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IMPERFECT COMPETITION IN A MULTI-SECURITY MARKET WITH 
RISK NEUTRALITY 

Bv JoRDI CABALLÉ AND MuRUGAPPA KRISHNAN 1 

l. INTRODUCTION 

THE CENTRAL PURPOSE OF THIS PAPER is to develop a model of insider trading (i.e., 
trading based on private information) in the context of an imperfectly competitive 
multi-security market with risk-neutral agents. lmperfect competition allows us to con
sider strategic behavior, and a multi-security market lets us study the effect of a 
correlated environment on equilibrium. 

We employ the informational assumption that market makers can observe all arder 
flows, and so portfolio diversification arises in this model for strategic reasons. Given 
correlated fundamentals, market makers can potentially learn about every security from 
each arder flow. This causes even a risk neutral trader who does not face short-selling 
restrictions to refrain from determining the demand for each security independently. 
This contrasts with traditional multi-asset models, which focus on the incentive to reduce 
portfolio variance, or the effect of short-selling restrictions or budget constraints. 

Under imperfect competition, correlation has two effects. One, ceteris paribus, it 
allows the uninformed to learn from additional variables since each arder flow could 
potentially have information about all payoffs. On the other hand, it creates an incentive 
for informed traders to restrict what others can learn from public information. Thus, our 
analysis can be viewed as an application to the multi-security, heterogeneous-information 
model in Admati (1985) of the imperfectly competitive equilibrium concept which Kyle 
(1985) first applied to the single-security, homogeneous-information model of Grossman 
and Stiglitz (1980). 

Our principal results include an explicit characterization of a linear equilibrium as a 
function of three general covariance matrices associated with payoffs, noise trading, and 
errors in private signals. Under general covariance structures, we show that there always 
exists an equilibrium in which the relationship between the vector of prices and the 
vector of arder flows is governed by a symmetric positive definite matrix. 

The plan of the paper is as follows. In Section 2, we introduce our model. We derive 
the equilibrium in Section 3, and Section 4 comments on the properties of the equilib
rium. The proofs of the results are in the Appendix. 

2. THEMODEL 

We develop a K-trader, N-asset generalization of the single-trader, single-security 
model in Kyle (1985). lt can be regarded as a model of a multi-good auction: the price is 
determined in the last stage of the game, after traders have made their quantity choices. 
This means that the informed traders select a quantity based on not an actual but an 

1 We have benefited from comments and suggestions made by participants at workshops at the 
Summer Meetings of the Econometric Society, NBER, Toulouse, Illinois at Urbana-Champaign, 
and Stanford; and are specially grateful to Beth Allen, J. E. Martinez-Legaz, Bruno Biais, James 
Foster, Asani Sarkar, Carolina Manzano, Yukiko Hirao, Matthew Jackson, Richard Kihlstrom, Pete 
Kyle, Bill Novshek, K. Rao Kadiyala, Jean-Luc Vila, Xavier Vives, the referees, and the co-editor of 
this journal, and M. A De Frutos who provided able research assistance. We are also grateful for 
financia) support to the first author from the School of Arts and Sciences, University of Pennsylva
nia, and Spanish Ministry of Education through DGICYT Grants PB89-0075 and PB92-0120-C02-01, 
and to the second author from Purdue Research Foundation. 
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expected price, which captures the essence of a setting with market orders. Of course, in 
equilibrium the traders correctly anticipate the pricing rule, though not the actual price. 

Our parametric assumptions are guided in part by Admati (1985) who studies a 
multi-asset market under perfect competition with a rich correlation structure. 

We make the following assumptions: 

Al: There are N securities in the market, which will be indexed by n, n = 1, ... , N, 
yielding a multivariate payoff vector, [5 =([51, [52, ... , uN), which is multivariate normally 
(MN) distributed with mean vector u, anda nonsingular covariance matrix tv. 

A2: There are noise traders who genera te a vector of random liquidity demands z which is 
MN (z, tz). The covariance matrix tz is nonsingular. This is important in providing 
camouflage for informed trading. 

A3: There are K informed traders indexed by k. Each insider k observes the realization of 
a vector of signals sk.2 The infgrmational advantage of insider k with respect to outsiders is 
defined by the random vector gk = E(visk)- u, which_is assumed to be MN(Q, tg), where Q 
denotes the zero vector and tg is nonsingular, and gk is in!Jependef]t of the noise trade z, 
for all k. Moreover, we_as~ume that the random vectors gk and gj have a joint normal 
distribution, and Cov(gk, g) =te for every pair of traders with k* j, where te is also 
assumed to be symmetric positive definite. 3 The demand of insider k will be deno!ed by a 
random vector ik taking values in IR N, which is a function of the random vector gk. 

REMARK 2.2: Admati (1985) assumes that each informed trader receives a signa! 
about the payoff of each security which takes the form sk =u+ ik, with ik- MN(Q, t,) 
for all k, and the random vectors ik(k = 1, ... , K) are mutually independent. The 
random vectors u, z, and ik are also assumed to be mutually independent, for all k. In 
this case, the following equalities hold: 

{k =tvCtv + t,) -l(Sk- u), 

tg=tv(tv+t,)- 1tv, 

te= tu( tu+ t,) -l tv(tv + t,) -l tv, 

and, therefore, 

REMARK 2.3: We may also add a common noise term to Admati's structure. In this 
case, if sk =u+ u+ ik(k = 1, ... , K), with u independent of u and ik, for all k, and 

2 Bhasin (1992) considers a similar N-asset, N-agent model in which each agent obtains informa
tion about one security, and with symmetry across securities, and sorne other restrictions. 

31f the vector of signals sk is a random vector táking viliues in IRM, which is assumed to be 
MN(.i', ts) with Cov (u, sk) = ¡vs E IR NXM for all k, and Cov (S k, sj) =¡o for all pair of traders with 
j *k, it follows that gk = !vs¡s-I(Sk- .i'), !g = !vs¡s-l¡~s• and !e= !vs¡s-J¡o¡s-J¡~s• where the 
superscript T denotes the transpose. 
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u- MN(Q, .!), the following equalities hold: 

tk =.!,.(.!"+tu+ .!e) - 1( S k- u), 

.!¡;=.!,.(.!,.+.!u+ .!e) - 1 .!,., 

¡e=.!,.( .!v +.!u+ .!e) - 1( .!,. +.!u)( .!v +.!u.! e) - 1 .!,. ' 

and, therefore, for all j -:f. k, 
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REMARK 2.4: !f t_he in~iders' information is common (S k= s, for all k), it follows that 
.!e=.!¡;, and E(gj¡gk) = gk. 

REMARK 2.5: lf insiders are perfectly informed (S k= u), it follows that tk =V- ü, 
.!¡;=.!e=.!,., and, obviously, E({jl{k)=v-ü. 

A4: The price vector pis determined by the following rule: 

(1) fi =p(w) =E(vlw), almost surely, 

where w = "L[= 1ik +i is the vector of arder flows. Thus, the pricing rule is such that, 
conditional on any set of public signals (arder flows), market makers can expect to make 
zero profits in each market. 

Typically, that zero-expected profit condition used in the literature (see Kyle (1985) 
and Admati and Pfieiderer (1988)) has been justified by invoking Bertrand-type competi
tion among risk-neutral market makers. It is important to realize that for this story to be 
exactly true a rather restrictive game among market makers must be specified. For 
instance, each market maker must be able to observe the aggregate order fiow, not just 
the portion of the aggregate that is directed towards him, as would be the case in 
telephone-based exchanges such as the London Stock Exchange. As Dennert (1993) 
shows, in such exchanges market makers may obtain positive expected profits in equilib
rium. 

Among well-known examples of financia! markets, this description would apply closely 
only to the call auction that characterizes the opening trade in sorne exchanges such as 
the NYSE and Tokyo Stock Exchange. While most exchanges have a variety of detailed 
trading protocols (see, e.g., the Floor Officials' Manual of the NYSE) which are intended 
to ensure that all registered fioor officials behave "competitively," whether a zero 
expected profit condition serves as an adequate reduced-form description is quite 
unclear. It is possible to show, however, that the zero-profit condition is consistent with a 
Walrasian market-clearing framework, as in Vives (1992), in which there is a risk neutral 
competitive market making sector .submitting limit orders (demand schedules) while 
informed and liquidity traders submit market orders (quantities). In this setup, the 
demand of the market making sector is bounded only if prices equate the expected 
payoffs conditional on all public information. 

3. EQUILIBRIUM 

Profits of the informed trader k are given by ir k = (u - p)Ti k, where the vector of 
prices p depends on the pricing rule, p = p(w), with w = "L[= 1ik + i. Since the st~ate
gies of informed traders are functions from the realizations of the random variables g k to 
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quantities traded, ik =xk(gk), k= 1, ... , K, we may write 

(2) irk=(ú-jí(x1(t1)+ ... +xk(tk)+ ... +xK(tK)+z)fxk(tk)· 

An equilibrium is a vector of K+ 1 functions (x¡(- ), ... , x K(· ),p( · )) such that the 
following conditions hold: 

(a) Profit maximization: 

(3) E[(u-jí(x1(t1)+ ... +xk(tk)+ ... +xK(tK)+z)fxk(tk)] 

;;;.E[(u-fi(x1([1)+ ... +xk(tk)+ ... +xK(tK)+z)fxk(tk)], 

for any alternative trading strategy xk( · ), and for k = 1, ... , K. 
(b) Semi-strong market efficiency: The pricing rule p( ·) satisfies 

( 4) p(w) =E(vlw), almost surely. 

We now provide an explicit characterization of a linear equilibrium. 

PROPOSITION 3.1: There always exists an equilibrium defined as follows: 
The price function is 

!K 
p(w) =u+ z-A(w -z), where 

(S) A =t;112M112J;;112, 

where M 112 and tY2 are the unique symmetric positiue definite square roots of M= 
tY2Gt~l2 and tz respective/y, and Gis the symmetric positiue definÚe matri.x defined as 

(6) G={[t-1+ (K-1)¡-1¡ ¡-1]-1 
¡; 2 ¡; e ¡; 

- [-2_¡-1 + 2!-1 + (K- 1) ¡-1¡ ¡-1] -1}. 
K-1 e ¡; 2 ¡; e ¡; 

The demand strategy for each insider is xk(gk) = B[k, where 

(7) B = -A- 1 1 + ¡ ¡-1 1 [ (K 1) ] - 1 

{K 2 e ¡; 

Moreouer, this is the unique equilibrium for which A is symmetric. 

REMARK 3.1: The unique symmetric positive definite square root of the symmetric 
positive definite matrix M is given by M 112 = EA112ET, where A112 is a diagonal matrix 
with the positive square roots of the (positive) eigenvalues of M along the diagonal, and 
the corresponding orthogonal eigenvectors are the rows of the matrix E (see Bellman 
(1970, pp. 93-94)). 

REMARK 3.2: It is straightforward to prove (e.g. by adapting the backward-reaction 
mapping technique proposed in Novshek (1984) to our setting with private information) 
that, given a linear pricing rule, the equilibrium of the game among insiders is unique, 
and it involves the K traders adopting symmetric linear strategies. 
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REMARK 3.3: With a common information structure (see Remark 2.4), the equilibrium 
matrices satisfy 

4 
G = 2 Ig and 

(K+ 1) 

2 
B = A- 1 

(K+ 1)/K 

lf private information is perfect (see Remark 2.5), Ig simplifies to Iv. Finally, when 
there is a single insider (K = 1), the equilibrium matrices satisfy G = I < and B =A - \ 
and we have proved elsewhere (Caballé and Krishnan (1990)) that there is a unique 
linear equilibrium in this case, so that symmetry of A obtains as a derived result. 

In the general case with many insiders, the existence of an equilibrium in which A is 
not symmetric remains an open question. However, even with many insiders, the next 
proposition shows that we can still assert uniqueness of the linear equilibrium subject to 
a restriction on Iz. 

PROPOSITION 3.2: Assume Iz = a}I, i.e., the noise trading has identical variance and is 
uncorrelated across markets; then the equilibrium of Proposition 3.1. is the unique linear 
equilibrium. In this case, A= (l¡az)G 112 . 

4. GENERAL PROPERTIES OF EQUILIBRIUM 

Note that in our framework investors are aware of the impact of their trades on prices, 
and so react cautiously to their private information. Hence, prices are not fully revealing 
even with risk neutrality (as in Kyle (1985)). In contrast, in a Gaussian setting with risk 
aversion, Hellwig (1980) and Admati (1985) consider the problem of how market prices 
aggregate information across traders in a large competitive market. Given our risk-neu
tral framework, to compare their results with ours, we must consider their results in the 
limit as the risk aversion parameter vanishes. It is easily seen from their pricing formulae 
that prices tend to fully reveal all private information as the risk aversion parameter 
tends to zero when the market is perfectly competitive. 

The following corollary also shows that the informational content of the equilibrium 
price vector is independent of the variance of noise trading, and this generalizes the Kyle 
(1985) result that more noise leads to more aggressive trading, so that the informative
ness of order flows is independent of the leve) of noise. 

CoROLLARY 4.1: The informativeness of prices, IP, measured by the reduction in the 
prior covariance matrix of the return vector, after conditioning on the vector of prices, 
I,- Var(úlp), is given by the positive definite matrix K[2I,- 1 +(K -1)I,- 1Ici,- 1]- 1, 

which is independent of I z. 

REMARK 3.4: With common information (see Remark 2.4), 

lf we added risk aversion to our setting, there would be yet another reason for traders 
to be cautious, and we would expect the relationship between prices and private 
information to be more complex. In this respect we should point out that the indepen-
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dence of the informativeness of prices from the noise matrix only holds under risk 
neutrality, as was noted by Kyle (1985) and made evident by Subrahmanyam (1991). 

We also record the following result about profits: 

CoROLLARY 4.2: The informed trader's ex-ante expected profits are given by 

(1/2/K) trace (A!z)· 

It is clear from the expected profits formula and (5) that, if !z =Miz, where M is a 
positive scalar and i,z is a symmetric positive definite matrix, then the insiders' expected 
profits are increasing in the noise level M· Note that an increase in the variance of noise 
trading enhances the camouflage opportunities for the insiders. 

It shuuld also be noticed that the equilibrium of Proposition 3.1 exhibits a matrix 
A1 =(/K j2)A which is symmetric and positive definite. This implies that the price of 
each asset is increasing in its own orders, and that each asset is comparatively more 
sensitive to its own orders than to the orders for any other asset. 

While positive definiteness follows simply from nonmanipulability (see the second
order condition of the informed traders' portfolio selection problem), the generic 
existence of an equilibrium in which the matrix A is symmetric is more puzzling. This 
tells us that regardless of the extent of asymmetry across assets, the nth price responds to 
the qth order flow exactly as the qth price responds to the nth order flow, for any n and 
q. While this ultimately reflects the balance between various complex interactive effects, 
it will help build intuition to consider a heuristic explanation of how strategic behavior 
helps achieve this balance. 

Assume that asset n is characterized by a very high level of liquidity noise; this makes 
the trader ·more aggressive in trading asset n, relative to sorne other asset q which has 
less noise, since there is more camouflage. This makes the informativeness of order fiows 
the same for both assets: order flow n is as useful in predicting payoff q as order flow q 
in predicting payoff n. So priors are modified in the same way for every asset. The matrix 
of response coefficients are like a ratio of prior-to-posterior precisions, since, by virtue of 
the market efficiency requirement, equilibrium prices equal expected payoffs, i.e., prices 
are like regression functions. Since the prior covariance matrix is symmetric, given the 
same degree of improvement in precision from observing order flows, this symmetry is 
preserved in the pricing rule. This is an argument to show that A1 is symmetric even 
when liquidity noise varíes across assets. A similar argument can be constructed to 
account for differences in payoff variances and error variances. 

The symmetry (and positive definiteness) property of the matrix governing the equilib
rium relationship between order flows and prices is a testable proposition, given the 
recent availability of transaction data, which permits us to construct measures of order 
flows. Evidence presented in Caballé, Krishnan, and Patel (1991), based on an empirical 
specification whose systematic component is specified as in our theory, and with error 
structure allowing for general heteroskedasticity and serial correlation, suggests that 
symmetric positive definiteness .cannot be rejected, though diagonal structure given 
positive definiteness can be rejected. 

Departament d'Economia i d'Historia Economica, Universitat Autonoma de Barcelona, 
08193 Be/laterra, Barcelona, Spain 

and 
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U.S.A, and Carnegie Me/Ion University, Pittsburgh, PA 15213, U.S.A. 
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APPENDIX 

Before proving the results, we state the following two definitions: 

DEFINITION A.l: The N X N matrix D is positive definite if, for any vector x E IRN different from 
Q, xTDx >O. 

DEFINITION A.2: The N X N matrix D is symmetric positive definite if both symmetric and 
positive definite. 

PRooF oF PRoPOSITION 3.1: Let us check that the pricing rule and the demand strategies given in 
the statement of the theorem constitute an equilibrium. First, note that the equilibrium takes the 
following linear functional form: 

p(w)=A 0 +A 1w, and x(t)=B0 +B¡[, for k=l, ... ,K. 

The quantities ik demanded by each agent k (k= 1, ... , K) must maximize 

The first order condition is 

(A.l) E( vi[k) -Ao -A¡z- (K- l)A¡Bo -A¡B¡[ L E(tltk)] = 2A¡ik, 
jo# k 

where we have used the symmetry of A 1• The second-order condition is satisfied since A1 is positive 
definite. Recall that, for all j*-k, E(~i[k)=!ct¡ 1[k, and, by_definition, Ji(vi[k)=[k+V. 
Plugging these expectations in (Al), using the conjecture that xk(gk) = B0 + B1gk, and equating 
coefficients, we obtain 

and 

(A.3) 

The vector of order flows w = KB0 + B1 L.f~ ¡{k+ i is multivariate normally (MN) distributed as 
w- MN(KB0 + z, KB1!gB[ + K(K -l)B1!cB[ + !.), and Cov (v, w) = K!gB[. Therefore, 

E(vlw) =V+ K!gB[( KB 1!gB[ + K(K- l)B1!cBÍ + tz]- 1 · ( w- KB0 - z). 

Since p(w) =E(vlw), and making the conjecture that p(w) =A 0 +A 1w, we can equate coefficients 
to obtain 

(A.4) A 0 =V -KA 1B0 -A 1z, 

and, using the invertibility of B1, we also get 

(A.S) [ 1 ¡-1 t BT - ¡-1 
A = B +(K -l)B t ¡-i + z( ¡) g 1 1 1 e { K 

The solutions A 0 , A1, B0 , and B1 given in the statement of Theorem 3.1 must solve the system 
formed by the equations (A2), (A3), (A.4), and (AS). Solving for A1 in (A3), we obtain 

(A.6) 



702 J. CABALLÉ ANO M. KRISHNAN 

Combining (A.5) and (A.6), we get 

t (BT)-1¡-1 
B - z 1 g 
¡- k , (A.7) 

and, plugging (A.7) into (A.5), we obtain 

(A.8) [ 1 ¡-1 2t BT - ¡-J 
A= z( 1 ) g +(K-l)Btt-1 

1 K 1 e g 

Using the invertibility of A 1, (A.6) implies that 

(A.9) 

Replacing (B1) and (B[)- 1 in (A.8), we obtain 

2t A [zt-1 +(K- l)t-1! ¡-1) 
A¡-1= z ¡ g K g e g +(K-l)A!l[ztg¡e-l+(K-1)/r¡, 

which implies that 

which, after sorne algebra, simplifies to 

(A. lO) 
K -1 
-¡A1 G=tzA¡, 

where G is defined by expression (6) in the text. G is symmetric positive definite by virtue of the 
Rayleigh's principie, and A 1 must be a symmetric positive definite solution to (A.lO). To salve for 
A 1, write (A.lO) as 

(A.ll) 
K 
-tii2Gt1!2 =tii2A ¡112¡112A ¡112 
4z z zlzzlz' 

where t!l2 is the unique symmetric positive definite square root of tz. Since the LHS of (A.ll) is 
symmetric positive definite, t!I2A 1t!l2 is its unique symmetric positive definite square root. 
Therefore, 

where M= t!i2Gt!l2. Obviously, this is the unique symmetric matrix which salves (A.ll). Finally, 
(A.9) gives us B1 = B, where B is given in the statement of the proposition. From (A.2) and (A.4), 
we immediately obtain A 0 =v-A1z and B0 =Q. Verifying that both A 1 and B1 are invertible 
completes the proof. Q.E.D. 

To prove Proposition 3.2. we first state the following lemma: 

LEMMA: If the N X N matrix D is positive definite and D2 is symmetric, then D is symmetric positive 
definite. 

PROOF: Let us define S= i<D + DT) and T = i<D- DT). The matrix S is symmetric positive 
definite, whereas T is skew-symmetric, i.e., TT = -T. Furthermore, D = S + T, and D2 =(S + T)2 
= S2 + T 2 + ST + TS. The matrix S2 is obviously symmetric and, since (T 2)T = (TT)2 = (- T)2 = T 2, 
the matrix T 2 is also symmetric. Given that D2 is symmetric, ST + TS must be also symmetric. 
Therefore, (ST + TS)T = TTsT + sTTT = -(TS + ST). Since ST + TS is symmetric and equal to its 
negative, we conclude that ST + TS = O, where O denotes the null matrix. 
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Let z1, ... ,zN be a basis of eigenvectors of S, and A1, ••• ,An be the eigenvalues of S. Then 
Szn = Anzn, n = 1, ... , N. Since ST + TS =O, STzn + TSzn = STzn + AnTzn =(S+ Anl)Tzn = Q. The 
matrix S+ AJ is symmetric positive definite and, therefore, Jzn = Q, n = 1, ... , N, that is, the rows 
of T are orthogonal to the basis of IR N. This implies that T =O and, therefore, D =S. The symmetry 
and positive definiteness of D is thus established. Q.E.D. 

PROOF OF PROPOSITION 3.2: First, note that the matrix A 1 must be positive definite so as to 
satisfy the second-order condition of the investors' stochastic maximization problem. 

If A 1 is not restricted to be symmetric, (A3) becomes 

(A¡ +Af)B¡ =/-(K- 1)A¡B¡4c4¡ 1, 

which can be rewritten as 

(A.12) 

On the other hand, (AS) can be rewritten as 

(A.13) 
A¡ (BT)-l_.r-1 

1 z 1 < =1-AB -(K-1)AB44- 1 
K 1 1 1 1 e < · 

Combining (A12) and (A13) we get 

T A¡4z( B[) -!4¡ 1 

A 1B1 = K , 

which is equivalent to 

(A.14) 

Since 4z = a}I and the LHS of (A.l4) is a symmetric matrix, it follows that (A[)- 1A 1 is a symmetric 
matrix. That is, (A[)-1.4 1 =AfA¡I, which implies in turn that (A 1) 2 =((A 1) 2 )T. This proves the 
symmetry of (A 1) 2. Finally, since A 1 is positive definite, we can use the previous lemma so asto 
conclude that A 1 must be symmetric positive definite. Hence, the linear equilibrium is unique (see 
the proof of Proposition 3.1. and Remark 3.2.). It is straightforward to see that, in this case, 
A= {lfuz)G 112 . Q.E.D. 

PRooF oF CoROLLARY 4.1: We just have to compute Var (ü lw), which is equal to Var (ü I.P). We 
use the properties of the joint distribution of (ü, w), given in the previous proof, to compute that 
conditional variance, and use the fact that in equilibrium 4z = KB14,Bf (see (A7)) to obtain 

Var(ülw) =4u -K[zt¡ 1 +(K -1)4¡14c4¡ 1j-1. 

The result then follows. Q.E.D. 

PROOF OF CoROLLARY 4.2: Obvious, since in our zero-sum game the expected profits for the 
insiders are equal to the total expected cost of trading for the noise traders, which is equal to 
E((z- z)1A 1 z). The expectation is easily computed using Graybill (1983, p. 341). After dividing by 
the number of insiders K, and, since A 1 =({K j2)A, the result follows. Q.E.D. 
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