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Abstract

This paper analyzes how the statistical properties of a risk affect the attitude of individuals
towards accepting another independent risk. We conduct the analysis for the class of increasing
utility functions having all their derivatives with alternating sign. Such utilities can be expressed as
mixtures of negative exponential functions and they are fully described by distribution functions
over the set of exponents. Our analysis exploits the relationship between the distribution functions
characterizing utilities and the distribution functions characterizing risks. In particular, we find
sufficient conditions for an additional background risk to either reduce or increase the index of
absolute risk aversion.  1997 Elsevier Science B.V.
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1. Introduction

In this paper we analyze how the introduction of an additional source of uncertainty
affects the risk bearing attitude of individuals. We restrict our analysis to state-
independent preferences over the space of random variables that are representable by
increasing Bernouilli functions having all derivatives of alternating sign. Such utility

´functions are called mixed and they have been exhaustively characterized in Caballe and
Pomansky (1996). The derivative of a mixed utility is a Laplace transform and, thus, it
is fully characterized by a distribution function over the set of negative exponential
functions. Another important property of this class of utilities is that it satisfies natural
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restrictions imposed on preferences defined on the space of random variables. In
particular, mixed utilities display decreasing absolute risk aversion and decreasing
prudence. The latter property means that, under additive time separability, the strength of
precautionary saving when future income is uncertain is decreasing in wealth (see
Kimball, 1990). On the other hand, the class of mixed utilities is very flexible and
includes as particular cases all the DARA utility functions commonly found in the
economics of uncertainty literature, like the HARA, the CARA, the logarithmic and the
isoelastic utilities.

Our analysis exploits the relationship between the true distribution function of the risk
being added to the initial background wealth and the artificial distribution function over
exponents defining a mixed utility. This technique allows us to find sufficient conditions
under which the introduction of a risk either increases or decreases the risk aversion
attitude of individuals and, thus, their willingness to accept another independent risk.
Moreover, by using such an approach, it is straightforward to construct examples of
pairs of risk additions and utilities such that these risk additions are desirable for all
levels of wealth while they uniformly increase the risk aversion of individuals. In other
words, our analysis allows the construction of simple robust examples of individuals
who become happier after the introduction of the additional risk while they become
simultaneously more risk averse. Note that these examples are obtained without paying
the cost of assuming weird preferences which violate reasonable restrictions.

The effects of changes in background wealth on risk aversion is a relevant issue since
it may help to explain the equity premium puzzle posed by Mehra, Prescott (1985).
According to these authors, the empirical difference between average returns to stocks
and average returns to Treasury bills implies that investors are implausibly averse to
risk. However, it can be argued that the interaction among different sources of
uncertainty may dramatically increase the risk aversion of individuals. If some of the
risks are disregarded, then the theoretical equilibrium risk premium could be under-
estimated. This may occur for instance in asset pricing models that disregard the risk
associated with labor income (see Weil, 1992 and Constantinides, Duffie, 1995). Thus,
our analysis finds conditions for additional sources of uncertainty to increase (or
decrease) the equilibrium risk premium.

Our work is obviously related to the work of Kihlstrom et al. (1981) who study
whether the conditions for more risk aversion are preserved under random background
wealth. Another related paper is that of Eeckhoudt et al. (1996). These authors find
necessary and sufficient conditions for a deterioration in background wealth to induce
more risk aversion. Their analysis is restricted to shifts in the distribution of background
wealth which can be ranked according to the ordering induced by a stochastic
dominance relationship. Our analysis considers instead all possible additions of risk and
identifies under which assumptions on the mixed utility such additions of risk either
reduce or increase the value of the index of absolute risk aversion.

The paper is organized as follows. Section 2 introduces the class of mixed utility
functions. Section 3 characterizes the possible changes in background wealth. The
effects of such changes on the risk aversion attitude is analyzed in Section 4. The
relationship between desirability of a risk and its effects on risk aversion is discussed in
Section 5. Section 6 deals with the case in which the initial wealth is already random.
Section 7 concludes the paper.
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2. Assumptions on utility functions

Assume that agents have state-independent preferences defined over the space of
random variables taking values on the interval [a, `) with a . 2 `, and that such
preferences are represented by a Bernouilli utility u. Thus, the random variable (or risk)
˜ ˜ ˜ ˜x is preferred to the random variable x if and only if E(u(x )) $ E(u(x )), where u is a1 2 1 2

real-valued Borel measurable function. Notice that, because of the state-independence
assumption, the preference over the space of random variables induces a preference
relationship over the space of distributions of random variables.

The family of Bernouilli utilities we will consider in this paper is the class of
increasing utility functions having all derivatives of alternating sign. Such functions
were initially considered by Pratt (1964) and, more recently, they were analyzed by

´Pratt, Zeckhauser (1987) and Caballe and Pomansky (1996). To introduce this class of
utilities we need the following definitions and preliminary results concerning completely
monotone functions (see section XIII.4 of Feller, 1971):

Definition 1. A real-valued function f(w) defined on the interval (a, `) is completely
monotone if it is nonnegative and has negative odd derivatives and positive even
derivatives, that is,

n n(21) f (w) $ 0, for all w [ (a, `) and n 5 0, 1, 2, . . . ,

nwhere f (w) denotes the n-th order derivative of f(w).

Definition 2. A distribution function F(s) defined on [c, `) is a real-valued, non-
decreasing and right continuous map from [c, `) into [0, `).

Note that we do not exclude neither the possibility of F(c).0 nor that of
lim F(s)5`. We say that a distribution function is non-trivial if F(s).0 for somes→`

s[[c, `). A distribution function F is constant if F(s)5F(s9) for all s, s9[[c, `).
Obviously, if a distribution function is not constant then it is non-trivial.

There is a one-to-one correspondence between a distribution function on [c, `) and a
Lebesgue–Stieltjes measure (or distribution) on such an interval (see section 1.4 of Ash,

11972). The distribution m associated with the distribution function F on [c, `) satisfiesF

m (a, b]5F(b)2F(a), m hcj5F(c), and m hxj50 if and only if x is a point of continuityF F F

of F on the open interval (c, `).

Definition 3. Consider the interval [c, `] of extended real numbers. The essential
¯infimum s and the essential supremum s of the distribution m associated with theF]

non-trivial distribution function F(s) on [c, `) are defined as follows:

s 5 inf hs [ [c, `)uF(s) . 0j .
] [c,`]

1A Lebesgue–Stieltjes measure (or distribution) on [c, `) is a measure on the Borel sets of [c, `) such that it
assigns finite values to bounded intervals.
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c if F is constant,
s̄ 5 sup hs [ [c, `)uF(s 1 z) . F(s) for some z . 0j if F is not constant .5

[c,`]

Let F be a non-trivial distribution. Since the support of the distribution m denotedF

supp(m ) is the complement in [c, `) of the largest open Borel subset of [c, `) havingF

m -measure zero, it follows thatF

¯s 5 inf hsupp(m )j and s 5suphsupp(m )j .F F] [c,`] [c,`]

On the other hand, if F is trivial, i.e., F(s)50 for all s[[c, `), then supp(m )55.F

Definition 4. A real-valued function f(w) defined on the open interval (0, `) is a
Laplace transform of a distribution function F(s) on [c, `) if it can be written as the
following improper Stieltjes integral:

`
2sw

f(w) 5E e dF(s), for all w [ (0, `) .
c

The following classical theorem, whose proof can be found for instance in section
IV.12 of Widder (1941), provides an explicit representation of a completely monotone
function:

Theorem 1. (Bernstein’s Theorem). The function, f(w) defined on (0, `) is completely
monotone if and only if it is the Laplace transform of a distribution function F(s) on
[0, `).

The next definition introduces the class of utility functions which we are going to use
throughout this paper:

Definition 5. A real-valued utility function u(w) defined on the interval [a, `) is mixed if
it is continuous on [a, `) and has a completely monotone first-order derivative on (a, `).

Note that by virtue of Theorem 1 the first-order derivative of a mixed utility on [0, `)
is a Laplace transform which is fully characterized by its associated distribution function
F(s). Conversely, a distribution function F(s) is fully characterized by its associated
Laplace transform f(w). In fact, at every point of continuity of F, the following
inversion formula applies:

n(2a) n]]F(s) 5lim O f (w) .
a→` n!n#as

ˆMaking the change of variable x5w2a, we can define the function u(x);u(x1a).
ˆClearly u is mixed on [0, `) if and only if u is mixed on [a, `). Assuming that

`e 1/s dF(s) is finite for some c.0 (and thus for all c.0), we can integrate ac

ˆcompletely monotone function f(x) on (0, `) to obtain a mixed function u,
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x x `
2szˆ ˆ ˆu(x) 5E f(z) dz 1 u(0) 5E E e dF(s) dz 1 u(0)S D

0 0 0

sx` 1 2 e
]] ˆ5E dF(s) 1 u(0) ,s0

where the second equality comes from Theorem 1 and the third from exchanging the
2order of integration and performing the inner Riemann integral. Therefore, taking into

account the change of variable, we obtain

s(w2a)` 1 2 e
]]]u(w) 5E dF(s) 1 u(a) .s0

Note also that the affine transformation of u,
2s(w2a)` 1 2 e

]]]]u(w) 5E dF(s) , (1)s0

represents the same state-independent preferences over the space of random variables
taking values on [a, `). Such a transformation amounts to the normalization of

ˆu(a)5u(0)50. Therefore, we can conclude that a utility function is mixed on [a, `) if
`and only if it has the representation given in (1) with e 1/s dF(s),` for some c.0.c

Equivalently, u(w) is mixed on [a, `) if and only if its first derivative can be written as

`
2s(w2a)u9(w) 5E e dF(s) , (2)

0

for some distribution function F(s) on [0, `). The set of mixed utilities is denoted by }.
We will also say that the utilities belonging to } display mixed risk aversion.

The importance of the class of mixed utilities relies on the fact that it includes the
Bernouilli functions most commonly used in finance and other areas of applied
economics involving uncertainty. For instance, if the distribution function F over
exponents is gamma, then u becomes a HARA utility with decreasing risk aversion (see
Feller, 1971, p. 430). The family of HARA utilities was considered by Cass, Stiglitz
(1970) in order to analyze conditions under which two-fund monetary separation holds.
Moreover, the set of HARA utilities is the maximal set which is closed under stochastic
dynamic programming. That is to say, a stochastic dynamic programming problem
exhibits a HARA value function if and only if the objective function is also HARA (see
Hakansson, 1970).

Furthermore, we obtain the negative exponential or CARA utility when F is
associated with a Dirac distribution, the power or isoelastic utility when F is also a
power function, and the logarithmic utility when F is exponential. Note that the Dirac,
the exponential and the power distributions are all limiting cases of the gamma
distribution, which agrees with the fact that the CARA, the isoelastic and the logarithmic
utilities are in turn all limiting cases of the HARA utility.

2 `The assumption that e 1/s dF(s) is finite for some c.0 is necessary and sufficient for the convergence ofc
` 2sxthe integral e (12e /s) dF(s).0
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Another important feature of the class } is that it has an explicit functional
representation that satisfies natural restrictions imposed on Bernouilli utilities. One of the
strongest non-parametric restrictions is the one of standard risk aversion (Kimball,
1993). A utility displays standard risk aversion when an undesirable risk can never be
made desirable by the presence of another independent risk which increases the expected
marginal utility. As shown in Kimball (1990), standardness means that the precautionary
saving motive is decreasing in wealth in a two-period context when second-period
endowment is uncertain and there is additive time separability on preferences. It can also
be shown that a utility u(w) defined on [a, `) is standard if and only if its index of
prudence 2u09(w) /u0(w) is nonincreasing over the interval (a, `). On the other hand, u

n11 nis mixed if and only if 2u (w) /u (w) is nonincreasing for all n51, 2, . . . , and, hence,
´mixed utilities are standard (see Proposition 3.2 in Caballe and Pomansky, 1996).

Since under decreasing risk aversion an undesirable risk increases the expected
marginal utility, standard utilities constitute a strict subset of proper utilities, which are
the ones for which an undesirable risk is never made desirable by the presence of
another independent, undesirable risk (see Pratt, Zeckhauser, 1987). Moreover, since
subfair risks (i.e., risks with nonpositive mean) are undesirable under risk aversion,
properness implies risk vulnerability. The latter property means that an undesirable risk
is never made desirable by the presence of another independent, subfair risk (see Gollier,
Pratt, 1996). Finally, risk vulnerability implies decreasing absolute risk aversion, since a
degenerate random variable taking only a nonpositive value is subfair under risk
aversion.

Summing up, mixed utilities have appealing properties and possess a representation
which has enough flexibility to handle several functional forms. These particular
functional forms are obtained by controlling the distribution function F(s) over

´exponents. In this line of research, Caballe and Pomansky (1996) analyze the
relationship between the indexes of risk aversion of u and the properties of its associated
distribution function F.

3. Changes in background wealth

Let us now consider changes in the nonrandom background wealth w of individuals.
˜Those changes take the form of adding some random variable ´ to w. The distribution

˜ ˜function of the random variable ´ is G (z) ; Prob(´ # z). Therefore, the distribution˜́

function of a random variable taking values on the interval [c, `) is a distribution
function defined on [c, `) such that lim G (z) 5 1 (see Definition 2). Moreover, the˜z→` ´

˜distribution function of a random variable ´ taking values on [c, `) defines a
Lebesgue–Stieltjes measure on [c, `) (see section 5.6 of Ash, 1972). Such a Lebesgue–

˜Stieltjes measure will be called the distribution of the random variable ´.
˜We will assume that the random variable w 1 ´ takes values on the domain of u, [a, `).

˜Let s . 2 ` be the essential infimum of the distribution of the random variable ´ (see˜́]
˜Definition 3), and define the function v(w) ; E(u(w 1 ´ )) for all w $ a 2s . We are˜́]

˜interested in finding conditions on both u and ´ such that, for all w . a 2s , the function˜́]
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v(w) displays more absolute risk aversion than the function u(w). That is, we want to
know when

˜2 E(u0(w 1 ´ )) 2 u0(w)
]]]]] ]]]$ , for all w . a 2s . (3)˜́]˜E(u9(w 1 ´ )) u9(w)

˜Expression (3) is equivalent to saying that the presence of the risk ´ makes the agents
˜more risk averse, and therefore their willingness to accept another independent risk x

will decrease. It should be pointed that the assumption of statistical independence is
˜ ˜crucial in this context since, under risk aversion, if ´ and x were negatively correlated,

˜the introduction of the risk ´ could in fact reduce the risk borne by the individual. Let
˜ ˜ ˜p(x, y ) be the risk premium required for the risk x when the (independent) background

˜ ˜ ˜ ˜wealth is y. On the other hand, let c(x, y ) be the certainty equivalent of risk x when the
˜(independent) background wealth is y. Therefore,

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜E(u(y 1 x )) 5 E(u(y 1 E(x ) 2 p(x, y ))) 5 E(u(y 1 c(x, y ))) .

˜Let s .2` be the essential infimum of the distribution of x. Then, according to Prattx̃]
˜ ˜ ˜(1964), condition (3) is equivalent to the condition p(x, w 1 ´ ) $ p(x, w) for all

˜ ˜ ˜w . a 2s 2s , which is in turn equivalent to the condition c(x, w 1 ´ ) # c(x, w) for all˜ ˜´ x] ]
w . a 2s 2s . It is also well known that the quantity invested in a risky asset having a˜ ˜´ x] ]

˜ ˜random rate of return independent of ´ will be lower when background wealth is w 1 ´

than when it is w if and only if (3) holds. Moreover, whenever (3) holds, the amount of
insurance that individuals purchase against a risk will increase when the independent

˜risk ´ is added to the initial wealth w.
From now on we will restrict our analysis to significative changes in background

˜wealth, i.e., we will assume that the probability of ´ taking values different from zero is
strictly positive. Let c (s) denote the Laplace transform of the distribution function G (z)˜ ˜´ ´

` 2sz˜of the significative random variable ´, that is, c (s) 5 e e dG (z). For the sake of˜ ˜´ s ´˜́]˜brevity, we will also call c (s) the Laplace transform of ´. The following lemma, whose˜́

proof is straightforward, gives the properties of a Laplace transform of a significative
random variable.

˜ ˜Lemma 1. Let ´ be a significative random variable, i.e., Prob(´50),1, then
(a) c (0)51.˜́

9 ˜(b) c (0)52E(´ ).˜́

99(c) c (s).0 for all s[(0, `).˜́

Attending exclusively to their statistical properties, we divide the set of significative
risks into the following three disjoint categories:

Definition 6. Consider the set of significative risks, then
˜ ˜(a) A risk ´ is subfair if E(´ )#0.
˜ ˜ ˜(b) A risk ´ is potentially undesirable if E(´ ).0 and Prob(´ ,0).0.
˜ ˜(c) A risk ´ is positive if Prob(´ ,0)50.



´212 J. Caballe, A. Pomansky / Mathematical Social Sciences 34 (1997) 205 –222

The next lemma provides further obvious properties of the Laplace transform of a
significative random variable depending on the category which it belongs to:

˜Lemma 2. Let ´ be a significative risk.
˜(a) If ´ is subfair then c (s).1 for all s[(0, `).˜́

˜(b) If ´ is potentially undesirable then there exists a real number s*[(0, `) such that
c (s*)51, c (s),1 for all s[(0, s*), and c (s).1 for all s[(s*, `).˜ ˜ ˜´ ´ ´

˜(c) If ´ is positive then c (s),1 for all s[(0, `).˜́

Proof. Parts (a) and (c) follow immediately from Lemma 1. Part (b) follows also from
˜Lemma 1 and the fact that Prob(´ ,0).0 implies that lim c (s)5`. Q.E.D.˜s→` ´

Note that s* can be interpreted as the value of the index of absolute risk aversion
which makes an individual having a negative exponential (or CARA) utility indifferent
between accepting or not a potentially undesirable risk, i.e.,

˜2s (w2a1´ ) 2s (w2a)* *E(2e ) 5 E(2e ) ,

˜2s (w2a1´ ) 2s (w2a)* *since E(2e )5c (s*)E(2e ) and c (s*)51.˜ ˜´ ´

Lemma 3. If the utility function u(w) is mixed on [a, `) then the function v(w) ;
˜E(u(w1´ )) is mixed on [a2s , `).˜́]

Proof. Observe that
`

˜2s(w2a1´ )˜v9(w) 5 E(u9(w 1 ´ )) 5 E E e dF(s)S D
0

` ` ` `
2s(w2a1z) 2s(w2a) 2sz

5E E e dF(s) dG (z) 5E e E e dG (z) dF(s)S D S D˜ ˜´ ´
s 0 0 s˜ ˜´ ´] ]

` `
2s(w2a1s ) 2s(z2s )˜ ˜´ ´] ]5E e E e dG (z) dF(s) , (4)S D˜́

0 s ˜́]

where the second equality comes from (2). Thus, making the change of variable
y5z2s , we get˜́]

` ` `
2s(z2s ) 2sy 2sy˜́]E e dG (z) 5E e dG ( y 1s ) 5E e dG ( y) 5 c (s) .˜ ˜ ˜ ˜ ˜´ ´ ´ ´2s ´2s˜ ˜´ ´] ] ]s 0 0˜́]

Therefore, (4) becomes

` `
2s(w2a1s ) 2s(w2a1s )˜ ˜´ ´] ]v9(w) 5E e c (s) dF(s) 5E e dH(s) , (5)˜́2s ˜́]0 0

where H is defined by the following Stieltjes integral:
s

H(s) 5E c (z) dF(z) .˜́2s ˜́]0
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The function H is a distribution function on [0, `) since c (s) is positive for all s$0.˜́2s ˜́]
Therefore, the utility function v is mixed on [a2s , `) as follows from (2) and (5).˜́]
Q.E.D.

A more elegant but less constructive proof of Lemma 3 can be obtained by noticing
˜that the distribution function G (z) of the random variable ´ can be approximated by a˜́

sequence of step distribution functions hG (z)j associated with the discrete random˜́ n

˜ ˜variables h´ j. Note that E(u9(w 1 ´ )) is just a weighted sum of completely monotonen n

functions with positive coefficients and, thus, it is completely monotone. Moreover,
˜ ˜ ˜lim E(u9(w 1 ´ )) 5 E(u9(w 1 ´ )), and E(u9(w 1 ´ )) is also completely monotone asn→` n

a consequence of Theorem 2 in section XIII.1 of Feller (1971).

4. Comparing risk aversion attitudes

Since we are interested in knowing whether v(w) displays more absolute risk aversion
than u(w) for all w in the relevant domain, we define the corresponding indexes of
absolute risk aversion,

˜2 v0(w) 2 E(u0(w 1 ´ )) 2 u0(w)
]]] ]]]]] ]]]A (w) 5 5 and A (w) 5 .v u˜v9(w) E(u9(w 1 ´ )) u9(w)

Let us consider the set of extended nonnegative real numbers [0, `], and define s asinf

˜the extended nonnegative real number at which the Laplace transform c (s) of risk ´˜́

˜reaches its unique infimum. It follows from Lemmas 1 and 2 that (a) if a risk ´ is
˜ ˜subfair, then s 50, (b) if ´ is potentially undesirable, then s [(0, s*), and (c) if ´ isinf inf

¯positive, then s 5`. On the other hand, let s and s be the essential supremum and theinf ]
essential infimum, respectively, of the distribution m on exponents associated with theF

distribution function F. Such a distribution function F characterizes in turn the mixed
utility u. Our next result establishes sufficient conditions, relating the utility u and the

˜ ˜change in background wealth ´, for which v(w);E(u(w1´ ))) displays less or more risk
aversion than u(w) for all background wealth w [ (a 2s ,`), where s . 2 ` is the˜ ˜´ ´] ]

˜essential infimum of the distribution of the random variable ´ having the distribution
function G (z).˜́

Proposition 1. Let u be a mixed utility defined on [a, `). Assume that A (w) is strictlyu

˜decreasing and that ´ is a significative risk. Then
¯(a) A (w),A (w), for all w.a2s whenever s $s.˜v u ´ inf]

(b) A (w).A (w), for all w.a2s whenever s #s.˜v u ´ inf] ]

In order to prove this proposition we need to state the following nice theorem whose
´ ¨proof can be found for instance in section V.1.6 of Polya and Szego (1976).

Theorem 2. (Laguerre’s Theorem). Let C denote the number of changes of sign of the
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function f(s) in the interval (0, `), and let Z denote the number of real zeros (counted
according to their multiplicity) of the integral

`
2sx

V(x) 5E f(s) e ds . (6)
0

Then Z#C.

It is straightforward to see that the same result of Laguerre’s theorem holds if we
replace the Riemann integral in (6) with the Stieltjes integral of f(s) with respect to a
monotonic function on [0, `). In particular, Laguerre’s theorem holds when instead of
(6) we have

`
2sx

V(x) 5E f(s) e dF(s) ,
0

where F(s) is a distribution function on [0, `) and C would be now the number of
¯ ¯changes of sign of f(s) in the open interval (s, s ) with s and s being the essential

] ]
infimum and the essential supremum, respectively, of the distribution m associated withF

¯the distribution function F. The open interval (s, s ) constitutes in fact the interior of the
]

convex hull of supp(m ).F

Proof of Proposition 1. (a) Let us first define the differentiable function C(w)5v9(w) /
u9(w). Then, A (w).A (w) for all w[(a2s , `) if and only if C 9(w).0 for all˜u v ´]
w[(a2s , `). After normalizing u(a2s 50 and using (5), we have the following˜ ˜´ ´] ]
explicit functional form for C(w):

¯` ` s
2s(w2a1s 1z) 2s(w2a1s )˜ ˜´ ´] ]E E e dF(s) dG (z) E c (s) e dF(s)˜ ˜´ ´

s 0 s˜́] ]]]]]]]]]]] ]]]]]]]C(w) 5 5 . (7)` s̄
2s(w2a1s ) 2s(w2a1s )˜́ ˜́] ]E e dF(s) E e dF(s)

0 s
]

From Lemmas 1 and 2 we know that c (s) is strictly decreasing on [0, s ]. Since, by˜́ inf

¯ ¯ ¯assumption, (s, s )#(0, s ), it follows that c (s ) , c (s) , c (s) for all s[(s, s ), which˜ ˜ ˜inf ´ ´ ´] ] ]
in turn implies that

¯c (s ) ,C(w) , c (s), for all w [ (a 2s , `) . (8)˜ ˜ ˜´ ´ ´] ]

The inequalities in (8) are strict because the assumption that A (x) is strictly decreasingu

is equivalent to requiring that supp(m ) has at least two points.F

Note that C(w) is monotonic (either decreasing or increasing) whenever the equation
C(w)5l has at most one solution for all l[(0, `). From (7) we can rewrite C(w)5l

as

s̄
2sx

V(x) ;E (c (s) 2 l) e dF(s) 5 0, (9)˜́
s
]

where x5w2a1s $ 0. Eq. (9) has no solution for x (and, thus, it has no solution for˜́]
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¯ ¯w) when l [⁄ (c (s ), c (s)). On the other hand, when l [ (c (s ), c (s)). Theorem 2˜ ˜ ˜ ˜´ ´ ´ ´] ]
implies that Eq. (9) has at most a single solution since the function (c (s) 2 l) is´

¯monotonically decreasing on (s, s ) and, hence, it has only one change of sign on such an
]

interval. Therefore, lim C(w) exists and is finite as a consequence of the monotonici-w→`

ty and boundedness of C(w) on (a 2s , `).˜́]
Our next goal is to prove that lim C(w)5c (s). To this end consider the function˜w→` ´ ]

Q(w)5v9(w)2au9(w) with a , c (s). Therefore,˜́ ]

s̄
2s(w2a1s )˜́]Q(w) 5E (c (s) 2 a) e dF(s) .˜́

s
]

¯Then, there exists a real number c[(s, s ) such that c (s) . a for all s[(s, c). Observe˜́] ]
that

¯ ¯s s
2s(w2a1s ) 2s(w2a1s )˜ ˜´ ´] ]E (c (s) 2 a) e dF(s) #E uc (s) 2 a u e dF(s)˜ ˜´ ´

c c

s̄
2c(w2a1s )˜́]# E uc (s) 2 a u dF(s) e , (10)S D˜́

c

s̄for all w . a 2s , where e uc (s) 2 a u dF(s) is obviously finite. Moreover, since˜ ˜´ c ´]
ˆc (s) . a for all s[(s, c), there exists a real number w . a 2s such that˜ ˜´ ´] ]

¯c s
(c2s)(w2a1s )˜́] ˆE (c (s) 2 a) e dF(s) .E uc (s) 2 a u dF(s), for all w . w . (11)˜ ˜´ ´

s c
]

2c(w2a2s )˜́]Therefore, multiplying both sides of (11) by e , we get

c
2s(w2a1s )˜́]E (c (s) 2 a) e dF(s)˜́

s
]

s̄
2c(w2a1s )˜́] ˆ. E uc (s) 2 a u dF(s) e , for all w . w . (12)S D˜́

c

Then,

¯c s
2s(w2a1s ) 2s(w2a1s )˜ ˜´ ´] ]Q(w) 5E (c (s) 2 a) e dF(s) 1E (c (s) 2 a) e dF(s) . 0 ,˜ ˜´ ´

s c
]

ˆfor all w.w, as follows from (10) and (12). Note that Q(w).0 if and only if C(w).a

since Q(w) /u9(w)5C(w)2a. Taking an increasing sequence of values for a converging
to c (s), we get that lim C(w) $ c (s). This, together with (8), implies that˜ ˜´ w→` ´] ]
lim C(w)5c (s).˜w→` ´ ]

Summing up, the function C(w) is monotonic and bounded above by c (s) for all˜́ ]
w . a 2s , and lim C(w)5c (s). Hence, the function C(w) is strictly increasing on˜ ˜´ w→` ´] ]
(a 2s , `), so that it increases monotonically towards its limit c (s). This proves that˜ ˜´ ´] ]
C 9(w)$0. Note however that if there exists a value w* such that C(w*)5l, for some

¯l [ (c (s ), c (s)), and C 9(w*)50, then x*5w*2a2s is a repeated root of Eq. (9).˜ ˜ ˜´ ´ ´] ]
This means that Eq. (9) has at least two roots (counted according to their multiplicity)
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which contradicts Theorem 2. Therefore, C 9(w).0 for all w [ (a 2s , `), which is the˜́]
desired result

(b) The proof of (b) follows exactly the same steps as the one of (a). We just have to
¯reverse all the inequality signs and notice that c (s) is strictly increasing on (s, s ) since˜́ ]

¯(s, s )#(s , `). Therefore, c (s) .C(w) . c (s) for all w . a 2s and C(w) is thus˜ ˜ ˜inf ´ ´ ´] ] ] ]
strictly decreasing on (a 2s , `). Q.E.D.˜́]

The following Corollary establishes the unambiguous comparison when the significa-
˜tive risk ´ is either subfair or positive:

Corollary 1. Assume that A (w) is strictly decreasing. Thenu

˜(a) A (w).A (w), for all w . a 2s if ´ is subfair.˜v v ´]
˜(b) A (w),A (w), for all w . a 2s if ´ is positive.˜v u ´]

˜Proof. It follows immediately from Proposition 1 since s 50#s if ´ is subfair,inf ]
¯ ˜whereas s 5`$s if ´ is positive. Q.E.D.inf

Part (a) of the previous corollary has been already obtained under much weaker
conditions than mixed risk aversion. Gollier, Pratt (1996) have in fact proved that (a)
follows from the assumption of risk vulnerability, and we have already pointed out that
the class of mixed utilities constitutes a strict subset of the class of risk vulnerable
utilities.

We have assumed that A (w) is strictly decreasing so as to exclude the trivial case ofu

utility functions displaying constant absolute risk aversion (which are mixed, as we have
already argued in Section 2). Indeed, it is obvious that for the CARA utilities the index
of absolute risk aversion is unaffected by the presence of random background wealth.

5. Desirability and risk aversion

An interesting observation we should make is that A (w).A (w) may hold uniformlyv u

˜even if the significative risk ´ is desirable for all w $ a 2s . Therefore, bearing a risk˜́]
may make individuals happier for all levels of initial wealth and, at the same time, to
induce a more risk averse behavior. Of course, such a globally desirable risk cannot be
subfair since all subfair risks are undesirable under risk aversion. On the other hand, the

˜desirable risk ´ cannot be positive since then A (w),A (w), as follows from part (b) ofv u

Corollary 1. Therefore, a globally desirable risk which induces more risk aversion for all
levels of background wealth will be potentially undesirable provided it exists. Moreover,
the corresponding utility function must display strictly decreasing absolute risk aversion.
The following proposition establishes the exact result:

˜Proposition 2. (a) If ´ is a significative potentially undesirable risk, then there exists a
utility function u[} such that A (w).A (w) and v(w).u(w) for all w . a 2s .˜v u ´]

¯(b) If u[}, s.0, and s is finite, then there exists a significative potentially
]
˜undesirable risk ´ such that A (w).A (w) and v(w).u(w) for all w . a 2s .˜v u ´]
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Proof. (a) Our proof will consist of constructing the mixed utility with the desired
properties. Consider the mixed utility u(w) characterized by a distribution function F(s)

¯ ¯such that supp(m ) has just two points: s and s, with s .s.0. Let a 5F(s).0 andF l] ] ]
¯a 5F(s )2F(s).0. Then, it follows from (1) that2 ]

a a1 2¯2s(w2a) 2s(w2a)
] ] ]u(w) 5 (1 2 e ) 1 (1 2 e ) .S DS Ds s̄

]

On the other hand,
` a a1 2¯2s(w2a1z) 2s(w2a1z)

] ] ]v(w) 5E (1 2 e ) 1 (1 2 e ) dG (z)S DF S D G ˜́s s̄s ˜́ ]]

a a1 2¯2s(w2a) 2s(w2a)
] ] ]¯5 (1 2 e c (s)) 1 (1 2 e c (s )) 1 .S DS D˜ ˜´ ´] s s̄

]

Thus, the condition v(w).u(w) becomes

a a1 2¯2s(w2a) 2s(w2a)
] ] ]¯(1 2 c (s)) e 1 (1 2 c (s )) e . 0 . (13)S DS D˜ ˜´ ´] s s̄

]

The condition A (w).A (w) is equivalent to assuming that the function C(w) 5v u

v9(w) /u9(w) is strictly decreasing. From (7), we get

¯2s(w2a) 2s(w2a)
] ¯a c (s) e 1 a c (s ) e˜ ˜1 ´ 2 ´]]]]]]]]]]]C(w) 5 .¯2s(w2a) 2s(w2a)
]a e 1 a e1 2

Computing the derivative of C(w), we obtain after some tedious algebra,

¯2s(w2a)2s(w2a)
]¯ ¯2 a a (s 2s)[c (s ) 2 c (s)] e˜ ˜1 2 ´ ´] ]]]]]]]]]]]]]C 9(w) 5 ,¯2s(w2a) 2s(w2a) 2

][a e 1 a e ]1 2

¯and therefore C 9(w),0 if and only if c (s ) . c (s). Notice that such a condition might˜ ˜´ ´ ]
¯be compatible with (13) since a sufficient condition for the latter is that c (s ) and c (s)˜ ˜´ ´ ]

be both less than one. Summing up, the two conditions A (w).A (w) and v(w).u(w)v u

hold simultaneously whenever

¯c (s) , c (s ) # 1 . (14)˜ ˜´ ´]

˜Notice that (14) can be easily achieved if ´ is a potentially undesirable risk. To do so,
recall Lemma 2 and select as a value of s a real number belonging to the interval (0, s*),

]
which implies that c (s) , 1. If s,s then, from the properties of the Laplace˜́ inf] ]
transform of a potentially undesirable risk given in Lemma 2 (b), there exists a real

ˆ ˆ ˆ ˆnumber s such that s .s and c (s ) 5 c (s). Then, c (s) [ (c (s), 1] for all s[(s, s*].˜ ˜ ˜ ˜inf ´ ´ ´ ´] ]
Hence, we finish the construction of a utility function satisfying (14) by selecting a

ˆ¯value of s equal to any real number in the interval (s, s*]. If we had selected instead a
¯value of s[(s , s*), then we should choose a value of s belonging to the interval (s, s*]inf] ]

since c (s) [ (c (s), 1] for all s[(s, s*].˜ ˜´ ´ ] ]
˜(b) Consider a random variable ´ taking just two real values, 2L and H, with L.0

and H .0. Note that s 5 2 L. The probabilities associated with these two values are p˜́]
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˜and 12p, respectively. Clearly, the risk ´ is a significative potentially undesirable risk,
sL 2sHand its Laplace transform is c (s)5p e 1(12p) e . Thus,˜́

(1 2 p)H
]]]lnS DpL

]]]]s 5 .inf L 1 H

According to Proposition l, A (w).A (w) whenever s #s. Because of the convexity ofv u inf ]
c (s), the latter condition is achieved if˜́

sL 2sH
] ]9c (s) 5 pL e 1 (1 2 p)H e $ 0 . (15)˜́ ]

On the other hand, a sufficient condition for v(w).u(w) is that

sL 2sH ¯c (s) 5 p e 1 (1 2 p) e # 1, for all s [ [s, s ] . (16)˜́ ]

Conditions (15) and (16) may hold simultaneously by choosing a sufficiently high value
sL
]9for H and a sufficiently low value for p. This is so because lim c (s) 5 pL e . 0˜H →` ´ ]2sHand lim c (s) 5 e , 1. Q.E.D.˜p→0 ´ ]

The previous proposition has illustrated the procedure for obtaining examples of
globally desirable risks which induce more risk aversion. Under the assumptions of the
proposition, for a given mixed utility we can find a desirable random change on wealth
which makes agents behave in a more risk averse fashion when they are faced with
additional, independent sources of uncertainty. Conversely, given a potentially undesir-

˜able risk ´, we can find a utility function u which makes such a risk globally desirable,
˜while v(w)5E(u(w1´ )) displays more risk aversion than u(w) for all levels of w in the

relevant domain.
It should also be pointed that it is impossible to find examples of globally undesirable

risks which uniformly decrease the index of absolute risk aversion. The reason is that,
under mixed risk aversion, a risk is undesirable for all levels of wealth only if it is
subfair. Thus, part (a) of Corollary 1 prevents any reduction in the index of absolute risk
aversion in such a circumstance.

6. Random background wealth

Our analysis can be easily extended to a situation in which the initial background
wealth is random. To this end, we just need to use the results of Kihlstrom et al. (1981).

˜Thus, assume that background wealth is a random variable w, and let s .2` be thew̃]
˜infimum of the distribution of the random variable w. Define the functions

˜U(x) 5 E(u(w 1 x)) ,

and

˜ ˜ ˜ ˜V(x) 5 E(v(w 1 x)), with v(w 1 x) 5 E (u(w 1 ´ 1 x)) , (17)˜́

where x [ (a 2s 2s , `) and the subindex in the expectation operator denotes the˜ ˜´ w] ]
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random variable with respect to which the mathematical expectation is computed.
˜Consider a random variable x taking values in the interval (a 2s 2s , `) and assume˜ ˜´ w] ]

˜ ˜ ˜that the random variables w, ´ and x are all mutually independent. Finally, define the
indexes of absolute risk aversion

2 U 0(x) 2V 0(x)
]]] ]]]A (x) 5 and A (x) 5 .U VU 9(x) V 9(x)

Recalling our definition of risk premium in Section 3, it follows from Pratt (1964) that
˜ ˜ ˜ ˜ ˜ ˜p(x, w 1´ )$p(x, w ) for every risk xz taking values in (a 2s 2s , `) if and only if˜ ˜´ w] ]

A (x)$A (x) for all x . a 2s 2s . Hence, to say that an individual increases its risk˜ ˜V U ´ w] ]
˜ ˜aversion when the risk ´ is added to the initial background wealth w is equivalent to

saying that A (x)$A (x).V U

Alternatively, consider the typical portfolio selection problem in which a risk averse
individual with preferences characterized by the Bernouilli utility u has a random wealth
˜ ˜y. Before observing the realization of y, the investor has to decide how much to invest in

˜ ˜a risky asset with a random gross rate of return R which is independent of y. Let
˜˜z(y, R; u) be the optimal investment in risky asset, that is,

˜ ˜˜ ˜z(y, R; u) 5argmaxE(u(y 1 [R 2 1]z)) ,
z[D

where D is the subset of real numbers such that, for all z[D, the random variable
˜ỹ 1[R21]z takes values in the domain of u. Then, from Arrow (1970) and Pratt (1964),

we can conclude that the condition A (x)$A (x) for all x in the relevant domain isV U
˜ ˜˜ ˜necessary and sufficient for z(y, R; V )#z(y, R; U ), which is in turn equivalent to

˜ ˜˜ ˜ ˜z(w 1´, R; u)#z(w, R; u).
As follows from the Theorem in Kihlstrom et al. (1981), if

A (w) $ A (w) for all w [ (a 2s , `) , (18)˜v u ´](#)

and either A (w) or A (w) are nonincreasing for all w [ (a 2s , `), then˜v u ´]

A (x) $ A (x) for all x [ (a 2s 2s , `) . (19)˜ ˜V U ´ w] ](#)

Moreover, it can be easily seen that the inequalities in (19) become strict if the
inequalities in (18) are also strict and either A (w) or A (w) are strictly decreasing for allv u

w [ (a 2s , `).˜́]
If u is mixed, then it displays nonincreasing absolute risk aversion, and this allows

one to conclude that the sufficient conditions for
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A (x) $ A (x)v u
(#)

will be also sufficient for

A (x) $ A (x) .V U
(#)

A more direct approach, that uses the fact that the function v is also mixed (see
Lemma 3), can be undertaken along the lines of Proposition 1. Note that if u is mixed on
[a 2s , `), then˜́]

` `
2s( y1x2a1s )˜́]˜U 9(x) 5 E(u9(w 1 x)) 5E E e dF(s) dG ( y)S D w̃

s 0w̃]

` `
2s(x2a1s 1s ) 2s(x2a1s 1s )˜ ˜ ˜ ˜´ w ´ w ˆ] ] ] ]5E e c (s) dF(s) 5E e dF(s) ,w̃2s w̃]0 0

ˆwhere F(s) is the distribution function defined by the Stieltjes integral

s

F̂(s) 5E c (z) dF(z) .w̃2s w̃]0

Therefore, the function U(x) is mixed on [a 2s 2s , `). Similarly,˜ ˜´ w] ]

`
2s(x2a1s 1s )˜ ˜´ w ˆ] ]V 9(x) 5E e c (s) dF(s) .˜́

0

ˆWe can define now the function C (w);U 9(x) /V 9(x) and proceed as in the proof of
Proposition 1 to obtain sufficient conditions for either A (x).A (x) or A (x),A (x).V U V U

¯Note that both the essential infimum s and the essential supremum s of the distribution
]ˆassociated with F are the same as the ones of the distribution associated with F since the

Laplace transform c (z) is strictly positive for all z$0. Therefore, we can combinew̃2s w̃]
Proposition 1 and Corollary 1 with our previous discussion to obtain the following
result:

Proposition 3. Let u be a mixed utility function defined on [a, `) such that A (x) isu

˜strictly decreasing on (a, `). Let ´ be a significative risk taking values in (s , `),˜́]
˜ ˜ ˜whereas w is a random variable taking values in (s , `). Assume that w and ´ arew̃]

independent.
¯ ˜ ˜ ˜ ˜ ˜(a) If s $s, then A (x),A (x) for all x . a 2s 2s and p(x, w 1´ ),p(x, w ) for˜ ˜inf V U ´ w] ]
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˜every independent significative risk x taking values in (a 2s 2s , `). In particular, the˜ ˜´ w] ]
˜last two inequalities hold whenever ´ is positive.

˜ ˜ ˜ ˜ ˜(b) If s #s, then A (x).A (x) for all x . a 2s 2s and p(x, w 1´ ).p(x, w ) for˜ ˜inf V U ´ w] ] ]
˜every independent significative risk x taking values in (a 2s 2s , `). In particular, the˜ ˜´ w] ]
˜last two inequalities hold whenever ´ is subfair.

7. A final remark

We have found conditions under which the introduction of an additional independent
risk induces more (or less) risk aversion when preferences display mixed risk aversion.
Our approach has used the relationship between the distribution function of background
wealth and the (artificial) distribution function characterizing a mixed utility. Finally, our
analysis has also allowed us to construct examples of globally desirable risks which
increase the risk aversion of individuals for all levels of wealth.

The sufficient conditions obtained in Propositions 1 and 3 are indeed very strong and
they could be relaxed if we just wanted to study the local behavior of risk aversion, that

˜is, the willingness to accept another small, independent risk x. More precisely, regarding
the analysis of Section 6, it can be asserted that for all h.0 and y [ (a 2s 2s 1h, `),˜ ˜´ w] ]
there exists a real number d .0 such that, for every mixed utility u characterized by a

¯distribution function F(s) satisfying (F(s )2F(s )),d (resp., (F(s )2F(s)),d ), itinf inf ]
holds that

A (x) , A (x)V U
(.)

for all x[( y2h, y1h), where the functions U and V are defined in (17). This result is a
consequence of the absolute continuity of a Laplace transform (and of all its derivatives)
with respect to the measure associated with its distribution function. In other words, for
the local analysis of the behavior of risk aversion, we just need to ensure that the
distribution over the exponents of a mixed utility is sufficiently concentrated either

˜below or above the point at which the Laplace transform of the risk ´ reaches its
infimum.
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