Decision making under risk: Lotteries

1 Let \succsim satisfy completeness, transitivity, and the Independence axiom on a set Π. Prove that for any two alternatives $x, y \in \Pi$ with $x \succsim y$ and for any $1>\alpha>\beta>0$:

$$
\alpha x+(1-\alpha) y \succsim \beta x+(1-\beta) y .
$$

Solution: By $x \succsim y$ and the independence axiom

$$
\alpha x+(1-\alpha) y \succsim \alpha y+(1-\alpha) y \sim y .
$$

Moreover, applying it again, we use

$$
\alpha x+(1-\alpha) y \sim \frac{\beta}{\alpha}(\alpha x+(1-\alpha) y)+\left(1-\frac{\beta}{\alpha}\right)(\alpha x+(1-\alpha) y)
$$

and
$\frac{\beta}{\alpha}(\alpha x+(1-\alpha) y)+\left(1-\frac{\beta}{\alpha}\right)(\alpha x+(1-\alpha) y) \succsim \frac{\beta}{\alpha}(\alpha x+(1-\alpha) y)+\left(1-\frac{\beta}{\alpha}\right) y \sim \beta x+(1-\beta) y$.
2. Consider an agent whose preferences satisfy the Independence Axiom.
(a) Consider four lotteries $p, q, r, s \in \Delta(X)$ over prizes in $X=\{x, y, z\}$ with $p=$ $(p(x), p(y), p(z))$, etc.
$p=(0.2,0.3,0.5)$,
$q=(0.25,0.35,0.4)$,
$r=(0.8,0,0.2)$,
$s=(0.9,0.1,0)$.
When you learn $p \succsim q$, what can you infer about the ranking of r relative to s ?
Solution: Look for each $x \in X$ for the greatest common component $\min \{p(x), q(x)\}$ to obtain $(0.2,0.3,0.4)$, normalize to lottery $k=\frac{1}{0.9}(0.2,0.3,0.4)$ such that $p=0.9 k+0.1(0,0,1)$ and $q=0.9 k+0.1(0.5,0.5,0)$. By the independence axiom $(0,0,1) \succ(0.5,0.5,0)$. Now do the same thing for r and $s: \min \{r(x), s(x)\}$ yields $(0.8,0,0)$. Thus $r=0.8(1,0,0)+0.2(0,0,1)$ and $s=0.8(1,0,0)+0.2(0.5,0.5,0)$. Hence, by the above and the independence axiom $r \succ s$.
(b) For the same lotteries, suppose that sure prizes can be ranked such that $\delta_{z} \succsim \delta_{y} \succsim$ δ_{x}. Show that $p \succsim_{F S D} q$.

Solution: FSD requires that $F_{q}(b)-F_{p}(b)=\sum_{a 〔 b}(q(a)-p(a)) \geq 0$ for all $b \in X$. In our case $0.25=q(x)=F_{q}(x)>\bar{F}_{p}(x)=p(x)=0.2$ and $0.5=p(z)=\left(1-F_{p}(z)\right)>\left(1-F_{q}(z)\right)=q(z)=0.4$. Which proves FSD.
(c) Verify that the Independence axiom implies a preference for FSD-dominant lotteries by showing that the axiom indeed implies $p \succsim q$.

Solution: Note that $\frac{p(x)}{q(x)} \delta_{x}+\frac{q(x)-p(x)}{q(x)} \delta_{y} \succsim \delta_{x}$. Moreover $\frac{p(z)-q(z)}{p(z)} \delta_{y}+\frac{q(z)}{p(z)} \delta_{z} \succsim \delta_{y}$. Finally, we have

$$
p \sim q(x)\left[\frac{p(x)}{q(x)} \delta_{x}+\frac{q(x)-p(x)}{q(x)} \delta_{y}\right]+q(y)\left[\frac{p(z)-q(z)}{p(z)} \delta_{y}+\frac{q(z)}{p(z)} \delta_{z}\right]+q(z)\left[\delta_{z}\right] .
$$

Applying the IA yields $p \succsim q$
3. Determine whether the following utility criteria satisfy the axioms of expected utility:

1. Preference for "greater certainty": $v(p)=\max _{x \in X} p(x)$.
2. The agent considers a subset $G \subseteq X$ "good" outcomes. He ranks lotteries by the total probability of a good outcome: $v(p)=\sum_{x \in G} p(x)$.
3. Judge by worst case: $v(p)=\min _{x \in X}\{u(x) \mid p(x)>0\}$.
4. Judge by most likely prize: $v(p)=\arg \max _{x \in X} p(x)$.

Solution:

1. Fails independence. E.g. With lotteries $p=(0.7,0.3), q=(0.3,0.7)$, we have $p \succsim q$, but $\alpha q+(1-\alpha) q \succ \alpha p+(1-\alpha) q$ for all $\alpha \in(0,1)$.
2. Is fine, like an expected utility maximizer who is indifferent between all outcomes in G and indifferent between all outcomes outside of G.
3. Fails continuity. Take the case $X=x, y, z$ with $\delta_{x} \succ \delta_{y} \succ \delta_{z}$. Lottery $p=$ $(0,0,1), q=(0,1,0)$ and $r=(1,0,0)$. There is no $\alpha \in[0,1]$ such that $\alpha p+$ $(1-\alpha) r \sim q$. Also fails independence.
4. Fails independence. Take the lotteries from above. While $q \succ p$, we get $\alpha q+(1-\alpha) r \succsim \alpha p+(1-\alpha) r$ for all $\alpha>0.5$.
5. Suppose two EU maximizers with von Neumann-Morgenstern utility functions u_{1} and u_{2} with $u_{2}=\phi \circ u_{1}$.
(a) Show that $\phi^{\prime}>0, \phi^{\prime \prime}<0$ implies that at all wealth levels w the degree of absolute risk aversion of 2 is greater than that of 1 .

Solution:

$$
\begin{gathered}
A_{2}(x)=-\frac{\phi^{\prime \prime}\left(u_{1}(x)\right) u_{1}^{\prime}(x)+\phi^{\prime}\left(u_{1}(x)\right) u_{1}^{\prime \prime}(x)}{\phi^{\prime}\left(u_{1}(x)\right) u_{1}^{\prime}(x)} \\
A_{2}(x)=-\frac{\phi^{\prime \prime}\left(u_{1}(x)\right)}{\phi^{\prime}\left(u_{1}(x)\right)}+A_{1}(x)
\end{gathered}
$$

Whenever ϕ^{\prime} is positive, $A_{2}(x) \geq A_{1}(x)$ IFF $\phi^{\prime \prime}$ is nonpositive.
(b) Show that $\phi^{\prime}>0, \phi^{\prime \prime}<0$ implies that 2 is more risk-averse in the sense of Arrow and Pratt.

Solution: Suppose $E(\widetilde{\epsilon})=0$. We want to show that $E u_{1}(w+\widetilde{\epsilon}) \leq u_{1}(w)$ implies $E u_{2}(w+\widetilde{\epsilon}) \leq u_{2}(w) . E u_{2}(w+\widetilde{\epsilon})=E \phi\left(u_{1}(w+\widetilde{\epsilon}) \leq \phi\left(E u_{1}(w+\widetilde{\epsilon})\right) \leq \phi\left(u_{1}(w)\right)=\right.$ $u_{2}(w)$. The inequalities just use Jensen's inequality to get $E f(\widetilde{x}) \leq f E(\widetilde{x})$.

Recommended Exercise. (No need to hand in)

5. Consider an EU maximizer with vNM function $u(x)=2 \sqrt{x}$ and a fair coin flip. If heads show up she gets 71, if tails show up she gets 15 .
(a) Determine the risk premium associated to this gamble at wealth level 10.

Solution:

$$
\begin{gathered}
E u(w+\widetilde{x})=[\sqrt{10+71}+\sqrt{10+15}]=14 \\
u^{-1}(14)=\left(\frac{14}{2}\right)^{2}=49=10+39 \\
E \widetilde{x}=43
\end{gathered}
$$

Hence the risk premium is $43-39=4$.
(b) Calculate the degrees of absolute and relative risk aversion at wealth levels w. Would the risk premium change if wealth decreased to 1 ?

Solution: This is a CRRA function with constant relative risk aversion $R(w)=0.5$ and absolute risk aversion $A(w)=0.5 / w$. The risk premium stays the same for all wealth levels IFF utility is CARA, here we have DARA $\left(A^{\prime}(w)<0\right)$, so NO, the risk premium increases.

