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We analyze the class of increasing utility functions exhibiting all derivatives of
alternating sign. This property, that we call mixed risk aversion, is satisfied by the
utility functions most commonly used in financial economics. The utility functions
displaying mixed risk aversion can be expressed as mixtures of exponential func-
tions. We characterize stochastic dominance and we find conditions for both
mutual aggravation and mutual amelioration of risks when agents are mixed risk
averse. Finally, the analysis of the distribution function describing a mixed utility
allows one to characterize the behaviour of its indexes of risk aversion and to
discuss its implications for portfolio selection. Journal of Economic Literature
Classification Numbers: D81, G11. � 1996 Academic Press, Inc.

1. INTRODUCTION

Most of the utility functions used to construct examples of choice under
uncertainty share the property of having all odd derivatives positive and all
even derivatives negative. The aim of this paper is to characterize the class
of utility functions exhibiting this property which we call mixed risk aver-
sion. Utility functions with this property are called mixed and, as follows
from Bernstein's theorem, such functions can be expressed as mixtures of
exponential utilities.
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Within the paradigm that follows the von Neumann�Morgenstern
theory of expected utility, the necessity of imposing additional restrictions
on the utility functions representing preferences on the space of random
variables was soon recognized. Besides the obvious requirement of risk
aversion (or concavity) which allows expected utility maximization, Pratt
[12] and Arrow [2] stressed the importance of the property of decreasing
risk aversion so as to obtain plausible comparative statics results about the
relation between wealth and risk taking by an investor. Thus, an investor
with decreasing absolute risk aversion exhibits a demand for risky asset
that increases with wealth.

Pratt and Zeckhauser [13] considered afterwards the family of proper
risk averse utility functions which constitute a strict subset of the functions
with decreasing absolute risk aversion. A proper utility is the one for which
an undesirable risk can never be made desirable by the presence of another
independent, undesirable risk, that is, these two risks must aggravate each
other. In their paper, Pratt and Zeckhauser proved that mixtures of
exponential utilities are proper, and that some commonly used utility func-
tions are mixtures of exponential utilities.1

As part of the process of refining the set of risk averse expected utility
representations, Kimball [10] has introduced the property of standard risk
aversion. Standardness means that every undesirable risk is aggravated by
every independent, loss-aggravating risk. It should be noticed that, since a
loss-aggravating risk is a risk that increases the expected marginal utility,
when absolute risk aversion is decreasing, every undesirable risk is loss-
aggravating, but the converse is not true. Therefore, standardness implies
Pratt and Zeckhauser's properness.

In this paper we take a step further in this refinement strategy and
provide a characterization of mixed utility functions in terms of preferences
over pairs of sequences of lotteries (or distributions). This characterization
might be useful for testing by means of a laboratory experiment whether an
individual is mixed risk averse. We also propose two alternative, more
technical characterizations for increasing and risk averse preferences. One
of these characterizations allows one to show that mixed risk aversion
implies standard risk aversion. Such a characterization requires that the
measure of absolute prudence be decreasing, which is in turn necessary and
sufficient for standardness.

A remarkable feature of the class of mixed utility functions is that it is
large enough to allow for several general functional forms. Moreover, these
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1 In a more recent paper, Gollier and Pratt [7] have also introduced the class of risk
vulnerable utility functions, which are the ones for which every undesirable risk is aggravated
by every independent, unfair risk. Obviously, since an unfair risk is undesirable, a proper
utility is risk vulnerable. On the other hand, risk vulnerability implies decreasing absolute risk
aversion.
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utilities have the interesting property of being completely characterized by
the (Lebesgue�Stieltjes) measure describing the mixture of exponential
utilities. For instance, this measure contains information about the values
of the indexes of absolute and relative risk aversion which are relevant for
the comparative statics of simple portfolio selection problems. Therefore,
by appropriately choosing a measure over exponential utilities, we can
construct examples of expected utility representations with appealing
properties and for which we can control the behavior of their indexes of
risk aversion.

Finally, it can also be proved that some standard concepts in the theory
of decisions under uncertainty, such as stochastic dominance or mutual
aggravation of risks, can be easily stated in terms of Laplace transforms
when applied to the family of mixed utility functions. With this reformula-
tion those concepts become more operative as some examples suggest.

The paper is organized as follows. In the next section we define mixed risk
aversion and we relate this concept to the one of complete monotonicity in
order to establish some preliminary results. Section 3 characterizes mixed
utilities and discusses their properties. Sections 4 and 5 reformulate the
concepts of stochastic dominance and mutual aggravation of risks, respec-
tively, for mixed utility functions. Section 6 studies the link between the
distribution function characterizing a mixed utility and its absolute and
relative risk aversion indexes. Section 7 analyzes some simple portfolio selec-
tion problems for mixed risk averse investors. Section 8 concludes the paper.

2. COMPLETELY MONOTONE FUNCTIONS AND
MIXED RISK AVERSION

In this section we present some mathematical results which are useful for
the characterization of the class of utility functions we are interested in.

Definition 2.1. A real-valued function .(w) defined on (0, �) is com-
pletely monotone iff its derivatives .n(w) of all orders exist and

(&1)n .n(w)�0, for all w>0 and n=0, 1, 2, ... .

Therefore, a function is completely monotone if it is nonnegative and it
has odd derivatives that are all nonpositive and even derivatives that are
all nonnegative. The following famous theorem due to Bernstein shows that
a function is a Laplace transform of a distribution function iff it is com-
pletely monotone. Analogously, we can say that the set of negative
exponential functions constitutes a basis for the set of completely
monotone functions (see Gollier and Kimball [6]).

487MIXED RISK AVERSION
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Theorem 2.1. The real-valued function .(w) defined on (0, �) is com-
pletely monotone if and only if it has the following functional form:

.(w)=|
�

0
e&sw dF(s), for all w>0, (1)

where F is a distribution function on [0, �).

Proof. See Feller [5, Section XII.4] or Widder [17, Sections IV.12 and
IV.13] for alternative proofs.

Throughout this paper we consider that a distribution function F(s) on
[0, �) is a nondecreasing and right-continuous map from [0, �) into
[0, �). Obviously, we can rewrite the improper Stieltjes integral in (1) as
�[0, �) e&sw d&, where & is the Lebesgue�Stieltjes measure on [0, �) induced
by F (see Ash [3, Section 1.4]). Note that lims � � F(s) exists because of
the monotonicity of F, but this limit is not necessarily finite. This means
that &(A) might be equal to infinity when A is an unbounded Borel set.

Corollary 2.1. If . is a completely monotone function and � is a
positive function with a completely monotone first derivative, then the com-
posite function .(�) is completely monotone. In particular, the function
.(w)=; exp[&:�(w)] is completely monotone for all nonnegative : and ;.

Proof. See Section XIII.4 of Feller [5].

Corollary 2.2. If the function .(w) defined on (0, �) is completely
monotone and strictly positive, then .(w) is log-convex, i.e., ln(.(w)) is con-
vex. The convexity is strict when the support of F has at least two points.

Proof. Just compute

�2[ln(.(w)]
�w2 =

[��
0 s2e&sw dF(s)][��

0 e&sw dF(s)]&[��
0 se&sw dF(s)]2

[��
0 e&sw dF(s)]2 �0,

where the inequality follows from the Cauchy�Schwarz inequality. Q.E.D.

Define, for all h>0, 2h.(w)=.(w+h)&.(w) and, by induction,
20

h.(w)=.(w), 21
h .(w)=2h.(w), 2n+1

h .(w)=2h 2n
h.(w).

Corollary 2.3. The function . defined on (0, �) is completely
monotone if and only if, for every nonnegative integer n, and for all strictly
positive real numbers w and h,

(&1)n 2n
h.(w)�0. (2)

488 CABALLE� AND POMANSKY
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Proof. The proof is an immediate adaptation of the argument in
Akhiezer [1, Section 5.5]. We just have to notice that the function .(w) is
completely monotone on (0, �) if and only if the function .̂(z)#.(&z) is
absolutely monotone for all z # (&�, 0).2 Q.E.D.

It is important to notice that (2) can be rewritten as

:
n

k=0

(&1)k \n
k+ .(w+kh)�0. (3)

Let us assume that an agent has state-independent preferences defined
over the space of nonnegative, real-valued random variables and that she
has an expected utility representation u of these preferences. Then x~ is
preferred to y~ if and only if E[u(x~ )]�E[u( y~ )], where x~ and y~ are
nonnegative random variables and u is a real-valued Borel measurable
function.

Definition 2.2. A real-valued, continuous utility function u defined on
[0, �) exhibits mixed risk aversion iff it has a completely monotone first
derivative on (0, �), and u(0)=0.

Utility functions displaying mixed risk aversion are called mixed. The
requirement of u(0)=0 is just an innocuous normalization for real-valued
functions on [0, �) since the preference ordering is preserved under affine
transformations of the expected utility representation u. The choice of zero
as the origin of the domain [0, �) is made for convenience. Of course, our
analysis can be immediately adapted to different domains and normaliza-
tions. In particular, if we consider instead the open domain (0, �), all the
results of this paper will hold with the obvious exception of the ones
referred to the properties of u at zero. Thus, even if many expected utility
representations used to model situations of choice under uncertainty
exhibit mixed risk aversion, we should point out that Definition 2.2 does
not apply to the affine transformations of the logarithmic utility function
u(w)=ln w and of the power function U(w)=:w:, with :<0, since they
are not finite at zero. Nevertheless, they can be arbitrarily (but not
uniformly) approximated for all w>0 by the mixed utilities û(w)=
ln(w+d )&ln d and U� (w)=:(w+d ):&:d :, respectively.

The following theorem due to Schoenberg [16] provides a functional
characterization of mixed functions:

489MIXED RISK AVERSION

2 A function .̂ defined on (&�, 0) is absolutely monotone iff it is nonnegative and its
derivatives of all orders are all nonnegative.
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Theorem 2.2. The utility function u(w) defined on [0, �) displays
mixed risk aversion if and only if it admits the functional representation

u(w)=|
�

0

1&esw

s
dF(s), (4)

for some distribution function F on [0, �) satisfying

|
�

1

dF(s)
s

<�. (5)

Since u is obtained by Riemann integrating a completely monotone func-
tion . which has the functional form given in (1), condition (5) is
necessary and sufficient for the convergence of the integral �w

0 .(x) dx defin-
ing u(w) for w # [0, �). As in Akhiezer [1], we could also extend the
domain of u to [0, �], and its range to the extended real numbers, by
making u(�)=limw � � u(w).

As pointed out by Pratt and Zeckhauser [13], most of the utility func-
tions used in applied work have completely monotone first derivatives. For
instance, if the utility function u is HARA, i.e., it satisfies &u"(w)�u$(w)=
1�(a+bw) with a>0, b>0, then (4) holds with dF(s)=As(1�b)&1e&(a�b)s ds,
where A is a scaling factor. Therefore, the HARA utility functions are
mixed since they are mixtures of exponential functions characterized by an
arbitrarily scaled gamma distribution function.3 As limit cases of HARA
functions, we obtain the isoelastic (or power) function u(w)=Cw: with
0<:<1 when b=1�(1&:) and a=0. In this case, F(s) is a power
distribution with dF(s)=As&: ds. If a=1�\ and b=0, we get the exponen-
tial (or CARA) utility function u(w)=C[1&e&\w] with \>0 and, then,
F(s) is the Dirac distribution, F(s)=C\ for s�\ and F(s)=0 for 0�s<\.
Finally, if b=1 and a=d�c, the utility function is logarithmic, u(w)=
C[ln(d+cw)&ln d ] with d>0 and c>0, and F(s) turns out to be
exponential; i.e., dF(s)=Ae&(d�c) s ds.

Corollary 2.4. Let u be a mixed utility function which is analytic at
the point }>0 with interval of convergence (}&=, }+=), where }�=>0.
Then u(w) can be expressed as the power series

u(w)= :
�

n=0

pn(w&}) n, for w # (}&=, }+=), (6)

490 CABALLE� AND POMANSKY

3 Cass and Stiglitz [4] proved that two-fund monetary separation holds in an economy
populated by investors having those HARA utilities with a common parameter b. Note that
we are excluding from our analysis the concave quadratic utility functions, which belong to
the HARA class but do not display decreasing absolute risk aversion since b=&1.
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with

p0=|
�

0

1&e&s}

s
dF(s)

and

pn=
&(&1)n

n ! |
�

0
sn&1e&s} dF(s), for n=1, 2, ...,

where F is a distribution function on [0, �).

Proof. It follows directly from applying Taylor's theorem to (4). Q.E.D.

It should be noticed that a mixed utility u(w) is analytic for all w>0,
that is, it can be expressed as a power series in (w&}) which converges in
some neighborhood of }, for all }>0 (see Widder [17, Section II.5]).
Moreover, it can be proved that if the mixed utility u is characterized by
a distribution function having a density f, that is, F $(s)= f (s) for all
s # (0, �), and f is bounded above, then the power expansion (6) holds for
w # (0, 2}) and for all }>0. Finally, it is obvious that (6) also holds for
w # (0, �) and for all }>0 when F(s) has a discrete support.

3. PROPERTIES AND CHARACTERIZATIONS OF
MIXED UTILITY FUNCTIONS

An immediate consequence of Corollary 2.4 is the following property
which refers to the response of the expected utility when there is a marginal
change in just one of the moments of a small risk (or random variable).

Corollary 3.1. Assume that u is a mixed utility function which is
analytic about the point }>0 with interval of convergence (}&=, }+=),
where }>=>0. Assume also that w~ is a real-valued random variable whose
distribution support is included in the interval (}&=, }+=). Then E[u(w~ )]
has nonnegative (nonpositive) partial derivatives with respect to the odd
(even) moments of w~ , that is,

&(&1)r �E[u(w~ )]
�[+r(w~ )]

�0, for r=1, 2, ...,

where +r(w~ )=E[(w~ )r].

Proof. After expanding the binomial expressions (w&})n in (6), it can
be seen that the coefficients of the terms wn are positive (negative) when n

491MIXED RISK AVERSION
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is odd (even). The result then follows from evaluating the corresponding
expectation. Q.E.D.

Therefore, when a mixed risk averse agent faces a choice between two
small risks that only differ in the r th moment, she prefers the risk with
higher moment if r is odd, and the risk with lower moment if r is even.
According to our previous discussion, if the mixed utility u is characterized
by a distribution function having a bounded density, then the conclusion
of Corollary 3.1 holds for every nonnegative random variable with
bounded distribution support. Moreover, the same result also holds for all
nonnegative random variables having well-defined moments of all orders if
the distribution function describing u has discrete support.

The next propositions provide three characterizations of the utility func-
tions displaying mixed risk aversion. The first one is based on the com-
parison of two sets of sequences of random variables, whereas the second
and the third apply to increasing and concave functions and rely on the
behavior of risk aversion indexes and derivatives of all orders.

The following lemmas are crucial for the first characterization we
propose in this section:

Lemma 3.1. The function u(w) defined on (0, �) satisfies (&1)n 2n+1
h

u(w)�0, for every nonnegative integer n and for all real h>0, if and only
if (&1)n 2n

h.a(w)�0 for all real a>0, where .a(w)#u(w+a)&u(w).

Proof. See the Appendix.

Lemma 3.2. Let u(w) be a continuous function on [0, �) with u(0)=0.
The function u(w) is mixed if and only if .h(w)#u(w+h)&u(w) is com-
pletely monotone with respect to w on (0, �), for all h>0.

Proof. See the Appendix.

Let us now define two sets of sequences of lotteries (or discrete distribu-
tions) faced by an agent. The sequences [Le

n (h)]�
n=1 of ``even'' lotteries are

indexed by a positive real number h. For a given h>0, the n th element
Le

n (h) of the even sequence is generated by tossing n times a balanced coin.
If the number of heads k is even the individual receives kh dollars, and he
receives zero dollars otherwise. Similarly, the sequences [L0

n (h)]�
n=1 of

``odd'' lotteries are constructed in a manner similar to the even ones except
that now the payoff is kh if k is odd and zero otherwise. Table I sum-
marizes the payoffs and probabilities of those two sequences of lotteries.

Note that the lotteries Le
n (h) and L0

n (h) have their first n&1 moments
identical. However, the moments of higher or equal order than n of Le

n (h)

492 CABALLE� AND POMANSKY
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TABLE I

Probabilities and Payoffs of Odd and Even Lotteries

Tosses Odd lotteries Even lotteries

n=1
Probabilities: 1�2 1�2 1
Payoffs: 0 h 0

n=2
Probabilities: 1�2 1�2 3�4 1�4
Payoffs: 0 h 0 2h

n=3
Probabilities: 1�2 3�8 1�8 5�8 3�8
Payoffs: 0 h 3h 0 2h

n=4
Probabilities: 1�2 1�4 1�4 9�16 3�8 1�16
Payoffs: 0 h 3h 0 2h 4h

n=5
Probabilities: 1�2 5�32 5�16 1�32 17�32 5�16 5�32
Payoffs: 0 h 3h 5h 0 2h 4h

n=6
Probabilities: 1�2 3�32 5�16 3�32 33�64 15�64 15�64 1�64
Payoffs: 0 h 3h 5h 0 2h 4h 6h

} } } } } } } } } } } }

are greater than those of L0
n (h) when n is even, and the converse holds

when n is odd, that is,

+r[Le
n (h)]=+r[L0

n (h)], for 0<r<n,

+r[Le
n (h)]�+r[L0

n (h)], for r�n, n=2m, m=1, 2, ...,

+r[Le
n (h)]�+r[L0

n (h)], for r�n, n=2m+1, m=0, 1, 2, ... .

Proposition 3.1. Let u(w) be a continuous utility function on [0, �) such
that u(0)=0. Then u(w) is mixed if and only if, for all initial wealth w�0,
the odd lottery L0

n (h) is preferred to the even lottery Le
n (h), for all h>0 and

every positive integer n; i.e.,

EL0
n(h)[u(w+kh)]�ELe

n(h)[u(w+kh)], n=1, 2, ..., h>0, (7)

where the subindex in the expectation operator indicates the lottery whose
distribution is used to evaluate the expected utility.

Proof. For n=1, (7) becomes ( 1
2) u(w)+( 1

2) u(w+h)�u(w). For n=2,
we have ( 1

2) u(w)+( 1
2) u(w+h)�( 3

4) u(w)+( 1
4) u(w+2h). For n=3,

( 1
2) u(w)+( 3

8) u(w+h)+( 1
8) u(w+3h)�( 5

8) u(w)+( 3
8) u(w+2h), and so on.

Therefore, by induction we derive the following inequalities:

493MIXED RISK AVERSION
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u(w) :
m

k=0
\2m

2k ++ :
m

k=1
\ 2m

2k&1+ u(w+[2k&1] h)

�u(w) :
m

k=1
\ 2m

2k&1++ :
m

k=0
\2m

2k + u(w+2kh),

for n=2m, m=1, 2, ...,

and

u(w) :
m

k=0
\2m+1

2k ++ :
m

k=1
\2m+1

2k&1+ u(w+[2k&1] h)

�u(w) :
m

k=1
\2m+1

2k&1++ :
m

k=0
\2m+1

2k + u(w+2kh),

for n=2m+1, m=0, 1, 2, ... .

These two last inequalities can be compactly rewritten as

:
n

k=0

(&1)k&1 \n
k+ u(w+kh)�0, for n=1, 2, ...,

which, from the equivalence between (2) and (3), becomes

(&1)n&1 2n
h u(w)�0, for n=1, 2, ... . (8)

From Lemma 3.1, condition (8) holds iff (&1)n&1 2n&1
h .a(w)�0 for all

a>0 and n=1, 2, ..., where .a(w)#u(w+a)&u(w). Therefore, .a(w)
is completely monotone as dictated by Corollary 2. 3. Finally, since
Lemma 3.2 tells us that .a(w) is completely monotone iff u(w) is mixed, we
conclude that (8) holds if and only if u(w) is mixed. Q.E.D.

The previous proposition might be useful for testing by means of a
laboratory experiment whether an individual is mixed risk averse. Of
course, such a test would suffer obvious (and typical) limitations since it
would be necessary to choose an appropriate grid of values for the elemen-
tary payoff h and wealth w, and a finite number of tosses n.

Kimball [9] introduced the index of absolute prudence as a measure of
the strength of the precautionary saving motive in an intertemporal context
when the future endowments are uncertain. This measure of prudence shifts
up a derivative the measure of absolute risk aversion. In general, we
can define the n th order index of absolute risk aversion as An(w)=
&un+1(w)�un(w), for n=1, 2, ... . The function A1(w) corresponds to the
Arrow�Pratt index of absolute risk aversion, whereas A2(w) is the
aforementioned Kimball index of prudence.

494 CABALLE� AND POMANSKY
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Proposition 3.2. Let the continuous utility function u(w) defined on
[0, �) be increasing, concave and smooth on (0, �) with u(0)=0 and
un(w){0 for all w>0 and n=1, 2, ... . Then u(w) is mixed if and only if
An(w) is nonincreasing for all n=1, 2, ... .

Proof. (Sufficiency) It can be immediately shown that the requirement
of nonincreasing An(w) is equivalent to un+2(w) } un(w)�[un+1(w)]2, which
implies that un+2(w) and un(w) have the same sign for n=1, 2, ..., and w>0.
The assumption of monotonicity and concavity allows us to conclude induc-
tively that u has positive odd derivatives and negative even derivatives.

(Necessity) The odd derivatives u2n&1(w), for n=1, 2, ..., are com-
pletely monotone by assumption. On the other hand, the negative of the
even derivatives &u2n(w), for n=1, 2, ..., are also completely monotone
functions. Complete monotonicity implies log-convexity (see Corollary
2.2), and log-convexity is in turn equivalent to having An(w) nonincreasing
for n=1, 2, ... . Q.E.D.

The previous proposition shows that mixed utilities constitute a strict
subset of the class of utility functions displaying standard risk aversion, i.e.,
utility functions for which every loss-aggravating risk aggravates S every
independent, undesirable risk (see Kimball [10]).4 Kimball proves that an
utility function is standard risk averse iff A2(w) is nonincreasing on (0, �)
so that the characterization of Proposition 3.2 is clearly more y stringent.5

Needless to say, this characterization is quite technical since we lack an
economic interpretation of An(w) for values of n greater than 2.

The following proposition is also technical and it can be viewed as an
alternative definition of mixed risk aversion for increasing and concave
utility functions:

Proposition 3.3. Let the continuous utility function u(w) defined on
[0, �) be increasing, concave, and smooth on (0, �) with u(0)=0. Then
u(w) is mixed if and only if the derivatives of all orders of u(w) are either
uniformly nonpositive or uniformly nonnegative.

Proof. It follows immediately from adapting the argument in Ingersoll
[8, p. 41].

495MIXED RISK AVERSION

4 A risk x~ is undesirable iff E[u(w~ +x~ )]�E[u(w~ )] for all random background wealth w~ .
A risk x~ is loss-aggravating iff E[u$(w~ +x~ )]�E[u$(w~ )] for all w~ . The definitions of desirable
and loss-ameliorating risks are obtained by just reversing the weak inequalities in the previous
definitions.

5 Pratt and Zeckhauser [13] have also shown that a utility function with a completely
monotone first derivative is proper. Proper utilities are those for which every two independent,
undesirable risks are mutually aggravated. Kimball [10] shows in turn that standardness
implies properness.
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4. STOCHASTIC DOMINANCE AND MIXED RISK AVERSION

If we consider a subset C of the family of real-valued, Borel measurable
utility functions defined on [0, �), we say that the random variable x~ 1

C-stochastically dominates the random variable x~ 2 iff E[u(x~ 1)]�E[u(x~ 2)]
for all u # C. Thus, when C is the set of continuous increasing (concave)
utility functions, C-stochastic dominance coincides with the concept of
first- (second-) degree stochastic dominance.

Let M be the set of mixed utility functions. Then the following proposi-
tion characterizes M-stochastic dominance by requiring that all Laplace
transforms of the dominated distribution be greater than those of the
dominating distribution.

Proposition 4.1. Let G1 and G2 be the distribution functions of the non-
negative random variables x~ l and x~ 2 , respectively. Then x~ 1 M-stochastically
dominates x~ 2 if and only if

|
�

0
e&sz dG1(z)�|

�

0
e&sz dG2(z), for all s�0. (9)

Proof. (Sufficiency) Every u belonging to M can be written as in (4).
The result follows from exchanging the order of integration of the corre-
sponding expected utility and simplifying. Note that the exchange of the
order of integration is justified by Fubini's theorem since the distribution
functions G1(z), G2(z), and F(s) define _-finite measures on the Borel sets
of [0, �) (see Ash [3, pp. 9 and 103]).

(Necessity) By contradiction. Suppose that (9) does not hold for some
nonempty set 5 of values of s. Construct then a utility function u # M by
using a distribution function F whose support is 5. Then (4) and (9) imply
that E[u(x~ 1)]<E[u(x~ 2)], which contradicts the assumption that x~ 1

M-stochastically dominates x~ 2 . Q.E.D.

This proposition also tells us that in order to verify if x~ 1 is preferred to
x~ 2 by all mixed risk averse individuals, it is necessary and sufficient to
check that x~ 1 is preferred to x~ 2 by all individuals having CARA utilities;
i.e., u(w)=1&e&sw, for all s�0. Obviously, these individuals constitute a
strict subset of the mixed risk averse individuals. The following example
shows an application of Proposition 4.1:

Example 4.1. Consider the random variables x~ 1 taking the values 2
and 4 with probabilities 3�4 and 1�4, respectively, and x~ 2 taking the values
1 and 3 with probabilities 1�4 and 3�4, respectively. Note that these two
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random variables have the same mean. In this example, the inequality (9)
should become

3z2+z4�z+3z3, where z=e&s, for all s�0,

which in turn becomes (1&z)3�0, and this inequality holds since
z # (0, 1]. Therefore, x~ 1 M-stochastically dominates x~ 2 . However, note that
x~ 1 does not dominate x~ 2 in the sense of second-degree stochastic
dominance. To see the latter, consider the following concave utility:

v(w)={w
3.2

for 0�w�3.2
for w>3.2.

Then E[v(x~ 1)]=2.3 and E[v(x~ 2)]=2.5, which proves that x~ 1 cannot
dominate x~ 2 in the sense of second-degree stochastic dominance.

The next proposition provides an alternative characterization of
M-stochastic dominance:

Proposition 4.2. Let G1 and G2 be the distribution functions of the non-
negative random variables x~ 1 and x~ 2 , respectively. Then x~ 1 M-stochastically
dominates x~ 2 iff

|
�

0

dG1(z)
(z+{)n�|

�

0

dG2(z)
(z+{)n , for all real {>0, and n=1, 2, ... . (10)

Proof. Let us define 9(s)=P2(s)&P1(s), where Pi (s) is the Laplace
transform of the distribution function Gi ; i.e., Pi (s)=��

0 e&sz dGi (z).
Therefore, (9) can be written as 9(s)�0 for all s�0, so that the func-

tion 4=��
0 e&s{9(s) ds, for {>0, is a Laplace transform of a distribution

function if and only if (9) holds. Theorem 2.1 tells us that 4({) is a Laplace
transform of a distribution function if and only if it is completely
monotone. Observe also that

4({)=|
�

0
e&s{9(s) ds=|

�

0
e&s{P2(s) ds&|

�

0
e&s{P1(s) ds

=|
�

0
|

�

0
e&s(z+{) ds dG2(z)&|

�

0
|

�

0
e&s(z+{) ds dG1(z)

=|
�

0

dG2(z)
(z+{)

&|
�

0

dG1(z)
(z+{)

, (11)

where the third equality comes from substituting Pi (s), i=1, 2, and
exchanging the order of integration, and the fourth equality is obtained
from computing the inner Riemann integral. By successively differentiating

497MIXED RISK AVERSION



File: 642J 217214 . By:CV . Date:13:11:96 . Time:07:48 LOP8M. V8.0. Page 01:01
Codes: 3111 Signs: 2354 . Length: 45 pic 0 pts, 190 mm

(11), it follows that the condition of complete monotonicity of 4({) is
equivalent to (10). Q.E.D.

This proposition also allows us to look at a subset of M so as to verify
the ordering implied by M-stochastic dominance. In this case, it is enough
to verify the order relation for preferences represented by utility functions
of the form u(w)=1�{n&1�(w+{)n, for all {>0 and n=1, 2, ... . It can be
checked that this family of utility functions is equivalent to the class of
HARA utilities satisfying &u"(w)�u$(w)=1�(a+bw) for all a>0 and
b= 1

2 , 1
3 , 1

4 , ... .

5. AGGRAVATION AND AMELIORATION OF RISKS
FOR MIXED UTILITIES

As we have already mentioned, Pratt and Zeckhauser [13] and Kimball
[10] have characterized two nested subsets of utility functions exhibiting
decreasing absolute risk aversion. A key element of those characterizations
are the concepts of aggravation and amelioration of random variables (or
risks). In this section we are interested in conditions for both mutual
aggravation and amelioration of risks when agents are mixed risk averse.

Assume that the random variables w~ , x~ , and y~ are mutually independent,
and consider the lottery consisting of receiving the random payoff w~ +x~
with probability 1

2 and the payoff w~ +y~ also with probability 1
2 . Consider

now a second lottery consisting of getting the random payoff w~ with prob-
ability 1

2 and w~ +x~ +y~ with probability 1
2 . We say that x~ and y~ aggravate

each other iff the former lottery is preferred to the latter; i.e.,

1
2E[u(w~ +x~ )]+ 1

2E[u(w~ + y~ )]� 1
2E[u(w~ )]+ 1

2E[u(w~ +x~ + y~ )],

for all w~ . (12)

Similarly, we say that the random variables x~ and y~ ameliorate each
other iff the weak inequality in (12) is reversed. Therefore, the concept of
aggravation (amelioration) of risks provides a particular, precise meaning
to the notion of substitutability (complementarity) between risks.

Assume that individuals have utility functions belonging to the class M,
and that the risks to be evaluated are nonnegative. Let Pw(s), Px(s) and
Py(s) denote the Laplace transforms of the distribution functions of
w~ , x~ and y~ , respectively. Since Proposition 4.1 identifies the M-stochastic
dominance ordering with the ordering of Laplace transforms, it is easy to
see that condition (12) holds for all u # M if and only if

Pw(s)+Pw(s) } Px(s) } Py(s)�Pw(s) } Px(s)+Pw(s) } Py(s),

for all s�0. (13)
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Therefore, we have the following proposition obtained from just simpli-
fying (13):

Proposition 5.1. Assume that the risks w~ , x~ , and y~ are independent, and
that the risks w~ , w~ +x~ , w~ + y~ , and w~ +x~ + y~ are nonnegative. Then the risks
x~ and y~ aggravate each other for all mixed risk averse individuals if and
only if

[1&Px(s)][1&Py(s)]�0, for all s�0. (14)

Therefore, the property of aggravation between x~ and y~ is independent of
the characteristics of the (possibly random) initial wealth w~ . The next two
examples illustrate the previous result:

Example 5.1. Let w~ be nonrandom and equal to w>0, x~ takes the
values 0 and h # (0, w) with the two values being equiprobable, and y~
takes the values &h, 0, and h with probabilities 1

4 , 1
2 , and 1

4 , respectively.
It can be shown that Px(s) = (1 + z)�2 and Py(s) = ((1�z) + 2 + z)�4,
where z = e&sh # (0, 1]. Therefore, 1 & Px(s) = (1 & z)�2 and 1 & Py(s) =
&((1&z)2�4z) so that [1&Px(s)][1&Py(s)]=&((1&z)3�8z)�0, which
proves that x~ and y~ ameliorate each other. The amelioration is strict if the
utility functions are strictly concave since then `=sup[s | F(s)>0]>0 and
e&`h<1.

Example 5.2. Let w~ =w>0, and both x~ and y~ take the values &h, 0,
and h with probabilities 1

4 , 1
2 , and 1

4 , respectively, where h # (0, w�2). Then
some computations yield [1&Px(s)][1&Py(s)]=(1&z)4�16z2�0, since
z=e&sh # (0, 1]. Therefore, x~ and y~ aggravate each other. Again, strict con-
cavity implies strict aggravation.

The following corollary states sufficient conditions for either mutual
aggravation or amelioration of risks:

Corollary 5.1. Assume that the risks w~ , x~ , and y~ are independent and
that the risks w~ , w~ +x~ , w~ + y~ , and w~ +x~ + y~ are nonnegative. Assume also
that individuals have mixed risk averse preferences. Then,

(a) The risks x~ and y~ aggravate each other if they are nonnegative.

(b) The risks x~ and y~ aggravate each other if E(x~ )�0 and E( y~ )�0.

(c) The risks x~ and y~ ameliorate each other if E(x~ )�0 and y~ is non-
negative.

Proof. (a) If the random variables x~ and y~ take only nonnegative
values, then Px(s)�1 and Py(s)�1 for all s�0, which is sufficient for (14).
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(b) Since Px(s)=��
&� e&sz dGx(z), where Gx(z) is the distribution

function of x~ , we have Px(0)=1, P$x(0)=&��
&� z dGx(z)=&E(x~ )�0,

and P"x(s)=��
&� z2e&sz dGx(z)�0 for all s�0. Therefore, Px(s) is a func-

tion defined on [0, �) that is convex and reaches its minimum at zero so
that Px(s)�1 for all s�0. Since the same holds for Py(s), the condition
(14) is always fulfilled.

(c) By assumption, and as it follows from parts (a) and (b),
Px(s)�1 and Py(s)�1. Therefore, [1&Px(s)][1&Py(s)]�0, for all s�0.

Q.E.D.

Kimball [10] has in fact proved that part (b) holds for the larger class
of proper utility functions. Under the assumptions in (b), x~ and y~ are
clearly undesirable and hence the risks x~ and y~ must aggravate each other
for all u proper. We just repeat the result for mixed risk averse preferences
because of the simplicity of its proof.

Finally, it should be noticed that a random variable is undesirable for all
mixed risk averse individuals if and only if it is loss-aggravating for all such
individuals. It is straightforward to see that the necessary and sufficient
condition for a risk x~ to be loss-aggravating (and undesirable) for all mixed
utilities is that Px(s)�1 for all s�0. This implies, according to (14), that
two independent risks aggravate each other for all mixed utilities if and
only if both of them are either loss-aggravating or loss-ameliorating for all
such utilities.

6. ABSOLUTE AND RELATIVE RISK AVERSION
OF MIXED UTILITIES

Mixed utility functions have some features that facilitate the charac-
terization of their indexes of absolute and relative risk aversion,
A(w) =&u"(w)�u$(w) and R(w) =&wu"(w)�u$(w), respectively. These
indexes are crucial for the comparative statics of the simplest portfolio
selection problem, in which investors must allocate their wealth between
a riskless asset and a risky asset (or portfolio) having a positive risk
premium. As Proposition 3.2 shows, A(w) is nonincreasing for all mixed
utilities and it is strictly decreasing when the support of F has at least two
points (see Corollary 2.2). Therefore, a mixed risk averse investor increases
the optimal amount invested in the risky asset as her wealth increases (see
Arrow [2]).

It should also be noticed that, when the absolute risk aversion
approaches infinity (zero), the optimal amount invested in the risky asset
goes to zero (infinity). On the other hand, the proportion of wealth
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invested in the risky asset tends to zero (infinity) as the relative risk aver-
sion approaches infinity (zero).

Clearly, the n th order derivative at the origin, un(0)#limw � 0 un(w), is
finite iff ��

0 sn&1 dF(s)<�. Moreover, u$(w)>0 for all w # [0, �) if
and only if ��

0 dF(s)>0. Finally, it is also straightforward to see that
limw � � u$(w)>0 iff F(0)>0.

The next proposition provides results concerning the behaviour of the
two indexes of risk aversion at the origin.

Proposition 6.1. Assume that u is a mixed utility characterized by a
distribution function F with ��

0 dF(s)>0. Then,

(a) if ��
0 s dF(s)<�, then limw � 0 A(w)<� and limw � 0 R(w)=0.

(b) if ��
0 s dF(s) is not finite, then limw � 0 A(w)=�.

Proof. Part (a) is obvious.
For part (b), if ��

0 dF(s)<�, then limw � 0 u$(w) is finite and
limw � 0 u"(w) is unbounded so that limw � 0 A(w)=�. If ��

0 dF(s) is not
finite, then limw � 0 u$(w)=� and limw � 0 u"(w)=&�. Moreover, 1�A(w)
is nonnegative and increasing in w so that limw � 0 1�A(w) exists. Therefore,
Hôpital's theorem implies that limw � 0 1�A(w)=limw � 0 (&u$(w)�u"(w))=
limw � 0 (&u(w)�u$(w))=0; that is, limw � 0 A(w)=�. Q.E.D.

The next two propositions characterize the behaviour of A(w) and R(w)
for high values of w. We first state the following technical lemma:

Lemma 6.4. Assume that

(a) ��
0 |.(s)| e&sw dF(s) exists for all w�0, and

(b) there exists a strictly positive real number c such that �a
0 dF(s)>0

and .(a)>0, for all a # (0, c).

Then there exists a positive real number w0 such that ��
0 .(s) e&sw dF(s)

> 0 for all w>w0 .

Proof. See the Appendix.

Proposition 6.2. Let u be a mixed utility characterized by a distribution
function F such that ��

0 dF(s)>0. Then limw � � A(w)=s0 , where
s0 #inf[s | F(s)>0].

Proof. Since A(w) is nonnegative and decreasing, limw � � A(w) exists.
Assume first that s0=0 so that �a

0 dF(s)>0 for all a>0. We proceed
by contradiction and assume that c#limw � � A(w)>0. Note that
&u"(w)�u$(w)�c or, equivalently, cu$(w)+u"(w)�0, for all w>0.
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However, if ��
0 s dF(s)<� for all w�0, we can apply Lemma 6.1 to

obtain that cu$(w)+u"(w)=��
0 (c&s) e&sw dF(s)>0 for sufficiently high

values of w, which constitutes a contradiction.
It should be noticed that we can always assume that ��

0 s dF(s)<�
since, if not, we can consider instead the mixed utility function û(w)=
u(w+b)&u(b), with b>0. The limit at infinity of the absolute risk aver-
sion of û(w) is the same as that of u(w). Note that û"(w)=��

0 se&sw dF� (s),
where dF� (s)=e&sb dF(s). Hence, û"(0)=��

0 s dF� (s)=��
0 se&sb dF(s)=

u"(b)<�.
Assume now that s0>0. Then u$(w)=��

s0
e&sw dF(s)=��

0 e&(t+s0)wdF(t+s0)
= exp(&s0w) u� $(w), where u� $(w)=��

0 e&tw dF(t+s0). Therefore, t0 #

inf[t | F(t+s0)>0]=0, and then limw � � (&u� "(w))�u� $(w)=0. Finally,
compute the index of absolute risk aversion of u(w),

A(w)=
s0 exp(&s0 w) u� $(w)&exp(&s0 w) u� "(w)

exp(&s0w) u� $(w)
=s0&

u� "(w)
u� $(w)

,

which implies that limw � � A(w)=s0 . Q.E.D.

In particular, limw � � A(w)=0 when s0=0, that is, the individual tends
to be absolutely risk neutral for high levels of wealth in this case.
Moreover, if s0>0 then limw � � R(w)=� so that the fraction of wealth
invested in the risky asset goes to zero as wealth tends to infinity. As we
are going to show, the properties at the origin of the distribution function
F are also crucial to give a richer description of the behaviour of the
relative risk aversion index for high levels of wealth.

Definition 6.1. Let F be a distribution function satisfying F(s)>0 for
all s>0. The distribution function F is said to be of regular variation at the
origin with exponent \ iff

lim
s � 0

F(ts)
F(s)

=t\, with 0�\<�.

Lemma 6.2. Let .(w) be a Laplace transform of the distribution function
F(s). If F varies regularly at the origin with exponent \ # [0, �) and ws=1,
then the ratio .(w)�F(s) converges to 1(\+1) as w � � (or, equivalently,
as s � 0), where 1( } ) denotes the gamma function; i.e., 1(x)=
��

0 yx&1e&y dy for x>0.

Proof. It follows immediately from adapting the Tauberian Theorems 1
and 3 in Section XIII.5 of Feller [5]. Q.E.D.

If the utility function u is mixed, then the marginal utility u$(w) is com-
pletely monotone and it is thus the Laplace transform of some distribution
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function F(s). Let us define the distribution function F1(s)=�s
0 { dF({)

whose Laplace transform is equal to &u"(w) since dF1(s)=s dF(s) and
&u"(w)=��

0 e&sws dF(s).

Lemma 6.3. Let F be a distribution function of regular variation at the
origin with exponent \ # [0, �). Then,

(a) F1(s) also varies regularly at the origin with exponent \+1, and
(b) lims � 0 F1(s)�sF(s)=\�( \+1).

Proof. See the Appendix.

Proposition 6.3. Let u(w) be a mixed utility function characterized by
a distribution function F of regular variation at the origin with exponent
\ # [0, �). Then the relative risk aversion of u(w) converges to \ as w tends
to infinity.

Proof. The regular variation of F implies that inf[s | F(s)>0]=0. As
follows from Proposition 6.2, the absolute risk aversion of u tends to zero
as w � �. Moreover, Proposition 6.2 also tells us that, in order to find the
limit of the relative risk aversion, we can first compute the limit of the
absolute risk aversion as w � � with ws=1 (which means that s � 0), and
then multiply this limit by w. From Lemmas 6.2 and 6.3(a), and since u$(w)
and &u"(w) are Laplace transforms of F(s) and F1(s), respectively, it
follows that u$(w)�F(s) converges to 1(\+1), whereas &u"(w)�F1(s)
converges to 1(\+2) as w tends to infinity with ws=1. Therefore,
A(w)=&u"(w)�u$(w) converges to F1(s) 1(\+2)�F(s) 1(\+1), which in
turn converges to \s=\�w because F1(s)�F(s) tends to \s�( \+1) as s goes
to zero (see part (b) of Lemma 6.3) and 1(\+2)�1(\+1)=\+1. Hence,
the result follows since R(w)=wA(w). Q.E.D.

This last proposition allows us to conclude that, for high levels of wealth
and small risks, mixed risk averse investors would behave as if they had
constant relative risk aversion, provided the regular variation hypothesis
holds. Therefore, if an investor must allocate her wealth between a risky
and a riskless asset, the wealth elasticity of her demand for the risky asset
approaches unity as her wealth tends to infinity.

Example 6.1. A simple illustration of the last proposition is the power
utility function u(w)=Cw: with 0<:<1. This function has a constant
relative risk aversion index equal to 1&: which clearly coincides with the
exponent of regular variation of its associated distribution function
F(s)=As1&:. More generally, if u is HARA, i.e., &u"(w)�u$(w)=1�(a+bw)
with b>0, then the limit of the relative risk aversion as w � � is 1�b,
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which is in turn equal to the exponent of regular variation of its corre-
sponding gamma distribution. Obviously, the absolute risk aversion
approaches zero as w � �.

Example 6.2. As an example of a strictly concave, mixed utility function
with both absolute and relative risk aversion vanishing at infinity, we can
consider the utility function having the derivative u$(w)=exp(&(w�1+w)),
which is completely monotone according to Corollary 2.1 and, therefore,
after imposing the appropriate boundary condition, u(w) is mixed. Clearly,
both the absolute risk aversion A(w)=1�(1+w)2 and the relative risk aver-
sion R(w)=w�(1+w)2 tend to zero as w � �. Moreover, limw � � u$(w)=
1�e>0, which means that the associated distribution function F satisfies
F(0)>0. In fact, the density function associated with the utility of this
example is f (s)=e&s ��

k=1 (sk&1�k ! 1(k))+$(s), where $(s) is the Dirac
delta function. Hence, its distribution function F satisfies lims � 0 F(ts)�F(s)
=1 so that it varies regularly at the origin with exponent \=0. Here, both
the amount and the proportion of the optimal investment in risky assets
increase as wealth tends to infinity.6

Example 6.3. Finally, as an example of a mixed utility function with
vanishing absolute risk aversion but an unbounded limit of relative risk
aversion, we can consider the utility function having the derivative
u$(w)=exp(&w:) with : # (0, 1). This derivative is clearly completely
monotone (see Corollary 2.1). The utility u is characterized by a stable dis-
tribution F with parameter : (see Feller [5, Section XIII.6]) for which the
assumption of Proposition 6.3 does not hold. Then A(w)=:w:&1 and
R(w)=:w: so that limw � � A(w)=0 and limw � � R(w)=�. Therefore,
for the utility considered in this example, the amount invested in the risky
asset tends to infinity as wealth increases without bound, whereas the
fraction of wealth invested in the risky asset goes to zero.

7. PORTFOLIO SELECTION AND MIXED RISK AVERSION

In addition to the limit of relative risk aversion for low and high levels
of wealth, it is also possible to provide some results about the global
behaviour of this index which are relevant for the theory of investment. The
following two examples illustrate the importance of relative risk aversion:
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Example 7.1. Consider the typical saving problem faced by an
individual who has a given wealth w0 today which he has to distribute
between consumption today c0�0 and consumption tomorrow c1�0. He
saves what is not consumed today, and the investment yields a nonrandom
return %>0 per dollar saved. The individual maximizes the following
additive separable utility:

v(c0)+u(c1),

with v$�0, u$�0, v"�0, and u"�0. It is well known that the optimal
saving is locally increasing (decreasing) in the return % iff the relative risk
aversion of u, evaluated at the optimal consumption, is less (greater) than
unity.

Example 7.2. Another context in which the relative risk aversion index
plays a key role is in the problem of portfolio selection with pure securities.
Assume a two-period economy in which there are S states of nature in the
second period. The investor has to distribute her first-period wealth w0

between first-period consumption c0�0 and investment in S pure
securities, indexed by i, which will finance second-period consumption
ci�0 in each state. Security i has a gross return %i>0 if state i occurs and
zero otherwise. The probability of state i is ?i>0 with �s

i=1 ?i=1. Let zi

be the wealth invested in security i. Therefore, the problem faced by
the investor is to choose the vector (z1 , ..., zs) in order to maximize the
expected utility

v(c0)+ :
s

i=1

?i u(ci), (15)

subject to

c0=w0& :
s

i=1

zi�0 (16)

and

ci=%i zi�0, (17)

with v$�0, u$�0, v"�0, and u"�0. The following proposition provides
the comparative statics of the optimal portfolio:7
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invested in each pure security (i=1, ..., S) can be derived from both the returns and the
optimal portfolio of the existing (not necessarily pure) securities.
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Proposition 7.1. Let (z1* , ..., zs*) be a solution to the above portfolio
selection problem, then �c0* ��%k�0, �zk* ��%k�0, and �zi* ��%k�0 for i{k if
and only if R(ck*)=&ck*u"(ck*)�u$(ck*)�1, where c0*=w0&�s

i=1 zi* and
ck*=%kzk*.

Proof. Substituting (16) and (17) in the objective function (15),
we obtain the following first-order condition characterizing an interior
solution:

v$(c0*)=?i %i u$(ci*), i=1, ..., S. (18)

Differentiating (18) with respect to %k we obtain

v"(c0*)
�c0*
�%k

=?ku$(ck*)+?k%2
k u"(ck*)

�zk*
�%k

+?k%kzk*u"(ck*),

for i=k, (19)

and

v"(c0*)
�c0*
�%k

=?i %2
i u"(ci*)

�zi*
�%k

, for i{k. (20)

Divide both sides of (19) by ?k%2
k u"(ck*), and divide also both sides of (20)

by ?i %2
i u"(ci*), for i{k. Adding the resulting S equations yields

v"(c0*) \ :
S

i=1

1
?i %2

i u"(ci*)+
�c0*
�%k

=
u$(ck*)+%kzk*u"(ck*)

%2u"(ck*)
+ :

S

i=1

�zi*
�%k

. (21)

Furthermore, (16) implies that �S
i=1 �zi* ��%k=&(�c0* ��%k) so that (21)

becomes

_1+v" (c0*) \ :
S

i=1

1
?i %2

i u"(ci*)+&
�c0*
�%k

=
u$(ck*)+ck*u"(ck*)

%2u"(ck*)
. (22)

The term within the square brackets of the LHS of (22) is positive, whereas
the denominator of the RHS is negative. Hence, �c0* ��%k�0 iff the
numerator of the RHS is negative, which in turn is clearly equivalent to
have R(ck*)�1.

Moreover, (20) implies that sign(�c0* ��%k)=sign(�zi* ��%k) for i{k and,
on the other hand, (16) implies that �zk* ��%k=&(�c0* ��%k)&�i{k �zi* ��%k

so that �zi* ��%k�0 and �zk* ��%k�0 iff R(ck*)�1. Q.E.D.

Obviously, if S=1, Proposition 7.1 implies the standard result discussed
in Example 7.1. On the other hand, the previous proposition generalizes
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the theorem of Mitchell [11] by allowing the investor to consume also in
the first period of her life.

The next two propositions characterize the behaviour of the relative risk
aversion for a mixed utility function depending on the properties of its
associated distribution function F(s). To this end, first define the function
9(w)#wu$(w) and observe that, when u$(w)>0, R(w)�1 if and only if
9$(w)�0.

Proposition 7.2. Let u(w) be a mixed utility function characterized by
the distribution function F(s) with ��

0 dF(s)>0. Then,

(a) maxw # (0, �) R(w)>1 if inf[s | F(s)>0]>0.

(b) limw � 0 R(w)<1.

Proof. (a) Let s0 #inf[s | F(s)>0] so that

9(w)=w |
�

s0

e&sw dF(s)�w exp(&s0w) |
�

s0

dF(s),

and, if ��
s0

dF(s)<�, we get limw � � 9(w)=0 by taking the limit of both
sides. Since 9(w)>0 for w # (0, �), the latter limit implies that 9$(w) has
to become negative for sufficiently high values of w.

As in the proof of Proposition 6.2, we can safely assume that
��

s0
dF(s)<� since, if not, we can consider instead the mixed utility

û(w)=u(w+b)&u(b), with b>0. The limit at infinity of the function
9� (w)#wû$(w) is the same as that of 9(w), and û$(w)=��

0 e&sw dF� (s),
where dF� (s)=e&sb dF(s). Therefore, û$(0)=��

0 dF� (s)=��
0 e&sb dF(s)=

u$(b)<�.

(b) Note that

9$(w)=u$(w)+wu"(w)=|
�

0
e&sw dF(s)&|

�

0
wse&sw dF(s), (23)

so that limw � 0 9$(w)=��
0 dF(s)>0. Q.E.D.

Proposition 7.3. Let u(w) be a mixed utility function characterized by
a distribution function F(s) having a continuously differentiable density f (s)
on (0, �) and such that ��

0 dF(s)>0. Then,

(a) R(w)�1 for all w>0 if f (s) is monotonically decreasing.

(b) maxw # (0, �) R(w)>1 if lims � 0 f $(s) exists and is strictly positive.
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Proof. (a) Observe that (23) becomes

9$(w)=|
�

0
e&swf (s) ds&|

�

0
we&swsf (s) ds. (24)

The integral &��
0 we&swsf (s) ds can be written as ��

0 sf (s) d(e&sw) which,
after integrating by parts, becomes equal to &��

0 e&sw[ f (s)+sf $(s)] ds.
Substituting in (24), we get 9$(w)=&��

0 e&swsf $(s) ds. Thus, part (a)
follows since 9 $(w)�0 for all w>0 when f $(s)�0 for all s>0.

(b) If lims � 0 f $(s)>0 then the function w9$(w)=&��
0 swe&sw

f $(s) ds becomes strictly negative for sufficiently high values of w. Hence,
taking into account that limw � 0 9$(w)>0 (see part (b) of Proposition
7.2), we conclude that 9$(w) is not monotonic and thus maxw # (0, �) R(w)
> 1. Q.E.D.

Part (a) of Proposition 7.3 implies that the comparative statics exercises
in Examples 7.1 and 7.2 can be unambiguously signed when the density f
is decreasing. According to part (b) of Proposition 7.2, the same result also
holds for low levels of initial wealth and small returns. However, under the
assumptions considered in the other parts of these propositions, the signs
of the comparative statics exercises remain ambiguous depending on both
the level of initial wealth and the returns structure.

The following famous example will illustrate the relationship between the
properties of the density function f and the effects of mean-preserving
spreads on portfolio choice:

Example 7.3. Consider a risk averse individual with initial wealth w0

to be invested in a risky asset A with random gross return R� A and a
riskless asset with return Rf . There is another asset B with gross return R� B

which is riskier than R� A according to the definition given by Rothschild
and Stiglitz [14]; that is, R� A dominates R� B in the sense of second-degree
stochastic dominance. If now the investor has to invest in risky asset B and
the riskless asset, we want to know under which conditions the amount
invested in risky asset B is less than the amount invested in risky asset A.
This change in the portfolio composition would seem more natural than
the opposite since R� B is obtained from subjecting R� A to a mean-preserving
spread. Rothschild and Stiglitz [15] gave the following set of sufficient con-
ditions for the natural result: the relative risk aversion is less than unity
and increasing, and the absolute risk aversion is decreasing.

The next proposition provides a different sufficient condition for mixed
risk averse investors.

Proposition 7.4. Assume that an investor has a mixed utility function u
characterized by a distribution function having a decreasing and continuously
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differentiable density on (0, �). Assume also that her initial wealth is w0>0
and that the random gross returns R� A and R� B are both nonnegative with
E(R� A)=E(R� B)>R f>0. If R� B is riskier than R� A , then the amount invested
in asset B is less than in asset A.

Proof. Let z be the optimal amount invested in risky asset A. This
amount z is positive because asset A has a positive risk premium. The first-
order condition of the portfolio selection problem is

E[u$(Rfw0+(R� A&R f) z)(R� A&Rf)]=0. (25)

Since the LHS of (25) is decreasing in z, the optimal amount invested in
asset B will be less than z if

E[u$(Rfw0+(R� B&Rf) z)(R� B&Rf)]�0. (26)

Since R� B is riskier than R� A , a sufficient condition for (26) is that the func-
tion v(x)=u$(Rfw0+(x&Rf) z)(x&Rf) is concave. Define w=R fw0+
(x&Rf) z, so that

u$(Rfw0+(x&R f) z)(x&R f)=u$(w) _w&Rf w0

z &=
wu$(z)

z
&\Rf w0

z + u$(w).

Recall that if 9(w)=wu$(w), then 9$(w)=&��
0 e&swsf $(s) ds. Moreover,

9"(w)=��
0 e&sws2f $(s) ds�0 because f $(s)�0 for all s>0. Hence,

wu$(w)�z is concave in w. Furthermore, (Rfw0 �z) u$(w) is convex in w since
u$(w) is convex. This proves in turn the concavity of v(x). Q.E.D.

Therefore, the assumptions of mixed risk aversion and decreasing, dif-
ferentiable density, which imply decreasing absolute risk aversion and
R(w)�1, allow one to dispense with the condition of increasing relative
risk aversion in order to obtain the same natural conclusion in Example
7.3. Note in this respect that the condition 9"(w)=2u"(w)+wu$$$(w)�0,
which appears in the proof of Proposition 7.4, is neither necessary nor
sufficient for increasing relative risk aversion.

8. CONCLUSION AND EXTENSIONS

In this paper we have analyzed the class of mixed utility functions, that
is, utility functions whose first derivatives are Laplace transforms. One of
the most interesting properties of such utilities is that the characteristics of
the associated distribution functions allow one to extract information
about their measures of risk aversion. Moreover, we have shown that the
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concepts of stochastic dominance and aggravation of risks become more
operative when they are applied to this set of utilities.

The concept of mixed risk aversion also has interesting computational
implications. Since a distribution function can be approximated by a step
function, the construction of algorithms to solve portfolio problems for
mixed utilities is enormously simplified. Those algorithms should deal with
functions of the type u(w)=b0&�i ai exp(&siw), which can be easily
handled.

As Cass and Stiglitz [4] have shown, the HARA utilities are the ones for
which two-fund monetary separation holds for all distributions of the vec-
tor of risky returns. Since the utilities belonging to the class HARA are
mixed, an interesting subject of further research would be to consider the
class of mixed utilities and restrict appropriately the set of return distribu-
tions so as to obtain separation theorems for this larger family of utilities.
We believe that such theorems should exploit the relationship between the
distribution of returns and the distribution characterizing a mixed utility.

Another possible extension of our work would be to refine even more the
set of utility functions. An immediate restriction would be to consider the
family of utilities whose first derivatives are Laplace transforms of infinitely
divisible distribution functions.8 A utility function u(w) belonging to this
family has a first derivative which can be written as u$(w)=exp(&9(w)),
where 9 has a completely monotone first derivative. Hence, an immediate
consequence is that the absolute risk aversion of u is completely monotone.
We leave the analysis of such a property for future research.

APPENDIX

Proof of Lemma 3.1. (Necessity) For n=1 the assumption implies
that u(w)+u(w+2h)�2u(w+h) so that u is concave and thus continuous
on (0, �). Therefore, the function .a(w) is continuous with respect to a
and w, and 2n

h.a(w) is continuous with respect a, w, and h. Consider
the set D/R2 such that D=[(a, h) # R2 | a=kh, where k is a positive
integer]. Then .a(w)=.kh(w)=�k&1

i=0 21
hu(w+ih) and 2n

h .a(w)=
�k&1

i=0 2n+1
h u(w+ih). Since (&1)n 2n+1

h u(w+ih)�0, the result then
follows from the denseness of the set D on R2 and the continuity of both
u(w) and 2n

h.a(w).

(Sufficiency) Make a=h and obtain 2n
h.h(w)=2n+1

h u(w). Q.E.D.
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Proof of Lemma 3.2. (Necessity) Since u(w) is mixed, there exists a
distribution function F(s) for which (4) and (5) hold. Define the distribu-
tion function Fh(s) such that dFh(s)=(1&e&sh�s) dF(s). Using the fact that
.h(w)=u(w+h)&u(w), it is easy to check that .h(w)=��

0 e&sw dFh(s) for
w # (0, �). Therefore, we conclude that .h(w) is completely monotone
from Theorem 2.1.

(Sufficiency) If .h(w) is complete monotone, then there exists a dis-
tribution function Fh(s) such that .h(w)=��

0 e&sw dFh(s). Define the
distribution function F(s) satisfying dF(s)=(s�(1&e&sh)) dFh(s). Our next
goal is to prove that F(s) is independent of h. To this end, first
note that .h+a(w) =u(w+h+a) &u(w)= [u(w+h+a) &u(w+h)] +
[u(w+h)&u(w)]=.a(w+h)+.h(w). Therefore, since a Laplace trans-
form is uniquely determined by its associated distribution function, we
have

dFh+a(s)=e&sh dFa(s)+dFh(s), for all h>0 and a>0. (27)

The solution dFh(s) of the measure equation (27) is clearly increasing
in h. For a=h (27) becomes dF2h(s)=(1+e&sh) dFh(s), whereas for
a=2h it becomes dF3h(s)=e&sh dF2h(s)+dFh(s)=(1+e&sh+e&2sh) dFh(s).
Hence, by induction we get dFnh(s)=(�n&1

k=0 e&ksh) dFh(s). Taking the limit
as n tends to infinitely yields lima � � dFa(s)=(1�(1&e&sh)) dFh(s). There-
fore, lima � � dFa(s) is finite for all s > 0. This proves that both
(1�(1&e&sh)) dFh(s) and dF(s)=(s�(1&e&sh)) dFh(s) are independent of h.

Finally, notice that u(h)=.h(0)=��
0 dFh(s)=��

0 ((1&e&sh)�s) dF(s).
Moreover, ��

1 (dF(s)�s) = ��
1 (1�(1 & e&sh)) dFh(s) � (1�(1 & e&h)) ��

1 dFh(s)
< �, where the last inequality follows because ��

1 dFh(s)���
0 dFh(s)=

.h(0)=u(h)<�. Therefore, Theorem 2.2 tells us that u(w) displays mixed
risk aversion. Q.E.D.

Proof of Lemma 6.1. We have that ��
0 .(s) e&swdF(s)���

c |.(s)|e&swdF(s)
� Me&cw for all w>0, where M#��

c |.(s)| dF(s) is finite by assumption
(a). Moreover, there exists a positive real number w0>0 such that
�c

0 .(s) e(c&s) w dF(s)>M for all w>w0 , as follows from assumption (b).
Therefore, �c

0 .(s) e&sw dF(s)>Me&cw, and hence ��
0 .(s) e&sw dF(s)=

�c
0 .(s) e&sw dF(s)+��

c .(s) e&sw dF(s)>0 for all w>w0 . Q.E.D.

Proof of Lemma 6.3. (a) Note that

lim
s � 0

F1(ts)
F1(s)

=lim
s � 0

�ts
0 { dF({)

�s
0 { dF({)

= lim
s � 0

tsF(ts)&�ts
0 F({) d{

sF(s)&�s
0 F({) d{

=lim
s � 0

(tF(ts)�F(s))&�ts
0 (F({�sF(s)) d{

1&�s
0 (F({)�sF(s)) d{

, (28)
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where the first equality in (28) follows from integrating by parts, and the
second from dividing both numerator and denominator by sF(s). The limit
of the first term in the last numerator of (28) is equal to t\+1 as dictated
by the regular variation of F. Moreover,

lim
s � 0 |

ts

0

F({)
sF(s)

d{=lim
s � 0 |

t

0

F('s)
F(s)

d'=|
t

0
'\ d'=

t\+1

\+1
, (29)

where the first equality is obtained by making the change of variable {='s.
For the second equality, it should be noticed that the regular variation of
F allows us to apply the Lebesgue convergence theorem. The last equality
follows from just performing the Riemann integral.

Concerning the denominator of (28), we obtain in a similar fashion

lim
s � 0 |

s

0

F({)
sF(s)

d{=lim
s � 0 |

1

0

F('s)
F(s)

d'=|
1

0
'\ d'=

1
\+1

. (30)

After substituting (29) and (30) into (28), we get

lim
s � 0

F1(ts)
F1(s)

=
t\+1&(t\+1�( \+1))

1&(1�( \+1))
=t\+1,

which proves the regular variation at the origin with exponent \+1 of
F1(s).

(b) Note that

lim
s � 0

F1(s)
sF(s)

= lim
s � 0

�s
0 { dF({)

sF(s)
=1& lim

s � 0 |
s

0

F({)
sF(s)

d{, (31)

where the last equality comes from integrating by parts. Furthermore,
lims � 0 �s

0 (F({)�sF(s)) d{=1�( \+1), as shown in (30). Substituting in (31),
we get the desired conclusion. Q.E.D.
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