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Abstract

When habits are introduced multiplicatively in a capital accumulation model, the consumers’
objective function might fail to be concave. In this paper, we provide conditions aimed at guar-
anteeing the existence of interior solutions to the consumers’ problem. We also characterize
the equilibrium path of two growth models with multiplicative habits: the internal habit for-
mation model, where individual habits coincide with own past consumption, and the external
habit formation (or catching-up with the Joneses) model, where habits arise from the average
past consumption in the economy. We show that the introduction of external habits makes the
equilibrium path ine7cient. We characterize in this context the optimal tax policy.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Several recent papers have introduced habit formation in the agents’ utility function
in order to explain some empirical facts that cannot be reconciled with the traditional
models displaying time-separable preferences. Examples of this strand of the literature
are the papers of Abel (1990, 1999), who provides a possible explanation of the equity
premium puzzle; Lettau and Uhlig (2000), who try to ?t some stylized facts of business
cycles; Ljungqvist and Uhlig (2000), who examine the e@ects of ?scal policy under
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habit formation; Fuhrer (2000), who studies the implications of habit formation for
monetary policy; and Carroll et al. (1997, 2000) and Shieh et al. (2000), who study
how the patterns of growth are modi?ed when habits are present.
The aim of the present paper is twofold. First, to characterize the equilibrium path

of a class of endogenous growth models under habit formation and, second, to char-
acterize the optimal tax rates that solve the ine7ciencies brought about by the habits
associated with the average past consumption of the economy. In order to allow for
sustained growth, we will assume that the production function is asymptotically linear
in capital in spite of potentially exhibiting diminishing returns to capital (as in Jones
and Manuelli, 1990). This type of “Sobelow” production function constitutes one of
the main di@erences of our analysis with the related literature. On the one hand, Carroll
et al. (1997, 2000) characterize the equilibrium path when the production function is
linear in capital and, hence, transitional dynamics is driven only by habits. In contrast,
in our paper, transitional dynamics is driven by both habit formation and diminishing
returns to scale. We show that this di@erence modi?es the patterns of growth along
the transition. On the other hand, Fisher and Hof (2000) analyze the optimal tax pol-
icy in a model without habit formation where agents are exposed to contemporaneous
consumption spillovers. Therefore, unlike in our model, transitional dynamics is driven
only by the neoclassical production function they consider, which in turn prevents the
economy from exhibiting sustained growth.
In our model, we will assume that consumers’ utility at a given period depends both

on current own consumption and on a reference level, where the latter is determined by
past own consumption and past average consumption in the economy. Obviously, the
introduction of past average consumption implies consumption externalities. We will
focus on two extreme cases: the externality-free internal habit formation case where
the reference variable is the past own consumption, and the external habit formation
(or catching-up with the Joneses) case where the reference variable is the past average
consumption in the economy. 1 While the isoelastic functional form for the individuals’
instantaneous utility has been extensively used in the literature, two alternative forms
have been used to introduce habits. One form is the “additive” one, according to which
habits play in fact the role of a minimum level of consumption. The other functional
form is the “multiplicative” one, where consumers’ utility depends on their current level
of consumption relative to a reference level determined by habits. Both functional forms
exhibit some technical problems. On the one hand, Carroll (2000) points out that the
additive model may give rise to a not well-de?ned utility in stochastic economies under
plausible calibrations. On the other hand, we argue in this paper that the instantaneous
utility function is not concave under our multiplicative formulation for internal habits.
In this case, the convexity of the consumers’ maximization problem is not ensured and
the optimal path chosen by consumers might fail to be interior. However, we provide a
set of assumptions under which the standard ?rst order conditions characterize interior
equilibrium paths.

1 This is in contrast to the “keeping-up with the Joneses” model, where the externality accrues from
average current consumption (see Gal)K, 1994).
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We also characterize the equilibrium path of the previous two extreme models and
show that in both cases the dynamic equilibrium converges asymptotically to a balanced
growth path, along which output, consumption and capital grow at a common constant
rate. We show that the introduction of habits increases this long run rate of growth
because it raises the consumers’ willingness to shift consumption from the present to the
future. We also prove that the growth rates of both models exhibit a monotonic behavior
along the transition when the production function is linear in capital, whereas they
could exhibit a non-monotonic behavior when the production function has diminishing
returns to scale with respect to capital. In the latter case, we show that the transitional
dynamics depends on the values of both capital and the reference level of consumption,
whereas the transition only depends on the ratio of capital to the reference level of
consumption when the production function has constant returns to scale. This means that
the speci?cation of the production function has interesting implications on cross-country
convergence.
Our analysis shows that the introduction of a consumption externality makes the

equilibrium of the catching-up with the Joneses model ine7cient. In order to prove
this result, we use the fact that the equilibrium solution of the internal habit formation
model corresponds to the e7cient solution of the catching-up with the Joneses model.
Then, we show that the equilibrium solutions obtained in the two models coincide in
the long run, whereas these two solutions are di@erent during the transition. Ine7ciency
arises because the consumers’ willingness to substitute consumption across periods in
the catching-up with the Joneses model is not optimal. This source of ine7ciency can
be corrected by means of an appropriate tax policy and, in particular, we show that
either a consumption tax or an income tax may restore e7ciency. If the consumers’
willingness to shift present consumption to the future is suboptimally low, then the
optimal ?scal policy will consist of either a decreasing sequence of consumption taxes
or a subsidy on income (or output). A decreasing sequence of consumption taxes
implies that future consumption purchases will be cheaper. Therefore, this ?scal policy
increases consumers’ willingness to postpone consumption. A subsidy on output also
corrects the ine7ciency because it encourages consumers to shift consumption from the
present to the future. Conversely, either an increasing sequence of consumption taxes
or a tax on income will be the optimal ?scal policies when consumers’ willingness to
shift present consumption to the future is suboptimally large.
Finally, we show that if the marginal productivity of capital is constant during the

transition, which occurs when the production function is of the Ak type, then the
optimal tax rates will depend only on the initial value of the ratio of capital to habits.
However, if the marginal productivity of capital is changing during the transition, then
the value of the optimal tax rates will depend on the particular initial values of capital
and habits and not only on their ratio. In this case, the optimal path of tax rates could
exhibit a non-monotonic behavior along its transition.
The characterization of the optimal income tax rate highlights the dynamic nature of

the ine7ciency, which a@ects the willingness to substitute consumption across periods
and, thus, modi?es the pattern of capital accumulation. In this respect, let us mention
that Ljungqvist and Uhlig (2000) have also analyzed the ine7ciency accruing from
external habits. However, they consider a model without capital accumulation where
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the externality distorts the intratemporal choice between consumption and leisure and,
thus, their e7ciency analysis cannot be extended to a growth model like ours.
The rest of the paper is organized as follows. Section 2 describes the model and

provides conditions that guarantee the existence of interior equilibria characterized by
standard ?rst order conditions. Sections 3 and 4 characterize the equilibrium path of
the internal habit formation model and of the catching-up with the Joneses model,
respectively. Section 5 shows that the equilibrium of the latter model is ine7cient and
derives the optimal tax policy aimed at restoring e7ciency. Section 6 concludes the
paper. The proofs appear in the appendix.

2. The model

Consider an economy in discrete time populated by identical dynasties facing an
in?nite horizon. The members of each dynasty are also identical. We assume that pop-
ulation grows at a constant exogenous rate n¿− 1. We also assume that consumers’
utility in period t depends both on consumption ct and on a variable vt representing a
standard of living that it is used as a reference with respect which present consump-
tion is compared to. This standard of living is determined by the past consumption
experience. Following Abel (1990), we assume that

vt = c	t−1 Mc
1−	
t−1 ; (1)

where 	∈ [0; 1], ct−1 is the own consumption in period t − 1, and Mct−1 is the average
consumption of the economy in period t − 1. When 	 = 1 this formulation coincides
with that of the internal habit formation (IH) model, where the reference is just the
own past consumption. On the contrary, the case where 	 = 0 corresponds to the
catching-up with the Joneses (CJ) model, where consumers’ utility depends both on
present consumption and on the others’ past consumption. Following Abel (1990) and
Carroll et al. (1997), we introduce the reference variable in a multiplicative way. This
means that consumers’ utility depends on both current own consumption and on the
standard of living summarized by the variable vt . Accordingly, we posit the following
functional form for the instantaneous utility function:

ut =
(

1
1 − �

) [(
ct
v�t

)1−�
− 1

]
with �¿ 0 and �∈ (0; 1); (2)

where � is a parameter measuring the importance of the consumption reference and �
coincides with the inverse of the elasticity of intertemporal substitution of consumption
when �= 0. 2 Note that the utility function can be rewritten as

ut =
(

1
1 − �

) [(
c1−�t

(
ct
vt

)�)1−�
− 1

]
with �∈ (0; 1):

Thus, utility depends on both own consumption and own consumption relative to the
reference level. The assumption �¿ 0 agrees with our notion of a reference for con-
sumption, whereas we must impose that �¡ 1 since, otherwise, the utility function

2 Note that if � = 1, then ut = ln ct − � ln vt .
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would not be strictly increasing in consumption along a balanced growth path. Note
that if � = 0 the utility function u is time-independent and concave. However, when
�¿ 0 the utility function is time-dependent and it is not jointly concave with respect
to the two variables ct and vt . In fact, the necessary conditions for joint concavity are
1 + �(1 − �)6 0 and � + �(1 − �)6 0. Obviously, the latter inequality cannot hold
under our parametric assumptions.
Each consumer is endowed with kt units of capital that are used to produce a certain

amount of output according to the following Sobelow gross production function per
capita:

f(kt) = Akt + Bk�t ; (3)

where A¿ 0; B¿ 0 and �∈ (0; 1). This production function allows for sustained growth
provided the asymptotic marginal productivity A of capital is su7ciently high (Jones
and Manuelli, 1990). The output may be used either for consumption or for investment
in new capital. Thus, the resource constraint per capita is given by

f(kt)¿ ct + (1 + n)kt+1 − (1 − �)kt ; for all t = 0; 1; : : : ; (4)

where �∈ [0; 1] is the depreciation rate of capital. 3

The objective of each dynasty is to maximize the discounted sum of utilities of each
of its identical members,

∞∑
t=0

(
1

1 + �

)t
ut ; (5)

where �¿ 0 is the subjective discount rate. At time t = 0, each dynasty chooses
{ct ; kt+1}∞

t=0 to maximize (5) subject to (4), taking as given the path of average con-
sumption { Mct}∞

t=−1 and the two initial conditions on capital k0¿ 0 and past own con-
sumption c−1¿ 0. Both ct and kt are restricted to be non-negative in all periods. Note
that in this dynamic optimization problem kt and vt are the state variables. While the
former variable is only a@ected by the individual decisions of consumers, the latter is
determined by both individual decisions and the exogenous path of average consump-
tion.
The following lemma provides a necessary condition to be satis?ed by an interior

solution to the dynastic optimization problem:

Lemma 1. If the path {ct ; kt+1}∞
t=0 chosen by a dynasty is strictly positive, then the

following condition must be satis)ed:

1
1 + �


 @ut+1
@ct+1

+
(

1
1+�

) (
@ut+2
@vt+2

) (
@vt+2
@ct+1

)
@ut
@ct

+
(

1
1+�

)
@ut+1
@vt+1

@vt+1
@ct


 =

1 + n
1 + f′(kt+1) − �

: (6)

3 From now on, the expression “for all t = 0; 1; : : :” will be skipped as long as the meaning is clear.
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The optimality condition (6), dubbed the Keynes–Ramsey equation, equates the
marginal rate of substitution of consumption between periods t and t + 1 (MRSt; t+1,
henceforth) with the corresponding marginal rate of transformation (MRTt; t+1, hence-
forth). Note that the MRSt; t+1 depends on the own consumption and on the average
past consumption. 4 More precisely, the MRSt; t+1 is a function of ct−1, ct , ct+1, ct+2,
and of the average consumptions Mct−1, Mct and Mct+1. Since the path {ct ; kt+1}∞

t=0 chosen
by a dynasty is a function of the average consumption path { Mct}∞

t=−1, the next de?nition
makes clear the ?xed point nature of a competitive equilibrium.

De�nition 1. An equilibrium path {ct ; kt+1}∞
t=0 is a solution to the dynastic optimization

problem when Mct = ct ; for all t.

From the previous de?nition, it follows that along the equilibrium path the MRSt; t+1

depends only on ct−1, ct , ct+1 and ct+2. Note that this equilibrium MRSt; t+1 di@ers
from the MRSt; t+1 appearing in standard models of capital accumulation because here
consumers take into account the e@ect that present consumption has in setting the ref-
erence for next period consumption. Because of the dependence of the MRSt; t+1 on
consumption in di@erent time periods, the analysis of the equilibrium is simpli?ed by
introducing the following transformed variables: xt = ct=ct−1, ht = ut+1=ut , zt = kt=ct−1,
and mt = f(kt)=kt . Note that the average productivity mt of capital and the ratio zt
of capital to the reference level of consumption are state-like variables, whereas the
gross rate xt of consumption growth and the gross rate ht of growth of the utility are
control-like variables. Note also that, for given values c−1 and k0 of initial past con-
sumption and initial capital, respectively, there is a one-to-one correspondence between
the equilibrium values of the original variables ct and kt and the values of the trans-
formed variables mt , xt , zt and ht . Thus, given the initial conditions m0 =f(k0)=k0 and
z0 = k0=c−1, we can rewrite the equilibrium path in terms of the transformed variables.
We de?ne a stationary path in terms of the previous transformed variables as follows:

De�nition 2. A stationary path {xt ; ht ; zt ; mt}∞
t=0 is a path along which xt , ht , zt and mt

are all constant.

From the previous de?nition and that of zt , it follows that along a stationary path
consumption and capital grow at the same constant growth rate. Note that no equilib-
rium condition is imposed in the de?nition of a stationary path.

De�nition 3. A balanced growth path (BGP) {xt ; ht ; zt ; mt}∞
t=0 is an equilibrium path

that is stationary.

Note that from the de?nition of the variable mt , a BGP involves a constant marginal
productivity of capital. It is then obvious from the functional form of the production
function (3) that a BGP is never reached in ?nite time when B¿ 0. However, we will

4 It should be pointed out that, if �= 1, then the MRSt; t+1 does not depend on average past consumption
and, hence, the past consumption level does not a@ect the path chosen by the dynasty.



J. Alonso-Carrera et al. / European Economic Review 49 (2005) 1665–1691 1671

say that a path {xt ; ht ; zt ; mt}∞
t=0 converges to a BGP when

lim
t→∞ xt = x; lim

t→∞ ht = h; lim
t→∞ zt = z and lim

t→∞mt = m;

where x, h, z and m are the BGP values of xt , ht , zt and mt , respectively.
Let us de?ne the following parameters:

� ≡ �
1 + �

;

� ≡ �+ �(1 − �)

and

’ ≡ 1 + A− �
(1 + n)(1 + �)

:

Our next proposition presents necessary conditions to be satis?ed by an interior equi-
librium path converging towards a BGP with positive growth.

Proposition 1. Let ’¿ 1. Assume that, for given initial values z0¿ 0 and m0¿ 0,
there is only one strictly positive equilibrium path {xt ; ht ; zt ; mt}∞

t=0 and that this path
converges to a strictly positive BGP. Then,

(a) the following conditions are satis)ed along the equilibrium path:

zt+1 =
(
zt
xt

) (
mt + 1 − �

1 + n

)
− 1

1 + n
; (7)

xt+1 = (ht)1=1−�(xt)�; (8)

mt+1 = A+ (mt − A)
(

1
1 + n

)�−1 (
mt + 1 − �− xt

zt

)�−1

; (9)

and (
1

1 + �

) (
ht
xt+1

) (
1 − 	�ht+1

1 − 	�ht

)
=

1 + n
1 + A(1 − �) + �mt+1 − �

; (10)

(b) the strictly positive BGP which the equilibrium path converges to satis)es

x = ’1=� ¿ 1; (11)

m= A; (12)

z =
x

(1 + A− �) − (1 + n)x
(13)

and

h= ’(1−�)=�: (14)

Eq. (11) tells us that the equilibrium path exhibits sustained growth in the long
run. Note that the value of the parameter ’ is crucial for the existence of positive
growth, that is, for x¿ 1. Eq. (7) follows from the budget constraint and states that
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it is binding along the equilibrium path. In fact, this equation is the budget constraint
de?ned in terms of the transformed variables. Eq. (8) follows from the de?nition of
the transformed variable ht and Eq. (9) follows from the de?nition of the transformed
variable mt . Finally, (10) is the Keynes–Ramsey equation in equilibrium de?ned in
terms of the transformed variables. The left-hand side of this equation corresponds to
the MRSt; t+1 and the right-hand side is the MRTt; t+1.

Proposition 1 establishes the necessity of Eqs. (7)–(10) in order to obtain a strictly
positive equilibrium path converging to a BGP exhibiting sustained growth. If the con-
sumers’ maximization problem were convex, these four equations and the corresponding
initial and transversality conditions would not be only necessary but also su7cient for
obtaining that equilibrium path when ’¿ 1. Given the assumption of non-increasing
returns to scale, the resource constraint (4) de?nes a convex set of feasible solutions.
Thus, the consumers’ problem would be convex if the objective function (5) were con-
cave. Stokey et al. (1989, Chapter 4) have shown that concavity of the instantaneous
utility function is a su7cient, although not necessary, condition that guarantees the
concavity of the objective function. However, as follows from our previous discussion,
the instantaneous utility function is not concave in this model when 	 �= 0. Therefore,
since the convexity of the consumers’ maximization problem is not guaranteed, the
equilibrium path could be non-interior (i.e., not strictly positive) and, in this case, the
system of di@erence equations (7)–(10) would not characterize that equilibrium path.
The following propositions provide conditions aimed at ensuring the existence of an
interior equilibrium path characterized by the previous dynamic system. We start by
imposing a restriction on the values of � compatible with the existence of an interior
(i.e., strictly positive) equilibrium path. 5

Proposition 2. Let 	¿ 0 and assume that there exists a strictly positive equilibrium
path {xt ; ht ; zt ; mt}∞

t=0 for given z0¿ 0 and m0¿ 0. Then, �¿ 1.

In view of Proposition 2, if �¡ 1 the solution to the dynamic optimization prob-
lem cannot be interior when 	¿ 0. 6 The following proposition provides su7cient
conditions for an interior equilibrium path.

Proposition 3. Let �¿ 1 and ’¿ 1. Assume that, for all initial values z0¿ 0 and
m0¿ 0, there is only one path {xt ; ht ; zt ; mt}∞

t=0 solving the system of di?erence equa-
tions (7)–(10), and that this path is strictly positive and converges to a strictly positive
stationary path. Then, the path {xt ; ht ; zt ; mt}∞

t=0 is an equilibrium path. Moreover, the
stationary path given by expressions (11)–(14) is the unique strictly positive BGP of
the economy.

5 Note that, if we had assumed that �¡ 0, the instantaneous utility function could be concave and the
consumers’ maximization problem would be convex. In this case, the condition stated in Proposition 2 is
not required to guarantee an interior equilibrium path.

6 Note that the arguments to rule out the case �¡ 1 do not apply when the reference variable does not
depend on own past consumption (	 = 0). Thus, in the caching-up with the Joneses model, the equilibrium
could be characterized by (7)–(10) even if �¡ 1.
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The previous proposition tells us that, when �¿ 1 and ’¿ 1, an equilibrium path
that converges to an interior BGP is fully characterized by the dynamic system com-
posed by the di@erence equations (7)–(10), together with the initial conditions, for any
value of the parameter 	 in the closed interval [0; 1]. In particular, we will use the
previous system of equations to characterize the equilibrium dynamics corresponding
to the following two extreme models, which are commonly found in the literature: the
IH model and the CJ model. We will see that both models exhibit saddle path stability
towards a unique BGP and, thus, the assumptions in Proposition 3 are clearly met.
According to the results of this section, we will maintain the assumptions �¿ 1 and
’¿ 1 throughout the rest of the paper.
Concerning the properties of the BGP, note that the stationary rate x of economic

growth given in (11) increases with the value of the parameter A measuring total factor
productivity (TFP, henceforth) in the long run. The intuition behind this result can be
obtained from the Keynes–Ramsey equation (6). From that equation we observe that
an increase in TFP reduces the cost of shifting resources to future periods and, thus,
drives the price of future consumption in terms of present consumption down. This
encourages consumers to shift present consumption to the future and, thus, the rate of
economic growth must increase.
Note also that, if habits become more important (which amounts to an increase in

the value of the parameter �), then the growth rate goes up when �¿ 1. Moreover,
the e@ect on the growth rate of an increase in TFP becomes larger for higher values of
�. 7 This occurs because the introduction of habits makes the intertemporal elasticity
of substitution larger and this accelerates economic growth as the ratio of present to
past consumption is forced to increase. 8 This result is in stark contrast to that obtained
by Shieh et al. (2000), where the introduction of internal habits could deter growth
in some cases. This di@erence arises because Shieh et al. (2000) did not introduce
conditions that guarantee the existence of interior solutions. 9

3. Equilibrium under internal habits (IH)

In this section, we assume that consumers view only their own past consumption
as the standard of living to be used as a reference. Therefore, we impose 	 = 1 in
expression (1) and, thus, the reference variable becomes simply vt = ct−1. In this case
the Keynes–Ramsey equation (10) simpli?es to(

1
1 + �

) (
ht
xt+1

) (
1 − �ht+1

1 − �ht

)
=

1 + n
1 + A(1 − �) + �mt+1 − �

; (15)

7 Observe that @x=@�¿ 0 and @x=@A@�¿ 0 when �¿ 1.
8 Note that, if we de?ne the stationary intertemporal elasticity of substitution as the elasticity of the

stationary rate of growth with respect to the asymptotic return to capital, this stationary elasticity is given
by the value of 1=�. Clearly, this elasticity is strictly increasing in � when �¿ 1.

9 In their paper, the introduction of habits may reduce the long run growth rate because they do not
assume that �¿ 1. In our paper, this assumption is required to rule out corner solutions yielding unbounded
utility.



1674 J. Alonso-Carrera et al. / European Economic Review 49 (2005) 1665–1691

where the left-hand side of the equation is the marginal rate of substitution in the
internal habit formation model (MRS IHt; t+1, henceforth).

Given the initial conditions m0 = f(k0)=k0 and z0 = k0=c−1, we can thus de?ne an
interior equilibrium path of the IH model as a strictly positive path {mt; xt ; zt ; ht}∞

t=0
satisfying the di@erence equations (7)–(9) and (15), and the corresponding transver-
sality conditions. The BGP of the IH model is given by expressions (11)–(14), since
these expressions do not depend on the value taken by the parameter 	.
The next two propositions characterize the transitional dynamics of the economic

system in the neighborhood of the BGP. This transitional dynamics was already estab-
lished by Carroll et al. (1997) when the technology is represented by an Ak produc-
tion function. We extend the analysis to the Sobelow production function, where the
marginal productivity of capital is time-varying.

Proposition 4. The BGP of the IH model is saddle path stable.

Propositions 3 and 4 allow us to conclude that, for a given pair of initial conditions
z0 and m0 su7ciently close to the stationary values z and m, respectively, there is a
unique equilibrium path. Moreover, this equilibrium path is the saddle path converging
to the BGP.

Proposition 5. Given the initial conditions z0¿ 0 and m0¿ 0, the following holds for
the IH model:

(a) If B = 0 then the variables xt and ht will both exhibit a monotonic behavior
along the transition towards the BGP. In particular, if z0¡z (z0¿z), then the
variables xt and ht will increase (decrease) toward their respective stationary
values.

(b) If B¿ 0 then the variables xt and ht could exhibit a non-monotonic behavior
along the transition towards the BGP.

When B = 0 the technology is characterized by an Ak production function and,
hence, mt = A. In this case, there is only one state variable, zt , and the behav-
ior of xt and ht only depends on the initial value z0 of the state variable. How-
ever, when B¿ 0 there are two state variables, zt and mt , and the transition of xt
and ht depends on the particular initial values of these two variables. This transi-
tion could then be non-monotonic. Hence, our model could give rise to a transi-
tory non-monotonic behavior of the growth rate. 10 Therefore, while Carroll et al.
(1997) have shown that the consumption growth rate in a model with an Ak produc-
tion function displays a monotonic convergence towards the BGP when preferences
are not time-separable, we show that this convergence could be non-monotonic when
the production function exhibits diminishing returns to scale. In this case, a reduc-
tion in the stock of capital may cause either an increase or a decrease in the con-
sumption growth rate depending on the initial stock of habits. In contrast, Carroll

10 In the proof of Proposition 5 we provide an example of an economy exhibiting such a non-monotonic
behavior.
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et al. (1997) have shown that a reduction in the stock of capital causes an unam-
biguous reduction in the consumption growth rate when the production function ex-
hibits constant returns to scale. The intuition behind our result lies in the fact that,
when the capital stock becomes smaller, the return on investment increases under di-
minishing returns to scale and this has a positive e@ect on the growth rate. How-
ever, the reduction in the capital stock makes the amounts of both capital and out-
put small relative to the consumption reference, so that agents would be forced to
choose a consumption level so large that it would not be sustainable in the long
run. Therefore, such a consumption level will have to decrease in the future. This
means that habits make the growth rate decrease as a response to a reduction in the
capital stock, while diminishing returns account for the opposite e@ect. Obviously,
these two opposite forces explain both the ambiguity of the response of the growth
rate to changes in the stock of capital and the non-monotonic behavior during the
transition.
The previous result has also implications for the cross-country convergence. Con-

sider the original model in terms of the variables ct and kt . When B¿ 0 the transitional
dynamics of the growth rate depends on the particular initial values of both the capital
level and the reference level of consumption. This means that, under diminishing re-
turns to capital, two economies with di@erent initial capital stocks will follow di@erent
equilibrium paths for xt even if they share a common initial value of the ratio zt of
capital to consumption reference. On the contrary, when the production function is Ak,
the transitional dynamics of the growth rate xt only depends on the initial value of
the ratio zt . In this case, two economies with the same initial value of zt will follow
equilibrium paths with identical growth rates regardless of their initial levels of capi-
tal. It follows that cross-country di@erences in the growth rate can only be explained
by di@erences in the ratio zt when the production function is Ak, whereas they can
be explained by di@erences on the values of both the stock of capital and the refer-
ence level of consumption when the production function exhibits diminishing returns to
scale.

4. Equilibrium under catching-up with the Joneses (CJ)

In this section, we make 	=0 in expression (1). This means that the average aggre-
gate consumption of the previous period is now the reference level of consumption, that
is, vt = Mct−1. Therefore, the model displays the typical “catching-up with the Joneses”
feature, since average past consumption enters into the consumers’ utility as a negative
externality.
We next derive the equations characterizing the dynamic equilibrium of this particular

model. Since 	= 0, the Keynes–Ramsey equation (10) is simply

(
1

1 + �

) (
ht
xt+1

)
=

1 + n
1 + A(1 − �) + �mt+1 − �

; (16)
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where the left-hand side of equation (16) is the marginal rate of substitution in the
catching-up with the Joneses model (MRSCJt; t+1, henceforth). Using the de?nition of ht
introduced in Section 2, (16) becomes

xt+1 = x�(�−1)=�
t

(
1 + A(1 − �) + �mt+1 − �

(1 + n)(1 + �)

)1=�

: (17)

In contrast to the IH model, the equilibrium is now fully described by only three
variables: zt , mt , and xt . The ?rst two variables are the state variables, whereas the
third one is the control variable. Hence, given the initial conditions m0 =f(k0)=k0 and
z0 = k0=c−1, we de?ne an equilibrium path of the CJ model as a strictly positive path
{mt; xt ; zt}∞

t=0, satisfying the di@erence equations (7), (9) and (17), and the correspond-
ing transversality conditions. A BGP will be thus an equilibrium path along which the
variables mt , xt and zt are constant. Obviously, the gross rate of growth ht of the in-
stantaneous utility u is also constant along a BGP. It is thus clear from the expressions
appearing in part (b) of Proposition 1 that the BGP of the CJ model is the same as
that of the IH model, since the BGP of the general model of Section 2 is independent
of the parameter 	.
We next discuss the intuition for obtaining identical stationary solutions for both

models. In the CJ model consumers do not internalize the consumption spillovers, i.e.,
they ignore the e@ects of their own consumption choice on the future consumption
reference level of other agents. On the contrary, consumers in the IH model take into
account the future e@ects of their current decisions on consumption. This di@erence
translates into di@erences between the marginal rate of substitution of both models
during the transition, as one can easily see by comparing Eqs. (15) and (16). However,
since the discounted sum of utilities is bounded, the growth rates of both instantaneous
utility and consumption must converge to a constant value. Hence, it is immediate to
see from (15) and (16) that the marginal rates of substitution of both models coincide
along a stationary path (i.e., when xt and ht are constant for all t). The next two
propositions characterize the transitional dynamics of the CJ model in the neighborhood
of the BGP:

Proposition 6. The BGP of the CJ model is saddle path stable.

The previous result establishes that the equilibrium path of the CJ model is unique
for a given pair of initial conditions z0 and m0 su7ciently close to their respective
stationary values z and m. Moreover, the equilibrium path converges to the unique
BGP.

Proposition 7. Given the initial conditions z0¿ 0 and m0¿ 0, the following holds for
the CJ model:

(a) If B=0 then the variable xt will exhibit a monotonic behavior along the transition
towards the BGP. In particular, if z0¡z (z0¿z), then the variable xt will
increase (decrease) toward its stationary values.
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(b) If B¿ 0 then the variable xt could exhibit a non-monotonic behavior along the
transition towards the BGP.

Proposition 7 has the same qualitative implications for the transitional dynamics and
the cross-country convergence of the CJ model as those established by Proposition 5 for
the IH model. In other words, the policy functions tracing out the relationship between
the state variables and the optimal value of the control variables in the CJ model are
qualitatively similar to those of the IH model. However, the e7ciency analysis of the
next section will show that the relationship between state and control variables di@ers
quantitatively from one model to the other. 11

5. E*ciency and optimal policy

As we have already mentioned, the equilibrium of the CJ model could be ine7cient
because consumers do not internalize the consumption spillovers. This source of inef-
?ciency has been studied by Ljungqvist and Uhlig (2000) in a model without capital
accumulation. 12 In this section, we extend the e7ciency analysis into a growth model
with capital accumulation. To this end, note that the equilibrium of the IH model de-
scribed in Section 3 coincides with the solution of the CJ model that a benevolent
social planner would implement, since that planner would take into account all the
consumption externalities. This means that, in order to deal with e7ciency issues, we
just have to compare the equilibrium solution of the CJ model with that of the IH
model.
The only di@erence between the equations that characterize the equilibrium paths of

the two models lies in the MRSt; t+1 appearing in the left-hand side of the Keynes–Ram-
sey equations (15) and (16). E7ciency of the competitive solution of the CJ model
requires that the MRSt; t+1 obtained in the two models be identical, i.e., MRSCJt; t+1 =
MRS IHt; t+1, where MRS

IH
t; t+1 is the e7cient MRSt; t+1. Given our assumptions on prefer-

ences, the previous e7ciency condition is obviously satis?ed when � = 1. However,
if �¿ 1, then the e7ciency condition becomes simply ht+1 = ht . This equality holds
along the BGP, which is consistent with the fact that the CJ and IH models share
the same BGP, as shown in the previous sections. Finally, the dynamic equilibrium of
the CJ model is obviously ine7cient during the transition when �¿ 1. Note that the
variable ht displays always transition except in the critical case where B=0 and z0 = z,
and this means that the dynamic equilibrium of the CJ model is generically ine7cient.
In what follows we will show that e7ciency can be restored in the CJ model by

means of an appropriate tax policy. We present two alternative tax instruments that

11 In the case where the production function is Ak, Carroll et al. (1997) show that the slope of the
equilibrium saddle path (or the policy function) in the CJ model di@ers from that of the IH model.
12 Fisher and Hof (2000) have also analyzed equilibrium e7ciency in a neoclassical growth model when

the source of ine7ciency is an externality arising from average current consumption. In contrast, in our
paper the externality is associated to the average past consumption level and the results on e7ciency are in
stark contrast with those obtained by Fisher and Hof (2000). Actually, Ljungqvist and Uhlig (2000) have
stressed the fact that ine7ciency depends on the timing of the consumption externality.
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make identical the two Keynes–Ramsey equations (15) and (16): a tax on net income
(or net output) and a tax on consumption. By using a procedure similar to that of
Fisher and Hof (2000) and Alonso-Carrera et al. (2004), we derive the correspond-
ing optimal tax rates. We assume that the tax revenues are returned to consumers
through a lump-sum subsidy. This assumption implies that the resource constraint of a
representative dynasty becomes now

(1 + !ct )ct + (1 + n)kt+1 − kt = (1 − !yt )[f(kt) − �kt] + Tt; (18)

where !c and !y are the tax rates on consumption and on net income, respectively, and
Tt is the lump-sum subsidy satisfying the following government budget constraint: 13

Tt = !yt [f(kt) − �kt] + !ct ct : (19)

Combining (18) and (19) and using the transformed variables, we obtain the aggregate
resource constraint. Therefore, because all the tax revenue is returned to the consumers
as a lump-sum subsidy, the introduction of taxes only modi?es the Keynes–Ramsey
equation (16). Thus, this equation becomes(

1
1 + �

)(
hCJt
xCJt+1

)
=

(
1 + !ct+1

1 + !ct

)(
1 + n

1 + (1 − !yt+1)[(1 − �)A+ �mCJ
t+1 − �]

)
; (20)

where the superscript CJ is used to denote the variables of the CJ model. Note that the
LHS of the previous equation is the marginal rate of substitution MRSCJt; t+1(h

CJ
t ; x

CJ
t+1)

of the CJ model. Evaluating (20) at the e7cient equilibrium path, and dividing the
resulting equation by the Keynes–Ramsey equation (15) of the IH model, we obtain
the following optimal taxation condition:

MRSCJt; t+1(h
IH
t ; x

IH
t+1)

MRS IHt; t+1(h
IH
t+1; h

IH
t ; xIHt+1)

=
(
1 + !̂ct+1

1 + !̂ct

)

×
(

1 + (1 − �)A+ �mIH
t+1 − �

1 + (1 − !̂yt+1)[(1 − �)A+ �mIH
t+1 − �]

)
; (21)

where the superscript IH is used to denote the equilibrium value of the variables
in the IH model; !̂ct and !̂yt are the optimal values of the tax rates on consumption
and income, respectively; and MRS IHt; t+1(h

IH
t+1; h

IH
t ; x

IH
t+1) and MRSCJt; t+1(h

IH
t ; x

IH
t+1) are the

MRSt; t+1 corresponding to the IH model and the CJ model, respectively, when they
are evaluated along the e7cient equilibrium path. We see from (21) that optimal taxes
display time-varying rates o@ the BGP, while the optimal consumption tax rate is
constant and the optimal income tax rate is zero at the BGP. This result about the

13 Note that a tax on income has the same e@ects on capital accumulation as a tax on capital income
provided the tax revenue is entirely returned to consumers through a lump-sum transfer. Even if the amount
of taxes collected for a given tax rate is not the same, the marginal productivity of capital is modi?ed
identically under the two tax schemes.
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optimal income tax rate in the long run resembles those obtained by Judd (1985)
and Chamley (1986) in models with standard preferences. 14 Thus, we see that the
introduction of habit formation a@ects the optimal tax rates only during the transition.
If the MRSt; t+1 of the CJ model evaluated along the e7cient consumption path

turns out to be smaller than the e7cient MRSt; t+1 along the same path, then the con-
sumers’ willingness to shift present consumption to the future will be too small. In
this case, condition (21) tells us that the e7cient path can be reached by means of
either subsidizing output or introducing a tax on consumption with !̂ct ¿ !̂ct+1. These ?s-
cal policies correct the ine7ciency because they make present consumption purchases
more expensive than the future ones and, hence, they encourage consumers to postpone
consumption. A decreasing sequence of tax rates on consumption directly drives the
after-tax price of future consumption in terms of present consumption down. More-
over, a subsidy on output also reduces the relative price of future consumption because
this policy reduces the cost of shifting resources to future periods. Therefore, if the
MRSt; t+1 of the CJ model along an e7cient path is larger (smaller) than the e7cient
MRSt; t+1, then a welfare-maximizing government must impose either a tax (subsidy)
on income or a tax on consumption with a rate that rises (falls) over time.
Finally, we can also characterize the dynamic behavior of the optimal tax rates by

expressing them as functions of the state variables of the model. As a ?rst step towards
this goal, we show that both rates depend only on the e7cient value hIHt of the utility
growth rate. On the one hand, substituting

MRSCJt; t+1(h
IH
t ; x

IH
t+1)

MRS IHt; t+1(h
IH
t+1; h

IH
t ; xIHt+1)

=
1 − �hIHt
1 − �hIHt+1

into (21) and setting !̂yt+1=0, the following condition for optimal taxation of consump-
tion is obtained:

!̂ct+1 − !̂ct
1 + !̂ct

= �
(
hIHt+1 − hIHt
1 − �hIHt+1

)
: (22)

We thus see that the optimal tax on consumption increases (decreases) when hIHt in-
creases (decreases). Also note that !̂ct+1 = !̂ct along the BGP. Therefore, any sequence
of constant tax rates (not necessarily equal to zero) on consumption is optimal along
a BGP.
On the other hand, imposing !̂ct = 0 for all t in condition (21), we obtain that the

optimal rate of the income tax is

!̂yt+1 = �
(
hIHt+1 − hIHt
1 − �hIHt

) (
1 + (1 − �)A+ �mIH

t+1 − �
(1 − �)A+ �mIH

t+1 − �

)
: (23)

Note that this optimal rate equals zero along the BGP as hIHt+1 = h
IH
t . However, this tax

is positive when the growth rate of utility increases with time, hIHt+1¿hIHt , and it is
negative otherwise.

14 It should be pointed out that in the papers of Judd and Chamley the government intends to ?nance
optimally a given stream of spending. However, in our model the government just uses optimal taxes aimed
at correcting for the ine@ciencies brought about by consumptions spillovers.



1680 J. Alonso-Carrera et al. / European Economic Review 49 (2005) 1665–1691

We have then shown that the evolution of the optimal rates of both taxes is quali-
tatively determined only by the transition of the variable hIHt along the e7cient equi-
librium. This occurs because, when habits are modeled in a multiplicative way, there
is a direct relation between the variable hIHt being increasing (decreasing) along the
transition and the MRSt; t+1 being suboptimally large (small). Proposition 5 describes
the behavior of hIHt during the transition and, hence, we can derive immediately the fol-
lowing corollary concerning the evolution of the optimal tax rates from that proposition
and expressions (22) and (23):

Corollary 1. (a) The sequence of optimal consumption tax rates {!̂ct }∞
t=1 around the

BGP could be either monotonic or non-monotonic for a given arbitrary value of !̂c0.
This sequence converges to a constant.
(b) The sequence of optimal income tax rates {!̂yt }∞

t=1 around the BGP could either
exhibit the same sign or change its sign. This sequence converges to zero.

Part (a) of Proposition 5, which applies to the case B=0; tells us that if z0¡z, then
hIHt will increase. In this case, the MRSt; t+1 will be suboptimally large and the optimal
tax policy will consist on either an increasing sequence of tax rates on consumption
or a positive tax rate on income. The opposite will occur if z0¿z. However, part (b)
of Proposition 5 tells us that, if the marginal productivity of capital is not constant,
namely, when B¿ 0, then the variable hIHt could exhibit a non-monotonic behavior
along the transition. This implies that the optimal consumption tax could grow during
a number of periods and decrease afterwards. Similarly, the optimal tax on income
could be positive during some periods and become negative later on, or vice versa.
When B¿ 0 there are two state variables, zt and mt; and the transition of the variable

hIHt depends on the initial value of these two variables. Therefore, the optimal ?scal
policy depends also on the initial values of these two state variables or, equivalently,
on the initial values of both capital and the reference level of consumption. This means
that, under strictly decreasing returns to capital, two economies with di@erent initial
capital stocks will have di@erent optimal tax rates even if they share a common initial
value of the ratio zt of capital to consumption reference. On the contrary, when the
production function is Ak, the optimal ?scal policy only depends on the initial value of
the ratio zt . In this case, two economies with the same initial value of zt will exhibit
the same optimal tax rates regardless of their initial levels of capital.
We can provide a numerical example to compare the optimal income taxes for two

economies that are identical except on the initial value of the state variable mt . Let us
assume that the parameters characterizing both economies take the following values: 15

A= 0:183; � = 5; �= 0:09; n= 0; �= 0:03; �= 0:5; and � = 0:2:

15 We set the values of �, n, �, �, � as in Carroll et al. (2000). In particular, the values of � and � are
such that the inverse of the stationary intertemporal elasticity of substitution takes the reasonable value �=3
(see footnote 8), and the value of A is such that yields a long-run growth rate equal to 2%. The value of
� allows us to obtain a speed of convergence of 1.6%. This con?guration of parameter values is also used
in the proof of Proposition 5 (see (A.22) in the appendix).
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Both economies share the same initial value of the ratio of capital to consumption
reference, namely, z0 = 0:99z. We also assume that in one economy m0 =m and, since
m=A, the technology is characterized by an Ak production function from t=0 on. In the
other economy we set m0=1:01m and, hence, capital exhibits strictly decreasing returns
to capital. The optimal rate of the income tax when the technology is Ak turns out to
be always positive along the transition and converges to zero. However, the optimal
tax rate on income when the production function exhibits diminishing returns to scale
takes negative values for t6 6, while for t ¿ 6 it takes positive values. Similarly,
under diminishing returns to scale the tax rate on consumption is decreasing for t6 6
and increasing for t ¿ 6 for any arbitrarily given initial tax rate. Note that, when
t=6:7081; it holds that hIHt+1 = h

IH
t ; which is consistent with expressions (22) and (23)

characterizing optimal tax rates. This numerical example has thus illustrated clearly the
potential non-monotonicity of optimal tax rates when the technology exhibits strictly
decreasing returns to capital.
The previous results on the optimal income tax rate are in a stark contrast with the

results obtained by Ljungqvist and Uhlig (2000) in a catching-up with the Joneses
model without capital accumulation. These authors show that the optimal income tax
rate is positive when there is a high realization of a productivity shock raising the
growth rate, and it is negative otherwise. In the present paper, we show that this
result does not hold when capital accumulation is introduced. On the one hand, if the
production function exhibits constant returns to scale, the optimal income tax rate will
take negative values when the consumption growth rate is above its BGP value and
takes positive values otherwise. On the other hand, if the production function exhibits
diminishing returns to scale, the optimal income tax rate will be either procyclical or
countercyclical, depending on the reference level of consumption. Thus, we conclude
that the results on optimal ?scal policy obtained in a model without capital do not
hold in a model exhibiting capital accumulation.

6. Conclusion

We have analyzed the dynamic equilibrium of an endogenous growth model where
preferences are time-dependent. In particular, we have assumed the existence of inter-
nal and external habit formation in consumption. Thus, utility depends on both own
consumption and own consumption relative to a reference level. This reference level is
determined by both past own consumption and past average consumption. The presence
of internal habits makes the instantaneous utility function non-concave and, hence, con-
cavity of the objective function is not guaranteed. We have provided conditions under
which the equilibrium path is the solution to a dynamic system formed by standard
?rst-order conditions. We have then studied the equilibrium of two growth models,
namely, the IH model, where the reference is the own past consumption, and the CJ
model, where the reference is the average past consumption.
The introduction of a consumption externality makes the equilibrium of the CJ model

ine7cient. We have then characterized the optimal ?scal policy. In particular, we have
derived the optimal tax rates on income and on consumption. The optimal tax rate on
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income is zero along the BGP, whereas it is di@erent from zero along the transition.
The optimal rate of consumption tax is constant at the BGP, while it could either
increase or decrease with time along the transition. We have shown how the value
of optimal tax rates during the transition depends on the initial values of both the
reference variable and capital. More precisely, if the marginal productivity of capital is
constant, then the optimal tax rates will only depend on the initial value of the ratio of
capital to consumption reference. However, if that marginal productivity is not constant
during the transition, then the optimal tax rates will depend on the initial values of
both capital and consumption and they could exhibit a non-monotonic dynamics.
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Appendix A

Proof of Lemma 1. The Lagrangian associated with the dynasty problem is

L(c; k; $) =
∞∑
t=0

(
1

1 + �

)t
ut +

∞∑
t=0

$t[f(kt) − ct − (1 + n)kt+1 + (1 − �)kt]; (A.1)

where c= {ct}∞
t=0, k = {kt}∞

t=0 and $= {$t}∞
t=0 are non-negative paths, and the average

consumption path { Mct ; }∞
t=−1 is taken as given. Computing the derivative of the previous

Lagrangian with respect to ct , we obtain the following necessary ?rst-order conditions
for optimality:

@L
@ct

=
(

1
1 + �

)t @ut
@ct

+
(

1
1 + �

)t+1 @ut+1

@vt+1

@vt+1

@ct
− $t6 0; (A.2)

with ct¿ 0, and

@L
@ct

· ct = 0: (A.3)

The corresponding transversality condition is

lim
t→∞

{(
1

1 + �

)t @ut
@ct

− $t

}
6 0; (A.4)
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with

lim
t→∞

{[(
1

1 + �

)t @ut
@ct

− $t

]
ct

}
= 0: (A.5)

Di@erentiating (A.1) with respect to kt+1, we also get the following necessary ?rst-order
conditions:

@L
@kt+1

= −(1 + n)$t + [1 + f′(kt+1) − �]$t+16 0; (A.6)

with kt+1¿ 0; and

@L
@kt+1

· kt+1 = 0: (A.7)

The corresponding transversality condition is

lim
t→∞{−(1 + n)$t}6 0; (A.8)

with

lim
t→∞{−(1 + n)$tkt+1} = 0: (A.9)

Finally, by taking the derivative of (A.1) with respect to the Lagrange multiplier $t ;
the solution to the optimization problem involves also to satisfy the resource constraint
(4), and

$t · [f(kt) − ct − (1 + n)kt+1 + (1 − �)kt] = 0; (A.10)

with $t¿ 0.
Since, by assumption, ct ¿ 0 and kt ¿ 0, for all t, (A.3) implies that (A.2) holds

with equality, and similarly (A.7) implies that (A.6) also holds with equality. From
combining the ?rst-order conditions (A.2) and (A.6), it is straightforward to obtain
Eq. (6).

Proof of Proposition 1. We use the transformed variables xt and ht , and the equilib-
rium condition ct = Mct , in order to rewrite Eq. (6) as follows:(

1
1 + �

) (
ht
xt+1

) (
1 − 	�ht+1

1 − 	�ht

)
=

1 + n
1 + f′(kt+1) − �

: (A.11)

Note that, by using the transformed variable mt , the marginal product of capital is then

f′(kt+1) = A(1 − �) + �mt+1:

Hence, after rearranging terms, Eq. (A.11) becomes Eq. (10) in the statement of the
proposition.
From (A.4), we get

lim
t→∞ $t¿ lim

t→∞

[(
1

1 + �

)t @ut
@ct

]
¿ 0: (A.12)
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Rewriting (A.6), we get

$t¿
[
1 + f′(kt+1) − �

1 + n

]
$t+1:

Since 1+f′(kt+1)−�¿ 1+A−�¿ (1+n)(1+�)¿ 1+n, we have that $t ¿$t+1, which
together with (A.12), implies that $t ¿ 0 for all t ?nite. Therefore, (A.10) implies that
the resource constraint (4) is satis?ed with equality and, by using the transformed
variables, we get Eq. (7).
From the de?nition of ht and the functional form of the utility function ut , it follows

that Eq. (8) must also hold. Combining the de?nition of mt with the functional form
of f(kt+1) and the resource constraint (7), we obtain Eq. (9).
The stationary values x, m, z and h are obtained from a direct computation aimed

at obtaining their limiting values according to the dynamic system formed by Eqs.
(7)–(10). Finally, x¿ 1 in (11) follows from ’¿ 1.

Proof of Proposition 2. We proceed by contradiction and assume that �¡ 1. In this
case, it is easy to check that ut+1 → ∞ when ct → 0 and ct+1¿ 0, since then vt+1 → 0.
Moreover, ut → 0 when ct → 0 and ct−1 = Mct−1¿ 0. This implies that paths for which
consumption and the gross rate xt of consumption are equal to zero in some, but not
all, periods deliver higher discounted utility than any strictly positive path. Note that
to achieve zero consumption in some periods is always feasible (see (4)).

Proof of Proposition 3. First, note that the unique strictly positive stationary path solv-
ing the system of di@erence equations (7)–(10) is given by expressions (11)–(14), as
can be seen by making mt = m¿ 0, xt = x¿ 0, zt = z¿ 0 and ht = h¿ 0 for all t in
that dynamic system and solving for the corresponding stationary values.
Let us check that the stationary path solving both the Keynes–Ramsey equation (6)

and the resource constraint (4) with equality satis?es all the ?rst-order conditions and
transversality conditions for optimality. By de?ning $t as

$t =
(

1
1 + �

)t @ut
@ct

+
(

1
1 + �

)t+1 @ut+1

@vt+1

@vt+1

@ct
; (A.13)

the necessary ?rst-order conditions (A.2), (A.3), (A.6), (A.7), and (A.10) are auto-
matically satis?ed by any path solving both (6) and the resource constraint (4) with
equality. Moreover, from the same arguments appearing in the proof of Proposition 1,
it is immediate to see that $t¿ 0, with strict inequality for all t ?nite.

Let us now check that the stationary solution to the dynamic system formed by
Eq. (6) and the resource constraint (4) with equality satis?es also the transversality
conditions (A.4), (A.5), (A.8), and (A.9) when �¿ 1 and x¿ 1. Using (A.13), the
transversality condition (A.5) becomes

lim
t→∞

{[(
1

1 + �

)t+1 @ut+1

@vt+1

@vt+1

@ct

]
· ct

}
= 0; (A.14)
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which, making ct = Mct , is equal to

− �	(1 − �) lim
t→∞

{(
1

1 + �

)t+1

ut+1

}
= 0: (A.15)

Moreover, at the stationary path, we have that ut+1=ut = x(1−�)(1−�) and, as x¿ 1,
�∈ (0; 1) and �¿ 1, it follows that

ut+1

ut
¡ 1¡ 1 + �: (A.16)

Therefore, from (A.16) we can conclude that (A.15) e@ectively holds, so that (A.5) is
ful?lled. Moreover, using (A.13), (A.4) could also be written as

−�	x1−� lim
t→∞

{(
1

1 + �

)t+1

(ct)−[�+�(1−�)]
}
6 0;

which is satis?ed with equality as limt→∞ ct = ∞ and �+ �(1 − �)¿ 0.
Now, we can use (A.12) to conclude that (A.8) also holds with equality. Moreover,

using again (A.12), the transversality condition (A.9) becomes

− (1 + n)x�(1−�) lim
t→∞

(
1

1 + �

)t
(ct)(1−�)(1−�)

kt+1

ct
= 0: (A.17)

Recall that

lim
t→∞

kt+1

ct
= z =

x
(1 + A− �) − (1 + n)x

:

Therefore, since �¿ 1 and lim
t→∞ ct =∞, we conclude that (A.17) e@ectively holds, so

that (A.9) is satis?ed.
We have thus proved that all the necessary conditions for optimality are satis?ed by

the unique stationary path solving the dynamic system formed by (6) and the resource
constraint (4) with equality. Note that this means that the necessary conditions for
optimality are satis?ed by the unique stationary path {xt ; ht ; zt ; mt}∞

t=0 solving the
system of Eqs. (7)–(10) for given initial values z0¿ 0 and m0¿ 0.
By assumption, there is only one path {xt ; ht ; zt ; mt}∞

t=0 satisfying the necessary condi-
tions for optimality (7)–(10) and, moreover, this path is strictly positive and converges
to a strictly positive BGP. Furthermore, we have just proved that this BGP satis?es
all the transversality conditions. Therefore, we only have to prove that non-interior
paths deliver lower levels of utility in order to conclude that the proposed interior path
{xt ; ht ; zt ; mt}∞

t=0 is the unique equilibrium path of the economy. To this end, let us
express the budget constraint (4) in terms of the transformed variables:

zt+16
(
zt
xt

) (
mt + 1 − �

1 + n

)
− 1

1 + n
: (A.18)

For given values of the state variables zt ¿ 0 and mt ¿ 0 in period t, the growth rate
xt of consumption must satisfy the following feasibility condition:

06 xt6 zt(mt + 1 − �); (A.19)
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as follows from combining (A.18) with the fact that zt+1¿ 0. Now, let us assume that
�¿ 1 so that us ¡ 0 for all s. On the one hand, ut → −∞ as xt → 0, which means that
the discounted sum of utilities tends to −∞. On the other hand, if xt → zt(mt+1−�),
then constraint (A.18) implies that zt+1 → 0, which in turn implies that xt+1 → 0 (see
(A.19)) and ut+1 → −∞. This results again in a discounted sum of utilities tending to
−∞. The case � = 1 can be disregarded for obvious reasons. Therefore, when �¿ 1
optimality requires that xt ∈ (0; zt(mt+1−�)) and, hence, ht ∈ (0;∞) for all t. We have
thus ruled out non-interior values for the control variables, since their corresponding
paths yield a level of utility that is strictly dominated by the one associated with an
arbitrary interior path converging to a strictly positive stationary path.

Proof of Proposition 4. Using (7), (8), (9) and (15), we obtain the following Jacobian
matrix evaluated at the BGP:

M IH ≡




@xt+1

@xt

@xt+1

@zt

@xt+1

@mt

@xt+1

@ht
@zt+1

@xt

@zt+1

@zt

@zt+1

@mt

@zt+1

@ht
@mt+1

@xt

@mt+1

@zt

@mt+1

@mt

@mt+1

@ht
@ht+1

@xt

@ht+1

@zt

@ht+1

@mt

@ht+1

@ht




=




� 0 0
’

1 − �

− (1 + A− �)z
(1 + n)x2

1 + A− �
(1 + n)x

z
(1 + n)x

0

0 0 x�−1 0

− (1 − �h)�
�h’

0
x�−1(1 − �h)�

(1 + n)(1 + �)�’
�h− �

(1 − �)�h



:

It is immediate to see that the eigenvalues &n, n = 1; 2; 3; 4; of M IH are &1 = x�−1,
&2 = (1 + A− �)=(1 + n)x and the two roots &3 and &4 solving the equation Q(&) = 0,
where

Q(&) = &2 −
[
1 + �+

(
�

� − 1

) (
1 − �h
�h

)]
& +

1 + �
h

:

Note that &1 ∈ (0; 1) because x¿ 1. From the resource constraint (7), we see that
&2 =1+1=(1+n)z¿ 1. Finally, in order to determine the value of &3 and &4, we must
?rst characterize the function Q(&). This function is convex with Q(0)¿ 0 and

Q(1) =
[
�(�− 1) − �

� − 1

] (
1 − �h
�h

)
:
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Condition ’¿ 1 implies that �h¡ 1. Hence, Q(1) is negative and ?nite when �¿ 1,
whereas it converges to −∞ as � → 1.
From our previous analysis we can conclude that, if �¿ 1, then &3¿ 1¿&4¿ 0.

Therefore, all four eigenvalues are positive, two eigenvalues are smaller than one, and
two eigenvalues are larger than one. This means in turn that the BGP exhibits saddle
path stability, since the IH model has two state variables, zt and mt .
When � = 1, the system of equations de?ning the equilibrium path is formed just

by equations (7), (9) and (15), and the equilibrium is fully described without the
variable ht . In this case, Q(&) has a unique root, which is &3 = 0. This means that the
equilibrium also exhibits saddle path stability in this case.

Proof of Proposition 5. Using Proposition 4, we obtain the following equations char-
acterizing the equilibrium saddle path around the BGP for the IH model:

qt = E1&t1 + E4&t4 + q;

where qt=(ht ; xt ; mt ; zt), &1 and &4 are the stable eigenvalues, and E1 =(E1
h ; E

1
x ; E

1
m; E

1
z )

and E4 = (E4
h ; E

4
x ; E

4
m; E

4
z ) are the eigenvectors associated with the eigenvalues &1 and

&4, respectively. We proceed to ?nd some properties of the eigenvectors E1 and E4

by using the matrix relationship (M IH − &nI)En = 0, for n = 1; 4, where I is the
identity matrix. Since these systems are homogeneous, their solutions can be expressed
as (E1

x ; E
1
z ; E

1
h) = E1

m(e
1
x ; e

1
z ; e

1
h) and (E4

x ; E
4
m; E

4
h) = E4

z (e
4
x ; e

4
m; e

4
h), where E

1
m and E4

z are
arbitrary constants. Moreover, since &4 �= @mt+1=@mt , it follows that e4m=0. Substituting
all these equalities in the previous system, we get

e1x = −
@xt+1
@ht

@ht+1
@mt

@xt+1
@ht

@ht+1
@xt

−
(
@ht+1
@ht

− &1
) (

@xt+1
@xt

− &1
) ;

e1z =

@zt+1
@xt

@xt+1
@ht

@ht+1
@mt

−
(
@xt+1
@ht

@ht+1
@xt

−
(
@ht+1
@ht

− &1
) (

@xt+1
@xt

− &1
))

@zt+1
@mt

( @zt+1
@zt

− &1)
(
@xt+1
@ht

@ht+1
@xt

−
(
@ht+1
@ht

− &1
) (

@xt+1
@xt

− &1
)) ;

e1h =

@ht+1
@mt

(
@xt+1
@xt

− &1
)

@xt+1
@ht

@ht+1
@xt

−
(
@ht+1
@ht

− &1
) (

@xt+1
@xt

− &1
) ;

e4x = −
@zt+1
@zt

− &4
@zt+1
@xt

and

e4h =

@ht+1
@xt

(
@zt+1
@zt

− &4
)

@zt+1
@xt

(
@ht+1
@ht

− &4
) :

We must now establish the value of the arbitrary constants E1
m and E4

z . First, E
4
m = 0

implies that mt = E1
m&

t
1 + m, so that E1

m = m0 − m. Moreover, by construction,

zt = E1
z &

t
1 + E4

z &
t
4 + z = E1

me
1
z &

t
1 + E4

z &
t
4 + z:
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This implies that

E4
z = (z0 − z) − (m0 − m)e1z :

Substituting the values of E1
m and E4

z we have obtained above into the equations char-
acterizing the evolution of xt and ht around the BGP, we get

xt = (m0 − m)e1x&
t
1 + [(z0 − z) − (m0 − m)e1z ]e

4
x&

t
4 + x; (A.20)

ht = (m0 − m)e1h&
t
1 + [(z0 − z) − (m0 − m)e1z ]e

4
h&

t
4 + h: (A.21)

Clearly, xt is non-monotonic around the steady state if there exists a positive ?nite
number tx such that the derivative of the RHS of (A.20) with respect to t equals zero
at t = tx. By di@erentiating (A.20) with respect to t, we obtain that the critical value
of t is given by

tx =
ln

[
−

(
ln(&4)
ln(&1)

) (
e4x
e1x

) (
z0−z
m0−m − e1z

)]
ln( &1&4 )

:

Similarly, it is obvious from (A.21) that ht is non-monotonic if

th =
ln

[
−

(
ln(&4)
ln(&1)

) (
e4h
e1h

) (
z0−z
m0−m − e1z

)]
ln

(
&1
&4

)
is positive and ?nite. Consider the following con?guration of parameter values:

A= 0:093; � = 5; �= 0; n= 0; �= 0:03; �= 0:5; and � = 0:2;

(A.22)

and the initial values of the state variables are z0 = 0:99z and m0 = 1:01m, so that
(A.20) is a good approximation of the evolution of the growth rate xt . Then, we obtain
tx=5:9644 and, hence, the growth rate xt displays a non-monotonic behavior around its
stationary value. Consider now the same initial conditions for the state variables and
the same set of parameter values as in the previous example, but making A = 0:183
and �= 0:09. In this case we get that th = 7:1723 so that ht is non-monotonic around
h.
Note that, if B = 0 then mt = A. In this case, m0 = m and Eqs. (A.20) and (A.21)

become

xt = (z0 − z)e4x&
t
4 + x;

ht = (z0 − z)e4h&
t
4 + h:

In order to establish the relation between the variables xt and ht and z0, we derive the
sign of e4x and e4h in this case. First, note that @zt+1=@zt = &2¿ 1¿&4. Moreover,

@ht+1

@xt
= − (1 − �h)�

�h’
¡ 0;
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@ht+1

@ht
=

�h− �
(1 − �)�h

= 1 +
�(1 − �h)
(� − 1)�h

¿ 1¿&4

and
@zt+1

@xt
= − (1 + A− �)z

(1 + n)x2
¡ 0:

The previous inequalities imply that e4x ¿ 0 and e4h ¿ 0. Therefore, xt and ht increase
(decrease) with time if z0¡z (z0¿z).

Proof of Proposition 6. Using (7), (9) and (17), we obtain the following Jacobian
matrix evaluated at the BGP:

MCJ ≡




@xt+1

@xt

@xt+1

@zt

@xt+1

@mt
@zt+1

@xt

@zt+1

@zt

@zt+1

@mt
@mt+1

@xt

@mt+1

@zt

@mt+1

@mt




=




�(� − 1)
�

0
�x�

�(A+ 1 − �)

− (1 + A− �)z
(1 + n)x2

1 + A− �
(1 + n)x

z
(1 + n)x

0 0 x�−1



:

The eigenvalues of this matrix are: &1=x�−1, &2=(1+A−�)=(1+n)x and &3=�(�−1)=�.
Note that &1 ∈ (0; 1) because x¿ 1. Using the resource constraint (7), we see that
&2 = 1 + 1=(1 + n)x¿ 1. Finally, &3 ∈ (0; 1) because �¿ 1. Therefore, the equilibrium
path exhibits saddle path stability as the CJ model has two state variables, zt and
mt .

Proof of Proposition 7. Using Proposition 6, we obtain the following equation charac-
terizing the equilibrium saddle path around the BGP for the CJ model:

qt = E1&t1 + E3&t3 + q;

where now qt = (xt ; mt ; zt), &1 and &3 are the stable eigenvalues, and E1 = (E1
x ; E

1
m; E

1
z )

and E3 = (E3
x ; E

3
m; E

3
z ) are the eigenvectors associated with the eigenvalues &1 and &3,

respectively. We proceed to ?nd some properties of the eigenvector E1 and E3 by
using the matrix relationship (MCJ − &nI)En = 0, for n= 1; 3. Since these systems are
homogeneous, their solutions can be expressed as (E1

x ; E
1
z )=E

1
m(e

1
x ; e

1
z ) and (E3

x ; E
3
m)=

E3
z (e

3
x ; e

3
m), where E

1
m and E3

z are arbitrary constants. Moreover, since &3 �= @mt+1=@mt ,
we get that e3m = 0,

e1x = −
@xt+1
@mt

@xt+1
@xt

− &1
;
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e1z =

@zt+1
@xt

@xt+1
@mt

− @zt+1
@mt

(
@xt+1
@xt

− &1
)

(
@zt+1
@zt

− &1
) (

@xt+1
@xt

− &1
)

and

e3x = −
@zt+1
@zt

− &3
@zt+1
@xt

:

We must now establish the value of the arbitrary constants E1
m and E3

z . First, E
3
m = 0

implies that mt = E1
m&

t
1 + m, so that E1

m = m0 − m, Moreover, by construction,

zt = E1
z &

t
1 + E3

z &
t
3 + z = E1

me
1
z &

t
1 + E3

z &
t
3 + z:

This implies that

E3
z = (z0 − z) − (m0 − m)e1z :

Substituting the values of E1
m and E3

z we have obtained above into the equation char-
acterizing the evolution of xt around the BGP, we get

xt = (m0 − m)e1x&
t
1 + [(z0 − z) − (m0 − m)e1z ]e

3
x&

t
3 + x: (A.23)

As in the proof of Proposition 5, we consider the parameter con?guration (A.22) with
the same initial conditions for the state variables. Then, we obtain that the critical value
of t that makes the derivative of the RHS of (A.23) equal to zero is tx = 5:6603 and,
thus, xt turns out to be non-monotonic.
Note that, if B = 0 then mt = A. In this case, m0 = m and the previous equation

becomes

xt = (z0 − z)e3x&
t
3 + x:

In order to establish the relation between the variable xt and z0, we derive the sign of
e3x in this case. First, note that @zt+1=@zt ¿ 1¿&3. Moreover,

@zt+1

@xt
= − (1 + A− �)z

(1 + n)x2
¡ 0:

It then follows that e3x ¿ 0. Therefore, xt increases (decreases) with time if
z0¡z (z0¿z).
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