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This paper presents a class of models in which agents may devote 
part of their nonleisure activities to going to school so as to increase 
the efficiency units of labor they supply to the firms and the wages 
they receive. The interaction among the technology of human capi
tal accumulation and agents' preferences will determine endoge
nously the ec::onomy's rate of growth. Given a constant returns to 
scale technology for physical capital accumulation, we characterize 
the set of steady states as a ray from the origin and show the global 
convergence of every off-balanced path to sorne point on this ray. 
Further properties concerning the dynamic evolution of the state 
and control variables around the ray of steady states are also estab
lished. Our analysis is useful to understand the role played by the 
technologies of physical and human capital in the process of accu
mulation and to evaluate the impact of policies geared toward at
taining higher levels of capital. Our results highlight the importance 
of human capital in the dynamics of growth. 

l. Introduction 

This paper presents a class of models in which labor may be repro
duced in an unbounded fashion through schooling. Agents may de-
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vote part of their nonleisure time to going to school so as to increase 
the efficiency units of labor they supply in the labor market. The 
production of the physical good is given by a constant returns to scale 
technology that depends on the physical capital accumulated and the 
efficiency units oflabor. Very similar models can be found in Uzawa 
(1965) and Lucas (1988). In this class of models, the interaction 
among the technologies that allow for the accumulation of physical 
and human capital and consumers' preferences determines endoge
nously the economy's rate of growth. Our work complements Uzawa's 
paper by analyzing the dynamics for the case of a decreasing marginal 
utility of consumption. Since the objective function in Uzawa (1965) 
was the discounted sum of consumption, optimal paths displayed pe
riods of either zero consumption or zero physical investment, which 
greatly simplified the analysis of the dynamics of off-balanced paths. 
Such types of counterfactual "bang-bang" solutions are ruled out by 
the assumptions of our model. 

Our main departure from Lucas ( 1988) lies in the modeling of the 
production sector. We consider general forms of linearly homoge
neous production functions for both the consumption good and the 
educational sector, whereas Lucas considers a Cobb-Douglas produc
tion function with external effects in the production of the physical 
good. In our case, the set of steady states (or balanced paths) is a ray 
emanating from the origin. We shall establish the global convergence 
of every off-balanced path to sorne point on this ray. Our method 
of proof combines techniques from dynamic programming and the 
maximum principie. We exploit the fact that the derivatives of the 
value function define the costate variables of the canonical Hamilto
nian equations. 

The multiplicity of steady states implies that there are economies 
with different initial levels of human and physical capital that may 
end up growing at a common rate, although the long-run levels of 
those two kinds of capital will never converge. Similar results are 
obtained in models with externalities (Romer 1986; Lucas 1988) or 
in the Ak model of Barro (1990) and Rebelo (1991 ). 

The global convergence of off-balanced paths makes our model 
distinctive from the standpoint of the neoclassical two-sector growth 
model (see Benhabib and Nishimura 1985; Boldrin 1989). In a similar 
model, the global convergence of optimal paths was originally conjec
tured by Lucas (1988, p. 25). However, even though in recent years 
the literature on endogenous growth has also grown at an increasing 
rate, the dynamics of models with several factors of production are 
not yet well understood. Progress in this direction should be useful to 
determine the role played by the technologies of physical and human 
capital in the process of growth and to evaluate the impact of policies 
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geared toward attaining higher levels of accumulation. These issues 
arise naturally in our simple model, where for example there is an 
asymmetric response of consumption to increases in the proportions 
of physical and human investment. 

If the eco no m y is endowed in relative terms with a greater amount 
of physical capital, then we show (making an appropriate normal
ization of the levels) that consumption is initially high and decreases 
along the optimal path toward a given steady-state solution. Such a 
steady state exhibits a lower amount of physical capital. Conversely, 
if the economy is endowed with a greater amount of human capital, 
then the level of consumption is initially low, and it increases toward 
a given steady-state solution. Such a steady state exhibits a higher 
amount of physical capital. 

In the standard one-sector model (cf. Cass 1965), increases in physi
cal capital do not affect the level of human capital accumulated, which 
is exogenously given. In this latter model, all optimal orbits converge 
to a unique level of capital accumulation. In our endogenous growth 
framework, an increase in physical capital may affect the time de
voted to education and thus may induce changes in the amount of 
human capital accumulated in the economy. Since the level of human 
capital affects the value of the marginal productivities, a change in 
physical capital may move the economy to a different steady state. 
Indeed, we find that an increment in physical capital from a given 
steady-state solution can lead to the following three situations: (a) the 
normal case: the level of human capital goes up and the economy 
converges toward another steady state with a higher leve} of physical 
capital; (b) the paradoxical case: the level of human capital goes clown 
and the economy converges toward another steady state with a lower 
level of physical capital; and (e) the exogenous growth case: the level of 
human capital remains constant and the economy converges back 
toward the initial steady state. 

There are two countervailing forces that give rise to these three 
cases. On one hand, a sudden increase in physical capital makes labor 
more productive, thereby raising the opportunity cost of going to 
school and thus discouraging the accumulation of human capital. 
This negative effect is determined by the elasticity of marginal pro
ductivity of labor with respect to capital. Also, a sudden increase in 
physical capital lowers the rate of growth in consumption and in 
physical capital. The lower rate of growth in consumption encourages 
human capital accumulation. This positive effect is inversely related 
to the intertemporal elasticity of substitution: Human capital invest
ment will be less attractive if agents are more willing to intertempo
rally substitute consumption. 

Our analysis thus illustrates that the standard neodassical model is 
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a special case of the Lucas-Uzawa framework. Our numerical compu
tations will show that for plausible parameter values, endogenous and 
exogenous growth models generate fairly similar dynamics around a 
given steady-state solution. In a later stage of our paper, we investi
gate whether these results are robust to further variations of the 
original setting. One somewhat more realistic assumption of the Lu
cas-Uzawa framework is to let physical capital be an input of the 
educational sector. This case has been initially considered by Mulligan 
and Sala-i-Martin (1991) and Rebelo and Stokey (1991). We prove in 
this setting that if the educational sector is intensive in physical capi
tal, then an increase in physical capital will always bring about an 
increase in the level of education. If, however, the educational sector 
is intensive in human capital, then it is possible to obtain again the 
paradoxical and exogenous growth cases. As a consequence, a sudden 
increase in physical capital may lead the economy to a lower steady 
state. 

Before closing this section, we would like to mention sorne recent 
work that has independently analyzed transitional dynamics in similar 
models of endogenous growth. Faig (1992) considers a simpler ver
sion of this model and studies the impact of shocks to technology and 
public consumption. Chamley (1993) analyzes transitional dynamics 
in a setting closer to ours. He also includes taxes and externalities, 
but he does not include the case in which physical capital is an input 
of the human capital technology. He presents an alternative method
ology for the study of off-balanced paths, obtaining similar results. 
His analysis is, nevertheless, complementary to ours as each approach 
focuses on certain aspects of the dynamical problem. 

The paper is organized as follows. Section 11 presents the model. 
Section III discusses the necessary and sufficient conditions for the 
existence of a balanced competitive equilibrium and sorne properties 
of the equilibrium. The problem of global stability to the set of bal
anced steady states is analyzed in Section IV. The normal, paradoxi
cal, and exogenous growth cases are characterized in Section V. The 
case in which physical capital enters as an input of the educational 
sector is discussed in Section VI. We conclude in Section VII with a 
summary of our main findings. 

11. The Mode1 

W e consider a standard optimal growth model with an unbounded 
horizon. The economy consists of households ( or infinitely lived, 
growing dynasties) and competitive firms. In the absence of externali
ties, the solution of the problem selected by a planner coincides with 
a competitive solution achieved in a decentralized manner through 
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competition among firms and optimizing behavior of the dynasties. 
Thus we limit our analysis to the planner's problem without loss of 
generality. 

Each individual of the economy derives utility from consuming 
é(t) units of a single good at each moment in time. Preferences are 
characterized by an instantaneous C2 utility function U(é(t)) with U'(é) 
> O and U"(é) < O for all é > O, limt--> 0 U'(é) = oo, and limt-->co U'(é) 
= 0. 1 The number of individuals in each dynasty is N(t), and the 
exogenous instantaneous rate of population growth is n. Each dynasty 
discounts the utility of future consumption of each member of the 
household at the rate p. 

The technology used by the firms is represented by a C2 production 
function F(K(t), L(t)). This function is concave, increasingly mono
tone, and linearly homogeneous on the capital K(t) and the efficiency 
units of labor L(t) used by each firm. To guarantee certain interiority 
conditions, this function exhibits unbounded partial derivatives at the 
boundary, and both factors are essential in the production process. 
More precisely, for each K> O and I >O, 

lim FL(K, L) = oo, 
L-->0 

lim F x(K, L) = oo, 
K-->0 

(1) 

F(O, L) = O, F(K, O) = O, 

where the subindex denotes the variable with respect to which the 
partial derivative is taken, and K and I remain fixed. Also, F xx(K, L) 
< O and FLL(K, L) < O. Since firms are assumed to behave competi
tively, wages are equal to the marginal productivity of each efficiency 
unit of labor supplied by a worker. Individuals also receive a return 
from their savings that is equal to the marginal productivity of capital. 
The single good produced by each firm may be either used as a 
consumption good or invested as physical capital. 

Each individual owns one unit of nonleisure time per period. If a 
worker devotes the fraction u(t) of his or her nonleisure time to work 
and the efficiency per unit of labor supplied is ÍÍ(t), then L(t) = 

N(t)u(t)ÍÍ(t). The remaining 1 - u(t) of the nonleisure time is devoted 
to accumulating human capital through sc}10oling. The technology 
of human capital growth we postulate is ÍÍ(t) = G(ÍÍ(t), 1 - u(t)), 
where G(·, ·) is a c2 production function such that, for each fixed Ti 
> O, the mapping é(ii, ·) is concave and has a positive derivative. 

1 We say that a function is C2 if it is continuous over the domain of definition and 
has continuous partial, second-order derivatives at each interior point. 
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Both physical and human capital depreciate at constant rates, which 
are 1r 2:: O and 6 2:: O, respectively. 

Given the equivalence between the centralized and the competitive 
solution, we shall limit our analysis to the optimal problem. 

DEFINITION l. An optimal solution for the economy described 
above is a set of paths {é(t), K(t), ÍÍ(t), u(t)} that solve the following 
optimization problem: 

(P) 

subject to 

K(t) = F(K(t),N(t)u(t)ÍÍ(t))- 1rK(t)- N(t)é(t), (2) 

h(t) = G(ÍÍ(t), 1 - u(t)) - 6ÍÍ(t), (3) 

K(O) = K 0 , ÍÍ(O) = h0 , N(O) = N 0 , (4) 

é(t) 2:: O, u(t) E [0, 1], K(t) 2:: O, ÍÍ(t) 2:: O. (5) 

Observe that equations (2) and (3) are the resource constraints 
faced by the economy in question, and (4) gives the initial conditions 
of the state variables, K(t) and ÍÍ(t), and population N(t). 

DEFINITION 2. A balanced optimal path (or steady-state equilibrium) 
is an optimal solution {é(t), K(t), ÍÍ(t), u(t)} to the optimization prob
lem (P) for sorne initial conditions K(O) = K 0 and ÍÍ(O) = h0 , such 
that é(t), K(t), and ÍÍ(t) grow at constant rates, u(t) is constant, and the 
output/ capital ratio is constan t. 

Since from casual empiricism we observe a positive investment in 
human capital, we shall focus on balanced equilibria with u(t) = u* 
< l. The next section will discuss sorne properties of an interior 
balanced path and the conditions for its existence. 

111. Existence and Properties of a Balanced Path 

This section lays down the properties of a balanced steady state and 
the conditions for its existence. A more detailed analysis can be found 
in King, Plosser, and Rebelo (1988) and Mulligan and Sala-i-Martin 
(1991). 

Denote by v the rate of growth of human capital in a balanced 
equilibrium. Since the output/capital ratio is constant in such an equi
librium (and given the linear homogeneity of the production func
tion), the rate of growth of K(t) in a balanced equilibrium must there
fore be the same as the one of L(t) = N(t)u(t)ÍÍ(t), which is equal to 
v + n. Furthermore, dividing (2) by K(t), we see that K(t) must grow 
at the same rateas N(t)é(t), which implies that the rate of growth of 
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per capita consumption is also equal to v. Finally, dividing (3) by ií(t), 
we see that a balanced competitive equilibrium is compatible only 
with a specification of the technology for human capital accumulation 
that is linearly homogeneous on ií(t). That is, 

G(h(t), 1 - u(t)) = ií(t)G(l - u(t)), (6) 

with G' > O and G" ::5 O. 
In order to proceed with our analysis of the set of steady states, we 

now normalize the variables é(t), K(t), and ií(t) as follows: 

c(t) = é(t) e-vt, 

K(t) = K(t)e-(v+n)t, 

h(t) = h(t) e-vt. 

(7) 

(8) 

(9) 

Notice that in this redefinition of the variables é(t), K(t), and ií(t), 
we have used their respective rates of growth in a balanced equilib
rium as the discounting parameter. Hence, the normalized variables 
c(t), K(t), and h(t) will remain constant along a balanced path, ande*, 
K*, and h* will denote the respective steady-state values of these 
variables. 

In view of (7)-(9), constraint (2) becomes 

K(t) = F(K(t), N 0 u(t)h(t)) - (v + n + -rr)K(t) - N 0 c(t). (10) 

Also, from (6), constraint (3) becomes 

h(t) = h(t)[G(l - u(t)) - (v + 6)]. (11) 

We now summarize sorne relevant facts of a steady state in the 
following two propositions. The first one refers to necessary and suf
ficient conditions for the existence of an interior balanced equilib
rium, and the second one refers to sorne properties of such a balanced 
equilibrium. 

PROPOSITION l. Consider the dynamic optimization problem (P), 

where F(·, ·) is a C2 linearly homogeneous, strictly increasing, and 
concave function that satisfies condition (1), and FKK(K, i) < O, 
Fu(K, i) < O; U(·) is a C2 function with U'(é) > O and U"(é) < O for 
all é >O; and G(·, ·) is a C2 function such that, for each fixed h > O, 
the mapping G(h, ·) is concave and has a positive derivative. Assume 
that U and G satisfy 

U" e e [G 7i o ] -p + -rr - U~(i) ( h' ) - 6 >O for all fixed e, h ~ O. (12) 

The following conditions are necessary and sufficient for the exis
tence of an interior balanced path: 
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a) The utility function U(-) must exhibit a constant elasticity ofinter
temporal substitution 0'- 1 > O. 

b) The technology for human capital production G(·, ·) must take 
the functional form 

G(ÍÍ, 1 - u(t)) = ÍÍ(t) G( 1 - u(t)) with G' > O, G" ~ O, 

(1 - O')G(l) < p- n + (1 - 0')8 < (1 - O')G(O) + G'(O). (13) 

PROPOSITION 2. Consider the dynamic optimization problem (P) 
with the same assumptions as in proposition l. If u* is the fraction 
of time devoted to work and v is the rate of growth of human capital 
in a balanced interior path, then 

a) u* is the unique solution to 

p- n = G'(l - u*)u* + (1 - O')[G(l -u*) - 8], (14) 

and v = G(1 - u*) - e; 
b) the common steady-state rate of growth of consumption per cap

ita c(t) and human capital ÍÍ(t) must be v, and the rate of growth 
of physical capital K(t) must be v + n; and 

e) the set of steady-state values of e(t), K(t), and h(t) is a linear mani
fold of dimension one emanating from the origin. 

Parta of proposition 1 states that in a balanced path {e*, K*, h*, 
u*} the elasticity of intertemporal substitution must remain constant. 
Observe that in a balanced path the output/capital ratio is constant, 
and thus FK(K*, N 0 u*h*) must be constant. Moreover, it is straight
forward to show that utility maximization implies that 

d 
FK(K*,N0 u*h*)- 'IT = p- dtlogU'(ev1e*), (15) 

where d[log U'(ev1e*)]/dt = -O'(t)v, and O'(t) = - U"(ev1e*)ev1e* + 
U'(ev1e*). Hence, from (15) we can see that the elasticity of intertem
poral substitution O'(t) -l must be constant along a balanced path, that 
lS, 

(16) 

The utility function U(e) must therefore take the functional form 
A + B[e 1-ul(l - 0')], with B >O andO'> O. 

The first inequality in (13) plays the role of a transversality condi
tion, and it is analogous to condition (12) in Uzawa (1965). If (1 -
O')G(l) > p - n + (1 - 0')8, then the objective in (P) may take on 
an unbounded value. Conversely, if G(O) and G'(O) are too low, then 
investment in human capital is not profitable; thus an interior bal
anced path is not achieved. For the technology of human capital 
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growth analyzed by Lucas (1988), G(1 - u) = 8(1 - u) with 8 >O, 
condition (13) implies that (1 - 0')8 < p - n + (1 - 0')8 < 8. 
Equation (14) is the analogue of condition (16) for the technology of 
human capital accumulation. The existence of a unique u* comes 
from (13) and the concavity of G. Observe from (14) that the steady
state values u* and v are fully determined by the specification of 
the human capital technology and agents' preferences. This is to be 
contrasted with the case of increasing returns to scale (Lucas 1988) 
in which the size of the externality for producing the physical good 
also matters in the determination of the variables u* and v. The 
existence of a steady-state pair (K*, h*) to solve for (16) is ensured 
by conditions (1) and (12). Note that (12) is simply a mild bound on 
the productivity of human capital. Finally, the assumption of constant 
returns to scale for both F and G and the constant elasticity of substi
tution utility function imply that the set of steady states is a ray from 
the origin (part e of proposition 2). That is, economies with twice as 
much stock of both K* and h* will consume twice as much and will 
devote an identical fraction to working time, u*. 

IV. Dynamics 

To study the dynamics of this model, we rewrite our optimization 
problem, as dictated by proposition 1, and define the value function 
as 

V(K h) = maxJ"" N [c(t)] 1
-u e-[p-n-(1-u)v]tdt (P') 

O• O O O 1 _ (J' 

subject to 

K(t) = F(K(t),N0u(t)h(t))- (v + n + 7r)K(t)- N 0 c(t) (10) 

and 

h(t) = h(t)[G(1 - u(t))- (v + 8)], (11) 

K(O) = K 0 , h(O) = h0 , c(t)::::: O, u(t) E [0, 1], h(t)::::: O, K(t)::::: O, 

where p - n + (1 - O')v >O (see [14]). We also write the correspond
ing Hamiltonian function: 

H(K(t), h(t), c(t), u(t), 'Y 1(t), 'Y 2(t), t) = e-[p-n-(1 -u)v]t ( N 0 [c1(t~ 1:<r 

+ 'Y 1(t)[F(K(t), N 0 u(t)h(t)) - (v + n + 7r)K(t) - N 0 c(t)] (17) 

+'Y 2(t){h(t)[G(1 - u(t)) - (v +e)]}). 
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It follows from the maximum principie that along the optimal path 
{c(t), K(t), h(t), u(t)} the law of motion of the costate variables is charac
terized by the following equations: 

and 

.y 1 (t) 
-() = p + rrv - F K(K(t), N 0u(t)h(t)) + '1T 
'Y! t 

(18) 

.y 2 (t) 
-() = p - n + rrv - G'(1 - u(t))u(t) - G(1 - u(t)) + 6. (19) 
'Y2 t 

Assuming the interiority of optimal paths {c(t), K(t), h(t), u(t)}, we 
know from Santos ( 1990) that the val u e function V is a C2 concave 
mapping. Furthermore, it is also known (cf. Benveniste and Scheink
man 1982) that the first-order derivative DV(K0 , h0 ) = (-y 1 (0), -y 2 (0)), 
where -y1 (O) and -y 2(0) are the values of the costate variables for (17) 
at time 0.2 

Note that in problem (P') the instantaneous utility function is iso
elastic, and the feasibility constraints (10) and (11) are linearly homo
geneous in the variables c(t), K(t), and h(t). This implies that the policy 
function g(K0 , h0) is homogeneous of degree one, and the value func
tion V(K0 , h0) is homogeneous of degree 1 - <T. Also, as concluded 
in the previous section, all stationary points are located on a ray of 
physical and human capital pairs. 

We next show that all other interior initial conditions converge to 
sorne point on the ray in a particular fashion. To illustrate our 
method of proof, we consider an arbitrary point, say point a, where 
the ratio K/ h is higher than that of a stationary point. Let us distin
guish the following cases (see fig. 1). 

Case A.-The vector field points toward the upper right-hand-side 
quadrant. In this case, both human and physical capital are increas-

. ing. Human capital can increase only if u(t) < u*. It then follows 
from equation (19) that ')1 2 (t) :::: O, since the derivative of (19) with 
respect to u(t) is G"(1 - u(t))u(t) :S O. Furthermore, since Klh > 
K*lh* and u(t) <u*, it must be the case (eq. [18]) that ')1 1(t) >O. We 
may deduce that there is a particular point such as b, in figure 2, 
where the corresponding costate variables, 'Yt and -y~, are such that 
'Yt > 'Yi and 'Y~ 2: 'Y2· Consider now point e, on the same ray as a, 
and with the property that Kb = Kc. Given that the value function is 

2 Our analysis is readily extended to the case of noninterior optimal paths (i.e., u(t) 
= 1 for sorne t in [0, oo)), since the results of Benveniste and Scheinkman apply to 
solutions at the boundary. It should be observed that, in the context of our model, at 
each point there is only a unique pair of costate variables that satisfy the conditions of 
Benveniste and Scheinkman (1982, theorem 2). 
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homogeneous of degree 1 - a < 1, it must be true that 'Y2 > 'Y2. 
Moreover, by the strict concavity of V, it must hold that 'Y2 > 'Yt· 
Consequently, 'Y2 > 'Yt, which is a contradiction. A similar contradic
tory argument can be applied to 'Y¡ if b is below the ray passing 
through a. Therefore, the vector field generated by the policy func
tion g(K, h) cannot point toward the upper right-hand-side quadrant. 

Case B.-The vector field points toward area B. In this case, both 
physical and human capital are decreasing. Therefore, u(t) >u*. It 
then follows from equation (19) that "f 2(t) :5O. Suppose thus that our 
particular point is d of figure 2. Then 'Y2 ~ 'Y;. However, this is 
impossible since 'Y; > 'Y2 and 'Y2 > 'Y2· 

Case C.-The vector field points toward the lower right-hand-side 
quadrant. In view of cases A and B, this situation can be ruled out, 
since otherwise it would imply an overaccumulation of physical capital 
with asymptotically zero consumption. That is, given 'YI (t) = c(t) -a, 
one can see from (18) that c(t) converges exponentially to zero, as 
K(t)lh(t) gets unbounded. It is easy to see that this situation is not 
optimal. 

Observe that we have not ruled out vector fields pointing toward 
area D of figure l. However, the optimal policy cannot point toward 
the direction ay, since by equation (19) "f 2 (t) :5 O, and moving along 
ay implies "f2 (t) > O. Therefore, the vector field generated by the 
optimal policy at each point líes separated from the direction emanat
ing from the origin. Moreover, concerning case A, the concavity of 
V is enough to rule out the situation in which the vector field is a 
vertical vector. The shaded area in figure 3 illustrates then the set of 
possible directions corresponding to the vector field generated by the 
optimal policy function near point a. In figure 3, we have also drawn 
the set of possible directions corresponding to a point a', with a 
higher proportion of human capital. In this situation, similar argu
ments allow us to rule out the corresponding analogues of cases A, 
B, and C. 

Pick now an interior point (K, h). Let Klh >K' lh' > K*lh*. Since 
[K/h, K' lh'] is a compact interval, the arguments above and the conti
nuity of the optimal policy g imply that an optimal orbit starting at 
(K, h) must cross the ray {(AK', Ah'), A > O}. This proves conyergence 
of the ratio Klh to K*lh*. Furthermore, as shown below, every inte
rior steady state (K*, h *) locally contains a one-dimensional stable 
manifold transverse to the ray {(AK*, Ah*), A > O}. Hence, the point 
(K*, h*) must attract an interior point of every nearby ray {(AK', Ah'), 
A > O}. By the homogeneity of the policy function g, it follows that 
every interior point of the ray {(AK', Ah'), A > O} converges to an 
interior point of the ray {(AK*, Ah*), A> O}. Consequently, the point 
(K, h) converges to an interior steady state (K*, h*), and (K, h) is an 
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h 

FIG. 3 

arbitrary interior point. This proves global stability provided that the 
system is locally stable.3 

In order to discuss local stability, we first derive (as in the Appen
dix) the law of motion of the variables {e, K, h, u} by applying the 
maximum principie to our optimization problem. After elimination 
of the costate variables, the dynamical system to be considered is 
composed of the following equations: 

c(t) = - c(t) [p + av- Fx(K(t),N0u(t)h(t)) +'Ir], (20) 
(1 

3 After this paper was circulated, Bob Lucas and Mike Woodford pointed out an 
alternative approach for proving global convergence to the ratio K*lh*. Their ap
proach exploits more explicidy the homogeneity of the policy and value functions. 
Define z = clh and x = K! h. Then problem (P') may be written as 

max f"' [z(t)]l-a hl-ae(l-a)fb!G(l-u(s))]d!N e-(p-n)'dt 
Jo 1 - a o o 

subject to 

x(t) = F(x(t),N0u(t))- [n + 1r + G(l - u(t))- 6]x(t)- N 0z(t). 

This formulation embodies a unique state variable, the ratio x = K!h, and it is readily 
shown that every x > O converges to the steady-state ratio, x*. We have not adopted 
this somewhat simpler framework since an important part of our analysis is concerned 
with the evolution of the levels K and h. 
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K(t) = F(K(t),N0 u(t)h(t))- (v + n + 1r)K(t)- N 0 e(t), (21) 

k(t) = h(t)[G(1 - u(t)) - (v + 6)], (22) 

ü(t) = ~(t) 1 <!>(t) {r1- ~(t)](n + 1r- e)- FK(K(t),N0 u(t)h(t)) 
-+ -:--'---'-'-
u(t) 1 - u(t) 

F(K(t),N0 u(t)h(t)) Noe(t) (23) 
+ ~(t) K(t) - ~(t) K(t) 

+ [1- ~(t)]G(1- u(t)) + G'(1- u(t))u(t)}, 

where ~(t) and <!>(t) are the elasticities of the marginal productivities, 

FLK(K(t), L(t))K(t) 
~(t) = FL(K(t),L(t)) >O, 

and 

..~,.() = _ G"(1 - u(t))[1 - u(t)] ~ 0 
"'t G'(1 - u(t)) · 

Observe that only the family of Cobb-Douglas functions éxhibits con
stant elasticities of the marginal productivities. The coefficients ma
trix of the linearized system around a steady state (e*, K*, h*, u*) is 

p - n - (1 - a)v 

o 

* 

M(c*,K*,h*,u*) = 

N0u*FL(K*,N0u*h*) 

o 

* 

* 
; N0h* FKL(K*, N0u*h*)) 

N0h*FL(K*,N0u*h*) . 

-h*G'(l -u*) 

* 
W e ha ve not written clown the last row en tries since they will not 

be relevant for our analysis. The signs of the eigenvalues of this 
matrix determine the local dynamics of the system around the steady 
state. These eigenvalues A¡ (i = 1, 2, 3, 4) are the solutions of the 
characteristic polynomial associated with the matrixM(e*, K*, h*, u*). 
Since the set of steady states is a manifold of dimension one, we know 
that at least one eigenvalue must be zero. This can also be seen by 
noticing that the vector (e*, K*, h*, O) belongs to the null space of 
the matrixM(e*, K*, h*, u*). It is also readily seen that the first three 
rows are linearly independent. Thus the remaining eigenvalues A 1 , 

A2 , and A3 are not zero. By the strict concavity of our optimization 
problem, we can have at most one negative eigenvalue. For, if not, 
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we would have a continuum of initial values of the controls c(t) and 
u(t) that converge optimally to the same steady state, and therefore 
convex combinations of those paths will deliver higher utility. Also, 
one of the eigenvalues, say A. 3 , must be negative, since otherwise the 
system will be unstable on the ratio K/h. From Santos (1990), we can 
conclude that the eigenvalues A. 4 = O and A. 3 < O correspúnd to the 
eigenvalues of the derivative of the policy function Dg(K*, h*). Since 
g is homogeneous of degree one, these two eigenvalues are common 
to every steady state (K*, h*). 

lt follows from standard arguments (cf. Hirsch, Pugh, and Shub 
1977, chap. 5) that at each steady state (K*, h*) there is a neighbor
hood containing a one-dimensional manifold crossing the ray of 
steady states at (K*, h*) such that, for all initial conditions (K0 , h0 ) of 
this one-dimensional manifold, the optimal path converges exponen
tially to (K*, h *). Consequently, different initial conditions of the state 
variables K(t) and h(t) may lead asymptotically to different steady 
states. This means that two economies with different initial endow
ments of physical and human capital (K(O) = K(O) = K 0 , ÍÍ(O) = h(O) 
= h0 ) will end up growing at the same rate, although the "levels" of 
K(t) and ÍÍ(t) in these two economies, parameterized by the normalized 
variables K(t) and h(t), may remain different. 

We can now summarize our results in this section in the following 
theorem. 

THEOREM l. Consider the dynamic optimization problem (P') with 
the same assumptions as in proposition l. Then: 

a) Every positive initial condition (K 0 , h0 ) converges to sorne point 
on the ray of stationary states (K*, h *) determined by equations 
(14) and (16). Moreover, if K 01h0 > K*lh*, then the optimal orbit 
originating at (K0 , h0 ) converges to a steady state (K*, h*) such 
thatK* < K 0 . lf K 01h0 < K*lh*, then the optimal orbit originating 
at (K0 , h0 ) converges toa steady state (K*, h*) such that K*> K 0• 

b) At every steady state (K*, h *), the derivative of the policy function 
Dg(K*, h*) has an eigenvalue A. 4 = O and another eigenvalue A. 3 

< O. Therefore, optimal paths approach the ray of steady states 
(K*, h*) atan exponential rate. 

According to theorem 1, an increase in K will bring about a 
process of negative investment. In our simple economy, physical capi
tal is readily transformed into consumption. A sudden increment in 
K lowers -y 1 , the shadow price of the physical good. (The drop in -y 1 

follows from the concavity of the value function and the fact that 
VK(K(O), h(O)) = -y 1(0).) As the shadow price equals the marginal 
utility (i.e., -y 1 (O) = c(O) -a), a decrease in -y 1 results in a higher level 



ENDOGENOUS GROWTH 

of consumption. The economy then converges toward a new steady 
state, and along the optimal orbit the levels of both physical capital 
and consumption go down.4 Hence, physical capital and consumption 
respond in a similar qualitative way as in the Cass-Koopmans model. 

V. The Behavior of Human Capital 
Near Steady States 

Although theorem 1 determines the dynamic evolution of physical 
capital, the evolution of the human capital variable is undetermined. 
Indeed, the following three cases are possible (fig. 3). The normal case: 
If the ratio of physical to human capital is higher (lower) than the 
steady-state solution, then the economy moves toward a steady state 
with a higher (lower) level of human capital. The paradoxical case: 
If the ratio of physical to human capital is higher (lower) than the 
steady-state solution, then the economy moves toward a steady state 
with a lower (higher) level of human capital. The exogenous g;rowth case: 
Investment in human capital is insensitive to the ratio of physical to 
human capital. 

Observe that an increase in physical capital from a stationary point 
m to a point a (see fig. 3) leads to the following transitional dynamics. 
(1) In the normal case, the economy moves toward a steady state with 
higher amounts of both physical and human capital than those of the 
steady-state solution m. (2) In the paradoxical case, the economy 
moves toward a steady state with lower amounts of both physical and 
human capital than those of the steady-state solution m. (3) In the 
exogenous growth case, the economy returns to the same steady state 
m. Although human capital here is an endogenous variable, it behaves 
in practice asan exogenous growth factor. 

Conversely, an increase in human capital will give rise to the reverse 
transitional effects. Indeed, in the paradoxical case an increase in 
human capital will bring about a positive accumulation of both physi
cal and human capital. 

A sudden increase in K raises the relative price of human capital, 
'Y 2(0)/'Y 1 (0),5 and the opportunity cost of labor, Fu The increment 
in 'Y 2(0)/'Y1 (O) stimulates the time devoted to education, whereas the 

4 Consumption goes clown since one can show from (18) that, inclepenclently of the 
clirection of the eigenvectors, we must ha ve '¡1 (t) > O. 

5 This increase in 'Y2 (0)/'Y1(0) can be shown by invoking the homogeneity of clegree 
1 - CT ancl strict concavity of V, ancl the fact that DV(K(O), h(O)) = ("Y 1(0), "(2(0)). Note 
that an increment in physical capital raises current ancl future procluctivity of human 
capital ancl lowers the real interest rate (as the rate of growth of consumption goes 
clown). This combinecl effect makes more attractive the accumulation ofhuman capital. 
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increment in FL stimulates the time devoted to work. As a result, 
an increase in K has an undetermined effect on the accumulation 
of h. 

Clearly, the change in FL is determined in the margin by the elastic
ity of FL with respect to K, and the change in ''f2(0)/-y1 (O) should be 
linked to the elasticity u. In the following theorem we prove that only 
these two parameter values determine the qualitative evolution of h 
near a steady state. 

THEOREM 2. Consider the dynamic optimization problem (P') with 
the same assumptions as in proposition l. Let 13* = FLK(K*, h*)K* + 
FL(K*, h*), where (K*, h*) is an interior steady state. Then (a) in the 
normal case, u ~ 13*; (b) in the paradoxical case, u :5 13*; and (e) in 
the exogenous growth case, u = 13*. 

CoROLLARY. (a) If u> 13*, the economy belongs to the normal case; 
(b) if u< 13*, the economy belongs to the paradoxical case. 

A rather striking message of theorem 2 is that the qualitative behav
ior of h is independent of the discount rate, p, of the elasticity of the 
marginal productivity of the human capital technology, <!>* = G"(l 
- u*)(l - u*)/G'(l - u*), and of other relevant parameters of the 
model. The vah.ies of u and 13 fully determine the sign of the evolution 
of h near a steady state. It follows that for a Cobb-Douglas technology 
with a constant depreciation rate, AK~L 1 -~ - 1rK, 1r ~O, O< 13 < 1, 
the normal case is always obtained for values u ~ l. 

Proof of theorem 2. Given problem (P'), the first-order condition for 
the allocation of working time is given by 

-y1FL(K,N0 uh)N0 = -y2 G'(l -u). (24) 

By the implicit function theorem, it follows from (24) that 

0~ [ ~: FL(K,N0uh)- G'(l -u)] 

o u 
-= 
iJK 

(25) 

We first confine ourselves to part a. Observe that in this case 
iJu/iJK :5 O. Given the concavity ofF and G, we can see that the sign 
of iJu/iJK is identical to that of the numerator in the right-hand side 
of (25). Hence, taking logs inside the brackets of this expression, we 
obtain 

(26) 

where, for i = 1, 2, E-y¡,K = (iJ-y¡liJK)(KI-y¡) and 13 = FLK(K, N 0 uh)K + 
FL(K, N 0 uh). 
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We next show that ata steady state (K*, h*) the elasticity E-y2,K s; O. 
For this purpose, observe that in the normal case u(t) < u*. Conse
quently, equation (19) implies that )'2(t) ~ O. Furthermore, an in
crease in K from a given steady state (K*, h*) makes the economy 
move to a higher steady state, in which every price 'Y; (i = 1, 2) is 
lower than in the original steady state (K*, h*). This is possible only 
if -y2 drops with the initial increase in K. Therefore, e'Y?.K s; O. 

Given that DV(K, h) = (-y 1, -y2), the homogeneity of degree -u of 
the derivative of the value function entails that 

VKK(K, h)K + vK,.(K, h)h = -u-y¡. (27) 

As VKK(K, h) = éJ-y1/éJK, from (27), 

(28) 

Since VKh(K, h) = VhK(K, h) = éJ-y 21éJK s; O, it follows from expres
sions (26) and (28) that, ata steady state (K*, h*), in the normal case, 
u ~ 13*. This shows part a. The proofs of parts b and e proceed 
analogously. The theorem is thus established. 

As illustrated in the preceding section, the consumption of the 
physical good goes up with an increase in K. We now show that the 
elasticity of this change is also dependent on the previous parameter 
values. 

THEOREM 3. Let e,,K be the elasticity of e with respect to K at a 
stationary state (K*, h*). Then (a) in the normal case, e,,K s; 1; (b) in 
the paradoxical case, e,,K ~ 1; and (e) in the exogenous growth case, 
Ec,K = l. 

Proof (a) As shown in the proof of theorem 2, in the normal case 
VKh s; O. Hence, from (28), the elasticity of -y 1 with respect to K is 
E-y1,K ~ -u. Since the shadow price of the physical good equals the 
marginal utility, -y1 (O) = c(O) -a, it must hold that, in the normal case, 
e,,K s; l. An analogous argument validates parts b and c. The proof 
is complete. 

We close this section with a numerical exercise of an economy with 
a Cobb-Douglas production function and a linear technology for hu
man capital accumulation. This is an economy of the type studied in 
Lucas (1988). Let U(c) = c1-al(l - u), F(K, N 0 uh) = AK!3(N0uh) 1-r., 
and G(l - u) = 8(1 - u), where (1 - u)8 < p - n + (1 - u)O < 
8, 8 > O. Observe that condition (12) becomes simply p + 1r - ua 
>o. 

Writing out these parametric functional forms into the dynamical 
system formed by equations (20)-(23), we get the steady-state values 
for the following variables: 
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1 [p- n ( 6)] u* = -;; - 8- - (1 - rr) 1 - 8 , 

1 
v = - (& - 6 - p + n), 

(T 

~ = _1 [p + V<T + (1 - 13)'11' _V+ n] 
K* No 13 ' 

(29) 

(30) 

(31) 

e* = ( Al3 )1/(1-~) [p + <Tv + (1 - 13)'11' - v - n] u*, (32) 
h * p + <TV + 'IT 13 

K* ( A13 )ti(t-~> 
-= Nu* 
h* p + <TV + 'IT O • 

(33) 

Moreover, in this case the coefficients matrix of the linearized system 
around a steady state takes the form 

M(e*,K*, h*, u*)= 

o -e* [<1- l3)(p + rrv + '11')] 
K* rr 

-No p- n- (1 - rr)v 

o o 

[ u* e*] 
No (K*)2 

e* [(1 - l3)(p + rrv + '11')] 
h* 13 

e* [(1 - l3)(p + rrv + '11')] 
u* <T 

K* [<1 - 13)(p + <TV + '11')] 
h* 13 

K* [<1 - 13)(p + <TV + '11')] 
u* 13 

o -&h* 

o &u* 

As shown in the previous section, one of the eigenvalues of this 
matrix must be negative. Moreover, the eigenvector space belonging 
to this negative eigenvalue will determine the qualitative behavior of 
the variables e, K, h, and u around a stationary point. 

W e first consider the following benchmark economy: N 0 = 1, A = 
1, p = 0.05, n = 0.015, & = 0.05, <T = 1.5, 13 = 0.3, 'IT = 0.01, and 
6 = O. These parameters conform roughly to standard empirical 
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evidence. Observe that the steady-state ratios e*lh* and K*lh* depend 
on the parameter A (see [32] and [33]). For simplicity the parameter 
A was set equal to one. 

Letting h* = 1, we obtain from (29)-(33) the steady-state values 
e* = 1.246, K* = 5.797, u* = 0.8, and v = 0.01. Also, the negative 
eigenvalue of the matrix M(e*, K*, h*, u*) is equal to -0.175, and 
(-0.3116, -4.050, 0.1025, 0.3590) is an associated eigenvector. 

As u > ~. the economy belongs to the normal case. This agrees 
with the signs of the second and third coordinates of the eigenvector 
that determine the evolution of K and h, respectively. However, one 
can see that the third coordinate is relatively close to zero. Hence, 
the transitional dynamics of this economy resemble the exogenous 
growth case. Indeed, from the eigenvector above, let k = -4.050 
and k = 0.1025. Then computing the ratio (klh*)l(k!K*), we obtain 
that this magnitude is approximately equal to - 0.14 7. This fairly 
inelastic response of h to increases in K may be explained in our 
model by the fact that k and e enter additively into the resource 
constraint ( 1 O) and that K does not enter into the technology for 
human capital accumulation ( 11 ). This latter case is the subject of the 
following section. 

VI. Physical Capital in the Production 
of Education 

In this section we consider a variant of the preceding model in which 
physical capital is also employed as an input of the production of 
human capital. That is, G is now an increasing function of both K 
and h. Our main finding is that if G is intensive in K, then both the 
exogenous growth and paradoxical cases can be ruled out. However, 
an example of a Cobb-Douglas technology shows that the three 
growth patterns may still arise in the opposite case in which G is 
intensive in h. 

From the objective in (P'), we now consider, instead of (10) and 
(11), the resource constraints 

k(t) = F(v(t)K(t), N 0 u(t)h(t)) - (v + n + 7r)K(t) - N 0 e(t) (34) 

and 

k(t) =Gel - ~2]K(t), [1- u(t)]h(t)) - (v + 6)h(t), (35) 

where v(t) is the fraction of physical capital devoted to the production 
of the consumption good. We suppose that both F and G are increas
ingly monotone in their arguments, concave, and linearly homoge-
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neous. The first-order necessary conditions for an interior optimal 
solution are given by 

c(t) -a = 'Y! (t), 

'YI (t)F K(v(t)K(t), N 0 u(t) h(t)) 

= 'Y~~) GKe1 - ~:)]K(t)' [1 - u(t)]h(t))' 

'YI (t)F L (v(t) K(t), N 0 u(t) h(t)) 

= 'Y~~)GLe 1 - ~:)]K(t),[1- u(t)]h(t)), 

.y 1 ( t) 
-() = p + rrv- FK(v(t)K(t),N0 u(t)h(t)) + 1T, 
'Y! t 

(36) 

(37) 

(38) 

(39) 

(40) 

where FK(·, ·) and GK(·, ·) denote the derivatives of the functions F 
and G with respect to the first argument. 

Under conditions similar to those of Section 111, one could again 
study the dynamics of off-balanced paths. We shall not pursue fur
ther the stability problem here. Our main concern, however, is to 
explore in this setting the existence of the exogenous growth and 
paradoxical cases near a steady state {e*, K*, h*, v*, u*}. We shall 
make use of the following assumption. 

AssuMPTION A. The production function G is more intensive in 
physical capital than the production function F: If 

then 

FK(v*K*,N0 u*h*) 

FL(v*K*,N0 u*h*) 

GK( (1 -;;o*)K*, (1 - u*)h*) 

GLe1 -;;o*)K*,(1- u*)h*)' 

v* K* (1 - v*)K* ---< . 
N 0 u*h* N 0 (1 - u*)h* 

Assume that an increase in K from a given steady-state solution m 
moves the economy to a point such as a of figure 3. Observe that 
after such an increase in K the price 'Y¡I'Y2 cannot go up. Moreover, 
the paradoxical and exogenous growth cases both require that at least 
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either v or u go up. We shall now see, however, that both v and u 
must go clown. The following basic effects can be singled out. 

a) The factor intensity effect (the Rybczynski theorem).-An increase 
in K stimulates the production in the sector intensive in K and de
creases production in the other sector. This result follows from the 
properties of the contract curve derived from equating the ratios of 
the marginal productivities ofF and G (e.g., equalities [37] and [38]). 
Hence, assumption A implies that v and u will go clown. 

b) The price effect.-An increase in K may lower the relative price 
'Yt/'Y 2• As a result, the production of human capital may go up and 
the production of the physical good may go clown. Hence, the possi
ble drop in 'Yt/'Y 2 makes both v and u go clown. 

These two effects combined together show us, therefore, that an 
increase in K brings about a process of human capital accumulation. 
Also, from the two effects and the fact that consumption should go 
up, an increase in K will set up a process of decumulation of physical 
capital. We may then conclude that the paradoxical and exogenous 
growth cases can be ruled out under the assumption that the educa
tional sector is intensive in K (assumption A). If, however, the educa
tional sector is intensive in human capital, both cases may still become 
true. This is illustrated in the Appendix with a Cobb-Douglas technol
ogy. For F(v(t)K(t), N 0 u(t)h(t)) = A[v(t)K(t)]~[N0 u(t)h(t)] 1 -~ and 

Gel - ~:)]K(t), [1 - u(t)]h(t)) 

= &{[1 - ~:)]K(t) r {[1 - u(t)]h(t)}t-", 

if a > J3, the function G is more intensive in physical capital. In this 
case, the paradoxical and exogenous growth cases are not possible. 
However, as a~ O, the dynamical system generated by this model 
converges in the C 1 functional sense to that of a Lucas-type model 
with G(l - u(t)) = &[1 - u(t)], as the one considered in Section V. 
Hence, a continuity argument shows that with free mobility of K and 
h across sectors, the paradoxical and exogenous growth cases are also 
plausible. 

VII. Concluding Remarks 

This paper has analyzed a generalized version of the Lucas-Uzawa 
model of endogenous growth with physical and human capital. Given 
a constant returns to scale technology for producing the consumption 
good, we have characterized a set of necessary and sufficient condi-
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tions on technologies and preferences that allow for the existence of 
balanced paths. U nder these conditions, we ha ve also established the 
global dynamics of optimal paths. 

Our main result (theorem 1) states that economies with high ratios 
of physical to human capital wili always decumulate physical capital, 
and economies with low ratios of physical to human capital will always 
increase their holdings of physical capital. This places human capital 
as a key factor for growth. 

An injection of human capital from a given steady-state solution 
will always lead the economy to another steady state with higher levels 
of both physical capital and consumption. An injection of physical 
capital, however, will eventually bring about higher levels of both 
physical capital and consumption only if it induces a movement of 
labor from the production sector to the educational sector (the nor
mal case). It is nevertheless possible to obtain the reverse effect (the 
paradoxical case), in which the economy converges toa balanced equi
librium with lower levels of both physical capital and consumption. 
If the allocation of labor between production and education is insensi
tive to the level of physical capital (the exogenous growth case), then 
under our normalization of the state variables the economy will con
verge back to the same steady state. In this case, the statistical proper
ties regarding income growth and physical investment of the endoge
nous growth model are observationally equivalent to the standard 
one-sector model augmented with exogenous technological progress. 

It remains an empirical issue to investigate which of these cases is 
most important for applied work. Our characterization in theorem 2 
indicates that one should observe the normal case in which human 
capital has a positive response to an increase in the level of physical 
investment. The value attached to this response in our numerical 
computations was, however, relatively small. Hence, it may be very 
difficult to say in practice which of these three regions is statistically 
most relevant. 

An empirical study by Mankiw, Romer, and Weil (1992) supports 
evidence in favor of the exogenous growth case. However, contrary 
to what the authors seem to suggest, we would like to emphasize that 
this is not necessarily a test of exogenous versus endogenous growth 
models. In our simple setting, the exogenous growth case is a particu
lar instance of the endogenous growth framework. 

If it is true that the accumulation of human capital is rather insensi
tive to variations in physical investment, a government will find that 
inflows of physical capital are eventually nullified by the actions of 
the consumption sector. In such a situation, the economy converges 
back to a neighboring steady state. A further research topic is to 
examine which types of policies are best suited to achieve paths of 
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higher growth. Another line of research is to explore the dynamics 
in more micro-founded models, with different types of knowledge, 
human capital, and education (e.g., Rustichini and Schmitz 1991). 

A simp'e variation of the Lucas-Uzawa model was considered in 
Section VI, in which physical capital entered into the production of 
education. We have shown that if the educational sector is intensive 
in physical capital, then a sudden increase in physical capital will 
always result in an accumulation of human capital. 

Our model can be extended to allow for external effects in the 
accumulation of human capital as in Lucas (1988). In this case the 
production function may be written as F(K(t), N(t)u(t)ií(t), iía(t)), 
where iía(t) is the average level of human capital in the economy. The 
competitive solution will obviously differ from the planned solution 
because no agent will take into account the external effects when 
deciding how much to invest in his own human capital. Lucas shows 
that with external effects the set of steady states is a nonlinear, one
dimensional manifold for both competitive and efficient equilibria. 
However, by continuity, our stability result still holds for sufficiently 
low external effects. 

Finally, we must recognize that other sources of endogenous 
growth are possible besides schooling. For instance, we can consider 
models of "learning by doing" (Arrow 1962) in which it is precisely 
the time devoted to production that increases the productivity of 
workers, models with linear technologies (Barro 1990) or asymptoti
cally linear technologies (Jones and Manuelli 1990), or the already 
mentioned models with externalities (Romer 1986; Lucas 1988; Aza
riadis and Drazen 1990). The techniques developed in this paper may 
also be useful to analyze these types of models. It should be stressed, 
however, that our stability results may not hold in more general con
texts. For example, Chamley (1993) has shown that a multiplicity of 
steady states may arise under an externality (or learning effect) on 
the time devoted to schooling. Also, Becker, Murphy, and Tamura 
(1990) illustrate the multiplicity of steady states and the discontinuity 
of the policy function when population is endogenously determined. 
Likewise, in later work we have shown that several steady states are 
possible in the case in which time can be devoted to leisure activities. 

Appendix 

In this Appendix we first derive from the maximum. principie the law of 
motion of the variables {e, K, h, v, u} for a Cobb-Douglas version of the model 
sketched in Section VI. We then show that for suitable limiting parameter 
values the dynamics of this model converges asymptotically to that of a Lucas
type model. 
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Let F(vK, N0 uh) = A(vK)II(N0 uh) 1-ll and 

c((l ~:)K,(l- u)h) = 8[(l ~:)Kr [(1- u)h] 1-a. 

Differentiating (36), we obtain 

c(t) .Y1 (t) -a-=--. 
c(t) 'YI (t) 

(Al) 

Thus 

c(t) = c(t) [p + av- Fx(v(t)K(t),Nou(t)h(t)) + 1T], (A2) 
a 

which is the same as equation (20). Moreover, making use of (40) and (Al), 
we obtain, differentiating (38), 

-a c(t) + <~ _ a) k.(t) _ <~ _ a) h(t) 
c(t) K (t) h(t) 

+ [ v~) + 1 - av(t)] v(t) - [u~t) + 1 - au(t)] ú(t) (A3) 

= p- n + av- GL([l- ~~)K(t),[l- u(t))h(t)) + 0. 

Observe that if we substitute out the values of c(t), K(t), and h(t), then (A3) 
becomes analogous to equation (23). Moreover, as a - O, equations (34), 
(35), (A2), and (A3) converge in the C1 functional sense to (20)-(23), with 
G(l - u(t)) = 8[1 - u(t)], G'(l - u(t)) = 8, ~(t) = ~. and <f>(t) = O. This can 
be shown after sorne straightforward computations. For example, concerning 
equation (A3), we have in this Cobb-Douglas case 

v(t) = ~u(t) ' 
&: + (~ - &:) u(t) 

(A4) 

8{[l- ~~]K(t)r {[1- u(t)]h(t}P-a-8[1- u(t)]h(t) asa-o, (A5) 

(1- a)8{[l- ~~]K(t)r {[1- u(t)]h(t)}-a-8 asa-o, (A6) 

where (A4) comes from (37) and (38), with ~ = ~/(1 - ~) and &: = a/(1 -
a). Hence, v(t) - 1, dv(t)ldu(t) - O, and ,il(t) - O ~s a - O. Moreover, af
ter we substitute out the values of c(t), K(t), and h(t), in (A3) it is now a 
mechanical exercise to check that, as a- O, equation (A3) converges to (23), 
with F(K(t), N0 u(t)h(t)) = AK(t)II[N0 u(t)h(t)]l-ll and G(l - u(t)) = 8[1 -
u(t)]. Likewise, given that there is convergence on the ray of steady states, 
the linearization of (A3) converges to the linearization of (23). (These compu
tations are available on request from the authors.) 
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