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On a characterization of stable matchings
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Abstract

The set of stable matchings in the Gale–Shapley marriage problem is characterized as the fixed points of an
increasing function. Its well-known non-emptiness and lattice property are an immediate consequence of
Tarski’s fixed point theorem.  2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

This note presents an alternative way to characterize the set of stable matchings in the Gale–
Shapley marriage problem with agents having strict preferences. When agents have strict preferences,
we will show that the set of stable matchings coincides with the set of fixed points of a certain
mapping. By recognizing that the mapping possesses monotonicity, the lattice property of the set of
stable matchings, as well as its non-emptiness, is proved as an immediate implication of Tarski’s fixed
point theorem. When preferences are not strict, such a formulation cannot fully characterize the set of
stable matchings, but can provide further proof that every marriage problem has a stable matching.

This note is organized as follows. In Section 2 we give a brief introduction to the Gale–Shapley
marriage problem and present a key observation which leads to our formulation. Section 3 formalizes
our idea and shows that our formulation fully characterizes the set of stable matchings when
preferences are strict. Proofs to the previously known results mentioned above immediately follow
from this formulation. In Section 4, by introducing tie-breaking rules in not-necessarily-strict
preferences, our formulation is shown to give further proof to the existence of a stable matching when
preferences are not necessarily strict. The discussion follows in Section 5.
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2. Preliminary

This section gives a brief description of Gale–Shapley marriage problems, following the exposition
by Roth and Sotomayor (1990).

In a marriage market, there are two finite and disjoint sets M and W : M 5 hm ,m , . . . ,m j is the set1 2 n

of men, and W 5 hw ,w , . . . ,w j is the set of women. Each man has preferences over the women and1 2 k

each woman has preferences over the men. An agent may prefer to remain single rather than get
married to some agent of the opposite sex. So a typical man m’s preference ordering . ism

represented by an ordered list over the set W < hmj. We assume preferences are rational. We denote
w . w9 to mean m prefers w to w9, and w $ w9 to mean m likes w at least as much as w9. We alsom m

write w 5 w9 to mean man m is indifferent between mating w and w9, and write w 5 w9 to mean w ism

the same person as w9. Woman w is acceptable to man m if he likes her at least as much as staying
single, i.e. if w $ m. An individual is said to have strict preferences if he or she is not indifferentm

between any two acceptable alternatives. We restrict the domain of preferences except in Section 4:

Assumption 2.1. Every individual has strict preferences.

This assumption brings great simplification to the problem; we can use the indifference statement
w 5 w9 and the identity statement w 5 w9 interchangeably (if w and w9 are acceptable to man m).m

An outcome of the marriage market is described by a rule that matches an agent to an agent:

Definition 2.2. A matching m is a one-to-one correspondence from the set M < W onto itself of order
2two (that is, m (x) 5 x) such that if m(m) ± m then m(m) [ W and if m(w) ± w then m(w) [ M.

Definition 2.3. A matching m is stable if it satisfies

(IR) m(m) $ m, ;m [ M and m(w) $ w, ;w [ W; i.e. a matching m is individually rational.m w

(S) '⁄ (m,w) such that w . m(m) and m . m(w); i.e. a matching m is not blocked by any pair ofm w

man and woman.

Lemma 2.4. Let the assumption of strict preferences hold. Suppose a matching m satisfies condition
(IR). Then m satisfies condition (S) iff it meets the following condition:

(S9) '⁄ (m,w) such that hw . m(m) and m $ m(w)j or hw $ m(m) and m . m(w)j.m w m w

Proof. Omitted. h

Example 2.5. ((Example 2.4 in Roth and Sotomayor, 1990)) M 5 hm ,m ,m j and W 5 hw ,w ,w j1 2 3 1 2 3

have the following preferences:

* *P(m ): w , w , w , m , P(w ): m , m , m , w ,1 2 1 3 1 1 1 3 2 1

* *P(m ): w , w , w , m , P(w ): m , m , m , w ,2 1 3 2 2 2 3 1 2 2

* *P(m ): w , w , w , m , P(w ): m , m , m , w .3 1 2 3 3 3 1 3 2 3

Everyone has strict preferences and prefers marrying any one of the opposite sex rather than being
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single. Man m , for instance, prefers w most, then w , and so forth. Matching m9 is one of the two1 2 1

stable matchings where m9 is indicated by *. A key observation that leads to our formulation is that,
say, the mate of m under m9, m9(m ) 5 w , is the greatest element (with respect to m ’s preferences)1 1 1 1

among the potential partners who like m at least as much as their mates under m9, hw [ W um $1 1 w

m(w)j < hm j. This property holds for every agent. The observation suggests that the set of stable1

matchings may be characterized by the solutions to a set of individual maximization problems. This
turns out to be true when preferences are strict.

Gale and Shapley (1962) show that for every marriage problem there exists a stable matching, and
if preferences are strict there exist M- and W-optimal stable matchings. Further, it is also known that
when preferences are strict the set of stable matchings is a complete lattice. We give an alternative
proof to the above facts through our formulation.

3. Formulation

We provide an alternative formulation to address marriage problems. To do so we introduce some
notation.

Definition 3.1. A pair of functions v ; (v ,v ) is called a pre-matching if v : M → W < M andM W M

v : W → M < W such that if v (m) ± m then v (m) [ W and if v (w) ± w then v (w) [ M.W M M W W

Let V and V denote the set of all such functions v and v , respectively. Let V : 5V 3V denoteM W M W M W

the set of all pre-matchings v. We can think of V as the set of vectors in 3 (W < hmj) and of VM m[M W

as that in 3 (M < hwj). Pre-matchings are more convenient for our formulation than matchings,w[W

and they have close relationships.

Definition 3.2.

(i) For a given matching m, a function v ; (v ,v ) defined by v (m): 5 m(m) and v (w): 5 m(w)M W M W

for all m [ M and w [ W is called a pre-matching v defined by a matching m.
(ii) We say a pre-matching v induces a matching m if a function m defined by m(m): 5 v (m) andM

m(w): 5 v (w) is a matching.W

(iii) A matching m and a pre-matching v are said to be equivalent if m defines v and v induces m.

Note that every matching defines an equivalent pre-matching while a pre-matching may fail to
9 9induce a matching. In Example 2.5, matching m9 defines a pre-matching v9 ; (v ,v ) such thatM W

9 9 9 9 9 9v (m ) 5 w , v (m ) 5 w , v (m ) 5 w , v (w ) 5 m , v (w ) 5 m and v (w ) 5 m . On the otherM 1 1 M 2 3 M 3 2 W 1 1 W 2 3 W 3 2

hand, a pre-matching v such that v (m ) 5 w , v (m ) 5 w , v (m ) 5 w , v (w ) 5 m , v (w ) 5 mM 1 1 M 2 3 M 3 2 W 1 3 W 2 1

and (w ) 5 m does not induce a matching because, for example, v (m ) 5 w but v (w ) 5 m ±W 3 3 M 1 1 W 1 3

m . This leads to the following observation, which will be useful later.1

Remark 3.3. A pre-matching v induces a matching iff v is such that v (m) 5 w iff m 5 v (w).M W

Therefore, if v induces a matching and v (m) 5 w (or, equivalently, v (w) 5 m), then v + v (m) 5 mM W W M

and v + v (w) 5 w.M W
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We will show that when preferences are strict the set of stable matchings is identified with the set of
solutions v ; (v ,v ) to the set of equations (3.3a,b) below after an appropriate translation betweenM W

matchings and pre-matchings.
To derive such equations, suppose a matching m is stable and let v be the pre-matching defined by

m. Then from the definition of stability and Lemma 2.4, v satisfies

v (m) $ m and v (w) $ w for ;m [ M, ;w [ W, (3.1)M m W w

and '⁄ (m,w) such that hw . v (m) and m $ v (w)j or hm . v (w) and w $ v (m)j. (3.2)m M w W w W m M

It is immediate that when preferences are strict, these conditions are equivalent to v being a solution
1to the following set of equations:

v (m) 5maxhw [ W um $ v (w)j < hmj, ;m [ M, (3.3a)M w W
.m

v (w) 5maxhm [ Muw $ v (m)j < hwj, ;w [ W . (3.3b)W m M
.w

In Eq. (3.3a) maximization is taken with respect to each man m’s preference ordering . over the setm

W < hmj under the constraint m $ v (w). Since there is a finite number of agents and we havew W

assumed strict preferences, the RHS of (3.3a,b) is well defined and singleton for each m and each w.
Therefore, we have proved part (i) of the next proposition.

Proposition 3.4. Let the assumption of strict preferences hold. Then

(i) If a matching m is stable, then the pre-matching v defined by m solves Eqs. (3.3a,b).
(ii) If a pre-matching v solves Eqs. (3.3a,b), then v induces a matching m, which is stable.

To prove part (ii) of the proposition, we use the following lemma:

Lemma 3.5. Let the assumption of strict preferences hold. If v 5 (v ,v ) solves Eqs. (3.3a,b), thenM W

the following conditions are equivalent:

(i) w $ v (m) and m $ v (w),m M w W

(ii) w 5 v (m) and m 5 v (w),M W

(iii) w 5 v (m),M

(iv) m 5 v (w).W

Proof. (ii⇒i), (ii⇒iii), and (ii⇒iv) are immediate. (i⇒ii): Assume (i). Suppose w . v (m) orm M

m . v (w). Either case contradicts that v 5 (v ,v ) solves Eqs. (3.3a,b). So it must be w 5 v (m)w W M W m M

and m 5 v (w). But, with the assumption of strict preferences, this implies that w 5 v (m) andw W M

m 5 v (w). (iii⇒iv⇒ii): Assume w 5 v (m). Suppose m . v (w). But this contradicts (3.3b).W M w W

1Roth et al. (1993) characterize stable matchings as solutions to a linear programming problem. A referee pointed out a
similarity between inequalities used in our Eqs. (3.3a,b) and those in their linear programming formulation (their individual
rationality constraints (6) and stability constraints (7)).
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Suppose m , v (w). This contradicts (3.3a). So it must be m 5 v (w), which implies m 5 v (w)w W w W W

under the assumption of strict preferences. h

Proof of Proposition 3.4, part (ii). Let the assumption of strict preferences hold. Suppose v satisfies
Eqs. (3.3a,b). From Remark 3.3 and parts (iii) and (iv) of Lemma 3.5, v induces some matching m.
Also, v satisfies conditions (3.1) and (3.2). It means that m satisfies conditions (IR) and (S9), which
implies conditions (IR) and (S). h

Next we will show that the set of solutions to Eqs. (3.3a,b) is non-empty and is a complete lattice.
First we define partial orderings on sets V , V , and V.M W

Definition 3.6. Let v ; (v ,v ) [V.M W

9 9(i) Define a partial ordering $ on V by v $ v iff v (m) $ v (m) for all m [ M.M M M M M M m M

9 9(ii) Define a partial ordering $ on V by v $ v iff v (w) $ v (w) for all w [ W.W W W W W W w W

9 9(iii) Define a partial ordering ^ on V by v ^ v9 iff v $ v and v # v .M M M M M W W W

Consider a mapping T ; (T ,T ), where T : V →V and T : V →V are defined by the right-hand1 2 1 M 2 W

sides of Eqs. (3.3a) and (3.3b), respectively. We can prove the following proposition by applying
Tarski’s fixed point theorem (Tarski, 1955).

* *Proposition 3.7. The set V of solutions to Eqs. (3.3a,b) is non-empty and kV , ^ l is a completeM

lattice.

Proof. We need to show that the set of fixed points of mapping T has the above property. Note that
kV, ^ l is a finite lattice and thus complete. Apparently, T : V →V. We need to show that mapping TM

9 9 99 99is non-decreasing in v with respect to ^ . Consider any v9 5 (v ,v ) and v0 5 (v ,v ) such thatM M W M W

99 9 99 9v0 ^ v9 (i.e., v $ v and v # v ). ThenM M M M W W

99T (v0)(m) 5 maxhw [ W um $ v (w)j < hmj1 m w W
.m

9$ maxhw [ W um $ v (w)j < hmjm w W
.m

5 T (v9)(m).m 1

99The above inequality $ just follows from the fact that hw [ W : m $ v (w)j $ hw [ W : m $m w W w

9v (w)j. Thus, T v0 $ T v9. Similarly, T v0 # T v9. Hence, Tv0 ^ Tv9. hW 1 M 1 2 W 2 M

When preferences are strict, Proposition 3.4 and Proposition 3.7 imply that we can identify the set
*of stable matchings with the set V of solutions to Eqs. (3.3a,b). In such cases, we sometimes call

] ]* *v [V itself a stable matching, and call V the set of stable matchings. Let v ; (v ,v ) andM W]] *v ; (v ,v ) denote, respectively, the greatest and smallest elements (with respect to ^ ) in V . AM W M] ] ]matching v is an M-optimal stable matching and a matching v a W-optimal stable matching; every
]]man likes and every woman dislikes v at least as much as any other stable matching, and the opposite

]is true for v. The M- and W-optimal equilibria, v and v, can be found by a simple iterative procedure:
] ]0 0 0 0 0] ] ] ]to obtain v, set v ; (v ,v ) such that v (m): 5 max w s.t. w [ W < hmj for all m and v (w): 5 wM W M . Wm] ]
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n n n n n21] ] ] ]for all w. Define a sequence v ; (v ,v ) by v : 5 Tv for n $ 1. Since the sets M and W are finite,M W]n n] ] ] ]the sequence v converges to v: 5lim v after a finite n. The limit v is the M-optimal stable matching.
n n n n n21]Similarly, to obtain the W-optimal equilibrium, define a sequence v ; (v ,v ) by v : 5 TvM W] ] ] ]0 0 n]starting with v (m): 5 m and v (w): 5 max m s.t. m [ M < hmj. Then, v: 5lim v is the W-optimalM W .w] ] ]

stable matching.

4. When preferences are not strict

When preferences are not strict, the set of solutions to Eqs. (3.3a,b) do not fully characterize the set
of stable matchings as it does in Proposition 3.4. The problem is that when preferences are not strict, a
solution v to Eqs. (3.3a,b) may fail to induce a matching, and a pre-matching defined by some stable
matching may not satisfy Eqs. (3.3a,b). However, we can still show the existence of a stable matching
using these equations by introducing tie-breaking rules into not strict preferences.

Note that the method in Section 3 would work if the preferences were strict. So let us transform a
not-necessarily-strict preference ordering of each agent into a strict ordering by arbitrarily assigning
strict orders among the group of alternatives the agent regards as equivalent, keeping orders for the
rest of the alternatives as in the original preference ordering. Then, there is a solution v to Eqs.
(3.3a,b) with respect to the transformed preferences. And v induces a matching, which is stable under
the original preferences. Therefore, this reproves the result by Gale and Shapley (1962) that every
marriage problem has a stable matching, without reference to the deferred acceptance algorithm.

5. Discussion

An interesting point of our formulation is that Eqs. (3.3a,b) look as if they were defining a sort of
Nash equilibrium in some non-cooperative game. In Adachi (1998), the author uses these equations to
show that the set of equilibrium outcomes in a search theoretic marriage problem with negligible
search costs reduces to the set of stable matchings in a corresponding Gale–Shapley marriage
problem.

This new characterization of stable matchings with strict preferences is very prone to comparative
statics analyses as it relies on monotonicity (see Milgrom and Roberts, 1994; Milgrom and Shannon,
1994). It can give a simple proof to one of the well-known comparative statics results that when men
extend their lists of acceptable women, the men are not better off and the women are not worse off
(see, for example, Theorem 2.24 in Roth and Sotomayor, 1990).

A referee suggested extending this formulation to the college admissions problem. However, I am
unable to provide another proof to the strong lattice properties of the stable matchings in the college
admissions problem (see Section 5.6 of Roth and Sotomayor, 1990) within our formulation,
independently of their Lemma 5.25. The difficulty lies in treating colleges’ preferences over groups of
students, not just preferences over individual students, in our formulation.

One attractive question that remains to be answered is whether a similar characterization is possible
for the assignment games studied by Shapley and Shubik (1972). Using a Nash bargaining solution,
Rochford (1984) considers a rebargaining process between players in Shapley–Shubik assignment
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games and identifies some interior points in the core as stationary points of the rebargaining process.
Following her work, Roth and Sotomayor (1988) observe a certain monotonicity in the rebargaining
process and show that these interior points have a lattice property in (an extension of) the assignment
games. It might be possible to identify the core itself as the stationary points of some rebargaining
process by including a larger class of bargaining solutions.
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