Decision making under risk: Lotteries

1. Let \succeq satisfy completeness, transitivity, and the Independence axiom on a set Π . Prove that for any two alternatives $x, y \in \Pi$ with $x \succeq y$ and for any $1 > \alpha > \beta > 0$:

$$\alpha x + (1 - \alpha)y \succeq \beta x + (1 - \beta)y.$$

Solution: By $x \succeq y$ and the independence axiom

$$\alpha x + (1 - \alpha)y \succeq \alpha y + (1 - \alpha)y \sim y.$$

Moreover, applying it again, we use

$$\alpha x + (1 - \alpha)y \sim \frac{\beta}{\alpha}(\alpha x + (1 - \alpha)y) + (1 - \frac{\beta}{\alpha})(\alpha x + (1 - \alpha)y)$$

and

$$\frac{\beta}{\alpha}(\alpha x + (1-\alpha)y) + (1-\frac{\beta}{\alpha})(\alpha x + (1-\alpha)y) \succeq \frac{\beta}{\alpha}(\alpha x + (1-\alpha)y) + (1-\frac{\beta}{\alpha})y \sim \beta x + (1-\beta)y.$$

- 2. Consider an agent whose preferences satisfy the Independence Axiom.
 - (a) Consider four lotteries $p, q, r, s \in \Delta(X)$ over prizes in $X = \{x, y, z\}$ with p = (p(x), p(y), p(z)), etc.

p = (0.2, 0.3, 0.5), q = (0.25, 0.35, 0.4), r = (0.8, 0, 0.2),s = (0.9, 0.1, 0).

When you learn $p \succeq q$, what can you infer about the ranking of r relative to s?

Solution: Look for each $x \in X$ for the greatest common component min $\{p(x), q(x)\}$ to obtain (0.2, 0.3, 0.4), normalize to lottery $k = \frac{1}{0.9}(0.2, 0.3, 0.4)$ such that p = 0.9k + 0.1(0, 0, 1) and q = 0.9k + 0.1(0.5, 0.5, 0). By the independence axiom $(0, 0, 1) \succ (0.5, 0.5, 0)$. Now do the same thing for r and s: min $\{r(x), s(x)\}$ yields (0.8, 0, 0). Thus r = 0.8(1, 0, 0) + 0.2(0, 0, 1) and s = 0.8(1, 0, 0) + 0.2(0.5, 0.5, 0). Hence, by the above and the independence axiom $r \succ s$.

(b) For the same lotteries, suppose that sure prizes can be ranked such that $\delta_z \gtrsim \delta_y \gtrsim \delta_x$. Show that $p \succeq_{FSD} q$.

Micro I

Solution: FSD requires that $F_q(b) - F_p(b) = \sum_{a \leq b} (q(a) - p(a)) \geq 0$ for all $b \in X$. In our case $0.25 = q(x) = F_q(x) > F_p(x) = p(x) = 0.2$ and $0.5 = p(z) = (1 - F_p(z)) > (1 - F_q(z)) = q(z) = 0.4$. Which proves FSD.

(c) Verify that the Independence axiom implies a preference for FSD-dominant lotteries by showing that the axiom indeed implies $p \succeq q$.

Solution: Note that $\frac{p(x)}{q(x)}\delta_x + \frac{q(x)-p(x)}{q(x)}\delta_y \gtrsim \delta_x$. Moreover $\frac{p(z)-q(z)}{p(z)}\delta_y + \frac{q(z)}{p(z)}\delta_z \gtrsim \delta_y$. Finally, we have $p \sim q(x)[\frac{p(x)}{q(x)}\delta_x + \frac{q(x)-p(x)}{q(x)}\delta_y] + q(y)[\frac{p(z)-q(z)}{p(z)}\delta_y + \frac{q(z)}{p(z)}\delta_z] + q(z)[\delta_z].$ Applying the IA yields $p \succeq q$

- 3. Determine whether the following utility criteria satisfy the axioms of expected utility:
 - 1. Preference for "greater certainty": $v(p) = \max_{x \in X} p(x)$.
 - 2. The agent considers a subset $G \subseteq X$ "good" outcomes. He ranks lotteries by the total probability of a good outcome: $v(p) = \sum_{x \in G} p(x)$.
 - 3. Judge by worst case: $v(p) = \min_{x \in X} \{u(x) | p(x) > 0\}.$
 - 4. Judge by most likely prize: $v(p) = \arg \max_{x \in X} p(x)$.

Solution:

- 1. Fails independence. E.g. With lotteries p = (0.7, 0.3), q = (0.3, 0.7), we have $p \succeq q$, but $\alpha q + (1 \alpha)q \succ \alpha p + (1 \alpha)q$ for all $\alpha \in (0, 1)$.
- 2. Is fine, like an expected utility maximizer who is indifferent between all outcomes in G and indifferent between all outcomes outside of G.
- 3. Fails continuity. Take the case X = x, y, z with $\delta_x \succ \delta_y \succ \delta_z$. Lottery p = (0,0,1), q = (0,1,0) and r = (1,0,0). There is no $\alpha \in [0,1]$ such that $\alpha p + (1-\alpha)r \sim q$. Also fails independence.
- 4. Fails independence. Take the lotteries from above. While $q \succ p$, we get $\alpha q + (1 \alpha)r \succeq \alpha p + (1 \alpha)r$ for all $\alpha > 0.5$.
- 4. Suppose two EU maximizers with von Neumann-Morgenstern utility functions u_1 and u_2 with $u_2 = \phi \circ u_1$.

Problem set 6

Γ

Micro I

(a) Show that $\phi' > 0$, $\phi'' < 0$ implies that at all wealth levels w the degree of absolute risk aversion of 2 is greater than that of 1.

Solution: $A_2(x) = -\frac{\phi''(u_1(x))u_1'(x) + \phi'(u_1(x))u_1''(x)}{\phi'(u_1(x))u_1'(x)}$	
$A_2(x) = -\frac{\phi''(u_1(x))}{\phi'(u_1(x))} + A_1(x)$	
Whenever ϕ' is positive, $A_2(x) \ge A_1(x)$ IFF ϕ'' is nonpositive.	

(b) Show that $\phi' > 0, \phi'' < 0$ implies that 2 is more risk-averse in the sense of Arrow and Pratt.

Solution: Suppose $E(\tilde{\epsilon}) = 0$. We want to show that $Eu_1(w+\tilde{\epsilon}) \leq u_1(w)$ implies $Eu_2(w+\tilde{\epsilon}) \leq u_2(w)$. $Eu_2(w+\tilde{\epsilon}) = E\phi(u_1(w+\tilde{\epsilon}) \leq \phi(Eu_1(w+\tilde{\epsilon})) \leq \phi(u_1(w)) = u_2(w)$. The inequalities just use Jensen's inequality to get $Ef(\tilde{x}) \leq fE(\tilde{x})$.

Recommended Exercise. (No need to hand in)

- 5. Consider an EU maximizer with vNM function $u(x) = 2\sqrt{x}$ and a fair coin flip. If heads show up she gets 71, if tails show up she gets 15.
 - (a) Determine the risk premium associated to this gamble at wealth level 10.

Solution:

$$Eu(w + \tilde{x}) = [\sqrt{10 + 71} + \sqrt{10 + 15}] = 14$$

 $u^{-1}(14) = (\frac{14}{2})^2 = 49 = 10 + 39$
 $E\tilde{x} = 43$
Hence the risk premium is $43 - 39 = 4$.

(b) Calculate the degrees of absolute and relative risk aversion at wealth levels w. Would the risk premium change if wealth decreased to 1?

Solution: This is a CRRA function with constant relative risk aversion R(w) = 0.5 and absolute risk aversion A(w) = 0.5/w. The risk premium stays the same for all wealth levels IFF utility is CARA, here we have DARA (A'(w) < 0), so NO, the risk premium increases.