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Abstract

This paper analyzes the role of financial development as a source of endogenous instability

in small open economies. By assuming that firms face credit constraints, our model displays a

complex dynamic behavior (with high-period cycles or even chaotic dynamic patterns) for

intermediate values of the parameter representing the level of financial development of the

economy. We derive sufficient conditions for global stability and we prove that chaos appears

via a border collision bifurcation. The basic implication of our model is that economies

experiencing a process of financial development are more unstable than both very

underdeveloped and very developed economies.
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1. Introduction

This paper considers a model where the process of financial development could be a
source of endogenous instability in small open economies. Our basic macroeconomic
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.jedc.2005.05.004

nding author. Tel.: +34935 812 367; fax: +34 935 812 012.

dress: jordi.caballe@uab.es (J. Caballé).
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model describes a dynamic open economy where firms face credit constraints. This
means that the maximum amount entrepreneurs can borrow is proportional to the
amount of their current level of wealth. Several authors have discussed the
implications of borrowing constraints on the persistence of business cycles (Bernanke
and Gertler, 1989) and on the emergence of cycles in closed economies (Azariadis and
Smith, 1998; Kyotaki and Moore, 1997). Other authors have developed models where
instability occurs at intermediate levels of financial development and, thus, these
models provide support to the evidence that emerging markets are quite vulnerable
(Gaytan and Ranciere, 2004; Daniel and Jones, 2001). Moreover, Aghion et al. (2000)
showed that, if firms are credit constrained and there is debt issued both in domestic
and in foreign currency, then currency crises could easily arise. Later on, Aghion et al.
(2001) constructed a simple monetary model where currency crises are driven by the
interplay between the credit constraints of domestic firms and the existence of nominal
price rigidities, which in turn lead to multiple equilibria. We will use a similar
formulation, although we will focus on the real side of the economy like in Aghion
et al. (1999) and Aghion et al. (2004), where the authors provide numerical simulations
showing the existence of a stable 2-period cycle in a model exhibiting a Leontieff
technology. However, it does not follow from their work the existence of either cycles
of higher period or chaotic dynamics. Although they show the existence of a first
period doubling bifurcation in their model, they do not even show the existence of a
canonical bifurcation cascade leading to chaos. In this paper we show instead the
existence of a non-canonical route to chaos, which is associated to a border collision
bifurcation.

By considering a more realistic Cobb–Douglas production function and using
bifurcation analysis, we will prove that economies with either very developed or very
undeveloped financial markets are globally structurally stable, while emerging
markets (with intermediate levels of financial development) are unstable in the sense
that they could exhibit high period cycles (with period larger than 2) or even chaotic
dynamics and, thus, the evolution of the endogenous variables of the model turns
out to be unpredictable. Therefore, when the economy is going through a phase of
financial development, the dynamics of the economic system could change
dramatically and evolve from a stable fixed point to a stable cycle and, finally, to
an attractor displaying aperiodic dynamic behavior.

In our model complex dynamics arises because an increase in wealth has a positive
effect on investment (via the credit constraint) but also a negative price effect due to
the increase in the demand for the country specific input. The conclusion is that
financial development could destabilize economies exhibiting an intermediate level of
financial development, which agrees with the experience documented for several
countries.1

The paper is organized as follows. In Section 2 we present the model. In Section 3
we perform the dynamic analysis in order to assess the plausibility of chaotic
dynamics when entrepreneurs do not receive any exogenous income. In this case we
1See, among many others, De Melo et al. (1985), Galvez and Tybout (1985), and Petrei and Tybout

(1985).
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J. Caballé et al. / Journal of Economic Dynamics & Control 30 (2006) 1261–1275 1263
present some general properties of the attractors of the dynamic system depending
on the parameter values of the model. In Section 4 we extend the analysis to the
general case with positive exogenous income and we show the global stability of
either very developed or very underdeveloped financial markets. Section 5 concludes
our paper. The Appendix contains all the proofs.
2. The model

Let us consider a small open economy in discrete time. There are two types of
individuals in this economy: the borrowers (or entrepreneurs), who own a
production technology and may invest either in the production activity or in the
international capital market, and the lenders (or families), who cannot directly invest
in the production activity but they can either lend funds to the entrepreneurs or
invest in the international capital market. The international gross rate of interest is
constant and equal to r40.

This economy produces a unique tradeable good. The production function of this
good uses capital and a country specific input (like land, real estate, or a non-
tradeable natural resource), which has a constant supply equal to Z. Moreover, the
tradeable good can be consumed or accumulated as productive capital for the
production in the next period. The output yt of the tradeable good in each period is
obtained through the following Cobb–Douglas gross production function2:

yt ¼ AK
r
t z

1�r
t with r 2 ð0; 1Þ, (1)

where zt is the amount of the country specific input used in period t, Kt is the amount
of capital, and A is the total factor productivity. We assume that A4r since the
entrepreneurs would do not find profitable to invest in the production activity
otherwise. We assume that capital fully depreciates after one period.

The total investment I t in period t is devoted to purchase both capital and country
specific input. For a given level of investment, the optimal demands for the country
specific input zt and for capital Kt in each period t arise from the maximization of the
profit function subject to the budget constraint

I t ¼ Kt þ ptzt,

where pt is the price of the country specific input measured in units of the tradeable
good. The first-order condition for the profit maximization problem immediately
yields

zt ¼
1� r

pt

� �
I t (2)

and

Kt ¼ rI t. (3)
2Aghion et al. (2004) consider instead a Leontieff production function, which prevents any kind of

substitution among the different inputs.
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Therefore, the country specific input equilibrium price is obtained by equating the
country specific input demand (2) with its constant supply Z,

pt ¼
1� r

Z

� �
I t. (4)

Finally, substituting (2) and (3) into (1), we may write the total equilibrium output yt

in terms of the level of investment I t and the price pt,

yt ¼ GðptÞI t, (5)

with

GðptÞ ¼
Arrð1� rÞ1�r

p
1�r
t

. (6)

Note that GðptÞ can be viewed as the gross return of a unit of investment.
We assume that the credit market operates imperfectly due to, say, either adverse

selection or moral hazard problems. In particular, we assume that the entrepreneur’s
wealth serves as a collateral for the loan and, hence, an entrepreneur with wealth W t

may borrow the amount Lt with LtpmW t.
3 Therefore, the investment in each period

is bounded above by ð1þ mÞW t. The proportional coefficient mX0 can be viewed as a
credit multiplier reflecting the level of financial development of the domestic
economy.

The dynamics of the model is described as follows. In period t entrepreneurs decide
the amount of borrowing (and, thus, of investment) and pay the cost of the country
specific input. Hence, at period tþ 1 the entrepreneurs receive the corresponding
profits and pay the cost of debt rLt. We assume here that entrepreneurs save a
constant fraction ð1� aÞ of their total wealth at the end of each period, where a is the
constant propensity to consume.4 Therefore, the dynamics of the entrepreneurs’
wealth is given by

W tþ1 ¼ ð1� aÞðeþ yt � rLtÞ, (7)

with LtpmW t, and where eX0 is an exogenous income in terms of tradeable good.
Let us consider first the case where GðptÞXr; which means that the productive

investment return exceeds the international capital market return and, hence, the
entrepreneurs will invest in the productive project the largest amount they can
borrow,

I t ¼ ð1þ mÞW t. (8)

Thus, from (5), total output will be given by

yt ¼ GðptÞð1þ mÞW t. (9)
3This is the type of constraint found in Bernanke and Gertler (1989).
4This simple saving rule could be derived under the assumption that entrepreneurs maximize the

discounted sum of instantaneous utilities when these utilities are logarithmic and e ¼ 0 (see Woodford,

1989).
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Substituting (8) in (4) and then inserting the resulting equation in (6), we can rewrite
(9) as

yt ¼ xW
r
t with x ¼ Arrð1þ mÞrZ1�r, (10)

which gives us the total output in period t as a function of wealth. As follows from
(7), the dynamics of entrepreneurs’ wealth is thus

W tþ1 ¼ ð1� aÞðeþ yt � rmW tÞ, (11)

which, after using (10), becomes

W tþ1 ¼ ð1� aÞ½eþW
r
t ðx� rmW

1�r
t Þ�. (12)

The previous equation describes the dynamics of the entrepreneurs’ wealth as long as
GðptÞXr. Combining (4), (6), and (8), the previous inequality holds whenever
WpW m, where the critical value of wealth W m is given by

W m ¼
A

r

� �1=ð1�rÞ
Z

1þ m

� �
rr=ð1�rÞ. (13)

As it can be immediately seen from (12), the impact of a change in the volume of
current wealth on the next period wealth could be ambiguous. This is so because,
even if an increase in wealth raises the investment, the amount of invested wealth
depends negatively on the price pt of the country specific input, and this price
depends positively on current wealth.

Let us now consider the case where GðptÞor. In this case the entrepreneurs have
no incentives to borrow up to the credit limit because the return from the productive
investment is lower than the return from the international capital market. Hence,
they borrow until the level where the productive investment return is equal to the
international capital market return, that is, until yt � rLt ¼ rW t. Therefore,
substituting the previous equation into (7), we find the dynamic equation for wealth
when W4W m,

W tþ1 ¼ ð1� aÞðeþ rW tÞ. (14)

The asymptotic behavior of wealth is thus determined by the iterates of the
following function (see (12) and (14)):

f ðW tÞ ¼
ð1� aÞ½eþW

r
t ðx� rmW

1�r
t Þ� � f l

ðW tÞ if 0pW tpW m;

ð1� aÞðeþ rW tÞ � f r
ðW tÞ if W t4W m:

(
(15)

The iterates of f describe a one-dimensional discrete dynamic system. In the next
sections we will analyze the general dynamic properties of the system depending on
the parameters of the model and we will determine the cases where complex (or even
chaotic) dynamics could appear. Note that the dynamic behavior of the other
endogenous variables of the model, output yt, investment I t, and price of the country
specific input pt; is entirely determined by the behavior of the entrepreneurs’ wealth
W t, as follows immediately from the previous analysis.
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It is straightforward to see that, for any value of the parameters, f l
ðW tÞ is a single

peaked function with a maximum at

W M ¼
rm
xr

� �1=ðr�1Þ

, (16)

while f r
ðW tÞ is linear. We notice, however, that f ðW tÞ has a local maximum at W M

only if W MoW m.
3. Dynamic analysis without exogenous income

In this section we describe the long run dynamics of the model when the exogenous
income e is equal to zero. This analysis will be helpful in the next section, where we
study the case with positive exogenous income, e40. For the rest of the paper we will
assume the empirically plausible inequality ð1� aÞro1, which ensures the existence
of a positive fixed point for the function f .

In the next lemma we summarized the dynamic properties of the map f given by
(15) when e ¼ 0 and the parameter value m is relatively small. Recall that a high value
of m corresponds to a financially developed economy, while low values are associated
with financial underdevelopment.

Lemma 1. Let e ¼ 0.
(a)
5S
If m 2 ½0; r=ð1� rÞÞ, then W M4W m and f is a strictly increasing function.

Moreover f has a unique positive, globally stable fixed point W % 2 ð0;W mÞ.

(b)
 If m 2 ½r=ð1� rÞ;r=rð1� aÞð1� rÞÞ, then W MpW m and f has a unique positive,

globally stable fixed point W % 2 ð0;W MÞ.

(c)
 If m 2 ½r=rð1� aÞð1� rÞ; ð1þ rÞ=rð1� aÞð1� rÞÞ, then W MpW m and f has a

unique positive, globally stable fixed point W % 2 ½W M ;W mÞ.

(d)
 A 2-period bifurcation occurs at m2 ¼ ð1þ rÞ=rð1� aÞð1� rÞ and the derivative of

f at the corresponding parabolic fixed point W% is �1. Hence, a 2-period globally

stable cycle exists if m 2 ðm2;m2 þ dÞ for d sufficiently small.

(e)
 For any value of m, W ¼ 0 is a repelling fixed point.
This lemma essentially reproduces the dynamic conclusions of Aghion et al. (2004)
and it points out that, in order to obtain rich or chaotic dynamics for the
entrepreneurs’ wealth, the value of the parameter m must be sufficiently high. In
other words, the previous lemma states the global stability for economies with low
values of m; that is, for economies exhibiting a low level of financial development. As
we will see in Section 4, this result also holds for the case with positive exogenous
income. Moreover, part (d) of the previous lemma gives explicit conditions for the
first period doubling bifurcation, which seems to announce a route to chaos through
a period doubling bifurcation cascade.5 However, in the next discussion it will
ee Devaney (1992).
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become clear that such a bifurcation cascade does not exist although we will be able
to obtain chaos through a non-canonical bifurcation route.

We now provide an example illustrating the asymptotic dynamics of wealth with
special attention to relatively high values of the degree of financial development
parametrized by m. Although our approach is mainly numerical, it allows us to provide a
complete description of the dynamics of the model when e ¼ 0. Let us thus consider the
empirically plausible parameter values r ¼ 1=3; a ¼ 0:8; r ¼ 1:02. We have checked
that the qualitative properties of the dynamics of the model are preserved for a grid of
values lying on a neighborhood of the proposed parameter value configuration.
Moreover, we also consider the arbitrary parameter values A ¼ 3=2 and Z ¼ 100. It can
be seen from the equations of the previous section that, when e ¼ 0, the parameters A

and Z are just scaling parameters that do not affect the qualitative properties of the
model. Under these parameter values, the function f given by (15) becomes

f ¼

ðW tÞ
1=3

ffiffiffiffiffiffiffiffi
9003
p

ð1þ mÞ �
51

250
ðW tÞ

2=3m
� �

� f l
ðW tÞ for 0pWpW m;

51

250
W � f r

ðW tÞ for W4W m;

8>><
>>:

where W m ¼ 12 500=17
ffiffiffiffiffi
51
p
ð1þ mÞ. Notice that f l is a single peaked concave function

with the local maximum at the point

W M ¼
12 500ð1þ mÞ1=2

153
ffiffiffiffiffi
17
p

m3=2
.

When the value of the financial development parameter m belongs to the interval
½0; 25:239Þ we obtain a simple dynamics for which the entrepreneurs’ wealth is
asymptotically given by a stable fixed point or a 2-period stable cycle. The dynamics of
wealth for those values of the parameter m obviously agrees with Lemma 1 and, hence,
when m ¼ m2 � ð1þ rÞ=rð1� aÞð1� rÞ ¼ 9:804, we obtain the first period doubling
bifurcation.

Now let us move the value of m beyond 25:239. Once we cross that value of m the
asymptotic dynamics (that is, the window where the dynamics occurs in the long run)
belongs to the interval ½f ðW mÞ; f 2

ðW mÞ�. Thus, we first compose the function

f : ½f ðW mÞ; f 2
ðW mÞ� ! ½W m; f 2

ðW mÞ�

with an homeomorphism h so that g ¼ hðf ðh�1ÞÞ is a function from ½0; 1� to ½0; 1�.6

We define the new variable X t ¼ hðW tÞ and we can see the function gðX Þ displayed in
Panel (a) of Fig. 1. Since g is a continuous map of ½0; 1� into itself and the steady state
is unstable, the wealth never grows without bound nor converges to a steady state
(for almost all initial conditions). Hence, it must fluctuate forever, either converging
to a cycle or following an aperiodic path.
6The function h is simply a linear transformation depending on m that assigns the value 0 to f ðW mÞ and

the value 1 to f 2
ðW mÞ for each m. The advantage of working with the function g instead of f lies on the fact

that the window where the asymptotic dynamics occurs is ½0; 1�; which is independent of m. Obviously, the

dynamics associated with f and g display the same qualitative properties.
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Fig. 1. (a) Function g for an arbitrary value of m425:239. (b) 4-period attracting cycle (m ¼ 50).
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As mentioned before, the asymptotic dynamics of g in ½0; 1� when the parameter m
has just crossed the value 25:239 is governed by an attracting 2-period cycle with
negative multiplier. As the value of m increases the multiplier approaches �1 and,
when it becomes equal to �1, we have a new period doubling bifurcation from a 2-
period cycle to a 4-period cycle. After this bifurcation the asymptotic dynamics is
given by an attracting 4-period cycle with positive multiplier (see Panel (b) of Fig. 1).
When m reaches the value 53:953 the critical point X m of the function g belongs to
the 4-period cycle and we get what is known as a border collision bifurcation.7 From
Nusse and Yorke (1995) and performing a careful numerical analysis, it is possible to
see that the non-canonical border collision bifurcation cascade passes through cycles
with period 8, 16, 32 and, finally, enters into a chaotic attractor of full Legesgue
measure in ½0; 1�.8

Another evidence of the existence of values of m for which we obtain chaotic
asymptotic dynamics comes from the fact that, if m ¼ 54:925; then the critical point
X m of the function g is pre-periodic as gðX mÞ ¼ 0, gð0Þ ¼ 1, and gð1Þ ¼ X %, where
X% is the fixed point of g. Thus, for this value of m, no attracting cycles exist since the
basin of attraction of these cycles cannot contain the critical point X m.9 Note that
7This non-canonical bifurcation has been mainly studied in the context of piecewise linear maps. For

instance, Hommes and Nusse (1991) showed that a ‘period three to period two bifurcation’ occurs for a

class of piecewise linear maps. More recently, Nusse and Yorke (1995) have conducted a deeper analysis of

these bifurcations and described the very rich dynamics arising from them.
8Notice that, even though we have a bifurcation cascade from 1 to 32-period attracting cycles only the

bifurcations from 1 to 2, 2 to 4, and 8 to 16-period attracting cycles are period doubling bifurcations, while

from the 4 to 8, and 16 to 32 are border collision bifurcations.
9Moreover, the topological entropy of the map g for m ¼ 54:925 is positive, which confirms the existence

of a chaotic attractor (see Alsedà et al., 2001, Corollary 4.4.9). Recall that the topological entropy is given

by limn!1 lnNn=n where Nn is the number of distinct n-period cycles.
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the fact that the interval ½0; 1� is a chaotic attractor under g implies immediately that
the chaotic attractor under the original map f has positive Lebesgue measure when
m ¼ 54:925.

When m ¼ 60:936, the image of X ¼ 1 is equal to X m and, hence, we obtain a
3-period cycle. This parameter value of m is the initial point of an interval for which
an attracting 3-period cycle exists (see the bifurcation diagram displayed in Panel (a)
of Fig. 2). It can be shown that the existence of those two distinct values of m, one
implying chaotic dynamics and the other initiating simple stable dynamics, repeats
over and over as m increases (see the two panels of Fig. 2).10 The first values of these
two sequences fmkg and fm

0
kg are

m1 ¼ 54:925; m2 ¼ 298:793; m3 ¼ 1493:594; m4 ¼ 7350:175; . . .

m01 ¼ 60:936; m02 ¼ 304:676; m03 ¼ 1499:480; m04 ¼ 7356:363; . . . ð17Þ

respectively.
Summing up, in this section we have reformulated the dynamic analysis of Aghion

et al. (2004) with a Cobb–Douglas production function and we have seen how the
dynamics of wealth evolves as m increases. In particular, we have shown that there
are intervals of this parameter value for which the long run dynamics is governed by
periodic attracting patterns while there are other intervals where the long run
dynamics is aperiodic (or chaotic). Moreover, this pattern repeats over and over as m
increases and, hence, there is not a value of m above which stability holds in the long
run. As we will prove in the following section, this last result does not longer hold for
the case e40.
10The proof is available from the authors upon request.
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4. Dynamic analysis with positive exogenous income

Let us now study the dynamics of the general model defined by function (15) for the
case with positive exogenous income, e40. Panel (a) of Fig. 3 illustrates the changes of
the function f as the exogenous income e increases for a fixed value of m. Obviously, if
they exist, the values of the critical point W m and of the maximum W M are the same
as when e ¼ 0 (see (13) and (16)). However, both the existence and the qualitative
properties of the attracting sets are affected by the fact that e is strictly positive.

The main result of this section is that, for any positive exogenous income e, we
obtain stable dynamics for the variable W t (i.e., a globally stable fixed point exists)
for low as well as for high levels of financial development. Moreover, for any positive
e, there are intermediate levels of financial development (i.e., a bounded interval of
values of m) for which the dynamics is complex or even chaotic and follows the same
pattern as in the previous section. The following proposition summarizes the main
result of this section:
Proposition 1. Let e40.
(a)
20

f(
W

)

(a)

Fig.

from
W ¼ 0 is not a fixed point.

(b)
 The function f ðW tÞ has a unique positive, globally stable fixed point W % for each

m 2 ½0; r=ð1� rÞÞ.

(c)
 The function f ðW tÞ has a globally stable fixed point W % with W%

XW m for each

m 2 ½mMðeÞ;1Þ, where

mMðeÞ �
A

r

� �1=ð1�rÞ

Zrr=ð1�rÞ
1� ð1� aÞr
ð1� aÞe

� �
� 1.
00 10

10

20
WW

f(
W

)e=50

e=20

e=0

µ=20

µ=150

µ=75

 

(b)

3. (a) Vertical shift of f for different positive values of e ðm ¼ 12Þ. (b) The minimum point passing

the right to the left of the diagonal when m increases (e ¼ 5).



ARTICLE IN PRESS

00

110

110 20

12

4

9.804

W µ
µ e

c–1

c–3

c–3

(a) (b)
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Fig. 4. (a) Bifurcation diagram with respect to m when e ¼ 4. (b) The parameter plane (e; m).
The previous proposition shows that, for each positive value of e; there exists a
large enough value mMðeÞ of the parameter m guaranteeing the stability of financially
developed economies. Intuitively, this is due to the fact that as m!1 the critical
point W m tends to 0 so that it has to pass from the right to the left of the 45�-degree
line (see Panel (b) of Fig. 3). Therefore, according to this observation and the
existence of the infinite sequences given in (17) the stability of financially developed
economies is obtained if and only if e is positive.

To illustrate the above arguments, we draw in Panel (a) of Fig. 4, the bifurcation
diagram with respect to m when e ¼ 4. Moreover, in Panel (b) of Fig. 4 we draw the
different asymptotic dynamics on the plane ðe;mÞ, where c� n means that, for this
combination of values of e and m, the asymptotic dynamics is governed by a n-period
cycle. To see the logic behind these figures, let us fix a strictly positive value of e (for
instance, e ¼ 4Þ. Then for small values of m we have a globally stable fixed point lying
below W m and, for high values of m (i.e., when mXmM ð4Þ), we have also a globally
stable fixed point lying above W m. For intermediate values of financial development
we may find complex or even chaotic dynamics. It should be noted finally that the
potential complexity for those intermediate values depends on how many terms of
the sequence given by (17) are smaller than mMðeÞ. In particular, for high values of e

the value of mMðeÞ is so small that the attracting set is given by either a fixed point or
a low period cycle, while for small values of e the value of mMðeÞ is large enough so
that emerging economies could display chaotic behavior.

In order to understand the resulting dynamics of our model note that, on the one
hand, for low values of m the credit constraint faced by entrepreneurs is so strong
that investment is insensitive to the amount of current wealth. On the other hand, for
very high values of m the amount of current wealth is also irrelevant for investment
since entrepreneurs are not credit constrained. Only for intermediate values of the
parameter representing the degree of financial development, the current level of
funds are relevant for the determination of investment and, thus, for future wealth.
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Note that in the chaotic region the path of the entrepreneur’s wealth is sensitive to
the initial conditions, as is implied by the aperiodicity of the resulting dynamics.
Therefore, small transitory shocks end up having permanent effects in the long run.
5. Conclusions

We have studied the asymptotic dynamics of entrepreneurs’ wealth in a small open
economy with credit constraints under a Cobb–Douglas technology. A similar model
has been considered in Aghion et al. (2004) using a Leontieff technology. These
authors only showed that financial underdeveloped, as well as very developed
economies, present stable fixed points, whereas intermediate levels of financial
development could be a source of instability. They obtain the instability result by
showing that, for some range of parameter values, a 2-period cycle appears.

Our analysis differs from that of Aghion et al. (2004) in the following aspects:
�
 We show that financially developed economies present complex dynamics when
there is no exogenous income of the tradeable good. However, very developed
economies are stable when entrepreneurs enjoy positive exogenous income.

�
 We derive sufficient conditions on the parameter values of the model in order to

obtain global stability.

�
 We show that economies with an intermediate level of financial development

could present dynamics more complex than a 2-period cycle since they could
display cycles with a higher period or even chaotic dynamics. Those cycles are
robust as they remain under perturbations of the parameter m representing the
level of financial development. In this case, even though the dynamics becomes
complex, it is still predictable. This predictability does not longer hold in the
chaotic region. Obviously, when the economy displays chaotic dynamics, small
temporary shocks turn out to have permanent effects.

Note that when there is no exogenous income, complex dynamics occurs for
arbitrarily large values of the parameter m. However, the range of values of m for
which complexity arises is bounded when the exogenous income is positive. Thus, in
such a case, there is a sufficiently high level of financial development that guarantees
stability in the long run.
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Appendix
Proof of Lemma 1. Let e ¼ 0: It is easy to see that

W M �W m ¼ Z
r

A

� �1=ðr�1Þ
ðrð1þ mÞÞr=ð1�rÞ

m
r

� �1=ðr�1Þ

� ð1þ mÞ1=ðr�1Þ
" #

.

Therefore, if mor=ð1� rÞ; then W m �W M40 and f is a strictly increasing function.
Moreover, since f r

ðW mÞ ¼ f l
ðW mÞoW m, we obtain the existence of a unique

positive, globally stable fixed point given by

W% ¼
1þ rmð1� aÞ

xð1� aÞ

� �1=ðr�1Þ

2 ð0;W mÞ.

This concludes the proof of part (a).
When m ¼ r=ð1� rÞ, then W M ¼W m and, as ð1� aÞro1, we have W % 2 ð0;W M Þ.

If m4r=ð1� rÞ, then W M �W mo0 and

f l
ðW MÞ �W M ¼W M ð1� aÞrð1� rÞm

r
� 1

� �
.

Thus, if mor=rð1� aÞð1� rÞ, we conclude that f l
ðW MÞ �W Mo0 and so, the unique

positive fixed point is globally attracting and satisfies W% 2 ð0;W M Þ. This finishes the
proof of part (b).

When m ¼ r=rð1� aÞð1� rÞ the positive stable fixed point corresponds precisely
to the maximum of f l , that is, when W % ¼W M it holds that f 0ðW %Þ ¼ 0. As the
parameter m increases, the derivative at the fixed point is given by f 0ðW %Þ ¼ ð1� aÞ
ðr=ð1� aÞ � mrð1� rÞÞ. Therefore, this derivative goes from zero to negative and it
takes the value �1 when

m ¼
1þ r

rð1� aÞð1� rÞ
� m2.

Therefore, for the values of m belonging to the interval ½r=rð1� aÞð1� rÞ; ð1þ rÞ=
rð1� aÞð1� rÞÞ, there is a locally attracting fixed point belonging to the interval
½W M ;W mÞ. Obviously, we have a period doubling bifurcation at m ¼ m2 and the local
stability of the fixed point applies now to the locally attracting 2-period cycle for
m 2 ðm2;m2 þ dÞ, with d sufficiently small.

To finish the proof of (c) and (d) we claim that the local stability is indeed global.
To see this, it is enough to show that f ðW M Þ �W mo0 for m 2 ðr=rð1� aÞð1� rÞ;
m2 þ dÞ, or equivalently, that after a finite number of iterates all the dynamics is
concentrated on the interval ð0;W mÞ. Clearly, the claim holds for m ¼ r=rð1� aÞ
ð1� rÞ since f ðW MÞ ¼W MoW m. From the monotonicity of W M and W m with
respect to the parameter m, we only need to check whether the inequality still holds
for m ¼ m2. From a straightforward computation we get f ðW M Þ �W mo0
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if and only if

CðmÞ ¼ rð1� aÞð1� rÞrr=ð1�rÞ
1þ m
mr

� �1=ð1�rÞ

o1.

Hence, we need to check that Cðm2Þo1. A direct substitution leads to

Cðm2Þ ¼ rð1� aÞð1� rÞr1=ð1�rÞ
1þ r

rð1� aÞð1� rÞ

� �r=ðr�1Þ

� 1þ
1þ r

rð1� aÞð1� rÞ

� �1=ð1�rÞ

¼ r1=ð1�rÞð1þ rÞr=ð1�rÞ rð1� aÞð1� rÞ þ 1þ rð Þ
1=ð1�rÞ

o
2r

ð1þ rÞr

� �1=ð1�rÞ
o1,

for all r 2 ½0; 1Þ, which is the desired result.
Part (e) is straightforward. &

Proof of Proposition 1.
(a)
 Obvious.

(b)
 We just have to notice that if m 2 ½0;r=ð1� rÞÞ the function f is strictly

increasing. Moreover, f ð0Þ ¼ e40 and f r
ðW tÞ is a linear function with slope

smaller than 1. Hence, there exists a W% such that f ðW%Þ ¼W%, with
0of 0ðW %Þo1.
(c)
 From the functional form of the function f we see that, for sufficiently large
values of m, the function f has local maximum at W M and a local minimum at
W m with W MoW m. Moreover, it is easy to see from (13) that W m tends to 0 as
m goes to infinity. Clearly, for a given e40; a sufficient condition for having a
globally stable fixed point is f ðW mÞXW m, where the fixed point W % satisfies
W mpW%. A direct computation shows that the last inequality is equivalent to

W mp
ð1� aÞ

1� ð1� aÞr
,

which holds for large enough values of m since W m tends to zero as m tends to
infinity. The solution to the equation W m ¼ ð1� aÞ=ð1� ð1� aÞrÞ gives us the
value of mM ðeÞ appearing in the statement of the proposition. &
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