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Abstract. We characterize the maximal sets of preferences under which gen-
eralized median voter schemes are strategy-proof. Those domains are de®ned
by a quali®ed version of single-peakedness, which depends on the distribution
of power among agents implied by each generalized median voter scheme.

1. Introduction

This paper investigates the connections between single-peakedness and
strategy-proofness. Whether or not nontrivial strategy-proof social choice
functions exist depends on the environment where we want them to operate.
When alternatives can be represented as points in a rectangular grid, and
preferences are single-peaked, generalized median voter schemes are strategy-
proof. Outside those situations, nontrivial strategy-proof social choice func-
tions may still exist, but they are harder to ®nd: domain restrictions become
less natural.

Single-peakedness of the agent's preferences is often assumed in the exist-
ing literature and it is certainly a useful requirement toward the existence of
nontrivial strategy-proof social choice functions. In some environments it is
su½cient to guarantee it, in others it needs to be combined with additional
restrictions. But it is always there. This leads us to investigate, in the present
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paper, the extent to which some form of single-peakedness might be necessary
for strategy-proofness, as well as su½cient.

Our answer is partial, because it only refers to generalized median voter
schemes, but it is precise. We start from any such scheme F , and we charac-
terize the maximal set of preferences under which F is strategy-proof. It turns
out that the condition characterizing this maximal domain is a quali®ed ver-
sion of single-peakedness. Previous results in the same vein include BarberaÁ,
Sonnenschein, and Zhou [4], Serizawa [10], and BarberaÁ, MassoÂ , and Ser-
izawa [3]. Our results improve upon these previous results in several direc-
tions. We allow for all types of generalized median voter schemes, by not
ruling out the existence of vetoers or dummies. We also cover restricted
domains under which the range of generalized median voter schemes might
not be a cartesian product.

We have chosen to keep this introduction short, leaving further motiva-
tional remarks and examples for Section 2, which contains the de®nitions and
a statement of our result. This is proven in Section 3. Section 4 concludes.

2. De®nitions, notation and the theorem

Agents are the elements of a ®nite set N � f1; 2; . . . ; ng. We assume that n is at
least 2.

Alternatives are K-tuples of integers numbers. For integers a; b A Z, with
a < b, we will denote the integer interval a; b� � � a; a� 1; . . . ; bf g. A K-
dimensional box B is a cartesian product of K integer intervals:

B �
YK
k�1

Bk;

where Bk � ak; bk� � and ak < bk. A subbox of B is any box A contained in B.
We endow B with the L1 ± norm. That is, for every a A B,

ak k �
XK

k�1
jak j:

Given a; b A B, the minimal box containing a and b is de®ned by

MB�a; b� � g A Bj aÿ bk k � aÿ gk k � gÿ bk kf g:
Preferences are binary relations on alternatives (or subsets of alternatives).

Let U be the set of complete, transitive and asymmetric preferences on B.
Preference pro®les are n-tuples of preferences on B, P A Un. Preference pro®les
P � P1; . . . ;Pn� � are also represented by Pi;Pÿi� � when we want to stress the
role of i's preference. For P A U and AJB, we denote the alternative in A
most preferred by P as tA P� �, and we call it the top of P on A. Therefore,
tB P� � is the unconstrained top of P.

A social choice function on ~P1 � � � � � ~Pn JUn is a function F : ~P1�
� � � � ~Pn ! B.
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The range of a social choice function F : ~P1 � � � � � ~Pn ! B, is denoted by
RF . That is,

RF � a A BjbP � P1; . . . ;Pn� � A ~P1 � � � � � ~Pn such that F P� � � a
� 	

:

Social choice functions require each agent to report some preference. A
social choice function is strategy-proof if it is always in the best interest of
agents to reveal their preferences truthfully. Formally,

De®nition 1. A social choice function F : ~P1 � � � � � ~Pn ! B is manipulable on
~P1 � � � � � ~Pn if there exist P � P1; . . . ;Pn� � A ~P1 � � � � � ~Pn, i A N and

P 0i A ~Pi such that F P 0i ;Pÿi

ÿ �
PiF P� �. A social choice function is strategy-proof

on ~P1 � � � � � ~Pn if it is not manipulable on ~P1 � � � � � ~Pn.

De®nition 2. Let F : ~P1 � � � � � ~Pn ! B be a social choice function and let
Pi A ~Pi. The set of options left open to the other agents by i declaring Pi is

de®ned as follows:

o Pi� � � a A RF jthere exists Pÿi A ~Pÿi such that F Pi;Pÿi� � � a
� 	

:

We shall consider di¨erent restrictions on preferences, all of them related
to single-peakedness. The ®rst one is a natural extension of this classical con-
dition and has been already used in the literature; see for instance BarberaÁ et
al. [1], Serizawa [10], and BarberaÁ et al. [2]. The second one refers to any set O
of K-dimensional alternatives. The third one involves three sets O, A, and D.
We present these de®nitions in sequence for the bene®t of the reader, since the
®rst one is very natural while the others are a bit harder to interpret. For-
mally, though, we need only one of them (De®nition 5).

Our ®rst condition is a natural extension of single-peakedness and it coin-
cides with the classical version when K � 1. It says that whenever alternative
b is closer than g to the best alternative tB P� � (lies on the minimal path from
tB P� � to g, in the sense of the L1-norm) then bPg.

De®nition 3. A preference P A U is single-peaked if bPg for all b; g A B (b 0 g)

such that b A MB tB P� �; g� �:
Preferences satisfying De®nition 3 are characterized by the following two

properties. The ®rst one is goodwise single-peakedness: those preferences,
restricted to sets of alternatives di¨ering only on one component, are single-
peaked. The second is peak-separability: the best alternative for those prefer-
ences on such one-dimensional sets are the projection of the global best on the
set.1

Our next de®nition involves a subset OJB and imposes conditions only
on elements of this set. Therefore, it is weaker than De®nition 3 and it coin-
cides with single-peakedness whenever O � B.

1 BarberaÁ et al. [1] introduced ®rst this concept and called it multidmensional single-
peaked. Serizawa [10] calls those preferences cross-shaped.
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De®nition 4. A preference P A U is single-peaked on OJB if bPg for all
b; g A O (b 0 g) such that b A MB tB P� �; g� �:

Finally, the third de®nition refers to three di¨erent sets O, A (OJA), and
D. Preferences will be restricted on the two sets OXD and AXD, but not in
the same way. They will be required to be single-peaked on OXD, although
the reference point will be the top of P on A, tA P� �, instead of the uncon-
strained top, tB P� �. In addition, they will also be required to respect some
milder restriction on AXD� �n OXD� �. In applications, O will be the set of
options left open by an agent, under a given social choice function, D will be a
subset of alternatives where the agent is not a dummy and A will be the range
of the social choice function.

De®nition 5. Consider OJAJB and DJB. A preference P A U is single-

peaked on O relative to A and D if for every g A AXD and every b A OX
DXMB tA P� �; gÿ �

such that b 0 g we have that bPg.

We will say that a preference P is single-peaked on O relative to A, when-
ever D � A and P satis®es De®nition 5.

Single-peakedness and single-peakedness on O relative to A and D are
related concepts but they de®ne sets of preferences which are not necessarily
subsets of each other. To see that there are single-peaked preferences which do
not satisfy De®nition 5, consider the case where B � 0; 1f g � 0; 1f g, O � A �
D � 0; 1� �; 1; 0� �; 0; 0� �f g, and the single-peaked preference 1; 1� �P 0; 1� �
P 1; 0� �P 0; 0� �. Notice that P is not single-peaked on O relative to A since
b � 0; 0� � is not preferred to g � 1; 0� �, b A OXDXMB tA P� �; gÿ �

, and
g A AXD. Obviously, a single-peaked preference on O relative to A and D

may not be single-peaked because the ordering between some pairs b; g A BnD
is free while it is not for a preference satisfying De®nition 3.

Next, we de®ne generalized median voter schemes. This class of social
choice functions are interesting multidimensional extensions of the basic idea
of median voting. Additionally, several papers have shown that, in this and
similar settings,2 they are strategy-proof rules under single-peakedness.

De®nition 6. A left (right)-coalition system on Bk � ak; bk� � is a correspondence
Wk that assigns to every ak A Bk a nonempty collection of nonempty coalitions

Wk ak� � satisfying the following conditions:

(1) If W A Wk ak� � and W HW 0, then W 0 A Wk ak� �.
(2) If bk > �<�ak and W A Wk ak� �, then W A Wk bk� �.
(3) Wk bk� � � 2N nj (Wk ak� � � 2N nj).

A family L of left-coalition systems on B is a collection Lkf gK
k�1 where

each Lk is a left-coalition system on Bk. Similarly, a family R of right-
coalition systems on B is a collection Rkf gK

k�1 where each Rk is a right-

2 See, for example, Moulin [8], Border and Jordan [6], BarberaÁ et al. [4], [1], Peters
et al. [9], BarberaÁ et al. [2], [3].
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coalition system on Bk: Moreover, given a left (right)-coalition system Wk on
Bk we say that W A Wk ak� � is a minimal left (right) coalition if for every
i A W , W n if g B Wk ak� �. Given Lk (Rk) denote by Lm

k (Rm
k ) the correspond-

ing sets of minimal left (right) coalitions.
For a preference pro®le P � P1; . . . ;Pn� � A Un, AJB, and bk A Bk, denote

by tA P� � � tA P1� �; . . . ; tA Pn� �
ÿ �

the vector of tops on A, and de®ne the co-

alition to the left (right) of bk at tA P� � by
l tA P� �; bk

ÿ � � i A N jtA
k Pi� �U bk

� 	
�r tA P� �; bk

ÿ � � i A N jtA
k Pi� �V bk

� 	�:
De®nition 7. Let Lkf gK

k�1 ( Rkf gK
k�1) be a family of left (right)-coalition sys-

tems on B and let AJB. The social choice function F A : ~P1 � � � � � ~Pn ! A is

called a generalized median voter scheme de®ned by L (R) if it can be de®ned

as follows: for every P A ~P1 � � � � � ~Pn and every k � 1; . . . ;K

F A
k P� � � bk , l tA P� �; bk

ÿ �
A Lk bk� � and l tA P� �; bk ÿ 1

ÿ �
B Lk bk ÿ 1� �

�F A
k P� � � bk , r tA P� �; bk

ÿ �
A Rk bk� � and r tA P� �; bk � 1

ÿ �
B Rk bk � 1� ��:

Notice that our de®nition is relative to the set A, since two preference
pro®les P and P0 with the same top tB P� � � tB P0� � outside of A may lead to
di¨erent choices under F A, if their tops on A are not the same. However, this
will not happen if A itself is box-shaped. Also notice that a generalized median
voter scheme F A respects unanimity on A and therefore the range of F A con-
tains A. Hence, when we write F A : ~P1 � � � � � ~Pn ! A we implicitly under-
stand that the range of F A is the set A.3

Before proceeding, it is useful to understand the relationship between right
and left coalition systems, Rk and Lk that produce the same outcome for all
tA

k P1� �; . . . ; tA
k Pn� �

ÿ �
. Given Rk, de®ne L

�
k as follows: for all ak U ak < bk,

L�
k ak� � � S JN jS XS 00j for all S 0 A Rk ak � 1� �f g; and

L�
k bk� � � 2N nj:

Remark 1. It is easy to see that Rk and Lk will select the same outcome for all
tA

k P1� �; . . . ; tA
k Pn� �

ÿ �
if and only if Lk �L�

k.

Our de®nition of generalized median voter schemes induces some distri-
bution of power among agents. Some agents may never be able to in¯uence
the outcome at all: they are dummies. Some agents may always dictate the
outcome to be in a speci®c subset: they are decisive. Some agents may avoid
some outcomes, if they want: they are vetoers. These possibilities are some
times global, but they can also be de®ned in a local sense: power may depend
on the alternative under consideration and also on each of the dimensions

3 See BarberaÁ et al. [2] for an explicit discussion over the ontoness of such functions
and a characterization of all such generalized median voter schemes.
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de®ning this alternative. The de®nition below makes all these notions precise.
To do so, let L � Lkf gK

k�1 �Lm � fLm
k gK

k�1� be a (minimal) left-coalition
system de®ned on B, AJB, and let R � Rkf gK

k�1 �Rm � Rm
k

� 	K

k�1� and
F A : ~P1 � � � � � ~Pn ! A be its associated (minimal) right-coalition system
and generalized median voter scheme, respectively.

De®nition 8. We say that agent i is left (right) dummy at bk A Bk if

i B 6
S ALm

k �bk�
S

�
i B 6

S ARm
k �bk�

S

�
.

We say that agent i is left (right) vetoer at bk A Bk if i A 7
S ALk bk� �

S�
i A 7

S ARk�bk�
S

�
.

We say that agent i is left (right) decisive at bk A Bk if if g A Lk bk� �
if g A Rk bk� �� �.

Remark 2. The following relationships result from Remark 1.

(1) Assume that ak U bk < bk: (1.a) if agent i is left dummy at bk then

agent i is right dummy at bk � 1, and (1.b) if agent i is left vetoer at bk then

agent i is right decisive at bk � 1.
(2) Assume that ak < bk U bk: (2.a) if agent i is right dummy at bk then

agent i is left dummy at bk ÿ 1, and (2.b) if agent i is right vetoer at bk then

agent i is left decisive at bk ÿ 1.

The de®nition of a decisive agent follows Serizawa [10]. Notice that its
power is weaker than what the name may suggest. If i is left decisive at bk,
then he can guarantee that the outcome will not be strictly above bk. In other
words, i can veto all values strictly above bk.

De®nition 9. We say that F A is a generalized median voter scheme without

dummies if for all k � 1; . . . ;K the set of left (right) dummies at bk is empty for

all bk A ak; bk� �.
Our next de®nition requires the domain of the social choice function to be

su½ciently large: this avoids cases where strategy-proofness might be trivially
obtained because agents' preferences are almost ®xed.

De®nition 10. We say that a domain ~P1 � � � � � ~Pn is rich on AJB if for all
i A N and a A A there exists Pi A ~Pi such that tA Pi� � � a.

The richness condition simply requires that there should be, for each
alternative, at least one admissible preference ranking this alternative as best.
This is a standard assumption (see, for instance, BarberaÁ, Sonnenschein, and
Zhou [4] and Serizawa [10]). Notice that if a domain of preferences is rich, its
supersets are also rich.

As a starting point, we remind the reader the following result.

Theorem 1. (Serizawa (1995)) Let F B : ~P1 � � � � � ~Pn ! B be a strategy-

proof generalized median voter scheme without dummies with rich domain on B.
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Let i A N. For any k � 1; . . . ;K, let dk be the maximal level such that i is right
decisive in Rk, and let vk be the minimal level such that he is a right vetoer in

Rk. Then any Pi A ~Pi is single-peaked on

S Pi� � � fa A BjEk � 1; . . . ;K ;minfdk; t
B
k �Pi�gU ak U maxfvk; t

B
k �Pi�gg:

Our results improve upon this one in several directions. In order to moti-
vate our contributions, let us ®rst rephrase the essential intuition behind
Theorem 1. The set S Pi� � is almost the option set o Pi� �, i.e. the set of alter-
natives that, given that i votes Pi, may be the ®nal outcome, depending on the
votes of others. Precisely,4

o Pi� � � fa A BjEk � 1; . . . ;K ;minfdk; t
B
k �Pi�gU ak

U maxfvk ÿ 1; tB
k �Pi�gg:

Then, Theorem 1 requires that i's preferences are single-peaked on S Pi� �.
This statement is equivalent to requiring that (a) Pi is single-peaked on o Pi� �,
and (b) vk is worse than any point di¨erent than vk in MB tB

k Pi� �; vk

ÿ �
if

vk 0 tB
k Pi� �.5 (This rewording may seem arti®cial, but wait). In fact, single-

peakedness on o Pi� � is necessary. But, because agent i, by changing his pref-
erence from Pi to P0i , can change these options, and shift the outcome, a fur-
ther requirement is also necessary: other points which might be attained by
declaring preferences other than Pi must be worse than some points in the
option set. Serizawa's condition requires this for the point vk only (and does so
implicitly). If we want to get a condition which is not only necessary but also
su½cient for strategy-proofness we must require it explicitly and for a (gen-
erally) larger set of alternatives.

To be more speci®c, consider Example 1, which shows that the set of
single-peaked preferences on S Pi� � is still too large in the sense that with those
preferences generalized median voter schemes may be manipulable.

Example 1. Consider a one-dimensional problem B � fa1; a2; a3; a4g with
a1 < a2 < a3 < a4 and agents 1 and 2. De®ne the generalized median voter
scheme F B as follows: Rm�a4� � f1; 2g, and Rm�a3� � Rm�a2� � Rm�a1� �
ff1g; f2gg. Notice that F B does not have a right-dummy agent and, by
Remark 2, it does not have a left-dummy agent. Consider the preference P2 of
agent 2 such that a4P2a1P2a2P2a3. Since a3 is the maximal level such that
agent 2 is right decisive and a4 is the minimum level such that agent 2 is right
vetoer, we have that S�P2� � �minfa3; a4g;maxfa4; a4g� � �a3; a4�. Since
a4P2a3 we have that P2 is single-peaked on S�P2�. However, to see that agent
2 can manipulate F B let P1 be any single-peaked preference for agent 1 with
the property that tB�P1� � a1 and P02 � P1. Then, F B�P1;P

0
2� � a1P2a3 �

F B�P1;P2�.

4 See Lemma 1 in the Appendix.
5 This heuristic argument is done assuming implicitly that K � 1.
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In view of this, we proceed as follows. We provide necessary and su½cient
conditions for strategy-proofness of generalized median voter schemes for the
general case where the range is not necessarily equal to B. Before that, in
order to allow for better comparison with Serizawa's result and to proceed
more smoothly, we state an intermediate result which maintains the non-
dummy condition and highlights one of the directions of our extension. Since
it will become a Corollary of Theorem 3 (proven in Section 3), we state it
without proof.

Theorem 2. Let F A : ~P1 � � � � � ~Pn ! A be a generalized median voter scheme

with rich domain on A without dummies. Then, F A is strategy-proof on
~P1 � � � � � ~Pn if and only if for every i A N and every Pi A ~Pi , Pi is single-

peaked on o�Pi� relative to A.

Example 2 below illustrates that the non-dummy condition in Theorems 1
and 2 is very restrictive because many generalized median voter schemes do
not satisfy it. It is obvious that any maximality result should exclude agents
which are dummies at all points, but there is a wide gap between the trivial
case where an agent is dummy everywhere and those where he might be
dummy locally, especially in a multidimensional setting.

Example 2. Consider a one-dimensional problem B � �a1; a10� with ten alter-
natives a1 < � � � < a10, and agents i and j �i0 j� in a set N � f1; . . . ; ng where
nV 3. De®ne the generalized median voter scheme F B as follows:
Lm�a1��N nfig, Lm�a2�� � � � �Lm�a9��fN nfig;Nnf jgg, and Lm�a10� �
2N nj. Notice that although agent i is only left dummy at a1, F B does not
satisfy the non-dummy condition, and therefore we can not apply Theorems 1
and 2.

Consider a generalized median voter scheme F A : ~P1 � � � � � ~Pn ! A
de®ned by R � fRkgK

k�1 (and L � fLkgK
k�1) and let i A N and k A K be

given. Consider the set of points fx1
k; . . . ; xT

k g where ak < x1
k < � � � < xT

k U bk

and agent i is right dummy at xt
k for all 1U tUT . Denote by Dk�i� �

fD0
k�i�; . . . ;DT

k �i�g the partition of �ak; bk� where D0
k�i� � �ak; x

1
k ÿ 1�,

Dt
k�i� � �xt

k; x
t�1
k ÿ 1� for all 1U t < T , and DT

k �i� � �xT
k ; bk�.

De®nition 11. Let F A : ~P1 � � � � � ~Pn ! A be a generalized median voter

scheme de®ned by R � fRkgK
k�1 (and L � fLkgK

k�1) and let i A N. The parti-

tion D�i� � QK
k�1

Dk�i� of B is called the non-dummy partition of i.

Theorem 3. Let F A : ~P1 � � � � � ~Pn ! A be a generalized median voter scheme

with rich domain on A. Then, F A is strategy-proof on ~P1 � � � � � ~Pn if and only

if for every i A N, every Pi A ~Pi , and every D A D�i�, Pi is single-peaked on

o�Pi� relative to A and D.

Example 3 below illustrates some of the main concepts used in the de®-
nition of single-peaked preferences on o�Pi� relative to A and D.
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Example 3. Consider the case with two coordinates where B � fa11; . . . ; a7
1g�

fa1
2; . . . ; a5

2g and the set of agents is N � f1; 2; 3; 4; 5g. Consider the gen-
eralized median voter scheme F B de®ned by the following family of right-
coalition systems R � fR1;R2g:

Rm
1 �a7

1� � f1; 2; 3; 4; 5g;
Rm

1 �a6
1� � f2; 3; 4; 5g;

Rm
1 �a5

1� � Rm
1 �a4

1� � ff2; 3; 4; 5g; f1; 2; 3; 4gg;
Rm

1 �a3
1� � ff1; 2; 3g; f2; 3; 4g; f3; 4; 5gg;

Rm
1 �a2

1� � ff2; 3g; f3; 4; 5gg;
Rm

1 �a1
1� � 2N nj;

Rm
2 �a5

2� � f1; 2; 3; 4g;
Rm

2 �a4
2� � ff2; 3; 4g; f3; 4; 5gg;

Rm
2 �a3

2� � Rm
2 �a2

2� � ff1; 2g; f3; 4gg; and
Rm

2 �a1
2� � 2N nj:

Notice that agent 1 is right dummy at a2
1, a6

1, and a4
2 but agent 2 is never

right dummy. Therefore, the non-dummy partition of agent 1 is D�1� �
D1�1� �D2�1�, where D1�1� � ffa1

1g; fa2
1; a

3
1; a

4
1; a

5
1g; fa6

1; a
7
1gg and D2�1� �

ffa1
2; a

2
2; a

3
2g; fa4

2; a
5
2gg, while the non-dummy partition of agent 2 is the box B

itself since D1�2� � ffa1
1; . . . ; a7

1gg and D2�2� � ffa1
2; . . . ; a5

2gg. Consider any
set of preferences ~P1 � � � � � ~P5 for which F B has rich domain on B. Notice
that since D�2� � fBg, any single-peaked preference P2 on o�P2� is indeed
single-peaked on o�P2� relative to B and D. Consider any preference P1 A ~P1

such that tB�P1� � �a3
1; a

2
2�. Notice that o�P1� � fa1

1; a
2
1; a

3
1; a

4
1; a

5
1; a

6
1g�

fa1
2; a

2
2; a

3
2; a

4
2g. If F B is strategy-proof we must have, for instance that

�a6
1; a

2
2�P1�a7

1; a
1
2� and �a4

1; a
3
2�P1�a5

1; a
3
2� but we could have either �a5

1; a
5
2�

P1�a4
1; a

3
2� or �a4

1; a
3
2�P1�a5

1; a
5
2� since �a5

1; a
5
2� and �a4

1; a
3
2� belong to di¨erent

elements of the non-dummy partition of agent 1.
Before proving the main result of the paper we illustrate, in Example 4

below, that the class of preferences identi®ed in Theorem 3 may be very large,
indeed.

Example 4. Consider the case with two coordinates where B � fa1
1; a

2
1;

a3
1; a

4
1; a

5
1g � fa1

2; a
2
2; a

3
2; a

4
2; a

5
2g and the set of agents is N � f1; 2g. Let F B be

the generalized median voter scheme where each agent is a dictator in one of
the coordinates; that is, F B is de®ned by the following family of right-coalition
systems R � fR1;R2g:

Rm
1 �a2

1� � � � � � Rm
1 �a5

1� � f1g;
Rm

2 �a2
2� � � � � � Rm

2 �a5
2� � f2g; and

Rm
1 �a1

1� � Rm
2 �a1

2� � ff1g; f2gg:
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Following Le Breton and Sen [7] we say that a preference P1 A U is top
unconditional for agent 1 if given tB�P1� � �a1; a2� we have that �a1; a

0
2�

P1�a01; a02� for all a01 0 a1 and all a02 A B2. Similarly, we say that a preference
P2 A U is top unconditional for agent 2 if given tB�P2� � �a1; a2� we have that
�a01; a2�P2�a01; a02� for all a02 0 a2 and all a01 A B1. Denote by TUi the set of top
unconditional preferences for agent i.

Le Breton and Sen [7] show, in a more general set up, that the maximal
domain of preferences under which this coordinatewise dictator F B is strategy-
proof is precisely TU1 �TU2. We will see that, even though preferences on
TU1 are far from being single peaked, the set of top unconditional prefer-
ences for agent 1 coincides with the class of preferences identi®ed in Theorem
3.6 Given F B, and since agent 1 is a dummy at every a2 0 a1

2 we have that
D2�1� � ffa1

2g; . . . ; fa5
2gg. Moreover, since agent 1 is never a dummy at any

a1 A B1, we have that D1�1� � fa1
1; . . . ; a5

1g. Therefore, a generic element D in
D�1� can be written as fa1

1; . . . ; a5
1g � fa02g, an horizontal integer segment.

Given P1 A TU1 and its associated top element tB�P1� � �a1; a2�, we have
that o�P1� � f�a1;a

1
2�; . . . ; �a1; a

5
2�g, a vertical integer segment, because agent

1 is a dictator in the ®rst coordinate and a dummy in the second one. But
De®nition 5 just says that �a1; a

0
2�P1�a01; a02� for all a01 0 a1 and all a02 A B2

which is the top unconditional condition for agent 1.

3. Proof of Theorem 3

Let AJB be a subset of alternatives and let F A : ~P1 � � � � � ~Pn ! A be a
generalized median voter scheme de®ned by R � fRkgK

k�1 (and L �
fLkgK

k�1) with rich domain on A. Since the set A will be kept ®xed throughout
the proof we will omit its use as a superscript; that is, in this section, F and t
should be understood as F A and tA. Let i A N, k � 1; . . . ;K and Pi be a
preference ordering in ~Pi. De®ne:

vi
k �

max

�
bk A BK ji A 7

S ALk�bk�
S

�
if the set is nonempty

ak ÿ 1 otherwise

8><>: ; �3:1�

di
k � minfbk A Bk jfig A Lk�bk�g; �3:2�

ak�Pi� � minfvi
k � 1; tk�Pi�g; �3:3�

bk�Pi� � maxfdi
k; tk�Pi�g; and �3:4�

6 We omit the argument for agent 2 since it is identical after interchanging the role of
the coordinates.
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B�Pi� � AX

�YK
k�1
�ak�Pi�; bk�Pi��

�
:
7

�3:5�

Lemma 1 below describes, for any given generalized median voter scheme,
the exact shape of the set of options left open by an agent i to the other agents.

Lemma 1. B�Pi� � o�Pi�.
Proof. Let b A B�Pi�. For every j 0 i, consider any Pj A ~Pj with the property
that t�Pj� � b. We will show that F�Pi;Pÿi� � b. Let k � 1; . . . ;K be arbitrary
and de®ne the set S � f j A N jtk�Pj�U bkg; by construction, NnfigJS.
First, suppose that i B S. Then, vi

k � 1U bk, since ak�Pi�U bk < tk�Pi� implies
that ak�Pi� � vi

k � 1. Therefore, S A Lk�bk�. Moreover, f j A N jtk�Pj�U
bk ÿ 1g � j, which implies that Fk�Pi;Pÿi� � bk. Second, assume that i A S;
that is S � N, which implies that S A Lk�bk�: By construction, the set
S � f j A N jtk�Pj�U bk ÿ 1g is either empty or is equal to the set fig. Suppose
S � fig; then bk U di

k since tk�Pi� < bk and bk�Pi� � max fdi
k; tk�Pi�g imply

that bk�Pi� � di
k. From the hypothesis that bk U bk�Pi� it follows that

bk ÿ 1 < di
k. Therefore fig B Lk�bk ÿ 1� which implies that Fk�Pi;Pÿi� � bk.

Since k A K was arbitrary, we have that b A o�Pi�.
Let a A o�Pi�. That is, there exists Pÿi A ~Pÿi such that F �Pi;Pÿi� � a.

De®ne P � �Pi;Pÿi�. Let k � 1; . . . ;K be arbitrary. Notice that if tk�Pi� � ak

the result follows immediately by (3.3) and (3.4). Assume ®rst that tk�Pi� < ak.
It implies that ak�Pi� < ak. De®ne the set S � f j A N jtk�Pj�U ak ÿ 1g. Since
F �P� � a we know that S B Lk�ak ÿ 1�. However, since i A S we have that
ak ÿ 1 < di

k implying that ak U bk�Pi� since tk�Pi� < ak U di
k and (3.4) hold.

Assume now that tk�Pi� > ak. It implies that ak < bk�Pi�. De®ne the set
S � f j A N jtk�Pj�U akg which belongs to Lk�ak� since Fk�P� � ak. Notice
that i B S which means that vi

k � 1U ak. Therefore, (3.3) and vi
k � 1U

ak < tk�Pi� imply that ak�Pi� � vi
k � 1. Hence, ak�Pi�U ak. Since k A K was

arbitrary, we have that a A B�Pi�. 9

3.1. Necessity

Let F be strategy-proof on ~P1 � � � � � ~Pn. Consider i A N, Pi A ~Pi; and
D A D�i�. Let g A AXD and b A B�Pi�XDX MB�t�Pi�; g� be such that
b 0 g.

Let K1 � fk A K jgk < bk U tk�Pi�g and K2 � fk A K jtk�Pi�U bk < gkg.
Notice that K1 WK2 0j since b 0 g and b A MB�t�Pi�; g�.
Lemma 2. If B�Pi�XDXMB�b; g� � fb; gg then bPig.

Proof. The proof is based on the choice of a pro®le such that, when i declares
his top t�Pi� on A, then b obtains, but i could change the outcome to g by

7 Notice that ak and bk were already de®ned as the extreme values of Bk. The values
ak�Pi� and bk�Pi� are de®ned here. We keep a parallel notation, since �ak�Pi�; bk�Pi��
will again stand for intervals de®ned by their extremes.
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voting for g. To ®nd such pro®le, we will divide the proof into two di¨erent
cases.

Case 1. Assume that K1 0j: That is, there exists ~k such that g~k < b ~k U t~k�Pi�
and i is not a left dummy at g~k because g~k; b ~k A �xt

~k
; xt�1

~k
ÿ 1� for some

0U tUT~k and g~k < b ~k. Let S JN be such that i A S A Lm
~k
�g~k�, and consider

Pÿi where for every j A N nfig, Pj A ~Pj is such that

t�Pj� � g if j A Snfig
b if j A NnS

�
;

which exist since b; g A A and F has rich domain on A.
First, for every k B K1 WK2 we have that N nfigH f j A N jtk�Pj�U

bk � gkg. Using the fact that b; g A B�Pi� we will show that Fk�Pi;Pÿi� �
gk � bk. To see it, ®rst assume that Fk�Pi;Pÿi� < gk � bk, which would imply
that fig A Lk�Fk�Pi;Pÿi�� and tk�Pi�U gk � bk; but from these two con-
ditions we could conclude that bk�Pi� � maxfdi

k; tk�Pi�g < gk � bk contra-
dicting the hypothesis that b; g A B�Pi�. Assume now that Fk�Pi;Pÿi� > gk �
bk, which would imply that tk�Pi� > gk � bk. Therefore, Nnfig B Lk�gk�
implying that i A 7

S ALk�gk�
S, which would mean that vi

k � 1 > gk � bk. There-

fore, we would have that gk � bk < minfvi
k � 1; tk�Pi�g � ak�Pi�, contra-

dicting the hypothesis that b; g A B�Pi�. Hence,

Fk�Pi;Pÿi� � bk for all k B K1 WK2: �3:6�
Second, for every k A K1 the set f j A N jtk�Pj�U bkg contains the set

N nfig. Since b A B�Pi� by hypothesis, Nnfig A Lk�bk� and therefore
Fk�Pi;Pÿi�U bk. Moreover, gk UFk�Pi;Pÿi� because tk�Pj�V gk for every
j A N. Hence,

gk UFk�Pi;Pÿi�U bk for all k A K1: �3:7�
The set f j A N jt~k�Pj�U g~kg is equal to Snfig. Since Snfig B L~k�g~k� we must
have that

g~k < F~k�Pi;Pÿi�: �3:8�
Third, for every k A K2 the set f j A N jtk�Pj� < bkg is either empty, in

which case Fk�Pi;Pÿi�V bk, or else it is equal to the set fig. But since
b A B�Pi� implies that fig B Lk�bk ÿ 1� we must have that Fk�Pi;Pÿi�V bk.
Hence,

Fk�Pi;Pÿi�V bk for all k A K2: �3:9�
It is straightforward to see that from (3.6), (3.7), (3.8), (3.9), and the hy-

pothesis of Lemma 2 it follows that F�Pi;Pÿi� � b.
Consider any Pi A ~Pi with the property that t�Pi� � g, which exists since

g A A and F has rich domain on A. Now, F�Pi;Pÿi� A MB�b; g� because for
every j A N we have that t�Pj� A fb; gg. Consider again the coordinate ~k A K1
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and the set S � f j A N jt~k�Pj�U g~kg, which belongs to Lm
~k
�g~k�. Therefore,

F~k�Pi;Pÿi� � g~k, which implies, by the hypothesis of Lemma 2, that
F �Pi;Pÿi� � g. Since F is strategy-proof on ~P1 � � � � � ~Pn we must have that
bPig.
Case 2. Assume that K1 � j and K2 0j: That is, there exists ~k such that
g~k > b ~k V t~k�Pi�. Notice that i is not a right dummy at g~k because
g~k; b ~k A �xt

~k
; xt�1

~k
ÿ 1� for some 0U tUT~k and g~k > b ~k. Let S JN be such

that i A S A Rm
~k
�g~k�, and consider Pÿi where for every j A N nfig, Pj A ~Pj is

such that

t�Pj� � g if j A Snfig
b if j A NnS

�
;

which exist since b; g A A and F has rich domain on A.
First, for every k B K2 we have that Fk�Pi;Pÿi� � gk � bk since N nfigH

f j A N jtk�Pj�V bk � gkg and i is neither a right-decisive nor a right-vetoer
agent at bk � gk. Therefore,

Fk�Pi;Pÿi� � bk for all k B K2: �3:10�
Second, for every k A K2 the set f j A N jtk�Pj�V bkg contains the set

N nfig. Since i is not a right-vetoer agent at bk (remember that b A B�Pi�), we
have that N nfig A Rk�bk�. Therefore,

Fk�Pi;Pÿi�V bk for all k A K2: �3:11�
Moreover, the set f j A N jt~k�Pj�V g~kg is equal to Snfig. Since Snfig B R~k�g~k�
we must have that

g~k > F~k�Pi;Pÿi�: �3:12�
It is straightforward to see that from (3.10), (3.11), (3.12) and the hypoth-

esis of Lemma 2 it follows that F�Pi;Pÿi� � b.
Consider any Pi A ~Pi with the property that t�Pi� � g, which exists since

g A A and F has rich domain on A. Now, F�Pi;Pÿi� A MB�b; g� because for
every j A N we have that t�Pj� A fb; gg. Consider again the coordinate ~k A K2

and the set S � f j A N jt~k�Pj�V g~kg, which belongs to Rm
~k
�g~k�. Therefore,

F~k�Pi;Pÿi� � g~k, which implies, by the hypothesis of Lemma 2, that
F �Pi;Pÿi� � g. Since F is strategy-proof on ~P1 � � � � � ~Pn we must have that
bPig. 9

Lemma 3. If B�Pi�XDXMB�b; g�Q fb; gg then bPig.

Proof. Given g and b, there will exist a1 � b, a2; . . . ; ahÿ1, ah � g such that, for
each j, B�Pi�XDXMB�aj ; aj�1� � faj; aj�1g. Speci®cally, we can choose such
aj 's by letting aj�1 be one of the closest elements (in the L1-norm) to aj in
B�Pi�XDXMB�aj; g�. Now, to prove Lemma 3, apply successively Lemma 2
and the transitivity of the preference ordering Pi. 9

Lemma 4. If g B B�Pi� then bPig.
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Proof. For each j A N consider any Pj A ~Pj such that t�Pj� � g, which exists
since g A A and F has rich domain on A. Obviously, F�P1; . . . ;Pn� � g. The
proof will consists of two steps.

Step 1: We want to show that ak�Pi�UFk�Pi;Pÿi�U bk�Pi� for all
k � 1; . . . ;K . But this is immediate, because by de®nition of option set
F �Pi;Pÿi� A o�Pi�, and by Lemma 1, we have that ak�Pi�UFk�Pi;Pÿi�U
bk�Pi� for all k � 1; . . . ;K .

Step 2: We want to show that for all k � 1; . . . ;K :

(1) if bk U gk then bk UFk�Pi;Pÿi�U gk;
(2) if gk < bk�U tk�Pi�� then gk UFk�Pi;Pÿi�U bk:

De®ne P̂ � �Pi;Pÿi�. To show �1� assume that bk U gk and notice that the
set f j A N jtk�P̂j�U gkg contains Nnfig. Therefore, Fk�P̂�U gk, because

b A B�Pi�. If bk � ak�Pi� then bk UFk�P̂�. Assume that ak�Pi� < bk. Since
b A B�Pi� we know that bk A �ak�Pi�; bk�Pi��, which implies that bk U di

k

because tk�Pi�U bk. Therefore, fig B Lk�bk ÿ 1�. Moreover, since f j A N j
bk > tk�P̂j�gJ fig we must have that bk UFk�P̂�. To show �2�, assume that
gk < bk and notice that the set f j A N jgk U tk�P̂j�g is equal to N. This implies
that gk UFk�P̂�. Since b A B�Pi� we know that ak�Pi�U bk, but because
tk�Pi�V bk, we must have that bk > vi

k, implying that there exists S A Lm
k �bk�

such that i B S. Since f j A N jbk V tk�P̂j�gKNnfigKS it follows that
Fk�P̂�U bk.

From Steps 1 and 2 we have established that g0F �Pi;Pÿi� A B�Pi�X
MB�b; g�. Since fb; ggHD; from (1) and (2) we have that F �Pi;Pÿi� A D:
Moreover, since F is strategy-proof and F �P� � g we must have F�Pi;Pÿi�Pig.
De®ne F �Pi;Pÿi� � g0. Notice that b A MB�t�Pi�; g0� and g0 A B�Pi�XD,
implying that the hypothesis of either Lemma 2 or Lemma 3 is satis®ed.
Therefore, we can deduce that bPig

0 and by transitivity of Pi we can conclude
that bPig. 9

3.2. Su½ciency

Assume that F is not strategy-proof. Then, there exist i A N, P � �P1; . . . ;
Pn� A ~P1 � � � � � ~Pn and P0i A ~Pi such that

F �P0i ;Pÿi�PiF�P�: �3:13�
Denote by P the pro®le �P0i ;Pÿi� and let g � F�P� and b � F�P�. We want to
show that there exists D A D�i� such that b A B�Pi�XDXMB�t�Pi�; g� and
g A AXD. First, notice that b � F�Pi;Pÿi� implies that b A o�Pi�, and there-
fore, by Lemma 1, we have that b A B�Pi�.
Lemma 5. b A MB�t�Pi�; g�.

Proof. To show it, assume ®rst that bk < tk�Pi�. We will show that gk U bk.
Since Fk�P� � bk we have that S � f j A N jtk�Pj�U bkg A Lk�bk� and
because i B S we have that S J f j A N jtk�Pj�U bkg A Lk�bk� by condition
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�1� in the de®nition of a left-coalition system. Then, clearly Fk�P�U bk which
is the desired result because gk � Fk�P�. Assume that bk > tk�Pi�. We will
show that bk U gk. Since Fk�P� � bk, the set S � f j A N jtk�Pj�U bk ÿ 1g B
Lk�bk ÿ 1� and because i A S we have that f j A N jtk�Pj�U bk ÿ 1gJ
S B Lk�bk ÿ 1� implying that gk � Fk�P�V bk. Finally, if bk � tk�Pi� we do
not have to prove anything since the minimal box condition for dimension k is
irrelevant; that is, gk could be both higher or smaller than bk � tk�Pi�. 9

Lemma 6. There exists D A D�i� such that fg; bgHD:

Proof. We have to show that:

(1) If gk < bk then i is not left dummy at x for every gk U x < bk, and
(2) If bk < gk then i is not right dummy at x for every bk < xU gk.

We will show only �1�, since the argument to show �2� is the symmetric
one using right instead of left coalitions. Assume gk < bk�U tk�Pi��. The
inequality bk U tk�Pi� follows from Lemma 5. By condition (3.13) the coali-
tion S � f j A N jtk�Pj�U gkg � f j A N nfigjtk�Pj�U gkg is not a member of
Lk�gk� since gk < bk � Fk�P�. However, S � f j A N jtk�Pj�U gkg A Lk�gk�
since Fk�P� � gk implying that i A S and Snfig � S B Lk�gk� which in turn
implies that there exists T JS such that i A T and T A Lm

k �gk� which means
that i is not left dummy at gk. Let gk < x < bk be arbitrary. By de®nition
of left coalition system S A Lk�x� and by condition (3.13) SnfigJ
f j A N jtk�Pj�U xg B Lk�x�. Therefore, there exists T JS such that i A T

and T A Lm
k �x�. Hence i is not a left-dummy agent at x, which shows �1�. 9

4. Conclusion and ®nal remark

We have characterized the maximal domains of preferences under which gen-
eralized median voter schemes are strategy-proof. The extent of these domains
depends on the distribution of power among agents which is implied by each
generalized median voter scheme. It is still an open question whether some
form of single-peakedness is necessary for a domain of preferences to admit
some strategy-proof social choice function (not necessarily a generalized
median voter scheme). An interesting partial answer is provided in Berga and
Serizawa [5].
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