.
A social choice function is strategy-proof on P if it is always in the best interest
of agents to reveal their preferences truthfully. Formally, a social choice function
f: P — 2K ig strategy-proof if for all P € 73”, alli € N, and all P! € 73,

(P, PR f(P], P;). (1)

That is, a social choice function f : P 2K ig strategy-proof (on the domain 7/5”)
if, for each preference profile P € 73”, truth-telling is a weakly dominant strategy for
each agent in the normal form game induced by f at P. In the sequel we will say
that a social choice function f : P — 2K is not manipulable by i € N at P, € P if
(1) holds for all (P!, P_;) € P". To compare social choice functions according to their
manipulability, our reference set of preferences will be the full set of preferences P.

The set of manipulable preferences of agent i € N at f : P* — 25 is given by
ML ={P, € P| (P, P_))P.f(P;, P;) for some (P, P_;) € P"}.

Obviously, a social choice function f : P™ — 2K is strategy-proof if and only if M{ =
for all i € N. We say that f : P* — 2% is more manipulable than g : P"* — 2K for
i€ Nif MY C M.

Now, we introduce our criteria to compare social choice functions according to

their manipulability.

Definition 1 A social choice function f : P" — 2K is at least as manipulable as
social choice function g : P* — 2K if M9 C M! for alli € N.

Definition 2 A social choice function f : P" — 2K is equally manipulable as social

choice function g : P* — 2K if f is at least as manipulable as g and vice versa; i.e.,
M= M! forallie N.



Definition 3 A social choice function f : P* — 2K is more manipulable than social
choice function g : P* — 25 if f is at least as but not equally manipulable as social
choice function g; i.e., M{ C /\/lfc for all i € N and there exists j € N such that
M? g M.

Given two social choice functions f : P* — 25 and g : P" — 25 we write (i)
f 7 g to denote that f is at least as manipulable as g, (ii) f ~ g to denote that f
is equally manipulable as ¢, and (iii) f > ¢ to denote that f is more manipulable
than g. Obviously, there are many pairs of social choice functions that can not be

compared according to their manipulability.

3 Separable Preferences and Voting by Commit-

tees

Barbera, Sonnenschein and Zhou (1991) characterizes, on the restricted domain of
separable preferences, the family of all strategy-proof social choice functions satisfying
voter sovereignty as the class of voting by committees. A preference P; of agent i is
separable if the division between good objects ({x}P;0)) and bad objects (0 P;{z})
guides the ordering of subsets in the sense that adding a good object leads to a better

set, while adding a bad object leads to a worse set. Formally,

Definition 4 An agent i’s preference P; € P on 2K is separable if for all A € 2%
and x ¢ A,
AUA{x}PA if and only if {x}P;).

Let S be the set of all separable preferences on 2%. Observe that for any separable
preference its top is the subset of good objects. That is, for any separable preference
P es,

t(R) = {z € K [{z}P0}.

The following remark characterizes separable preferences. It follows from transitivity
and says that if we modify any given set of objects A by removing good objects and

adding bad objects, the new set is less preferred.

Remark 1 A preference P; is separable if and only if for all A € 25, Ty C t(P) N A
and Ty C t(P;) N A,
AR;(A\Ty) U T5.



We now define the class of social choice functions known as voting by committees.
Let N be a set of agents and © € K be an object. A committee W, for z is a
non-empty set of non-empty coalitions (subsets) of N, which satisfies the following

monotonicity condition:
M eW,and M C M'] = M eW,.

A social choice function f : P"* — 2K is a wvoting by committees if for each z € K
there exists a committee W, such that for all P € P,

xe€ f(P)ifand only if {i € N |z € t(P)} € W,. (2)

Observe that voting by committees are very simple. They are tops-only and the
selected subset of objects at each preference profile is obtained in a decomposable
way, object-by-object. Barbera, Sonnenschein and Zhou (1991) characterizes this

class when they operate on the separable domain as follows.

Proposition 1 (Barbera, Sonnenschein and Zhou, 1991) A social choice function
f: 8" — 2K is strategy-proof and satisfies voter sovereignty if and only if it is voting

by committees.

4 Preliminary Results

Let W, be a committee for object © € K. The subset of agents M € W, is a minimal
winning coalition on W, if there is no M’ € W, such that M’ C M. Given a committee
W, we denote by W." the set of its minimal winning coalitions.

Assume f : P" — 2K is a voting by committees and let W = (W,).cx be its
associated family of committees, one for each object. Abusing notation we will often
write f directly as W : P" — 2K, hence, for P € P*, W(P) will denote the subset of
objects chosen by the voting by committees WV at P.

Let W be a voting by committees. We define three different notions of power that
agents may have at ¥V with respect to their role on the choice of the subset of objects.
These notions will be relevant to compare voting by committees according to their
manipulability.

First, agent 7 is dummy at x if 7 does not belong to any minimal winning coalition
on W,; hence 7 does not play any role on the choice of whether or not x belongs to the
chosen set of objects according to YW. The set of objects at which agent 7 is dummy,

given W, is defined as

Du)Y = {z € K|S € W such that i € S}.



We say that a voting by committees W : P* — 2K has no dummies if, for all i € N,
Du)Y = (). Without loss of generality we assume that no agent is dummy at all objects.
That is, for all i € N,

Du)¥ # K; (3)
otherwise if Du)¥ = K, then MY = () and therefore we may proceed by setting
N = N\{i}.

Second, agent i is decisive at x if i, as a singleton set, belongs to W, ; hence, ¢ can

impose object x by declaring it as an element in the top subset of objects. The set

of objects at which agent ¢ is decisive, given W, is defined as
DelV ={xc K| {i} ¢ W,}.

Third, agent ¢ is a vetoer at x if ¢ belongs to all coalitions on W, ; hence, i can
veto object = by not declaring it as an element in the top subset of objects. The set

of objects at which agent 7 is vetoer, given W, is defined as
VeV ={zeK|ie () S}
SEW;

Example 1 below illustrates how voting by committees work and the three notions

of power.

Example 1 Let N = {1,2,3,4} be the set of agents and K = {x,y, z,w} the set
of objects. Consider the voting by committees WV defined by the following (minimal)
committees:
Wyt = {SCc NS =2},
W;n = {{1’2}a{273}}7
wr = {{1,2,3,4}}, and
Wy = {{1}1.{4}}.
Take any pair of preference profiles P, P’ € P* with the properties that
t<P1> = {l‘,y}, t(PQ) = {yuw}v t<P3) = {xvy}v and t<P4) = {y7 Z,UJ} and
t(P) = {yh () ={zw}, t(P3) ={y,z}, and t(F}) = {w}.
Then, W(P) = {z,y,w} and W(P’) = {w}. Observe that the sets related with the
power of the agents at W are:
Du¥ = 0, Duy’ = {w}, Duy’ = {w}, and Du}” = {y},
DeV = {w}, DeYY =0, De¥¥ =0, and De}¥ = {w}, and
Ve}/v = {2}7 Ve]Q/V = {y,z}, Veg’:v = {Z}7 and Ve}fv = {Z} [

8



Our first preliminary result states that agent ¢ cannot affect the choice of the

objects at which 7 is a dummy agent.

Lemma 1 Let W : P" — 25 be a voting by committees. Then, for all (P, P_;) € P"
and P € P,
W(P;, P_;) N Du)Y = W(P!, P_;) N Du)".

Proof Fix P_; € P" ! It will be sufficient to show that, for any pair P;, P/ € P,
W(P,, P_;)N Du?Y € W(P!, P_;). Assume x € W(P;, P_;) N Du)V. Then, there exists
S € W™ such that z € t(P;) for all j € S. Since z € Du)V, i ¢ S. Thus, x €
W(F/, P_,). _

The comparability between two voting by committees in terms of their manipu-
lability will relay strongly on the inclusion relationship between the two induced sets
of alternatives that may be selected by them, once the preference of a fixed agent i

is given.

Definition 5 Let f : P" — 25 be a social choice function and let P; € P. The set
of options left open by P, € P at f is defined as follows:

of (P) ={Ac2X| f(P,P.,) = A for some P_; € P"'}.

Given two subsets of objects A, B € 25 such that A C B let [A, B] be the family
of all subsets of objects that can be obtained from A by adding objects in B\A.
Namely, for any pair of alternatives A C B C K,

[A,Bj]={C CK|AcCCcC B}.

Although imperfectly, to obtain an intuitive geometric idea, the set [A, B] can be seen
as the elements in the cone lying between A and B, where [(), 2%] would be the cone

containing all subsets of K (see Figure 1 below).

2K
B

v

Figure 1



Next lemma characterizes the set of options left open by P; at W in terms of
t(P;) and the sets of objects at which i is decisive and non-vetoer. This result plays
a crucial role in the sequel and it will be intensively used. The intuition why it holds
is as follows. Fix a preference P; € P. First, any subset of objects belonging to the
set of options left open by P; has to contain the set of good objects according to P,
for which 7 is simultaneously decisive at them; this is so because agent ¢ has voted for
them and ¢ has the power to include them. Second, any subset of objects in the set of
options left open by P; has to be contained in the set made by the union of the set of
good objects according to P; and the subset of objects at which ¢ is not a vetoer; this
is so because any object for which agent ¢ has not voted for and simultaneously 7 is a
vetoer at will never belong to the chosen subset of objects. Moreover, any subset of
objects that does satisfy the two conditions above will belong to the set of option left
open by P; at VW because, whenever all remaining agents declare this set as their top
subset of objects, it will be selected by WV since the vote of 7 is not required against
the unanimous vote of the remaining set of agents because 7 is not a vetoer. Figure

2 illustrates the set of options left open by P; at W.

2K

t(P)yuVvel

i

Figure 2

Lemma 2 Let W : P" — 2K be a voting by committees. Then, for all P, € P,

o (P) = [t(P) N DelY t(P)UVel].

Proof Assume A € 0"V(PB;). Then, there exists P_; € P"~! such that A = W(P;, P_;).
Let € t(P;) N De!¥. Then, z € t(P;) and {i} € W,. Hence, z € W(P;,, P_;) = A.
Thus, t(P;) N De!Y C A. Let * € A and assume that x ¢ t(P;). We will prove that
z € VeV, Since x € W(P, P_;) and z ¢ t(P;), there exists S € W™ such that
Sc{jeN|zet(R;)} andi ¢ S. Hence, v € Ve!V. Thus, A C t(P) U VelV.

10



Now, let A € [t(P;) N DelY, t(P,) UVel]. For each j € N and j # i, let P; be any
preference such that ¢(P;) = A. We will prove that W(P;, P_;) = A. To prove one
of the two inclusions, assume = € A. If z € ¢(P), then {j € N | z € t(P;)} = N.
Hence, € W(P,, P_;). If z ¢ t(P;), then 2 € VeV (since A C t(P)) U Ve?). Hence,
{jeN|zet(P)}=N\{i} € W, and z € W(P,, P_;). To prove the other inclusion,
assume = € W(P;, P_;). By the definition of ¢(P;), either x € A or else z € t(FP;)\A
and {i} € W,. Hence, either z € A or else x € t(P;)NDel”. Thus, since by assumption
t(P)NDe¥ C A, x € A. [

At the light of Lemma 2 it is easy to see that the larger the decisive and vetoer
sets of objects are the smaller is the option sets left open by a preference at the two
corresponding voting by committees. Figure 3 illustrates this statement and Lemma

3 states it formally.

Figure 3

Lemma 3 Let W : P" — 2K and V : P — 25 be two voting by committees with the
property that De¥Y C De!¥ and VeY C VeV, Then, oV (P;) C o¥(P;) for all P, € P.

Proof It follows immediately from Lemma 2. [ |

In the last preliminary result of this section we identify the necessary and sufficient
conditions under which a voting by committees V¥V is not manipulable by agent ¢
at a particular preference P;. These conditions can be seen as a weakening of the
separability conditions because they require to compare in a specific way fewer pairs
of subsets of objects. These pairs are composed of two kinds of sets. First, any subset
A that is selected by W when i votes for t(B;) (i.e., A € 0"Y(F;)). Second, any subset
that can be obtained from A by taking out objects in #(F;) for which ¢ is not a dummy

agent and by simultaneously adding objects not in A that are in #(P;) and for which

11



7 is also a non dummy agent. Lemma 4 can be seen as providing a general maximal
domain result for all voting by committees, which depends on the sets of decisive,
vetoers and dummy objects of agent i at W.? Figure 4 illustrates a particular pair
of subsets (A and (A\Ty) U T) in the cone [(), 2X] that have to be comparable by P;
(i.e., AP,(A\T1) U Ty) if W is not manipulable by i at P,.

2K
t(F;)
AeoV(P)
— — (A\Th) UTy
0
Figure 4

Lemma 4 Let W : P — 25 be a voting by committees. Then, W is not manipulable
byi € N at P, € P if and only if for all A € O (B;), Ty C t(R;)) N AN Du) and
T, C t(Rl) N A N DU,Z/V,

AR(A\T) U Ty,

Proof =) Consider any P, € P, A € o"(P,), Ty C t(P,)N AN Du?Y and Ty C
t(P;) N AN Du)Y. Then, there exists P_; € P"! such that

Since Ty UTy C Du!Y, for each z € Ty U Ty, there is S° € W™ such that i € Si. Now,
for each j € N and j # i, consider any P; € P such that

HP) =UP)\{z € MUT: | j ¢ S;)U{z e hUTy | j € S}, (4)

J

and any P/ € P such that
t(P)) = (A\T1) U Ts.

3See Barbera, Mass6é and Neme (1999), Barbera, Sonnesnchein and Zhou (1991) and Serizawa
(1995) for related results identifying maximal domains of preferences under which voting by com-
mittees remain strategy-proof. The results on the second and third papers are less general since they
apply only to voting by committees without vetoer and dummy players or without dummy players,
respectively. The results in the first paper are presented in the different setting of multidimensional
generalized median voters schemes and hence, they are stated in terms of left and right coalition

systems instead of committees.
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Claim 1 W(P, P';,) = Aand W(P/, P’,) = (A\T}) U Ts.
Proof of Claim 1~ We first show that W(FP,, P',) = A. Assume z € T5. By (4),

{j € N\{i} | z € t(P})} = Si\{i}. Hence, and since Ty C t(P;), = ¢ t(P;). Observe
that i € S. € W implies S:\{i} ¢ W,. Thus, x ¢ W(P;, P’,). Therefore,

W(B, P)NT, = 0. (5)

Assume z € T1. By (4), {j € N\{i} | 2 € t(P})} = Si\{i}. Furthermore, as T} C
t(P;), x € t(R;). Observe that S. € W, Thus, x € W(P;, P’,). Therefore,

W(P;, P',)NTy =T. (6)

Assume z ¢ Ty UTy. By (4), {j € N\{i} | v € t(P))} = {j € N\{i} | € t(P))}.
Hence,
(L UTy) NW(P;, P',) = (T UTy) N W(P, P_y). (7)

By (5), (6) and (7),

(lUT)NW(P, P.)IUT,
(T UTy) "N W(P;, P_y)|UTy

where the last equality follows from the facts that 7y C A and Ty C A.

We now show that W(P/, P",) = (A\T1) U Ty. Assume = € A\T). If x € t(F),
and since W(P;, P';) = A, {j € N\{i} | z € t(P))} U{i} € W, holds. If x ¢ t(F),
and since W(F;, P';) = A, {j € N\{i} | x € t(P])} € W,. Hence, in both cases,

{j € N\{i} |z € t(P))} U{i} € W, (8)

holds. Since z € t(F), {j € N\{i} |z € t(P})} U{i} = {j € N | x € t(Pj)}. Hence,
by (8), {j € N | x € t(P})} € W,. Thus, z € W(P/, P.;). Assume now = € Ty. By
(4), {7 € N\{i} | z € t(P))} = Si\{i}. Hence, and since z € t(P)), z € W(F], P",).
Therefore, we have showed that (A\Ty) UTy, C W(P/, P",). To show that the other
inclusion holds, assume = € W(P/, P’,). If x € t(P!), by the definition of ¢(F}),
x € (A\T1) UTs. If, on the other hand, = ¢ t(P)),

{ieN|zet(P)}={jeN\{i}|zetlP)} (9)

Hence, and since x € W(P/,P'",), by (9), x € W(P;,P’,) = A. Now, to obtain

a contradiction assume x € Ti. Hence, {j € N\{i} | z € t(P))} = S.\{i} and
x ¢ t(P/). Therefore, x ¢ W(P!, P’,) which is a contradiction. Thus, x € A\T;. O
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Therefore, by Claim 1 and the fact that W is not manipulable by 7 at P;,
AR;(A\Ty) U Ts.

<) Let P; € P be arbitrary and assume that for all A € OV(P), T} C t(R;))NAN
DuYY and Ty C t(R;)) N AN Dul¥, AR;(A\T}) U T holds. We will show that, for all
(Pz‘/7 —i) cP",
W(P;, P_;)RW(FP/, P_;).
Assume (P/, P

i, P-i) € P" and let W(P, P;) = A € oV(P), Ty = (AA\W(P/,P_;))) N
Dul’ and Ty = (W(P/, P_;)\A) N Du)”. Then,

(A\T)HUT, =[(ANnDu?YUAN Du )\Tl] Uy

— (AN DuY) U[(AN DuV\T1] U Ty since Ty C Du)’
= (AN DuY)U[(ANDu¥)NTy| U Ty

= (ANDuU)U[(ANDuY) N (AUW(P!, P_;) U Du¥)| U T,

= (AN Du) U (AN Du)) N W(P}, P-;)] U T,

= (AN Dul) U[(AN Dul¥) N W(F,, P_;)] U (W(F/, P_;)\A) N Du)¥)
= (AN Dul’) U[(ANW(EL P_y) U (W(P/, P-)\A)| N Du)’

= (AN Du)U (W(P!, P_;) N Dul)
= W(P/, P_;) N Du?Y) U (W(P!, P_;) N Du}V) by Lemma 1

= W(F/, P_).

Furthermore, Ty C t(R;)NANDu!Y and Ty C ¢(R;) N AN DuY since AW(P/, P_;) C
t(R;) and W(P!, P_)\A C t(P;). Thus, by hypothesis,

W(P;, P-;) = AR;(A\T) U Ty, = W(F], P_;).

5 Comparing Voting by Committees without dum-

mies

5.1 Main result without dummies

Theorem 1 below gives an easy and operative way of comparing voting by committees
without dummies according to their manipulability. A voting by committees V is at
least as manipulable as voting by committees W if and only if, for each agent i € N,
the sets of objects at which agent 7 is decisive and vetoer in V is each contained in the
corresponding sets in V. The results in the preceding lemmata are key to understand

this characterization. Larger decisive and vetoer sets of objects make the option sets
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left open smaller and this leaves more freedom on the comparability between subsets
of objects, reducing hence the set of preferences under which the agent is able to

manipulate.

Theorem 1 LetV : P* — 2K and W : P — 2K be two voting by committees without
dummies. Then, V = W if and only if, for alli € N, De} C De!¥ and Vel C VelV.

Proof <) To prove sufficiency, assume that for all i € N, DeY C De!¥ and Ve! C
VelV. We prove that V =~ W by showing that, for all i € N, M}Y c MY. Suppose
P, € M)V. Observe that since V and W have no dummies, D—ul/v = D_uf = K holds.
Then, by Lemma 4, there exist A € o"V(P,), Ty C t(P,) N A and T, C t(P;) N A such
that

(A\T1) UT,P,A.
By Lemma 3, 0"V(P;) C 0Y(P;). Hence, A € 0Y(P;). Thus, by Lemma 4, P, € M.

Therefore, V is at least as manipulable as W.
=) To prove necessity assume that V is at least as manipulable as WW. Hence, for
alli € N,
MY c M. (10)

Assume, to obtain a contradiction, that there exists z € K such that x € VeY\Ve!Y

or x € DeY\De!Y. We distinguish between these two cases.

Case 1: There exists x € VeY\Ve!V. Consider any P/ € P such that t(P/) = 0

satisfying in addition the following properties:

(i) BP/CP/{x} ifx ¢ B and x € C,
(i) AR'B if AC B and z ¢ B.

Three comments on the preference P/ are appropriate. First, such preference
exists and because we assumed that |K| > 2, there exists C' C K such that z € C
and {x} # C. Second, any pair of subsets of objects that are unrestricted by conditions
(i) and (ii) can be ordered arbitrarily by P/. Third, of course P/ is not separable since,
for instance, K P/{z} while all objects are bad.

Since z € VeY\VelV, {z} € V(P!). Set A= {z}, Ty =0 and T, = C\{z} where
C'is such that x € C' and {x} # C (which exists because |K| > 2). Observe first that
A € o™(P!) and, by (i) in the definition of P/, (A\T}) UTy = CP/{z} = A. Hence,
by Lemma 4, P/ € M!V. Second, take any B € 0Y(P/). Since z € Ve! and x ¢ t(P)),
r ¢ B. Let Ty C A be arbitrary. By (i) and (ii) in the definition of P/, BR,B U T5.
Hence, by Lemma 4, P/ ¢ M. Thus, P/ € MY\ MY holds, which contradicts (10).
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Case 2: There exists v € DeY\De!Y. Consider any P/ € M?Y such that t(P) = K

satisfying in addition the following properties:

(i) BP/CP/K\{z} ifx € B and x ¢ C,
(ii) AR!B if BC Aand x € B.

Three comments on the preference P! are also appropriate. First, such preference
exists and because we assumed that |K| > 2, there exists C' C K such that z ¢ C
and C # (). Second, any pair of subsets of objects that are unrestricted by conditions
(i) and (ii) can be ordered arbitrarily by P!. Obviously, P! is not separable since
QP K\{z} while all objects are good.

Since z € DeY\DelV, K\{x} € o™(P!"). Set first A = K\{z}, To = 0 and T} = C,
where C' is such that z ¢ C' and C # ). Observe that A € OV(P/"), x ¢ (A\T1) U Ty
and (A\T1)UTy # (). Then, by (i) in the definition of P/, (A\Ty) UTy P/ K\{z} = A.
Hence, by Lemma 4, P! € M!V. Second, take any B € 0Y(P/). Since € De} and
x € t(P"), v € B. Let Ty C B be arbitrary. By (i) and (ii) in the definition of
P!, BR!B\T\. Hence, by Lemma 4, P ¢ MY. Thus, P/’ € MY\ MY holds, which
contradicts (10). |

Next proposition identifies those voting by committees without dummies that are
less manipulable. They have the properties that (i) the set of objects at which all
agents are not vetoers is a subset of the set of decisive objects of each agent, and (ii)
the set of objects at which each agent is not a vetoer is contained in the set of objects
at which some agent is decisive. But before stating it we present a simple remark

that will be used in its proof.

Remark 2 Assume W : P* — 2K is a voting by committees without dummies. Then,
for alli € N, De?¥ C VelV.

To see why Remark 2 holds, assume there exists z € De!¥ such that z € VeV,
Then, WI* = {{i}}. Hence, each j # i is a dummy agent at x, which is a contradic-

tion.

Proposition 2 Let W : P* — 2K be a voting by committees without dummies.
Then, there does not exist a voting by committee without dummies V : P* — 25 such
that W =V if and only if

NienVelW C De}/‘} for all j € N, (11)

VelV C UsenDelV for all j € N. (12)

Proof =-) We distinguish between two cases.
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Case 1: There exist j € N and z € K such that € NjeyVe!Y and z ¢ De}/". Define

V as follows:

ym wy ify=#£x
Y {Sewm|j¢STu{S\{j}CN|SeWwrst jeStUu{{j}} ify=ux.

Since = ¢ De)” and W does not have dummies, § ¢ {S\{j} C N | S € W} s..
j € S} and V is a voting by committees well defined. Now, we prove that V is a
voting by committees without dummies. For each object y # x it is immediate to see
that 1, has no dummies since WV, does not have any. We prove that no agent is a
dummy at z at V. Let ¢ € N. If i = j, it is immediate to see that ¢ is not dummy
at x since {i} € V" by definition. If i # j, there exists S € W." such that i € §
(since W is a voting by committees without dummies). Hence, S\{j} € V" and i is
not dummy at x at V. Now, we prove that W = V. By, Theorem 1, it is sufficient
to prove that De)Y C De} and Ve)¥ C VeY for all i € N and that De) # De)V. The
last inequality follows from the fact that x € De}} and = ¢ De}/v. Then, we only have
to show that De!¥ C DeY and Ve!¥Y C Ve for alli € N,

Assume y € De)Y. Then, {i} € W;", Hence, by definition of V*, {i} € V". Hence,
y € De?.

Assume y € Ve!V. Then, i € NsewmS. Since y € VeV, and x € ﬂieNW holds,
y # x. Hence, by definition of V", j € NseyyS and y € VeY.
Case 2: Assume that there exist j € N and z € K such that x € W and = ¢
Usen DelV. To define V), set S = NsewmS and consider any i # j. Define the collection

of subsets of agents 7; associated to ¢ as follows:
TeT ifandonlyifi ¢ S and T = {4,j} U S".

Define now V by setting

o wy ify#ux
{Ti}izy ify=u.

y
Since x € Ve, j ¢ S'. Therefore, V;* is minimal. Furthermore, as z € Ve}¥ and W is
a voting by committees without dummies, there exists S ; N such that j € S € W
Therefore, S" & N\{j}. Hence, V; # () and V is a voting by committees well defined.
Moreover, V, is a committee without dummies because W, is a committee without
dummies at any y # x. Furthermore, by its definition, V, is a committee without
dummies. Then, V is a voting by committees without dummies. Now, we prove that
W = V. By Theorem 1, it is sufficient to show that De!V C De) and Ve!¥ C Ve! for
alli € N and that VeV # VeY. The last inequality follows from the fact that = ¢ Ve)”
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and x € VeY. Hence, we only have to show that De}¥ C Dey and Ve}¥ C Ve} for all
1€ N.

Assume y € De!V. Then, {i} € W, and, since x ¢ UienDelV, y # . Hence, by
the definition of V", {i} € V;". Thus, y € De}.

Assume y € Ve!” and y # z. Hence, by the definition of V'Y€ VeY.

Now, assume = € Ve!Y. Then, i € NgewnS = S’. Then, by definition of VI,
z € Ve).

<) Assume (11) and (12) hold and let V : P* — 2K be a voting by committees
without dummies such that W = V. By Theorem 1, De!¥ C De? and Ve!V C Ve?
for all i € N. We prove that De!¥ = De? and Ve"Y = VeY for all i € N and hence,
W H#V.

Assume there exist j € N and z € K such that € De¥\De)”. By Remark 2,
x € V_e}/\De}/V. Since Ve}/‘} C Ve}/, x € @\De}”. By (11), there exists i # j such
that = € Ve)¥. Thus, z € Vey which contradicts that © € De} and i # j since
i¢g{ire Vi

Now, assume there exist j € N and x € K such that x € Ve}}\Ve}/V. Then,
T € W\V_e}’ By Remark 2, z € W\De}/. Since De)Y C DeY, x € Vel¥\De). By
(12), there exists i # j such that # € De)!V. Thus, z € De} which contradicts that
x € VeY and i # j since j ¢ {i} € V. |

5.2 Anonymity

A social choice function f : P 2K ig anonymous if it is invariant with respect to

the agents’ names; namely, for all one-to-one mapping o : N — N and all P € 7/5",
f(Pla SE) P’n) - f(Pcr(l)a ) Pa(n))

Remark 3 Let W : P" — 2K be an anonymous voting by committees. Then, for all

r € K, W, does not have dummy agents.*

A voting by committees W : P" — 2K is a woting by quotas if for each object

r € K there exists an integer ¢/ between 1 and n such that
We={SCN||S| =z ¢}

Observe that Barbera, Sonnenschein and Zhou (1991) call voting by quota to a voting
by quotas that is in addition neutral in the sense that ¢!V = qZV for all z,y € K.
The following remark states that the subclass of anonymous voting by committees

coincides with all voting by quotas (not necessarily neutral).

4To see that, assume i is dummy at x. Then, by anonymity, j must be dummy at « for all j € N.

Hence, W, = () wich is a contradiction.
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Remark 4 A voting by committees is anonymous if and only if it is voting by quotas.

Let W : P" — 2K be a voting by quotas. Denote by A}Y and AY the set of objects
in K that have quota 1 and quota n, respectively; namely, A = {z € K | ¢V = 1}
and AY = {x € K | ¢V = n}. Since for all voting by quotas W : P" — 2K it
holds that De)¥ = A}Y and Ve!¥ = AW for all i € N, we obtain as a consequence of

Theorem 1 the following Corollary.

Corollary 1 Let W : P* — 2K and V : P* — 2K be two voting by quotas. Then,
V = W if and only if AY C AV and AY c AV.

The next corollary identifies the class of anonymous voting by committees that
do not admit a less manipulable anonymous voting by committees. This class is the

family of all voting by quotas such that the quota of each object is either 1 or n.

Corollary 2 Let W : P* — 2K be a voting by quotas. Then, there does not exist a
voting by quotas (or an anonymous voting by committees without dummies) V : P™ —

2K such that W =V if and only if A = K\ A}V.

Let VD@ be the family of the all voting by quotas relative to a given set of agents
N (i.e., all anonymous voting by committees). Using Theorem 1 we can partition
the set of all voting by quotas Vb( into equivalence classes in such a way that each
equivalence class contains voting by quotas that are all equally manipulable. Denote
the (quotient) set of those equivalence classes by VbQ/ ~. Furthermore, we can
extend 7~ on VbQ to the set of equivalence classes Vb(@)/ = in a natural way. Denote
this extension by [7]. In this subsection we will show that the pair (VbQ/ ~, [7]) is
a complete upper semilattice; namely, any nonempty subset of equivalence classes in
Vb@Q/ = has a supremum according to [7Z]. Formally, given W € Vb@Q, denote by W]

the equivalence class of VW with respect to ~; i.e.,
W] ={V eViQ | W~ V}.

By Corollary 1, [W] can be identified with the pair (A}, AYV). Denote by VbQ/ ~ the
set of all equivalence classes induced by ~ on Vb() and consider the binary relation
(7] on VbQ/ =~ defined as follows. For any pair [W], [V] € VbQ/ =, set

W][Z][V] if and only if W = V.

Since 7 is a preorder on V@, it follows that [] is a partial order on VbQ/ = .
Furthermore, by Corollary 1 ,

[V][z][W] if and only if AY ¢ A}Y and AY c AY.
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We can now state and prove the result of this subsection.

Proposition 3 Assume n > 3. Then, the pair (VbQ/ =, [7]) is a complete upper

semilattice.

Proof Let () # Z C VbQ/ ~. Consider any voting by quotas ¥V : P* — 2% such
that
AY = ﬂ[W}eZA}/Vy AY = ﬂ[W]eZAZV, and

for all z ¢ AY U AY (if any) set ¢ equal to any integer other than 1 and n (which
exists because n > 3). Since AYY N AW =0 for all W] € Z, V is well defined as a
voting by quotas. By Corollary 1 and the definition of [V], sup; Z = [V]. Thus,
(VbQ/ =~,[z]) is a complete upper semilattice. [ |

Example 2 and Figure 5 below show the complete upper semilattice structure of
(VbQ/ =, [z]) when |K| = 3.
Example 2 Assume n > 3 and let K = {z,y, 2z} be the set of objects. Given W] €
Vb(Q we identify the equivalence class W] by the pair (4}, AV) and furthermore we
denote {z} by x, {x,y} by zy and {z,y, 2z} by zyz, and similarly for {y},{z}, {z, 2},
and {y, z}.

Figure 5
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From Corollaries 1 and 2 we obtain a complete upper semilattice of the set of equiv-
alence classes of voting by quotas. Figure 5 represents this partial order where if two
pairs (A}, AY) and (AY, AY) are directly connected, the one above is more manip-
ulable than the one below and moreover, all connections that can be obtained by

transitivity are omitted.

6 Comparing all Voting by Committees
We start with a remark and a definition.

Remark 5 Let W : P* — 25 be a voting by committees and let x € K andi € N be
such that x € Du)Y. Then, x € Ve!V and x € DelV.

We say that a voting by committees W : P* — 2K is dictatorial if there exists
i € N such that for all x € K, Wi* = {{i}}. Obviously, all dictatorial voting by
committees are strategy-proof in any domain and hence, they are less manipulable
than any other voting by committees. Thus, it is not necessary to include them in

the main result of the paper that we state below as Theorem 2.

Theorem 2 Let V : P — 2K and W : P* — 2K be two non dictatorial voting by
committees. Then, V 72 W if and only if for all i € N,

DeY C Del¥ and Ve! c Ve!” and Du) C Du)¥ or (A)
(De\Det") U (Vey\Ve}") = {a} = Du)” or (B)
DeV NVel = {z} = DuY\Du)". (C)

Before proving Theorem 2 we exhibit in Example 3 below two voting by commit-
tees that illustrate conditions (A), (B) and (C) above.

Example 3 Let N = {1,2,3} be the set of agents and K = {z,y,z} the set
of objects. Consider two voting by committees V and VW defined by the following

(minimal) committees:

vir={12}, {31y Wy ={{3}}
v ={11{2} Wy ={{1},{23}}
v ={{3}} Wit = {{3}}.

We consider the decisive, vetoer and dummy sets of objects for each of the three
agents separately.
For agent 1, DeY = De}V = {y}, Ve¥ =Vel¥ =0, DuY = {z} and Du}¥ = {x, z}.
Thus,
DeY = DelV and Vel = Vel¥ and DuY ¢ Du)Y,
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which means that condition (A) holds for agent 1. Observe that conditions (B) and
(C) do not hold for agent 1 since Du}¥ = {y} and (De¥\De!¥) U (VeX\Vel¥) = 0,
and De}V NVelY = K, respectively.

For agent 2, De) = {y}, De}¥ =0, Ve = VelV =0, Du) = {z} and Du}¥ =
{x,z}. Hence, De¥\DelV = {y},Vey\VelV = 0 and Du}” = {y}. Thus,

(De\De¥)U (Ve\Vey) = {y} = Duy,

which means that condition (B) holds for agent 2. Observe that conditions (A) and
(C) do not hold for agent 2 since De¥ € DelV, and De}? NVelV = K, respectively.

For agent 3, De¥ = De}V = {z,z2}, Ve} = {z}, Ve}¥ = {x,2}, Du} = {y} and
Du}Y = (). Hence, De}¥ NVeY = {z,z} and Du¥\Du}¥ = {y}. Thus,

D AVER = {y} = Dul\DY,

which means that condition (C) holds for agent 3. Observe that conditions (A) and
(B) do not hold for agent 3 since Du¥ € Du}¥, and Du}’ = K, respectively.

Thus, by Theorem 2, V = W. Moreover, Du¥\DuY = {z}, Du¥ = {z,y} and
DeY NVeY = {x,y, z}. Hence, by Theorem 2, W = V does not hold. Thus, ¥V = W.

We next exhibit a preference P such that P, € MY but P, ¢ M}Y. Let P, be the

following preference:

{y}Pl{ﬁay>Z}P1{ya Z}Pl{yax}Pl@Pl{w}Pl{Z}Pl{xv Z}
Let (P/, Py, P§) € P? be any preference profile with the property that ¢(P]) = {z,y},
t(Py) = {x} and t(P;) = {z}. Then,

V(P|, Py, P3) = {z,y, 2} P{y, 2} = V(P., P;, Ps)

and hence, P, € MY. In the other hand, consider any arbitrary preference profile
(Py, Py, P3) € P3. Then, for some (potentially empty subset) A C K\{y},

W(Pl,PQ,P3>:{y}UA andACW(Pf,PQ,Pg) C {y}UA .
Hence, by the definition of P,
W(P1, Py, Ps) RAW(PY, Py, P3).

Thus, P, ¢ M. 0O

Proof of Theorem 2 <) To prove sufficiency, fix i € N and assume that P; €
MY, We want to show that P, € MY. By Lemma 4, there exist A € oV(P),
Ty Ct(P)N AN DY and Ty C ¢(P;) N AN Du)Y such that

(A\T1) U2 R A. (14)
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We distinguish among three cases, depending on whether (A), (B) or (C) holds.

Case 1: Suppose that (A) holds; namely, De? C De!Y and VeY C Ve!¥ and Du) C
DulV. Hence,

T, Ct(PYNANDuY and Ty C t(B;) N AN DuY. (15)

By Lemma 2, A € 0Y(P,). By (14), (15) and Lemma 4, P, € M.

Case 2: Suppose that (B) holds; namely, (DeY\De?¥) U (VeX\VelV) = {2} = Du)¥
Since x € (Def\De!V) U (VeY\Ve!V), either x € De! or z € VeY. By Remark 5,
z € DuY. Hence,

Ty C t(P)NANDuY and Ty C t(P,) N AN DuY. (16)

By (14), (16) and Lemma 4, it is sufficient to show that A € 0Y(P;); or equivalently,
by Lemma 2, that t(P;) N DeY C A and A C t(P,) UVeY. We distinguish between
two subcases.

Case 2.1: Suppose x ¢ t(P;). Then, since DeY\De!V C {x}, t(P;)NDeY C t(P)NDe!Y
holds. By assumption, A € o"V(P;). Hence, t(P;) N De!¥ C A. Thus,

t(P) N De} C A. (17)

Since x ¢ t(P;) and Dul’ = {z} hold, we have that t(P)NDu)’ = 0 and t(P,)NDu)’ =
{z}. Moreover, since T} C t(P) N AN DuY, Ty C t(P) N AN Du)’ and (14) hold,
we have that 77 = () and Ty = {} hold as well. Since T, C A, v ¢ A. Hence, since
Ae o™(P), AcCt(P)U (Ve \{z}). But the hypothesis that Ve’\Ve?¥ C {2} we
have

ACtP)UVeY. (18)

Case 2.2: Suppose © € t(P;). Then, since Du)¥ = {z}, t(P) N Du’ = {z} and
t(P) N Du’ = 0. Since Ty C t(P)NANDuY, Ty € t(P;) N AN Du)Y and (14) hold,
we have that 73 = {x} and Ty = () hold as well. Since T} C A, x € A. Hence, since
A€ oV(P), (t(P)NDe)u{x} C A. But the hypothesis that DeY\De!V C {z} we

have

t(P) N DeY C A. (19)

Since VeY\VelV C {z} and z € t(P), t(P,)uVe!Y C t(P;)UVe?. Furthermore, since
A€ oV(PR), AcCt(P)UVe. Thus,

ACtP)UVeY. (20)

Case 3: Suppose that (C) holds; namely, De!¥ NVe!V = {z} = DuY\Du!". Since
r € DuY, by Remark 5, z € VeY and = € De?. Hence,

DeY ¢ K\{z} = De’nVeY = De)¥ NVelV C De!V and (21)
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Vel ¢ De’ UVel = De’ nVel = {z} c Vel (22)

By Lemma 3, (21) and (22), 0"V(P;) C 0Y(P;). Hence, and since A € 0"V(P;), A €
0Y(P;). We want to prove that P, € MY. By Lemma 4 and (14), it is sufficient to
show that

Ty Ct(P)NANDuY and T, C t(P) N AN DuY (23)

hold. We distinguish between two subcases.

Case 3.1: Suppose z € t(P,). As (C) holds, Ve?V C {z} and K\{z} C De!’. Hence,
by Lemma 2, oV(P;) C {t(P)\{z},t(P;)}. By (14), A = t(P;)\{z}. Then, since
x ¢ Aand z € t(P), © ¢ Ty and x ¢ T, hold, respectively. Hence, and since
Ty Ct(PYNANDuY, T, C t(P)NAN Dul’ and DuY\Du!’ = {2} hold, we have
that Ty C t(P}) N AN DuY and Ty C t(P)) N AN DuY hold as well.

Case 3.2: Suppose z ¢ t(P;). As (C) holds, Ve’ C {2} and K\{z} C De!’. Hence,
by Lemma 2, 0" (P;) C {t(P),t(P;) U {z}}. By (14), A = t(P;) U {z}. Then, since
x ¢ t(P) and v € A, x ¢ T} and x ¢ T hold, respectively. Hence, and since
Ty C t(PYNANDuY, T, C t(P) N AN Du’ and DuY\Du!’ = {2} hold, we have
that T C t(P) N AN DuY and Ty C t(P) N AN DuY hold as well.

=) To prove necessity, assume ) and W are non dictatorial voting by committees

and V =~ W; i.e.,
MY C MY foralli € N. (24)
Fix i € N and assume that (A) and (B) do not hold. We will show that (C) holds;
1.€.,
DeYNVel = {z} = DuY\Du)"

Claim 1 If [DuY\Du!’| > 2 and V 2z W, then i is a dictator in W.
Proof of Claim 1 Assume z € DuY\Du!Y and suppose that there exists y € K such

that y ¢ De)". Since | DuY\Du¥| > 2 we can assume without loss of generality that
y # x. Let P/ € P be any preference such that ¢(P/) = {z,y} and satisfying in
addition the following properties:

(i) {z, y}P{y} PP {z} P/ A
for all A ¢ {{z,y},{y},0,{z}},

(i) ARB if BNt(P)) Cc ANt(P!) and ANt(P!) c BNt(P),
for all A, B ¢ {{z,y},{y},0,{«}}.

The preference P/ can be seen as having two separate blocks. The first one orders
the subsets {z,y}, {y}, 0, {x} in a nonseparable way. All other subsets are dispreferred
to each of these four subsets but, among those that are different to these four, any

set A that can be obtained from B by adding objects in t(P/) and deleting objects in
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t(P/) is preferred to B. Moreover, any pair of subsets of objects that are unrestricted
by conditions (i) and (ii) can be ordered arbitrarily by P;.

Since y ¢ De!V, {z} € MV (P!). Set A = {x}, Ty = 0 and T} = {z}. Observe
that A € o"(P/) and, by (i) in the definition of P!, (A\T}) UT, = 0P/{z} = A.
Hence, by Lemma 4, P/ € M}V. Take now any A € o¥(P/). Let T} C t(P/)N AN DuY
and Ty, C t(P)NAN D_u;’ be arbitrary. We can assume that either 73 # 0 or
T, # (); otherwise, A = (A\Ty) U T and AI/(A\T}) U Ty trivially. Since z € Du! and
t(P!) ={z,y}, Th C {y} and =,y ¢ T>. We distinguish between two cases.

Case 1: If (A\TY)UTy ¢ {{z,y},{y},0,{x}} then, by (i) and (ii) in the definition of
P!, AR\(A\T}) U Ts.

Case 2: It (A\T1)UTy € {{z,y},{y},0,{z}} then T; = ) and T} = {y}. Hence, y € A
and (A\T1)UTy = A\{y}. Since (A\T1)UTs € {{z,y},{y},0,{z}} and (A\T1)UT, =
A\{y}, either A = {y} and (A\T7)UTs = D or else A = {z,y} and (A\T})UT, = {z}.
But then, and according to (i) in the definition of P/, AP/(A\T}) U T, must hold.
Hence, by Lemma 4, P/ ¢ M} in both cases. Thus, P/ € M\ MY, which contradicts
that ¥V 77 W. Therefore, we can not suppose that there exists y € K such that
y ¢ De)V. Thus,

De)¥ = K. (25)

Now, suppose that there exists y € K such that y € Ve!V. Since z € DuY\Du!” and
| Duf\Dul¥| > 2 we can assume without loss of generality that y # z. Let P/’ € P
be any preference such that t(P/) = {z} and satisfying in addition the following

properties:

(i) {z}BOP{y} P/'{z, y} P/ A,
for all A ¢ {{z},0,{y}, {L& -

(il) AR!B if BNt(P!) C ANt(P!) and ANt(P") C BNt(PY),
for all A, B ¢ {{x},0,{y}, {z, y}}.

The preference P!’ can also be seen as having two separate blocks. The first one
orders the subsets {z},0,{y}, {x,y} in a nonseparable way. All other subsets are
dispreferred to each of these four subsets but, among those that are different to these
four, any set A that can be obtained from B by adding objects in ¢(P/’) and deleting
objects in W is preferred to B. Moreover, any pair of subsets of objects that are
unrestricted by conditions (i) and (ii) can be ordered arbitrarily by P/

Since y € VeV, {z,y} € oV(P). Set A = {z,y}, Ty = {z} and T, = 0. Observe
that A € o(P!) and, by (i) in the definition of P, (A\T1)UTy = {y}P/{z,y} = A.
Hence, by Lemma 4, P!’ € M. Take now any A € o¥(P!). Let Ty C t(P")NANDuY
and Ty C t(P/)N AN DuY be arbitrary. We can assume that either T} # 0 or Ty # (;
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otherwise, A = (A\Ty) U Ty and AI'(A\Ty) U Ty trivially. Since z € Du) and
t(P/) ={x}, Ty = 0 and = ¢ T». We distinguish between two cases.

Case 1: If (A\T1)UTy ¢ {{z},0,{y},{x,y}} then, by (i) and (ii) in the definition of
P!, AR!(A\T}) U Tp.

Case 2: If (A\T1)UT, € {{z},0,{y},{z,y}} then, T C {z,y}. Since Ty = 0, = ¢ T
and Ty # 0, T = {y} and y ¢ A. Then, either A = () and (A\T1) U T, = {y} or else
A = {z} and (A\T1) U T, = {z,y}. But then, and according to (i) in the definition
of P!, AP/(A\T}) UT5 must hold.

Hence, by Lemma 4, P/ ¢ MY in both cases. Thus, P/’ € MY\ MY, which contra-
dicts that V =~ W. Therefore, we can not suppose that there exists y € K such that
Yy € @. Thus,

VeV = 0. (26)
By (25) and (26), ¢ is a dictator in Y. This finishes the proof of Claim 1. O

By hypothesis, W is non dictatorial. By Claim 1,
| Du\Du”| < 1.

We distinguish between two cases.

Case I: Suppose that DuY\Du)Y = {z}. We want to show that De!¥ NVe!¥ = {x}.
As x € DuY\Du!, applying the same argument than the one used in the proof of

1 )

Claim 1, we can obtain that De!¥ C {z} and Ve!V C {z}. Therefore,

DeVNVel¥ = De¥Y UVelV C {x}. (27)

Furthermore, since i is not a dictator in W, De!V # () or Ve!V # (). Hence, by
(27),

DeVNVe = DeV uVelV = {x} = Duf\Du)V.
Case II: Suppose that DuY\ Du)¥ = (). We will obtain a contradiction. Since (A) does
not hold there exists x € K such that x € (DeY\De!V) U (VeX\Vel).
Claim 2 Du!Y = {xz}.
Proof of Claim 2 We distinguish between two cases.
Case 1: Assume x € DeY\De!” and there exists y # x such that y € DulV. Let
P!" € P be any preference such that ¢(P/”) = {z,y} and satisfying in addition the

following properties:

(i) {ZL‘, y}Pi///{I}Piulwpiul{y}Pi///A
for all A ¢ {{z,y},{y},0,{z}},

(ii) AR B if BNt(P") C ANt(P") and ANt(P") C BNi(P),
for all A, B ¢ {{z,y},{y}, 0, {z}}.
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As previously the preference P! can also be seen as having two separate blocks
(we omit the details).

Since x € De¥Y\De!, {y} € o"(P!"). Set A = {y}, To = 0 and T; = {y}. Observe
that A € 0™(P/") and, by (i) in the definition of P!, (A\T}) UTy, = 0P/"{y} = A.

Hence, by Lemma 4, P” € M!Y. Take now any A € 0Y(P/"). Since z € De?\De!¥
and z € t(P"), z € A. Let Ty C t(P/")N AN DuY and Ty, C t(P") N AN DuY be
arbitrary. We can assume that either 71 # () or Ty # 0); otherwise, A = (A\Ty) U T3
and AI"(A\T)) U Ty trivially. Since t(P/") = {z,y}, T\ C {z,y} and z,y ¢ T>. Now
we will consider two subcases.

Subcase 1.1: Tt (A\T))UTs ¢ {{z,y},{y},0,{x}} then, by (i) and (ii) in the definition
of P", AR!"(A\Ty) U T5.

Subcase 1.2: If (A\TV) U Ty € {{z,y},{y},0,{z}} then, To = 0; otherwise, if
there exists z € Ty\{z,y} then z € (A\T1) U Ty and therefore (A\T}) U T> ¢
{{z,y},{y},0,{x}}. Hence, T} # 0 and (A\T}) U T, = A\T;. We distinguish among
three different subcases.

Subcase 1.2.1: Ty = {z}. Then, v € A and (A\T1) U Ty, = A\{z}. Since (A\T}) U
Ty € {{z,y},{y},0,{z}} and (A\T}) U Ty = A\{z}, either (A\T7) U T, = {y} and
A ={x,y} orelse (A\T1)UTy = ) and A = {z} (since z € A). But in both cases, by
(i) in the definition of P/, AP/ (A\T1) U Ts.

Subcase 1.2.2: Ty = {y}. Then, y € A and (A\T1)UT, = A\{y}. Since (A\T1)UT; €
Hz,y},{y},0,{z}} and (A\T) UT, = A\{y}, (A\T1) UTy = {z} and A = {z,y}
(since x € A). But then, by (i) in the definition of P, AP (A\T}) U T5.

Subcase 1.2.3: Ty = {x,y}. Then, z,y € A and (A\T}) U T, = A\{y,z}. Since
(AT UT; € {{z,y}{y},0.{z}} and (A\T1) UT; = A\{y,z}, (A\T1) UT; = 0 and
A = {x,y} (since z,y € A). But then, by (i) in the definition of P, AP/ (A\T;)UT5.
Hence, by Lemma 4, P}” ¢ MY. Thus, P/" € M\ MY holds, which contradicts that
VZW.

Case 2: Assume z € VeY\Ve! and there exists y # = such that y € Du!V. Let
P! € P be any preference such that t(P/”) = {y} and satisfying in addition the
following properties:

(1) {y}E””@B""{x}P{”’{x, y}PZ»””A
for all A ¢ {{z,y},{y}, @&}}’ -

(ii) AR;I/IB if B m t(PiI”/) C A m t(.F)Z'”/I) and A m t(_F)i””) C B m t(P,L-I”/)7
for all A, B ¢ {{z,y}, {y},0, {z}}.

As previously the preference P/ can also be seen as having two separate blocks

(we omit the details).
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Since z € VeX\Ve!, {z,y} € o™V(P"). Set A = {z,y}, T1 = {y} and Tp = 0.
Observe that A € o™(P/") and, by (i) in the definition of P/, (A\T}) U T, =
{x}P/"{z,y} = A. Hence, by Lemma 4, P! € M}V. Take now any A € oY(P!").
Since z € VeV\Ve? and = ¢ t(P"), v ¢ A. Let Ty C t(P")N AN DuY and
Ty C t(P")N AN DuY be arbitrary. We can assume that either 7} # () or Ty # 0;
otherwise, A = (A\T1) U Ty and AI!"(A\T)) U T3 trivially. Since t(P/") = {y},
Ty C {y} and y ¢ T». We distinguish between two subcases.

Case 2.1: If (A\T1) U Ty ¢ {{z,y},{y},0,{x}} then, by (i) and (ii) in the definition
of P AR"™(A\T}) U Ty

Case 2.2: If (A\T1)UT; € {{z,y},{y},0,{x}} then, T5 C {x}. We distinguish among
three different subcases.

Subcase 2.2.1: Ty = () and Ty = {x}. Then, (A\T})UT, = AU{x}. Since (A\T})UT, €
{{z,y},{y},0,{z}} and (A\T1) UTy = AU {a}, either (A\T}) UTy = {z,y} and
A ={y} orelse (A\T1) UTy, = {z} and A = (since x ¢ A). But then, by (i) in the
definition of P/, AP (A\Ty) U T5.

Subcase 2.2.2: Ty = {y} and Ty = (. Then, y € A and (A\T1) U T, = A\{y}. Since
(A\T)UT; € {{z,y},{y},0,{z}} and (A\T1) UT, = A\{y}, either (A\T1)UT, =0
and A = {y} or else (A\T1) UTy = {2} and A = {y} (since z ¢ A). But then, by (i)
in the definition of P/ AP!"'(A\T}) U T5.

Subcase 2.2.3: Ty = {y} and Ty = {x}. Then, y € A and (A\T})UT, = A\{y} U{zx}.
Since (A\T1) U Tz € {{z,y},{y},0,{z}} and (A\T}) U T = A\{y} U {z}, (A\T1)U
Ty = {z} and A = {y} (since x ¢ A). But then, by (i) in the definition of P,
AP (A\T1) U Ts.

Hence, by Lemma 4, P/ ¢ MY. Thus, P/ € MY\ MY holds, which contradicts
that V Zz W.

Therefore, Du)V C {z}, Furthermore, and since we have assumed without loss of
generality that Du)V # 0 (see (3)),

Dul’ = {z}. (28)

This finishes the proof of Claim 2. 0
Finally, assume there exists y # x such that y € (DeY\De!V) U (VeX\Ve!V). By
Claim 2, Du!Y = {y} which contradicts (28). Therefore,

(De\De) U (Ver\Vel) = {z} = Du)?,

which contradicts that (B) does not hold. Therefore, Case II is not possible. [
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